
LRAILROAD

INTRODUCTION
One of the most difficult aspects of scale model rail-

roading is that of achieving realistic operation . Model
locomotives have a tendency to be jerky, particularly at
low speeds . In fact , it is virtually impossible to run most
model locomotives at speeds of less than 15 scale miles
per hour using conventional controllers .

The problem stems from the heavy frictional losses in
the mechanism , particularly in the gear train. Because
of these losses, motor current is high at all speeds and
varies not so much with speed as with the angular posi -
tion of the drive wheels. As a result, the locomotive
tends to stall or jerk at low speeds with a rheostat or
other types of controllers which have high output resist-
ance. Better control can be obtained by using a controller
with low output resistance , but speed fluctuations and
stalling-are still present with most models at low speeds.

A more recent technique ' is to use full-voltage pulses
of controlled width (possibly superimposed on DC) to
obtain the desired average output. Because the pulse
voltage is high enough to overcome the friction in the
mechanism , stalling is no longer a problem . However,
the average speed still varies with load , with the result
that the locomotive will slow down suddenly when it

' Fyffe , David , " Pure-pulse Tran sistor Throttl e," Model Rail-
roader , Vol. 32, #1 (January 1965), p. 63.

ACKNOWLEDGMENTS
The author wishes to thank Dr. Damian Goul et! and th e On-

tario Science Centre for making available the Centre' s Ell
MMD-1 microcomputer for the developm ent of this controll er.

starts up a grade or enters a sharp curve, unless the
pulse width is adjusted to compensate .

Servo techniques can be used to offset both frictional
losses and load fluctuations, but a linear servo must be
t rimmed to compensate for each locomotive's motor
resistance . The controller described here uses a combi- ·
nation of pulse and servo techniques to give excellent
control for a wide variety of locomotives at speeds rang-
ing down to less than 1 scale mile per hour.

Another objective in controller design is to simulate
the enormous inertia of a locomotive. Many controllers
do this by charging and discharging a large capacitor to
obtain a slowly varying control voltage. In the present
design , inertia simulation is done entirely by software,
incrementing and decrementing a register to vary the
speed slowly.
HARDWARE CONFIGURATION

The controller configured here uses an 8080 micropro-
cessor with 512 bytes of ROM, a minimum of RAM (only
about 16 bytes are actually used), one input port, and
two output ports. The input port and one of the output
ports are used in conjunction with a digital-to-analog
converter (DAC), a bank of comparators , and a software
analog-to-digital conversion routine to implement a
cheap form of multi -channel analog input. The other out-
put port is used to pulse the output amplifier.

The output amplifier is bipolar(complementary), allow-
ing direction control to be done in software. As a result,
the controller can be programmed so t hat if the reversing
switch is changed while the train is running , instant rever-
sal does not occur; instead the train will gradually slow

DECEMBER 197780 INTERFACE AGE

C0 ByGifford Toole President, mcE Toronto

to a stop and then begin accelerating in the opposite
direction .

Two of the analog inputs are used to measure the
motor voltage, one for each direction , giving 8-bit resolu-
tion in either direction . A third analog input is used for
the throttle setting, which is a voltage between 0 and 5
volts (derived from a pot). The spare bits of the input ·
port are used for the direction switch and the brake.

Detailed schematics for the bipolar output amplifier,
low-pass filter, and analog-to-digital conversion circuits
are shown in Figures 2, 3 and 4.

The output is determined by the state of two bits of
latched output Port 1. When bit 0 is one and bit 1 zero,
transistor 01 turns on, which in turn switches 02 and
03 on , giving full (nearly 12 volts) positive output. When
bit 0 is zero and Bit 1 is one, 01 is reverse-biased but 04,
05 and 06 turn on, giving full negative output. When bits
0 and 1 are equal, all transistors are off and no output
current results . Note that under no circumstances can
both halves of the output amplifier be biased on simul -
taneously. 07 and 08 provide current limiting, turning on
only if the average output current exceeds 1.4 amps or the
instantaneous output current exceeds 3 amps . (Stated
more exactly, 07 and 08 limit the magnitude of the out-
put current I such that .22 I + .5 lav < Vbe.) The output
clamping diodes limit inductive voltage transients from
the motor when the transistors switch off.

The low-pass filter is really two simple low-pass filters,
one inverting and the other non-inverting. This is done
because the DAC produces an output of one polarity (+)
only. When the amplifier output is positive , the non-in-

verting filter output is positive and is converted to an
8-bit (unsigned) number by the ADC routine, while the in-
verting filter output is negative and converts to zero.
This technique avoids the offset errors which would
crop up if the DAC output were offset to accommodate
bipolar signals, and , at the same time, maintains 8-bit
significance in the conversion.

The software is described in Figure 5 as a set of APL
functions. The APL notation is used because it affords a
more concise, detailed description than is feasible with
flowcharts.

SOFTWARE
The main program consists of an infinite loop which

samples the motor voltage which , between pulses, is
proportional to the speed , compares it to the desired
speed , calculates how long the next pulse should be,
delivers a pulse, then checks the control settings and
adjusts the desired speed accordingly.

Analog -to-digital conversion is done by successive
approximation (function ADC) . The inputs from all but
one of the comparators are ignored during any one con-
version ; a mask supplied as an argument to the ADC
routine determines which bit is used . The next pulse
width is calculated by a proportional-plus-integral con-
trol algorithm (next pulse).

The cu rrent desired speed is a 16-bit number (speed),
kept in the HL register pair, of which the high-order
eight bits are used in the speed comparison and pulse
width calculation . The register is incremented on each
iteration if the throttle i up and the brake is

INTERFACE AGE 81 DECEMBER 1977

BIT 0

Figure 1. Hardware Configuration

.22Q

Figure 2. Output Amplifier

released . If the brake is on, the register is decremented.
Drag is simulated by applying a small decrement on
each iteration. Negative numbers are used when the
locomotive is running in reverse.
CONCLUSION

The firmware approach affords considerable flexibility
in the design of a controller. Extra features can be added
by simply changing the software (e.g., loss of steam pres-
sure, running out of water or fuel, etc.). The unit can also
be programmed to control two or more locomotives inde-
pendently. The only additional hardware required consists
of an output amplifier and three analog input channels.

V MAIN
[1) SPEED+ 0
[2) PULSE-4- 0
(3) LOOP :PULSE+ PULSE NEXTPULSE SPEED
(4) DELIVER PULSE
(5(SPEED+ SPEED+ (THROT SPEED, (DRAG SPEED), BRAKE SPEED)

+ TIMECONST

(6) +LOOP
v
V P+ PULSE NEXTPULSE SPEED

(1) P+ (0.5 x PULSE)+ 2 x (SPEED· CURRENTSPEED)

VC+ CURRENTSPEED
(1) C+ (ADC FORWARD), ADC REVERSE

v
V R+ ADC MASK:C

[1) R+ 128
(2) C+ 128
(3) L:R OUTPUT 0
(4) C+ C+ 2
(5) +EXIT IF C < 1
(6) +LOW IF 0•.= MASK INPUT 0
(7) R+ R · C
(8) +L
(9) LOW:R+ R+ C
(10) +L
(11) EXIT: +RET IF O•.= MASK INPUT 0
(12) R+ R, 1
[13) RET:

v
V T+- THROT SPEED;D

(1) D+ DIRECTION INPUT 0
(2) +MAX IF DA . =O
(3) SPEED+ , SPEED
(4) MAX:T+ (ADC THROITLE) x (MA XSPEED +SPEED)
(5) +RET IF Dv.,. O
(6) T+ 1 T
(7) RET:

v

V D-4- DRAG SPEED
(1) D-4-0
(2) +RET IF SPEED =0
[3) D+ DRAGCONST
[4) +RET IF SPEED > 0
(5) D-4- 1 DRAGCONST

.22Q

OUTPUT {PORT 1

o.

Q ,, Q,, Q. - 2N3904 or equivalent
OJ, Q , , Q, - 2N3906 or equiva lent
Q , - D45 H 5 or equivalent
a . - 044 H5 or equivalent
o, , o,- 1N400 1 or eq uiva lent

o •

[6) RET:

V DELIVER PULSE;D;C
[1) +NEG IF PULSE < 0
[2) D ... FORWARD
[3) +SH
[4) NEG :D+ REVERSE
[5) PULSE+ , PULSE
[6) SH:PULSE+ 2 x PULSE
[7) C+ 0
[8) L: +OFF IF C =PULSE
[9) +ON IF C=O
[10) L1 :C+ C + 1
[11) +L IF C"256
[12) +RET
[13) ON :D OUTPUT 1
[1 4) +L1
[15) OFF :O OUTPUT 1
[16) +L1
[17) RET:

v
V B+ BRAKESPEED

[1) B+ 0
[2) +RET IF 0(1. =BRAKE INPUT 0
[3) +RET IF SPEED=O
[4) B+ BRAKECONST
[5) +RET IF SPEED > 0
[6) B+ 1 BRAKECONST
[7) RET:

COMPLEMENTARY
POWER AMPLI FIER

TO TRACK

OUTPUT PORT 0
DAC

DECEMBER 197782 INTERFACE AGE

0
f-a:
0 a.
>--::> a.
>--::>
0

TRACK

Figure 3. Low-Pass Filter

+5

Figure 4. A·D Interface

1. The foll owing constants are used
TIMECONST-
FORWARD-
REVERSE -
THROTILE-
DIRECTION-
BRAKE -
DRAGCONST-
BRAKECONST -

256
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0
4

64

I

tr___J

2. The Function OUTPUT is assumed to output its left argument to the
port whose number is given by the right argum ent.

3. The Fun c tion INPUT is ass umed to input a byte from the port whose
number is given by the righ t argum ent, and " AND " the eight bits
with the left arg ument to produce a result.

Figure 5. Controller Algorithms

z.,
c,
0
:JJ

INTERFACE AGE 83DECEMBER 1977

