Fewer parts resolve shaft encoder data

by Bill McClelland
Digicomp, Darien, Conn.

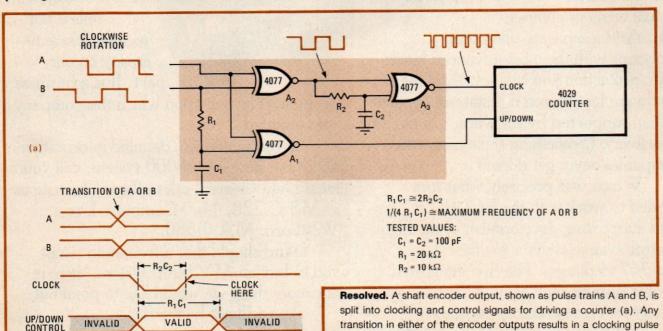
This circuit achieves the same resolution as the circuit proposed by Amthor [Electronics, Sept. 11, 1980, p. 139] but requires only one integrated circuit, instead of seven, and half the number of discrete components.

A standard shaft encoder has two ports, A and B, each generating a square wave as the shaft encoder is turned. The square wave from port A will either lead or follow port B's square wave by 90°, depending on the direction of the rotation of the encoder (a).

To get the maximum resolution out of the shaft encoder, every change of state for both A and B must be counted. Depending on the direction of rotation of the shaft encoder, the counter will count up or down. By exclusive-NOR-ing square waves A and B at gate A₂, a square wave that changes state whenever there is a change of state of either A or B can be obtained. The output of exclusive-NOR gate A₃ is high except when a change of state at gate A₂ occurs. Whenever the output of gate A₂ changes state, the two inputs of gate A₃ will be of opposite state for a time determined by R₂ and C₂, generating a short, low-going pulse. By using complementary-MOS exclusive-NOR gates, the pulse at the output of gate A₃ will have about the same duration for both

the positive and negative transitions of gate A₂. The trailing edge of this pulse is used to clock the counter, allowing setup time for the up-down control (b).

The up-down control is generated by R_1 , C_1 , and gate A_1 . R_1 and C_1 act as a latch, holding the value of B prior to a change of state of A or B during the clock pulse at gate A_3 . Exclusive-NOR-ing the value of A just after a change of state in A or B, with the value of B set just prior to a change of state of A or B, achieves the proper up-down control.


The operation of gate 1 can be demonstrated as follows: square waves A and B are out of phase with each other by 90° . Adding -90° to B would change the phase shift to 0° or -180° , depending on the direction of rotation of the shaft encoder.

As a result, the output of exclusive-NOR gate A_1 would be high when A and B are in phase and low when A and B are 180° out of phase. Since the only concern is the output of gate A_1 when the counter is clocked, R_1 and C_1 give enough time lag to phase-shift B for the duration of the clock pulse at gate A_3 . For this reason the time constant R_1C_1 is greater than R_2C_2 .

The polarity of the up-down control may be inverted by swapping the A and B wires or by using the fourth exclusive-NOR gate in the 4077 integrated circuit as a selectable inverter-buffer. If the clock signal needs to be inverted for another type of counter, the entire 4077 exclusive-NOR-gate package can be changed to a 4070 exclusive-OR package. If standard C-MOS rise and fall times at the A and B inputs cannot be guaranteed, it becomes necessary to buffer the A and B inputs with a Schmitt trigger, such as a 74C914.

to the counter, while the sequence of the encoder outputs deter-

mines whether the count is up or down (b).

(b)