
76 March & April 2017 www.elektormagazine.com

Microsoft‘s rapid advance into Raspberry
Pi territory has certainly caused Google
some headache. After desktop compu-
ters, tablets and smartphones, the Inter-
net of Things (IoT) looks like becoming
the next battleground.

coincidental — Android Things is by and
large a normal version of Android, albeit
one that contains some extensions for
interacting with hardware. Figure 1
shows the structure of the operating
system.

The Things Support Library incorpora-
ted with this consists of two modules.
First up is the Peripheral I/O API, which
at the time of writing provides access
to the following four types of peripheral
(whether OneWire will be retrofitted is
currently unclear):

• GPIO with PWM
• I2C
• SPI
• UART

The second component is the User Driver
API. We’re talking here about a program-

With the Redmond brigade now well
advanced along the road towards plat-
form independence, convergence is the
new keyword. Google simply cannot
afford to ignore the IoT arena, as other-
wise Microsoft could exploit this and open
a second front on which to attack the
smartphone market.

However, Google’s Brillo platform and
language for the Internet of Things
announced about a year ago made little
impact. Maybe the name was the prob-
lem. Whatever the reason, for its second
attempt, Google knew it must go direct
for the jugular and named its new pro-
duct simply ‘Android Things’.

Simple access to hardware
Let’s begin with the obvious. Despite all
the kerfuffle — comparisons with Micro-
soft’s ‘Windows 10 IOT Core’ are purely

Android on your Rpi (1)
Using GPIO Pins for measurement and control functions

By Tam Hanna (Slovakia)

Google has released a new version of Android — especially for single-board computers and for measurement
and control applications. Having tested Android on the Raspberry Pi, we can now show you in simple steps
how to get a first ‘Hello World’ project to work.

Pay attention to quality!

If you are ordering memory cards
from China make sure you carry
out detailed quality tests. Many
manufacturers offload batches of
inferior quality products that may
well report the full complement of
memory to your microcontroller. In
actual use, however, your data may
be lost.

www.elektormagazine.com March & April 2017 77

ming interface that developers can use to
make information on their own proprie-
tary sensors available to the rest of the
operating system. Further information on
the modules included in the Things Sup-
port Library can be found at [1].
Let’s venture now into some first
attempts using practical hardware.

Preconfigured images
At press time Google (doubtless having
learnt from its flop with Brillo) already
offered ready-built Images for the Intel
Edison, NXP Pico and Raspberry Pi 3 plat-
forms. In this first article we shall focus
on the (by far most widely selling) Ras-
pberry Pi 3.
The first stage involves downloading
the Image that awaits you at [2] and
then burning it in the normal way onto
a memory card (in this connection don’t
miss the text panel Pay attention to
quality). For the steps that follow the
author used an 8 GB capacity card. Using
cards of greater capacity should not be
a problem; on the other hand the Image
size of 4.6 GB means that it will not work
with cards any smaller than this.

The next step is to connect the screen
and a network cable to your router on
the RPi, and start it up by connecting
the power supply. Note that a keyboard
and mouse are not required, because
Android in itself registers only one desk-
top, without relevant interaction possi-
bilities. We do not want to get involved
with debugging over WLAN, because the
higher latency of wireless connections
can lead to delays while you are tracking
down for errors. Nevertheless, if you do
want to try this, you will need to connect
the RPi to the wireless network following
the instructions given in [3].
The first time you start up Android Things
on a Raspberry Pi 3 it will take a cou-
ple of minutes. At the very beginning, a
message appears about Ethernet being
missing; you can safely ignore this if the
network cable is already connected.
With this work done, the operating sys-
tem presents the start screen shown in
Figure 2. The IP address — 10.42.0.44
in this case — will be needed shortly.

Development environment
For space reasons, we have to assume
at this point that you already have a
working installation of Android Studio
on your development PC. If this is not
the case, please refer to [4] for help

tamhan@TAMHAN14:~/Android/Sdk/
platform-tools$

I nputting adb devices is not absolutely
necessary here — we are showing you
the command because it allows you to
identify all devices connected to the
Android Debug Bridge.
Also, remember that the connection
between the ADB and the RPi can be
lost, for example when your PC falls
asleep.

and advice. The author used an AMD
eight-kernel workstation with Ubuntu
14.04 to perform the following stages
(it’s very similar under Windows and
Mac OS).
In the next step, change to the root
directory of the Android Debug Bridge
(ADB) on the PC. Then connect the
development computer to the RPi by
typing the console commands shown in
bold as follows:

tamhan@TAMHAN14:~/Android/Sdk/
platform-tools$./adb connect
10.42.0.44

connected to 10.42.0.44:5555

tamhan@TAMHAN14:~/Android/Sdk/
platform-tools$./adb devices

List of devices attached
10.42.0.44:5555 device

Figure 1. Android Things is a variant of Android (image credit: Google).

Figure 2. Our own ‘Thing’ is ready to put into use — remember to make a note of the IP address.

Figure 3. Using GitHub has always been a
challenge and remains so.

78 March & April 2017 www.elektormagazine.com

point, you must extract the Archive
that you downloaded in the previous
step and move this into a convenient
location in the file system. Then click
Open existing Android Studio Project
and cross over into the directory that
contains this project. After you have
clicked OK, the IDE will begin to deploy
the project. As part of the synchroni-
zation of the Gradle project, the IDE
will attempt to download any missing
components automatically. If any
problems arise, you will see an error
message along the lines of Figure 4;
clicking the hyperlink usually resolves
the problem.

Do not be surprised if Android Studio
complains more than once to report it
has found obsolete versions. Android
Things requires you to use the absolu-
tely latest version of several components
of the operating system, which must be
installed in several steps.

After launching the IDE successfully, you
should click Build → Make Project once
more in order to launch a complete com-
pilation. It is important to note that an
Internet connection is required when you
make the first compilation; afterwards
you will also have a realistic chance of
being able to work offline with your pro-
ject skeleton.

Alles anderDifferent strokes…
The MainActivity code serving as star-
ting point is different from normal And-
roid applications, because Google has
added some extra logic calls. These
are necessary because Android Things
is able to work either with or without
a monitor screen. In the latter case,
thanks to the Log Calls, you do at least
receive information in the debugger
console.

Also note that the res directory is
blank, as shown in Figure 5. There is
no XML Markup supporting this activity.
This affects the code as shown in Lis-
ting 1 — the call to load of resources
from XML normally available is mis-
sing here.

Another thing to concern us is the con-
struction of the Manifest file, shown in
abbreviated form as Listing 2. Two
modifications are of interest here.
Firstly, the Library section ensures that
the Libraries mentioned above are inte-

project skeleton by clicking on the But-
ton shown in Figure 3.
If you are already running a project in
Android Studio now, close it by clicking
File → Close Project. The IDE will then
display the Welcome dialog. At this

Android Things is still at an early stage
of development and there is no tem-
plate available yet in the project gene-
rator of Android Studio. In its absence
you need to call up the existing GitHub
Repository [5] and download a sample

Figure 4. A compatible SDK is missing here.

Figure 6. The table indicates the Pins of the Raspberry Pi.

Figure 5. This application gets by without XML
markup.

Figure 7. Anyone who blocks the GUI Thread
will be punished (image credit: Google).

www.elektormagazine.com March & April 2017 79

program’s user interface is managed
in a dedicated Thread called a GUI
Thread. If you block this, the opera-
ting system punishes you without leni-
ency by ‘shooting down’ your applica-
tion. An endless loop would be a classic
‘obstruction’ that would certainly earn
you no mercy.

To avoid this problem we can outsource
our Routine in a further Thread.
The simplest way of generating a

conclusions. In theory, there should
be nothing wrong with implementing
periodic on and off-switching of the
Pin directly in the OnCreated Function,
which is called up at the start of the
program. However, if you try this, you
will be confronted with the error mes-
sage shown in Figure 7.

The reason for this admittedly rather
strange behavior lies in a peculiarity
of the Android operating system: the

grated into the project. Secondly, Mai-
nActivity has an additional Intent Filter
written into it, which characterizes it
as an entry point for Android Things
devices.

This is relevant because Android
Things has to make do without a pro-
gram start. RPi is basically a ‘one trick
pony’ that simply processes its host
application.

Input and output
For our first demo let’s turn to the
GPIO Engine. There’s an old saying
stating that the real-time capability of
an operating system decreases linearly
(or even logarithmically!) with its com-
plexity. Java-based systems are par-
ticularly disagreeable in this respect,
with the Garbage Collector causing
grief from time to time. At this point
you must be utterly and completely
forewarned that the Raspberry Pi is a
3.3 V platform — connecting 5 V sub-
systems will result in certain disaster!

With that said we can now turn our
attention to the application code in
MainActivity (Listing 3). First we
declare two additional Member Varia-
bles. The Peripheral API is implemen-
ted in the form of a System Service.
A Service is generally available across
the entire operating system; applica-
tions that need to make use of it obtain
a Referral and then interact with it. The
Gpio Class is responsible for the actual
switching on and off of the Pins.

The Function onCreate (Listing 3) is
used to procure the Service. Even
if Google is not 100 % orientated
towards the Arduino where GPIO Func-
tions are concerned, it’s perfectly clear
what’s going on here. The BCM Strings
can be assigned to individual Pins on
the basis of the table in Figure 6. This
table is obtained by entering the com-
mand GPIO Readall on a Raspberry Pi
(loaded with the standard operating
system Raspbian, not Android).

Start the music!
In order to determine the reliability
or real-time efficiency of an operating
system, it is a good idea to implement
a periodically changing output on the
GPIO Pin as quickly as possible. If you
examine the spectrum on a modulation
domain analyzer, you can draw some

Listing 1. Framework of the MainActivity — starting point of the
program without user interface.

public class MainActivity extends Activity {
 private static final String TAG = MainActivity.class.

getSimpleName();

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Log.d(TAG, “onCreate”);
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();
 Log.d(TAG, “onDestroy”);
 }
}

Listing 2. Manifest file with Library integration.

<manifest . . .>
 <application
 - - ->
 <uses-library android:name=”com.google.android.Things”/>

 <activity android:name=”.MainActivity”>

 . . .

 <intent-filter>
 <action android:name=”android.intent.action.MAIN”/>
 <category android:name=”android.intent.category.

IOT_LAUNCHER”/>
 <category android:name=”android.intent.category.

DEFAULT”/>
 </intent-filter>

 </activity>
 </application>
</manifest>

80 March & April 2017 www.elektormagazine.com

Runnables are basically a kind of cont-
ainer in which we ‘pack’ the logic that
executes the new Thread. In addition to
the run Method described here, you can
of course implement various Members in
order to provide the information neces-
sary for executing the Thread.
In its fully completed state the resul-
ting Class now looks like Listing 4.
In addition to a Constructor responsible
for accepting the GPIO Instance, we
also have now populated the Method
run(), which is what produces the
actual waveform output. We generate
a characteristic waveform from three
rectangles: what’s interesting in this
instance is that the duration of the
execution of the while loop is shown
separately.

The question now arises how we acti-
vate the Runnable in OnCreated. A
classic mistake made by novices is to
invoke run() directly — doing this exe-
cutes the code in the context of the
activating Method (that means in the
GUI Thread again). The correct way to
activate a second Thread is to create
a new Thread Class, with an Object
indicated as Payload for the Parame-
ter (Listing 5). The Thread is initiated
using the start()Method.

We are now ready to toss the program
in the RPi’s direction.
Thanks to the ADB, which acts as
an abstraction layer, it’s sufficient to
merely click on Run — the RPI beha-
ves like a phone connected to the PC
via USB. Since the MainActivity does
not contain a user interface, a plain
white screen appears if a monitor is
connected, letting us know that our
activity is cheerfully getting on with
its work.

Debriefing
The next step is to connect your RPi to a
modulation domain analyzer, so you can
admire the screenshot shown in Figure 8
(the author provides an English language
video at [6] giving further information
on the function and benefits of using a
modulation domain analyzer).
The most conspicuous feature, apart from
the occasional jitter, is the formation of
two prominent peaks. The region around
2.073 kHz shows the two ‘linear sweeps’
during the transition through the while
loop, leading to the somewhat lower fre-
quency of ‘only’ 2.062 kHz.

public class WaveformEmitter
implements Runnable {

 @Override
 public void run() {

 }
}

Thread is to create a Runnable. So
your first step is to create a new Class
employing the following structure:

Listing 3. The Gpio Class responsible for switching Pins on and off.

public class MainActivity extends Activity {

 private static final String TAG = MainActivity.class.
getSimpleName();

 PeripheralManagerService service;
 Gpio myGPIO;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Log.d(TAG, “onCreate”);

 PeripheralManagerService service = new
PeripheralManagerService();

 try{
 myGPIO = service.openGpio(“BCM6”);
 myGPIO.setDirection(Gpio.DIRECTION_OUT_INITIALLY_LOW);
 myGPIO.setValue(true);
 }
 catch (Exception e){Log.d(TAG, “Fehler:” + e.getMessage());}

Listing 4. The endless loop of signal generation is performed in a Thread
of its own — a Runnable serves as Container.

public class WaveformEmitter implements Runnable {
 Gpio myGpio;
 public WaveformEmitter(Gpio _which){
 myGpio=_which;
 }
 @Override
 public void run() {
 try {
 while(1==1){
 myGpio.setValue(true);
 myGpio.setValue(false);
 myGpio.setValue(true);
 myGpio.setValue(false);
 myGpio.setValue(true);
 myGpio.setValue(false);
 }
 }
 catch (Exception e){}
 }
}

www.elektormagazine.com March & April 2017 81

It’s obvious that, in this situation, And-
roid simply cannot match the pace of
classic Unix; the interposed Java VM is
taking its toll and slowing things down.
You can read more on the real-time beha-
vior of Android in various papers on the
Internet (for instance in [7]).

The verdict
The program just created is a classic
example of overkill in the embedded
domain: a shrewd programmer could
generate a stable waveform without any
real-time operating system, using just a
few lines of code and an IC.

Mind you, Bit banging and all that — let’s
be honest — is definitely not the intended
application use of Android Things. On the
other hand, the platform will always play
its strengths when it comes to realizing
demanding applications. In our next issue
we’ll show you how to interpret data from
sensors and display the result in a dia-
gram. Until then I wish everybody good
coding!

(160361)

Listing 5. Start of our signal generation Thread in MainActivity.

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 . . .

 WaveformEmitter myEmitter=new WaveFormEmitter(myGPIO);
 new Thread(myEmitter).start();
}

Web Links

[1] https://developer.android.com/things/sdk/index.html

[2] https://developer.android.com/things/preview/download.html

[3] https://developer.android.com/things/hardware/raspberrypi.html

[4] https://developer.android.com/studio/install.html

[5] https://github.com/androidthings/new-project-template

[6] www.youtube.com/watch?v=lBLEfVUVGyU

[7] www.utdallas.edu/~cxl137330/courses/fall14/RTS/papers/4a.pdf

Figure 8. Arduinos generate significantly ‘prettier’ histograms in this application.

https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/hardware/raspberrypi.html
https://developer.android.com/studio/install.html
https://github.com/androidthings/new-project-template
http://www.youtube.com/watch?v=lBLEfVUVGyU
http://www.utdallas.edu/~cxl137330/courses/fall14/RTS/papers/4a.pdf

