
30 July & August 2017 www.elektormagazine.com

The small footprint of the
BBC micro:bit would alone make
it a go-to choice for measurement
tasks. Regardless of whether pow-
ered over a USB cable or by batter-
ies, and whether it used Bluetooth or
some simplified wireless protocol to
communicate with the outside world,
it can always be installed close to the
object under examination.

A USB oscilloscope
For programming the BBC micro:bit the
mbed platform has proven its worth. The

By Burkhard Kainka (Germany)

Every microcontroller that features an
A-to-D converter and a PC interface can be
used as a logging device for data acquisition
systems. But with the BBC micro:bit you
get the bonus of a small LED display and a
wirefree interface into the bargain. Just the
job for special applications in
your electronics lab!

PROJECTHOMELAB

GND

3V

P2

P1 10k

Input

P0

micro:bit

Figure 1. Measurement input and signal output. Figure 2. A squarewave signal with 10 Hz
repetition rate.

Figure 3. The filtered signal.

BBC micro:bit for
Electronicists (2)
Data acquisition and oscilloscope functions

www.elektormagazine.com July & August 2017 31

ated from the squarewave, as would be
expected (Figure 3). The measurement
range of the Arduino plotter adapts auto-
matically to smaller voltages.

Faster sampling by buffering
If you are minded to reduce the time
taken by serial data, it is only the acqui-

ment and a scrolling display is shown. As
soon as you release the button, the last
display is frozen, so you can examine it
more closely or save a copy of it.
The additional signal output can be use-
ful for investigating circuits or compo-
nents. Using a low-pass filter with 4.7 kΩ
and 22 μF a sawtooth signal is gener-

basics are explained in reference [1]. All
the programs mentioned in this article
are available to download as text files
on the Elektor website [2] and need to
be copied into an existing mbed project.
When deploying the BBC micro:bit for
general-purpose measurements you
must ensure that the voltage range
under examination cannot overstep the
range between GND and VCC. A protec-
tive resistor of 10 kΩ in series with the
input will restrict the current flow in all
situations, necessary if you accidentally
exceed safe limits (Figure 1). As well as
the analog input there’s also a square-
wave output, with which you can produce
a handy test signal.
For maximum speed the program in
Listing 1 captures data without buff-
ering for immediate transfer of each
measured value. A significant element
of the cycle time arises from the serial
transfer at 115,200 baud. If the mea-
surements captured are a mixture of,
say, single-digit (3 mV) and four-digit
(3000 mV) amounts, these variable
figures will result in uneven data flow.
Consequently we raise the voltage by
1000 mV, making the possible values
from 1000 mV to 4300 mV and always
taking the same time to process. The
program also provides its own signal
source so that you can measure some-
thing without additional overheads. P1
becomes a PWM output with a PWM fre-
quency of 10 Hz and a period of 100 ms.
For evaluating the data there are plenty
of options. You could take in the data
using a terminal program and then pres-
ent it as a spreadsheet. A convenient
alternative is the serial plotter in the
Arduino IDE (version 1.6.8 onwards).
This software provides a scrolling screen
display, adjusted automatically to the
display range, making range switching
or reformatting unnecessary. With the
settings shown we can measure a sym-
metrical squarewave signal with 10-Hz
repetition rate (Figure 2). At the same
time we now have a known time axis. The
entire oscillogram clearly depicts a data
acquisition duration of 300 ms.
The serial plotter of the Arduino IDE
always plots first from left to right until
the screen is completely filled. After this,
the picture scrolls to the left to make
old data disappear. The choice between
a continuous or static display is made
with the button A (if(uBit.buttonA.
isPressed()in Listing 1). Just press but-
ton A for the duration of the measure-

Listing 1. Rapid measurement with direct data transfer.

//Voltage Logger/Scope
#include "MicroBit.h"
MicroBit uBit;

int main()
{
 uBit.init();
 MicroBitSerial serial(USBTX, USBRX);
 uBit.io.P1.setAnalogValue(512);
 uBit.io.P1.setAnalogPeriodUs(100000);
 while (1) {
 if(uBit.buttonA.isPressed()){
 int u = 1000+3300 * uBit.io.P0.getAnalogValue()/ 1023;
 uBit.serial.printf("%d\r\n", u);
 // uBit.sleep(100);
 }
 }
}

Listing 2. Rapid saving and subsequent transfer.

//Fast Scope
#include "MicroBit.h"
MicroBit uBit;

int main(){
 char d[400];
 uBit.init();
 MicroBitSerial serial(USBTX, USBRX);
 uBit.io.P1.setAnalogValue(512);
 uBit.io.P1.setAnalogPeriodUs(2000);
 while (1) {
 if(uBit.buttonA.isPressed()){
 for(int i = 0; i < 400; i++){
 d[i] = uBit.io.P0.getAnalogValue()/ 4;
 }
 for(int i = 0; i < 50; i++) uBit.serial.printf("%d\r\n", 0);
 for(int i = 0; i < 400; i++){
 uBit.serial.printf("%d\r\n", d[i]);
 }
 for(int i = 0; i < 50; i++) uBit.serial.printf("%d\r\n", 255);
 }
 uBit.sleep(500);
 }
}

32 July & August 2017 www.elektormagazine.com

shown, the measurement lasts around
30 ms, which means that with 400 data
points a sampling rate of approximately
13 kHz can be deduced. Because the
PWM frequency in this program was
raised by 500 Hz, you can easily verify
this with a signal of your own. Figure
5 shows the PWM signal at the output a
low-pass filter with 4.7 kΩ and 100 nF.

Wireless transfer
of captured data
The BBC micro:bit is equipped with
Bluetooth Low Energy (BLE). You will look
in vain on the board for a dedicated chip
for this, as the RF circuitry is already built
into the microcontroller. The nRF51822
from Nordic Semiconductor was originally
developed for applications such as
wireless keyboards and mice, which did
not call for extensive range but did have
to use battery power economically. The
BBC micro:bit takes advantage of these
capabilities. You can power the board
using a 3-V battery and then dispense
with even the USB cable. This makes
the system viable even for long-term
applications powered by batteries. The
shortform lineup of its main features
speaks for itself:

• 2.4-GHz transceiver
• –93 dBm sensitivity in Bluetooth®

low energy mode
• 250 kbps, 1 Mbps, 2 Mbps supported

data rates
• Tx Power –20 to +4 dBm in 4-dB

steps
• Tx Power –30 dBm whisper mode
• 13 mA peak Rx, 10.5 mA peak Tx

(0 dBm)
• 9.7 mA peak Rx, 8 mA peak Tx

(0 dBm) with DC/DC
• RSSI (1-dB resolution)
• ARM® Cortex™-M0 32-bit processor
• 275 μA/MHz running from flash

memory
• 150 μA/MHz running from RAM
• Serial Wire Debug (SWD)

Programming with mbed enables the use
of Bluetooth, allowing you to transmit
data direct to a smartphone or tablet.
Admittedly this calls for a pretty sizeable
software stack and worse, it leaves you
to develop the custom apps.
But there’s a far simpler way. You see,
you can address the 2.4-GHz transceiver
at a lower level, dispensing altogether
with the complicated Bluetooth protocol.
Making this possible is the MicroBitRadio

use a Byte Array with 400 bytes using
char d[400]. By dividing by 4, the 10-bit
data of the A-to-D converter becomes an
economical 8 bits.
We now store and transfer 400 bytes
(Listing 2). We are still 100 bytes short
for filling the plotter. But we can make a
virtue out of necessity and prefix a zero-
bytes header and suffix a trailer having
255-bytes. This causes the serial plotter
to always display the full measurement
range and provides the viewer with clear
visibility of the range limits. The reading
in Figure 4 depicts a 50-Hz signal with
typical interference pulses, which you
pick up with an exposed measurement
lead. Because around 1.5 oscillations are

sition time of the A-to-D converter that
limits the achievable sampling rate. So
you create a Data Array, fill it with data
measurements and send these off to the
PC. But it’s exactly here that problems
arise that you had not reckoned with.
Although the controller is well endowed
with RAM, an Array of the type int
d[100] is pushing the limits, because
the Microbit Runtime does not have much
spare capacity. But if you want to use
the serial plotter, there should already
be 500 measured values.
You definitely need to be aware that the
type of int in a 32-bit system has a
size of four bytes. Accordingly we have
400 bytes at our disposal. Therefore we

Figure 6. Deactivating BLE.

Figure 4. Measuring with a higher sampling
rate.

Figure 5. A 500-Hz sawtooth signal

www.elektormagazine.com July & August 2017 33

file is an entry MICROBIT_BLE_ENABLED 1,
in which you need to replace the 1 with a
0. In the next compilation that you make
BLE is then deactivated, enabling you to
use the simplified MicroBitRadio.
The program in Listing 3 sends and
receives datagrams of measurement
data. The sender and receiver can
therefore use the same program and also
exchange data reciprocally. The sender
executes a measurement at P1 and
transmits the reading in mV. The receiver
passes the received data forward via the

MicroBitRadio component and Bluetooth
Low Energy (BLE) at the same time.
If you want to use the MicroBitRadio
functionality, you need to disable the BLE
stack on your micro:bit by compiling the
runtime with #define MICROBIT_BLE_
ENABLED 0 in your inc/MicroBitConfig.h
file.
It is not entirely simple to locate the
correct point in the numerous files of
the runtime system. The exact path
is: microbit\microbit-dal\inc\core\
MicroBitConfig.h (see Figure 6). In this

support platform [6] with simple
datagrams (text messages) that the
transceiver can handle unaltered. One
BBC micro:bit module sends a text
message and all other modules in range
can receive it. To make this work a default
channel and a default transmit power
have been defined, so you really don’t
need to concern yourself with anything.
That makes this one of the simplest
methods of transferring data without
wires. At the same time it gives you the
ability to make isolated (potential-free)
measurements. A typical application
might be an electrocardiogram device,
as the electrical (galvanic) separation
eliminates any troublesome electrical
hum interference.
All you need is two BBC micro:bit
modules. One is employed as the
measuring instrument for transmitting
the data, the second one is programmed
as the receiver, for displaying the data
or transferring it to a PC over a USB
cable. To use MicroBitRadio in mbed you
do need to deactivate Bluetooth Low
Energy. There’s a note about this in the
BBC micro:bit documentation:
It is not currently possible to run the

Figure 7. Data measurements sent by wireless
link.

Figure 8. Measuring the internal test signal.

Join the Elektor Community

www.elektor.com/member

Take out a GOLD Membership now!

Also available:

Join the Elektor Community GOLD
MEMBERSHIP
✔ 6x Elektor Magazine (Print)
✔ 6x Elektor Magazine (PDF)
✔ Access to Elektor Archive

(Thousands of Articles)
✔ Access to over 1,000 Gerber fi les
✔ Elektor Annual DVD
✔ 10% Discount in Elektor Store
✔ Exclusive Off ers

GREEN
MEMBERSHIP
✔ 6x Elektor Magazine (PDF)
✔ Access to Elektor Archive

(Thousands of Articles)
✔ Access to over 1,000 Gerber fi les
✔ 10% Discount in Elektor Store
✔ Exclusive Off ers

Join the Elektor Community
Take out a GOLD Membership now!

The all-paperless GREEN Membership!

Advertisement

34 July & August 2017 www.elektormagazine.com

[5] B. Kainka, BBC micro:bit Tests
Tricks Secrets Code, CreateSpace
2016

[6] https://lancaster-university.github.
io/microbit-docs/ubit/radio/

USB connection. Nothing changes on the
PC side. Here we can again make use of
the serial plotter. Figure 7 illustrates a
measurement reading. The transmitter
is battery-driven and is located three
meters (10 feet) away from the receiver.
The link works for up to approx. 10 m
(30 ft.). A 10-µF electrolytic was attached
to analog input P1. This was charged up
slowly using the 10-MΩ pull-up resistor
provided on the PCB. You may notice
some deviation from the normal charging
curve, because this capacitor had not
been used for a long time. In a case
like this just a low leakage current flows
initially that increases only gradually. On
the right-hand side of the diagram the
measured voltage lies clearly below 1 V
and rises only slowly.

Mini-oscilloscope with LED
display
An extremely basic oscilloscope is better
than none at all and sometimes it’s more
important that the device is very small,
standalone and easy to handle. Here
we see measurement data displayed
graphically on the LED display using
5×5 LEDs (Listing 4). Even if you are
accustomed to a far more sophisticated
instrument, you can definitely get results
with this little alternative. It is quite
remarkable, what is still discernible with
such a simple ‘scope.
Once again the mini-oscilloscope uses
Port 1 as an analog input and additionally
employs Port 0 as a PWM output. With a
repetition rate of 500 μs, an output signal
with a frequency of 2 kHz is generated.
A direct connection to the measurement
input shows the limits of the A-to-D
converter (Figure 8). The sampling time
is obviously too long to display sharp
edges of the PWM signal. The limiting
frequency of this simple oscilloscope is
therefore somewhere below 10 kHz. This
is not enough for an RF lab but probably
adequate for many simple measurements
and experiments.

(160384)

Web Links

[1] www.elektormagazine.com/160273

[2] www.elektormagazine.com/160384

[3] https://developer.mbed.org/

[4] https://lancaster-university.github.
io/microbit-docs/ubit

Listing 4. Using the LED display.

//LED-Scope
#include "MicroBit.h"
MicroBit uBit;
int main()
{
 int y;
 uBit.init();
 uBit.io.P0.setAnalogValue(512);
 uBit.io.P0.setAnalogPeriodUs(500);
 uBit.display.enable();
 MicroBitImage image(5,5);
 while (1) {
 for(int x = 0; x < 5; x++){
 y = 4- (uBit.io.P1.getAnalogValue()/205);
 image.setPixelValue(x,y,255);
 }
 uBit.display.print(image);
 uBit.sleep(500);
 image.clear();
 }
}

Listing 3. Sending and receiving datagrams.

//Radio Data
#include "MicroBit.h"
MicroBit uBit;

void onData(MicroBitEvent e)
{
 ManagedString s = uBit.radio.datagram.recv();
 uBit.serial.send (s);
 uBit.serial.send (" \r\n");
}

int main()
{
 uBit.init();
 uBit.messageBus.listen(MICROBIT_ID_RADIO, MICROBIT_RADIO_EVT_
DATAGRAM, onData);
 uBit.radio.enable();
 char output[16];
 while (1) {
 int u = 3300 * uBit.io.P1.getAnalogValue()/ 1023;
 itoa (u, output);
 uBit.radio.datagram.send(output);
 uBit.sleep(100);
 }
}

