
42 March & April 2017 www.elektormagazine.com

The USR-TCP232-T module [1] is one of the cheapest modules
around that can convert data from an Ethernet connection into
serial data, which can be processed by the Android I/O board.
The advantage of an Ethernet module is that it doesn’t use
radio waves for the connection, which means that any inter-
ference in that area is avoided.
The USR-TCP232-T module can operate in one of four modes
[2]. The main modes are a server mode and a client mode.
In server mode the app has to create the connection with the
USR-TCP232-T module. In client mode the module works the

other way round: the module takes the initiative to create a
connection to the app. For the Android I/O board we have to
configure the USR-TCP232-T as a server: The standard software
for the apps always takes the initiative to create the connection.
In both the server mode and client mode you can choose bet-
ween a UDP and TCP connection. With a UDP connection the
data is transmitted without any checks taking place that the
data has been received successfully. With a TCP connection
there are checks to see that the data has been received (and
in the correct order); if necessary, the data will be retransmit-
ted. The standard software for the Android I/O board uses TCP.
For the Android I/O board we therefore use the ‘TCP server’
mode for the USR-TCP232-T module.
The USR-TCP232-T module doesn’t support DHCP. With DHCP,
the router allocates IP addresses to the devices on the IP net-
work, such as PCs or mobile phones. With the USR-TCP232-T
module we can only set up a fixed (static) IP address. This
address should be within the IP range of the (private) network
that the module is connected to.
If we want to connect a USR-TCP232-T module to the Android
I/O board, we must first take care of two things. First of all,
we need to make a connection cable to connect the module

Ethernet
on the Android I/O Board
Using a USR-TCP232-T module
By Elbert Jan van Veldhuizen (The Netherlands)

A number of different communication modules for
use with the Android I/O board have been
introduced in various articles
for the board. These
modules have used Wi-
Fi, Bluetooth or USB.
However, there is one
module for the Android
I/O board that’s missing,
which uses one of the most
popular communications standards:
Ethernet. This article describes a
module that enables the Android I/O board
to be connected to a wired Ethernet network.

PROJECTLABS

Android IO boardUSR-TCP232-T

CFG
RXD
TXD
RST
GND
VCC
VDD

GND
MOD4

CFG
RXD

TXD

VCC

Figure 1. The wiring diagram for the two connectors on the cable linking
the USR-TCP232-T module to the Android I/O board.

www.elektormagazine.com March & April 2017 43

• Connect the power to the
module. Don’t use the con-
figuration pin on the module
(don’t connect it to anything
at all).

• Start the configuration
program on the PC (USR-
TCP232-T24 V5.1.0.1.exe).

• Click on ‘Search in LAN’.
The program will then find
the module on the network.

• The module will appear in the ‘Device list in the net’.
Select the module by clicking on it.

• Select the following settings:
 - Module work mode: TCP server
 - Module IP: 192.168.178.120
 - Subnet mask: 255.255.255.0
 - Default gateway: 192.168.178.1
 - Baud Rate (bps): 9600
 - Parity/Data/Stop: NONE, 8, 1
 - Module port: 20108
 - ‘Destination IP’ and ‘Destination port’ are grey and can’t
be filled in.

• Click on ‘Set selected item via LAN’
• The following then appears in the Logs: “The param of

Device which MAC is 00C18B5C42E1 set OK, You can
search for new setting later.”

The module is now ready for use.

to the Android I/O board. We then have to set up the serial
connection and the IP address of the USR-TCP232-T module.

Connecting to the Android I/O board
There is no single connector on the Android I/O board that
exactly matches the one on the USR-TCP232-T module. Howe-
ver, all connectors do have the links we need: the supply vol-
tage (3.3 V and GND) and the serial data (TX and RX). The
USR-TCP232-T module also has a configuration pin. This is
only required when we want to configure the module via the
serial port. Since we’re going to configure the module via the
Ethernet network, this pin isn’t really required.
As we saw earlier, we can use any of the connectors on the
board. The author decided to use the connector for the ESP8266
(MOD4). There are two ways in which to make the connector:
via a ribbon cable or using a (double-sided) experimenter’s
board with the connectors for the USR-TCP232-T module and
the MOD4-connector mounted on it. Figure 1 shows the wiring
diagram. Note that the two pins either side of the Ethernet
connector on the USR-TCP232-T module are not electrically
connected to any of the parts on the module; they are there
to provide mechanical stability to the module.

Setting up the USR-TCP232-T
To set up the USR-TCP232-T, we can download a Windows
program from the manufacturer’s website [3]. This program
sends a special UDP packet containing all parameters to the
module in order to change its settings [2].

Below is a comprehensive set of instructions on how to set
up the USR-TCP232-T (also see Figure 2). But first you must
determine which addresses you can use in your network and
what its subnet mask is. On a Windows PC you type the com-
mand ‘ipconfig’ in a ‘DOS box’ (this is opened by typing ‘cmd’
from the start menu). You will then see the IP address of the
PC and the subnet mask. Choose a higher address within the
subnet; as an example, when the subnet mask is 255.255.255.0
you could use .240 as the last number for the IP address. This
address won’t be in use, unless you have hundreds of devices
connected in your subnet. Once the router has spotted that
this address is in use, it won’t allocate this address to other
devices. The DHCP server in the router can also be configured
so that it won’t dynamically allocate all addresses. The author
has configured his router so that the DHCP server will only
allocate addresses from .10 to .100. The other addresses can
then be statically configured in the peripheral devices.
You can use any port number you like. ‘Logical’ choices are
‘23’ (the port for Telnet), ‘2000’ (the port used by default by
the RN-171) or ‘20108’ (the default port of the USR-TCP232-T
module).

In the following example the subnet mask is ‘255.255.255.0’
and the module gets the IP address of 192.168.178.120
with a port at 20108. The gateway (router) has the address
192.168.178.1. The MAC address is different for every module,
so the MAC address used here is just an example. Follow these
steps:

• Connect the USR-TCP232-T with an Ethernet cable to the
network to which the PC with the configuration program is
also connected.

Figure 3. In de demo-app ‘Android
IO board Demo’ you have to select
Wi-Fi for the setting ‘Connection to
Android I/O board’. In this case it
really means ‘IP network’.

Figure 2. Screen dump of the ‘USR-TCP232-T24 V5.1.0.1.exe’ program,
with the settings shown that are used to configure the module.

44 March & April 2017 www.elektormagazine.com

from which Android I/O board the data comes from. The figure
below shows this graphically.
There is an accompanying demo app (including source code)
with this article, which simultaneously reads the temperature
sensors of four Android I/O boards. From the menu you can
select the communications method for each of the Android I/O
boards independently. The app then reads the temperature
sensors once per second.
In the source code you can see exactly how multiple Android
I/O boards can be controlled. This code and the apk file can
be downloaded from [5].

(150804)

Web Links

[1] Product page: www.usriot.com/Product/20

[2] Manual for the USR-TCP232-T: www.usriot.com/download/
T24//USR-TCP232-T24-EN%20V3.2.5.pdf

[3] Configuration software: www.usriot.com/download/soft-
ware/USR-TCP232-T24V5.1.1.20.rar

[4] Description of the Message class: http://developer.android.
com/reference/android/os/Message.html

[5] www.elektormagazine.com/150804

Setting up the app
To get the app on an Android phone to connect to the USR-
TCP232-T module, we have to select WiFi (in the ‘Android I/O
board Demo’ app, for example) for the setting in ‘Connection
to Android I/O board’ (Figure 3). For the ‘WiFi address’ and
‘WiFi port’ you should type in the IP address and the port num-
ber of the USR-TCP232-T module. In this case, ‘WiFi’ should
be considered to be ‘IP network’.

Controlling several Android I/O boards
simultaneously
It is possible to control several Android I/O boards from a single
app. This can also include a mix of different communications
methods: IP (Wi-Fi and Ethernet), Bluetooth and USB (see
Figure 4). There isn’t really a limit to the number of Android
I/O boards you could control! With IP networks in particular,
it’s possible to have the Android I/O boards very far apart
from each other. Despite this, they can still be controlled and
interrogated by a single app.
When multiple Android I/O boards are controlled, a separate
object from the IOFunction class has to be created for each
board. We can also create an array of objects, if that is easier
in your code. For example:
IOBoardFunctions[] IOBoard = new IOBoardFunctions[4];
for (int i=0; i<4; i++) { IOBoard[i] = new

IOBoardFunctions(); }

The choice of object determines which Android I/O board will
be used for the initializing of the Android I/O board, making a
connection or the transmission of data. For example:
IOBoard[2].initiate(2, hnd, “192.168.178.120”, 23, 1,

this);

This ensures that the object IOBoard[2] will be linked to the
Android I/O board with the specified IP address and port number.
The data sent back from all the different Android I/O boards
can be processed by a single handler. The first parameter
passed with the .initiate (in this example it is ‘2’), acts as a
channel number. It is included with all data in the ‘.arg1’ field
of the Message object [4]. This way the app will know exactly

Object 1

Android
IO board 1

Object 2
Object 3
Object 4

Handler

Android
IO board 2

Android
IO board 3

Android
IO board 4

Figure 5. All the data sent back by the Android I/O is processed by a
single handler.

Figure 4. In the ‘Multi AndroidIO board Demo’ you can see that four
different boards are connected, where the temperature of each one is
shown. For each board you can select a different connection method.

New version of IOBoardFunctions

With the demo app is a new version of IOBoardFunctions, the
class containing all the libraries for controlling the Android
I/O board from Android. There are several improvements in
this version:
All IOBoardFunctions are now in a single file, instead of five
files. This makes it easier to use the IOBoardFunctions in your
own project.
You can now change the IP address without having to close
the app. In the app you can even change the communications
method, from IP to USB or Bluetooth, for example.
The number of different ‘.initiate’ functions has been stream-
lined. There is now a single function for apps that offers all of
the communications methods, as well as separate functions
for each of the communications methods (Bluetooth, IP, USB
Accessory and USB Host).
A detailed explanation can be found at the start of the file
IOBoardFunctions.java.

