April 1997, Elecronics Now

[\
[+

schedule and up against a serious dead-
line. Sometimes it’s stressful, but I enjoy
it. Recently I worked on a project with
a ream of people who were putting
together a set of programs to model use
of health-care facilities by the U.S. mili-
tary. The model ran on a huge UNIX
server to which Windows-based clients
would attach, via the Internet. The
clients gathered data from users, submit-
ted it to the server, and presented results
when they became available. The server
portion was written in POSIX-based C
running against an Informix database,
and the client portion was written in
Delphi. T worked on the Delphi client.

(Aside: When Delphi first came out,
I couldn’t interest clients in it. Now they
are coming to me. This is a “Good
Thing.”)

As it turned out, the most interesting
part of the experience for me was not the
health-care model, not even the Delphi
development, but what was really a per-
sonnel issue. One member of the team
was not pulling his share of the load. He
certainly tried, but just wasn’t capable.
Eventually management saw that he was
not cutting it, and really needed to find
another line of work. In the meantime,
the rest of the team suffered.

Part of my job in this case was to ana-
lyze what Mr. X had been doing, and
either fix it or re-do it from scratch. In
the process, I worked closely with Mr. X.
Wiatching him work, and trying to work

with him, was a massive experience in

mmmem COMPUTER CONNECTIONS

How Not To Be A Bad Coder

WISH I COULD SAY THAT THE EVENTS RELATED BELOW
WERE PART OF SOME ELABORATE APRIL FOOLS JOKE. UN-
FORTUNATELY, THEY'RE NOT. AS A CONSULTANT, I FREQUENTLY

GET CALLED IN TO HELP OUT ON PROJECTS THAT ARE BEHIND

frustration. To ease the frustration, I
decided to make it a learning experience.
I hoped that by trying to understand
exactly how he was going wrong, observ-
ing his mistakes, and cataloging them, I
could thereby develop a smorgasbord of
tips for how to be a better programmer.
Of course, much of the advice is negative
(“Don’t do this, don’t do that.”). But that
seems to be mostly how we learn anyway.

The Scenario

The project had been undergoing
development for about six months when I
joined, with about eight weeks left undl
a major milestone and beta delivery to
the client were to occur. Most parts of
the. applicadon were in good shape, and
delivery was set to occur on schedule.

Shortly before I joined, the project
manager (PM) realized that Mr. X’ area

BY JEFF HOLTZMAN

had problems. It was a complex area from
several points of view. The underlying
concepts were complex, the required user
interface was complex, and the coding
necessary to make it all work was com-
plex. When I first arrived, the PM held
several meetings to review Mr. X’s plans,
and subsequently decided—with the tacit
agreement of the rest of the team—that
Mr. X was on top of things and would be
able to complete his portion of the appli-
cation on time. I was assigned to work on
other less-visible areas of the application.

An interesting twist was that since
delivering the original requirements, the
client’s real interest and focus had shift-
ed to Mr. X’s portion of the application.
In other words, the thing most impor-
tant to the client was being developed by
the weakest member of the team.

As the deadline approached, everyone
was wondering about Mr. X’s portion, but
he kept reassuring us that things were on
schedule. No one forced him to prove
that he really was on target.

Next, he blew past several intermedi-
ate deadlines, and it was down to the last
few days before the due date. Then it
became apparent that he was behind. It

HOW NOT TO BE A BAD PROGRAMMER

Know your requirements: If you don't
know what you're supposed o be doing,
your only chance of succeeding is through
blind luck.

Know your tool set: If it's new to you,

. learn it piece-wise, but learn each section

well. You'll be much more valuable 1o your
team-and yourself-if you're-expert in some
areas than haif-fast overall.

Work on one thing at a time: Resist all
temptation to jump around. Sure, in soft-
ware the ankle bone's connected to the
thigh bone, and so on, but if the individual

bones are weak, the skeleton as a whole
will never stand up.

Know underlying theory and tech-
niques cold: You wouldn't expect an MD
to practice his trade without a thorough
graunding in anatomy and in giving injec-
tions. Software is no different. -

Don’'t make fundamental errors: If you
repeatedly do, you're almost certainly in
the wrong job.

Strive for clarity and conecision: When
logic starts getting convoluted, you almost
certainly need to rethink the problem.




took a few more days to discover just how
far behind he was, and how deeply his
code missed the mark. He was pulled
from the project. We all worked several
18 and 20 hour days.

At that point, it became apparent that
even if we worked around the clock, we
would never be able to make up the loss.
So then it became a question of cutting
features. Which features were we con-
tractually bound to provide? Which did
the client really need? Which could we
provide given the time constraints?

The PM made some decisions, we dis-
abled numerous items in the user inter-
face, and quickly tried to get enough up
and running to meet the terms of the
contract. Despite the lacking features, the
client was happy, and the project was
viewed (externally) as a success. Unfortu-
nately, things don’t always work out as
well.

People Not Technology Issues

Working with Mr. X. was difficult for
several reasons, not the least of which
was that he was a nice guy. If he had been
a total jerk, it would have been easy to
write him off. But he was a nice guy, and
he sincerely tried to help.

Ultimately, working with him was
difficult because of his lack of technical
competence. He was simply in over his
head. How he managed to go unnoticed
so long is a mystery.

One lesson I learned early on was not
to ask him too many questions, because
he would get diverted, and start down a
trail of digression that was almost impos-
sible to trace. After getting intimately
familiar with his code, I believe thats
how he worked as well. At one point I
called his “methodology” a hypertext
nightmare. Everything seemed to lead
to everything else, with no priority or
emphasis or structure.

The project manager was also nice—
unfortunately, too nice. She did not exert
enough control and authority. She did
not hold people accountable, and did not
force certain issues (such as having code
reviews) until it was too late. That
worked fine for the team members who
were producing, but not so well in the
other case. She had excellent technical
understanding of the project, and she
acted with good intentions. However, she
lacked experience, and some team mem-
bers felt that her inexperience gave them
leave to refuse to submit to code reviews.
Ironically, the biggest excuse was that
there wasn’t time.

"The lesson here is: You can’t be a pro-
ject manager and be a nice guy. Con-
versely, if you want to be a nice guy, pro-
ject management is probably not a pro-
fession in which you will excel.

Mr. X

Following summarizes the traits ex-
hibited by Mr. X. If you ever find yourself
experiencing anything like these, a little
alarm should go off in your head, and you
should fix the problem.

He was never exactly sure what he was
trying to accomplish. He didn’t have a
good grasp of the requirements of the
application we were trying to build.

He didn’t stick to what he was oying
to do. He constantly jumped from one
thing to the next without ever completing
anything. His code was littered with half-
finished routines and unused variables.

He didn’t have a good grasp of the
tool set (Delphi). He lacked a good
grasp of important underlying concepts
including object-oriented and reladonal
database theory. '

He didn’t have a good grasp of pro-
gramming fundamentals. He repeatedly
made basic errors like indexing strings
from the wrong position, using lots of
global variables, not initializing variables,
and hard-coding string and numeric con-
stants.

He created highly convoluted logic
flows that were hard to understand and
harder to debug. To me, that indicated
that he really didn’t think through the
problem carefully, because if he had, he
would have developed a more straight-
forward solution.

Given all that, you may wonder how
Mr. X. ever got into a positon that de-
manded so much technical knowledge,
when his qualificadons were so lacking.
That indeed is a mystery of the political
sort, and out of my arena.

Conclusions

So how can you become a good pro-
grammer? Even if you avoid the types of
mistakes made by Mr. X, you won’t nec-
essarily become a good programmer.
But by avoiding those mistakes, you can
avoid being a bad programmer, and will
undoubtedly become a better program-
mer. If you're lucky, perhaps you’ll even
become a good programmer. More like-
ly, though, you were born that way . . . or
not.

That’s all for this month; until next
time, you can contact me via e-mail at

jkh@acm.org. [EN]

A aw%222% Lolozef| ® & || [ occococse o

l




