
This cheap and easy-to-build data logger has four analog and four digital 
logging channels and can log at intervals from one second to one minute. It 
runs off a lithium rechargeable cell for an operating time of up to one week 
(depending upon capacity) and this can be recharged by a small solar cell, so 
maximum logging time is virtually unlimited. It can also log coordinates from 
a GPS unit and interface with many different types of sensor. 

——----- ~ 

by Nicholas Vinen 

Perhaps its best feature is that it’s 
based on an Arduino with a few 

low-cost modules attached, so it’s 
easily customisable. Out of the box, it 
provides support for logging voltages, 

digital logic states, switch or relay 
states, temperature, latitude/longitude 
and frequency (eg, for a flow meter). 

If you want to log humidity, baro¬ 
metric pressure, light levels, RF signal 
strength or just about anything else, 
you just need to hook up a suitable sen¬ 
sor to the Arduino hoard and modify 
the software to read the data off that 
sensor. Our software will then do the 

background tasks of power manage¬ 
ment, saving data to the microSD card 

and so on. 
If you do build this data logger and 

expand its capability, we hope that you 
send us the circuit details and revised 
software so that we can publish it in 
the Circuit Notebook section of the 
magazine. That way, others who want 

to log similar data can do so easily. 
Our last data logger project was pub¬ 

lished in the December 2010, January 
2011 & February 2011 issues. That de¬ 
sign is now obsolete and we no long¬ 
er recommend it. Our new design is 

much easier to set up and we are able 
to support it with bug fixes, should 

the need occur. Constructors can eas¬ 
ily install updated software using the 
Arduino IDE and a USB cable. 

The old design was also notoriously 

difficult to interface to a PC, especially 
if you’re using a newer version of Win¬ 
dows than was available at the time 
(it was designed for Windows 7). The 
Arduino IDE and drivers are kept up 
to date for recent operating systems 
and in fact, since they run on Mac and 
Linux too, that means this data logger 
is suitable for a wider audience. 

26 Silicon Chip siliconchip. com. a u 



Data logger design 
We could have used an Arduino 

shield specifically intended for data 
logging which would include an SD 
card socket, real-time clock and a 

prototyping area. Instead, we decided 
to use separate microSD card and real¬ 
time clock modules. We had several 
reasons for this approach. 

First, the combination of individual 
modules costs less, even if you take into 
account the separate PCB and headers. 
Second, we are using the DS3231 real¬ 
time clock module which is more ac¬ 
curate than the DS1307 often installed 
on Arduino data logger shields. 

And we have used a higher capac¬ 
ity backup battery that’s more readily 
available (CR2032). Third, we may de¬ 

cide to produce a Micromite-based ver¬ 
sion of this data logger as well, which 
would be easier to do with individual 
modules that aren’t specifically tied to 
the Arduino format. 

With that in mind, it wouldn’t be 
hard to modify the software for this 
project to work with Jaycar's XC4536 
data logging shield. For example, 
should you wish to build it using Jay- 
car's shield, the pins used by the real¬ 
time clock and SD card socket on the 
Jaycar XC4536 are identical to those 
we’re using here. 

So all you’d really have to change 
would be to swap the DS3231 library 
for the DS1307; a pretty simple change, 
but one we’ll leave up to the reader. 

The DS3231 module we’re using for 
timekeeping was described in detail 
in a separate article in the El Cheapo 
Module series, in the October 2016 is¬ 
sue, starting on page 33. You can view 

that article at www.siliconchip.com. 
au/Article/10296 

Similarly, the microSD card inter¬ 
face module we’re using was described 
on pages 74 and 75 of the January 
2017 issue and you can view that 
article at www.siliconchip.com.au/ 
Article/10510 

Having decided to use those two 
modules, we then decided to use two 
more modules to round out the design. 
For the power supply, we’re using the 

ElecrowMini Solar LiPo Charger mod¬ 
ule which is described in detail in a 
separate article in this issue, starting 
on page 44. 

A single-cell Li-ion or LiPo cell is 
hooked up to this board and provides 
power to the Arduino via a 5V boost 
regulator, ensuring it has a steady volt¬ 
age supply even as the cell discharges. 

This cell can be charged either from a 
5V USB source, such as a computer or 
mains charger or via a small optional 
solar panel. That means the data log¬ 
ger can be used in a remote location 

and left for months at a time; as long 
as it gets enough sun, it will operate 
continuously. 

The other module we’re using is an 
optional GPS receiver. We’re recom¬ 

mending the VK2828U7G5LF which 
we’ve used on several occasions pre¬ 
viously as it is inexpensive but works 
well. This is used both to ensure the 

real-time clock is kept accurate and to 
log the unit’s position. 

You could use a different GPS re¬ 
ceiver but then you will have to figure 
out how to modify the connections. 
Or you can leave it off entirely if you 
don’t need the features it provides; the 
real-time clock will typically gain or 
lose less than one second per month 
without it. 

Circuit description 
The full circuit of the data logger 

is shown in Fig.l. For our prototype, 
most of the components are mounted 
on a prototyping shield which simply 

plugs into the Arduino (MODI). 
The four analog inputs are available 

on CONI, along with a ground pin, 
and connect to the Arduino’s A0-A3 
analog input pins via 100kQ/47k£2 re¬ 
sistive voltage dividers. These allow 
the Arduino to sense voltages up to 
15V and protect it from damage from 
even higher voltages, up to about 60V 
or -60V. These set the analog input im¬ 
pedance to around 147kQ. 

The digital inputs are on a similar 
header, CON2 and again, a ground 
pin is provided. These feed through 
to digital input pins D2-D5 via lkQ 
series resistors. These are to protect 
the Arduino from voltage spikes, or 
voltages outside the range of 0-5V (up 
to approximately ±15 V). Each of these 
inputs has an internal pull-up current 
so they will be high if unterminated. 

As a result, the digital inputs can be 
used to sense the presence of a volt¬ 
age (as long as it is at least 3V) or the 
state of a switch or relay contact, by 
connecting one end to the input and 
the other end to ground. They can also 
be used to count pulses, for example, 
from a flow meter, up to about 10kHz. 

Digital inputs DO and Dl of 1 are 
not used because these are also used 
as the serial transmit and receive pins 
for the console. The serial console can 

Features and 
Specifications 

Power supply: single Li-ion/LiPo cell with 
solar charging or 4.5-5.5V USB source 
(eg, computer or mains charger) 

Supply current: average ~30mA; peak 

~100mA (with GPS fitted), ~50mA 
(without GPS) 

Battery life: around four days with 
recommended cell (3Ah); larger capacities 
can be used 

Analog inputs: 4 x 0-15V; protected up to 
±60V (maximum voltage can be 
increased up to 60V) 

Digital inputs: four, compatible with 
3.3V/5V logic or contact closure; 
protected up to ±15V 

Other inputs: optional GPS lat/lon logging 
plus 10kHz frequency counter and/or digital 
temperature sensor. Other sensors (l2C etc) 
can be used with software changes 

Accuracy: analog inputs ±1% typical with 
supply voltage calibration; frequency input 
±2% typical 

Logging interval: defaults to six 
seconds between entries; 1 -60 seconds 
range is possible 

Logging medium: CSV (comma separated 
value) format text files written to microSD 
card, up to at least 32GB 

Timekeeping: DS3231 real-time clock with 
battery backup, giving less than one second 
drift per month 

Other features: RAM buffering to reduce 
power draw; automatic time updates from 
GPS; logged data can be downloaded via 
USB serial interface 

siliconchip.com.au August 2017 27 



f! ARDUINO DATA LOGGER 
Fig.l: complete circuit for the Arduino Data Logger, including the optional GPS unit and DS18B20 digital temperature 
sensor. The rest of the circuit is comprised mainly of modules, such as the Arduino Uno, DS3231 real-time clock module, 
microSD card interface module and Mini Solar LiPo Charger board. 

be used to load data from the unit, via 
the USB port of a PC, avoiding the 
need to physically remove the microSD 

card. 
Digital pin D6 is set as an output 

and drives blue LEDl via a 47kQ cur¬ 
rent-limiting resistor. This prevents 

it from drawing very much current 
(only about 0.1mA) but it’s only lit 
for a very brief period anyway, so the 
actual drain on the battery from driv¬ 

ing it is almost nothing. 

GPS receiver interface 
Digital pins D7 and D8 are used 

to interface with the optional GPS 
receiver. We’re recommending the 
VK2828U7G5LF as it’s a good perform¬ 
er for the price. Keep in mind, that it 
has an inbuilt ceramic patch antenna 
so if you are operating indoors, you 
might get better results using a com¬ 
parable unit with an external antenna. 
Having said that, the VK2828 works 
fine in typical indoor locations. 

D7 is used to drive the module’s en¬ 
able (EN) pin; it’s held actively low to 
keep the unit in standby most of the 
time, resulting in a microamp-level 
current drain on the battery. Periodi¬ 
cally, at a programmable interval that 
defaults to one hour, the Arduino will 
bring this pin high to switch on the 

GPS unit until it gets a lock (usually 
after about 30 seconds) or if there’s in¬ 
sufficient signal, until a timeout occurs 

(by default, after five minutes). 
The GPS module draws around 

30mA during the time it’s powered up; 
if we assume the average time will be 
45 seconds every hour, that works out 
to 30mA x 45 -r 3600 = 375pA average. 
That’s just 0.375 x 24 = 9mAh per day. 

Data from the GPS module appears 
at its TX pin (pin 3) and this is fed to 
digital input D8. It needs to go to this 
pin; we explain why below, when de¬ 
scribing the operation of the software. 
The GPS module’s RX pin is left un¬ 
terminated (it has an internal pull-up) 

as there’s no need to send any data 
to the module. We simply decode its 
"GPGGA" and "GPRMS" NMEA mes¬ 
sages which are sent out by default 

once per second, at 9600 baud. 
The micro can detect whether a GPS 

module is present based on activity on 
the D8 pin, or lack of it. D8 has an in¬ 

ternal pull-up enabled so that if there 
is no GPS module connected, it will 
simply sit high and so the unit will 
not log GPS co-ordinates. 

If a GPS module is detected and is 
giving sensible output, the latitude, 
longitude and number of satellites 
visible will be logged with each en¬ 
try, along with the number of seconds 
since a good lock was achieved. 

If the GPS module fails to achieve 
a lock during its power-on period (ie, 
it times out), the last valid set of read¬ 
ings will continue to be logged and 
the number of seconds since lock will 
continue to increase, indicating how 
“fresh” or “stale” the data is. 

28 Silicon Chip siliconchip. com. au 



The VK2828U7G5LF GPS module shown is an optional extra, if you want to log 
the unit’s location or for greater accuracy in timekeeping, as without it there 
will be about ±ls of drift in the clock per month. 

Digital pin D9 is set as an input, 
again with an internal pull-up, and 

connected to external switch Si, 
which is used to enable or disable 
logging. This is useful if you want to 
remove the microSD card to off-load 
some data; you can simply flick Si 
to the off position (where it pulls D9 
down to OV) and the unit will flush 
any data in its RAM buffer to the SD 
card and then flash LEDl. 

You can then remove the card, 
off-load the data, plug it back in and 
switch Si back on to re-enable logging. 
Or you can simply swap the microSD 
card for another card to minimise the 
time without logging. 

D9 can also be used where you have 
a situation where you may only want 
to log data some of the time. You just 
need to have it to be pulled low when 
you don’t want to log data, and pulled 
high or left floating when you do. This 
can be done with an external relay, 
switch, microswitch, discrete logic, 
another microcontroller etc. 

SD card interface 
Digital pins D10-D13 are wired to 

the microSD card module and used 
to read data from and write data to 
the card. Pins Dll, D12 and D13 are 
hard-wired to the SPI (serial periph¬ 
eral interface) communication pins 
MOSI, MISO and SCK on the Arduino 
respectively. MOSI stands for “Master 
Out, Slave In”, MISO for “Master In, 
Slave Out” and SCK for “Serial Clock”. 

While DIO is designated as SS, the 
hardware Slave Select pin for the SPI 
bus, in actual fact it is not used by 

hardware in master mode so we could 
have used any pin. 

But it’s conveniently next to the 

other three so we connect this to the 
CS/SS (Chip Select/Slave Select) pin 
on the microSD card module. The 
only other two connections on that 
module are to 5V and ground. It has 
an onboard 3.3V regulator and level 
shifting circuitry. 

The DS3231 real-time clock and 
calendar module (MOD3) allows the 
Arduino to keep accurate track of time 
for time-stamping the log entries, even 

if power is lost. That module has an 
onboard battery backup that will last 
several years and its timekeeping ac¬ 
curacy is very good, at around ±lppm 
or about one second per month. 

This module has 32kHz and square 
wave (SQW) outputs which we are not 
using. We’re just connecting the mod¬ 
ule to a source of 5V power and the 
Arduino’s I2C serial interface which 

is hard-coded to analog pins A4 and 
A5 (unfortunately, limiting us to four 
analog inputs if we want to use I2C). 

These two pins are enough to allow 
us to set and query the time and date 
from the real-time clock module. 

That just leaves the battery-backed 
power supply which is provided by the 
off-hoard Elecrow Mini LiPo Charger 
module. This connects to the Arduino 
via a standard USB cable, terminated 
in whatever connector your Arduino 
module requires; in the case of an Uno, 
it’s a full-size Type B (square) plug, 
but some Arduino clones use a mini 
or micro Type B connector instead. 

The Charger module can connect 
to your PC, or a USB charger, via a 
standard microUSB cable. When con¬ 
nected, it will pass through power to 
the Arduino but it will also charge the 
connected Li-ion or LiPo cell from the 
USB supply. Then, when USB power is 
removed for whatever reason (whether 
it’s unplugged, or a blackout etc), it 
will run the Arduino from that cell. 

The charger module that can be used with the Data Logger lets a small 5 V solar 
panel be connected in conjunction with a Li-ion/LiPo cell, powering the module 
and charging the cell. The charger module will favour power coming from 
the micro-USB port over a cell, meaning you can also have it hooked up to a 
computer to act as the primary power source, with the cell being a backup. 

siliconchip. com. au August 2017 29 



Note that a Li-ion/LiPo cell has a 

voltage usually in the range of 3V 
(flat) to 4.2V (fully charged), while the 
Arduino expects a steady 4.5-5.5V in¬ 
put. The Elecrow module has an on¬ 
board switch-mode step-up regulator 
to provide this regulated supply. For 
more details, see our article on LiPo 
chargers, including that module, else¬ 
where in this issue. 

The Solar Charger naturally also has 
provision for a solar cell which can 
run the Arduino and charge the cell 
in the absence of DC or mains power. 
We tested our unit with a small 5V, 
0.5W solar cell from Oatley Electron¬ 
ics which worked fine. 

However, we are recommending 

that you use a 0.8W cell which we can 
supply (see Parts List) as it costs about 
the same and will charge the battery 
faster, which may be important when 
the weather is poor. 

Software 
The software makes use of various 

Arduino libraries to do all the heavy 
lifting but even so is quite complex, 
partly due to the power saving features 
employed. 

We won’t fully describe how to uti- 

we do detail how to install and run it 
in the panel “Software Installation”. 
Instead, next month we will have a 
detailed description of how the soft¬ 
ware operates. In the meantime, you 
can download and examine the source 
code if you already understand C++ 
software. 

Construction 
As you will notice from the earlier 

photos, our unit was built on a pro¬ 
toboard shield and you certainly can 
do the same. If you’re experienced, it 
will only take you a couple of hours 
to solder the components onto the 
shield and complete the point-to- 
point wiring on the underside to get 

it all working. 
However, it’s quite easy to make a 

mistake when assembling a board this 
way. So to make it easier and quicker, 
we’ve designed a double-sided, shield 
PCB which you can purchase from 
our online shop. This comes with 
a set of stacking headers and costs 
less than many suppliers charge for a 
protoboard. 

If you do decide to build the unit 
on a protoshield, note that it’s easier 
if you use 0.25W resistors with thin¬ 
ner leads, since then it’s possible to 

feed two leads into a single hole on 
the hoard when wiring up the analog 
input dividers. 

Assuming you’re going to take the 
easier approach and use our custom 
board, all you really have to do is 
following the PCB overlay diagram, 
Fig.2, and the PCB silkscreen to 
solder each component in place. Start 
with the resistors, then the right- 
angle headers, then LEDl (ensuring it’s 
orientated correctly), CON3 and then 
the two modules. 

The DS3231 module normally 
comes fitted with a right-angle 6-pin 
header and empty pads at the oppo¬ 
site end. You will therefore need to 
straighten the right-angle header pins 
using a pair of pliers and solder a 
vertical 4-pin header to the other end 
before soldering the module onto the 
shield board. This leaves the backup 
cell on the top, so you can change it 
easily if necessary. 

Note that if you’re using the DS3231 
with a primary (non-rechargeable) 
CR2032 cell, you will need to de-solder 
the small surface mount diode on the 
board, in a red-tinted glass package. 
This prevents the module from trying 
to recharge the non-rechargeable cell. 

Having said that, the unit that we 
recommend you purchase from our 
website comes with a lithium-ion re¬ 
chargeable cell so this modification is 
not required. 

We used a 6-pin female header sock¬ 
et with long pins, bent at right angles, 
to mount our microSD card module on 
the board. However, we found that this 
created intermittent problems due to 
the high-speed nature of the signals 
carried through these pins. If using this 
type of socket, at the very least, you 
should use some M2 machine screws, 

nuts and spacers to attach the module 
rigidly to the shield PCB. 

However, we feel that a more reli¬ 
able approach would be to physically 
mount the module on the shield PCB 
using either screws and spacers or 
double-sided tape, then solder rigid 
wires (eg, from resistor lead off-cuts) 
between the six pads and the six pins 
of the module. It won’t be removable 
but, assuming you’ve made good sol¬ 
der joints, it should operate reliably. 

Once all the components have been 
fitted to the board, it’s simply a matter 
of soldering the four stacking headers 
in place and then plugging it into the 
Arduino board. Insert the headers from 

the top side of the board. 

lise and customise the software; but 

Fig.2: while the Data 
Logger can be built on 
a protoshield, it’s much 
easier to use our custom- 
designed shield PCB. 
The two main modules, 
connectors, LED and 
resistors are fitted to 
this shield which then 
plugs into the Arduino 
board. Refer to the text 
for our notes about the 
importance of good 
connections for MOD2. 

When using an Arduino 
prototyping shield, some 
of the connections shown 
in Fig.l are made by 
soldering jumper wire 
between the solder joints 
on the underside of the 
shield. 

30 Silicon Chip siliconchip. com.au 



Note that soldering these headers 
is a little tricky since you need to 
make the solder joint around the long, 
protruding pins without getting too 
much solder on those pins, since they 
need to plug into the sockets on the 
Arduino board. 

When you do plug the shield in, 

be careful that the pins go into the 
right locations on sockets - check 
the markings on the board. Some 

Arduino hoards have an extra two 
pins on the lower-left header which 
can lead to confusion. 

If using a GPS receiver, you will 
need to wire it up to a 5-way polarised 
header plug to mate with CON3. For 
the recommended VK2828U7G5LF 
module, first cut the white (lpps) 
wire on the supplied cable short, or 
insulate it (eg, with heatshrink tub¬ 
ing) like we did. 

You can then crimp and solder the 
five remaining wires to the polarised 
header pins. The colour coding for 
the wires is shown in the labelling for 
CON3 in Fig.2. If in doubt, refer to the 
VK2828U7G5LF data sheet. 

When finished, push each pin into 
the polarised block in the correct 
location using a very small jeweller’s 
screwdriver or similar implement. 

Troubleshooting 
The first thing to do if the data log¬ 

ger isn’t working is to plug it into your 

1 Arduino Uno or equivalent, with suitable USB cable (MODI) 
(eg, Jaycar XC4410, Altronics Z6240) 

1 double-sided shield PCB, 68.5 x 53.5mm, coded 21107171 
(supplied with set of four long pin headers) 

OR 

1 Arduino prototyping shield (eg, Jaycar XC4482) 

1 DS3231-based real-time clock module with backup battery (MOD3) 
(eg, Silicon Chip online shop Cat SC3519) 

1 microSD card module (MOD2) (eg, Silicon Chip online shop Cat SC4019) 
1 Elecrow Mini Solar Lipo Charger module with two 2-wire JST 2.0 leads 

(MOD4) (Silicon Chip online shop Cat SC4308) 
1 Li-ion or LiPo cell with built-in protection, capacity around 3Ah 

(eg, from an old mobile phone or https://hobbykinq.com/en-us/ 
turniqy-2000mah-3-7v-w-2-pin-jst-ph.html or similar) 

1 microSD card, capacity to suit application 
1 5V solar panel of around 0.8W 

(optional; eg, Silicon Chip online shop Cat SC4339) 
1 VK2828U7G5LF GPS module 

(optional; Silicon Chip online shop Cat SC3362) 
1 USB charger with microUSB output (optional, for mains-powered use) 
2 5-way right-angle polarised headers (CON1,CON2) 
1 6-pin header socket with long pins, 2.54mm pitch (for M0D2) 
1 6-pin header, 2.54mm pitch (for MOD3) 
1 5-pin polarised header with matching socket 

(optional; CON3, for GPS module) 
1 3mm blue LED 

1 SPST or SPDT toggle or slide switch (SI) 
1 single male-male jumper lead (for SI) 

various length of Kynar (wire wrap wire), ribbon cable strands, light-duty 
hookup wire or resistor lead off-cuts (if using a protoshield) 

Resistors 

4 lOOkii 5 47kQ 4 IkQ 

The finished project with optional GPS module 
attached. The switch shown at centre allows you 
to enable/disable data logging, which lets you hot 
swap the microSD card or off-load data if it runs 
out of storage. 

siliconchip.com.au August 2017 31 



Software Installation 

Once you’ve finished assembling the unit, download and install the latest Ar- 
duino IDE (if you don’t have it already). Plug the Arduino main board into your 
PC and launch the IDE. Before you can upload the sketch, you need to select 
the port on which the main board is connected. Click on the Tools menu, then 
Ports and select the right port from the list. It’s typically the one at the bottom. 

If you haven’t already, download the sketch from our website. In the ZIP 
package, you should find a number of libraries, each of which is also in a ZIP 

file. Open the Sketch menu in the Arduino IDE, then Include Library and se¬ 
lect “Add .ZIP Library”. Navigate to the location where you saved the supplied 
libraries and select the first one. Repeat this process for all the libraries. 

You can then open our sketch (using either File-»Open or by launching it 
from your file manager) and select the “Upload” option in the Sketch menu. 
You should see a progress bar in the lower right corner of the IDE fill from 

left the right. This will take around 15-30 seconds, depending on the speed 
of your computer, as it involves compiling the sketch and then uploading it to 

the Arduino board. 
If there are any errors, they will appear in the small window at the bottom 

of the IDE. The sketch as supplied should compile the first time. If it doesn’t, 
the most likely reason is that you forgot to install one of the libraries, or you 
already had an incompatible version installed. More likely errors are commu¬ 
nications problems, which may suggest that you had wrong port selected. If 
everything seems OK but it still won’t upload, try unplugging and re-plugging 

the Arduino board and restarting the IDE. 
Assuming the upload was successful, you can check the operation of the 

logger using the Serial Monitor, available under the Tools menu. If you don’t 
see anything in the Serial Monitor, try pressing the reset button on the Arduino 
board. You should get an output similar to the following: 

SILICON CHIP Arduino Datalogger powering up 

RTC time updated 
Calibrating counter 
Counter calibration complete (999.30) 

Initialising SD card 
SILICON CHIP Arduino Datalogger ready 
GPS module might be present, checking... 

GPS module detected 
Opening log file ArduinoLog_2017-06-29_112624.csv 
ArduinoLog 2017-06-29_112624.csv 
29/06/2017,11:26:24,0.00,0.00,0.00,0.00,1,1,1,0,20.4,1.004,,,, 

Here’s a 3D render of the 
finished project using the 

shield PCB that we will 
supply at a later date. 

computer and use the Arduino Serial 
Monitor to look at the debugging mes¬ 
sages that it’s producing. 

Press reset and you should get mes¬ 
sages similar to that shown in the ad¬ 
jacent panel. If you get nothing, check 
that the port setting is correct and try 
re-uploading the firmware. 

Normally, if the firmware gets 
“stuck”, you can tell where based on 
the last message displayed on the con¬ 
sole. If you find it’s re-starting repeat¬ 
edly, or randomly rebooting, the most 
likely problem is in the connections 
between the Arduino and the microSD 
card. Note that the unit will refuse to 

start up at all if there is no microSD 
card inserted. 

If LEDl is flashing rapidly, this indi¬ 
cates a problem with the RTC module 
(2Hz) or the microSD card (4Hz). 

Note that, because of the buffering, 
you may not get any logged data out¬ 
put over the serial monitor or written 
to the microSD card for some time af¬ 
ter start-up. If unsure, try changing the 
state of Si as this will normally force 
the unit to flush out any logged data 

which is buffered. 
By default, you will need to wait 36 

seconds (6 seconds x 6 buffer entries) 
after the “Datalogger ready” message 
to see any logged data. 

What happens if the battery 
goes flat? 

If you’re powering the unit from 
a mains USB charger and using the 
rechargeable cell as a back-up, you 
shouldn’t have to worry about this 
(unless your area is prone to week- 
long blackouts!). But if you’re using 
the solar cell, it is possible that a long 
period of bad weather could result in 

the cell going flat. 
The power supply module does not 

appear to have a low-hattery cut-out 

feature, which is why we’ve specified 
a cell with built-in protection. This 
will normally prevent it from being 
over-discharged. 

Eventually, the protection circuitry 
will simply cut power and the logger 
will shut down, leaving a slightly trun¬ 
cated log file. When power is restored, 
the cell should begin to charge and the 
logger should resume operation, open¬ 

ing a new log file. 
Fully discharging a lithium-ion/ 

LiPo cell repeatedly can shorten its 
life but if this happens occasionally, 
it should not cause any serious prob¬ 
lems. SC 

siliconchip. com. au 


