
50 March & April 2017 www.elektormagazine.com

Before the rise of Arduino, microcont-
roller development boards had on-board
peripherals like pushbuttons and LEDs, a
display, one or more potentiometers for
analog signals, extension connectors, etc.
and, of course, a decent power supply.
The goal of these boards was to provide
an easy way to start learning the micro-
controller without having to solder or add
other components. The AVR Playground –
a playful reference to the Arduino forum
known as the Arduino Playground – was
designed with this in mind, and extended
with things from Arduino that we have
learned to appreciate.

Extension connectors
The top-left corner of the board accom-
modates the microcontroller and Arduino
Uno compatible extension connectors.
This part of the board behaves exactly
like an Arduino Uno.

Next to it sits a mikroBus expansion slot.
This extension standard, developed by
the Serbian company MikroElektronika,
is gaining popularity thanks to the avai-
lability of hundreds of cheap extension
boards, ranging from GPS receivers to
humidity sensors and from LED arrays
right up to phone modems. Together, the

The board can roughly be divided
into four horizontal zones (Figure 1),
with, from top to bottom, the following
functions:

1. extension connectors, USB-to-serial
converter and power supply;

2. user interface peripherals like a buz-
zer, rotary controls and a display;

3. configuration switches;
4. pushbuttons and LEDs.

If you want to see the schematics, the
PCB or the component list of the AVR
Playground, please refer to [1].

AVR Playground

By Clemens Valens (Elektor Labs)

The board presented in this article
is a hybrid of an Arduino Uno
and a traditional microcontroller
development board, intended
for ‘doing Arduino’ without bad
connections and loose wires (although
it doesn’t disallow it).

PROJECTLABS

Improves
the way
to do
Arduino

www.elektormagazine.com March & April 2017 51

mikroBus and
Arduino Uno shield connectors

give the AVR Playground user access to
a huge library of extension boards.

Pushbuttons, LEDs & DIP
switches
The bottom part of the board, zone 4,
is occupied by pushbuttons and LEDs
connected to every microcontroller port
that can be used. The pushbuttons allow
applying a logical level to a port, while
the LEDs provide visual feedback. The
DIP configuration switches in zone 3 of
the board determine:

• if a GPIO port is pulled up or down
or not at all;

• if pressing a pushbutton provides a
logic low or high;

• if the LEDs are connected or not and
if user interface peripherals from
zone 2 are connected or not.

reconfiguration without disconnecting it
from the computer and losing the serial
port connection.

USB-to-serial converter
The USB-to-serial converter not only acts
as a 5-V power source for the board, it is
also the programming interface for Arduino
sketches and, of course, a USB-compatible
serial port for user applications. It can be
disconnected entirely from the microcon-
troller, to free up GPIO pins for instance
or to use it on other ports.

Human interface devices
In zone 2, i.e. the middle of the board,
we find typical user interface devices
like a buzzer, two analog controls in
the shape of potentiometers, a rotary
encoder and an alphanumerical display.
Together with the pushbuttons and LEDs
they allow the creation of human-friendly
applications without soldering. With an
Arduino Uno, a few prototyping boards
and a spaghetti of connecting wires it is
possible to achieve the same goals, but

There is also a
switch to select the MCU’s ope-

rating voltage, 3.3 or 5 volts. Two LEDs,
blue (3.3 V, cold) and red (5 V, warm),
indicate the actual board voltage. Refer
to Tables 1 to 5 for details.

Power supply
The power supply was designed with
quality and robustness in mind. Protec-
ted against short circuits and high tem-
peratures, it is able to deliver 5 V at 1 A
without complaining. There is one condi-
tion, though: you must power it from an
external power source like a DC adapter
(wall wart) capable of providing about
7 V minimum (and, of course, enough
current). The USB port may also be used
as a power source but this will limit the
available current to 500 mA in order to
protect your computer. The 5 V drives a
beefy 3.3-V low-dropout voltage regu-
lator so that in 3.3-V mode too, enough
power is available for your experiments.
An on/off switch can cut the power to the
rest of the board, enabling safe hardware

PROJECT INFORMATION
Microcontrolers

intermediate levelÆ
entry level

expert level

4 hours approx.

€75 / $80 / £65 approx.

SMD Soldering

 Arduino
Programming

 ATmega328

52 March & April 2017 www.elektormagazine.com

the frequently seen 4-bit semi-parallel
or 8-bit parallel interface. The evident
advantage is that it only requires two
wires for connecting it to the MCU. The
inconvenience is the need for a special
driver, but we took due care of that in
the Boards Package (see below).

Rotary controls
Two potentiometers provide analog sig-
nals to the microcontroller. By positio-
ning a jumper, they can be connected to
any of the six analog inputs of the MCU
without the risk of both being connec-
ted to the same input at the same time.
The rotary encoder is in reality the same
thing as (up to) three pushbuttons hence
it’s effectively connected in parallel to
the pushbuttons on PD3, PD4 and PD5.

Arduino LED
The LED connected to PB5 (Pin 13) on
the Arduino Uno is available on the AVR
Playground too; it is located below the
rotary encoder. This LED is used in many
sketches, reason why it is present on
this board.

Clock frequency & reset issues
The preferred clock oscillator for the AVR
Playground is the MCU’s internal 8-MHz
RC oscillator. This ensures that the MCU
will always work within its specifications,
no matter if the MCU voltage is 5 V or

LCD
The display, a small LC one with back-
light, has an I²C interface instead of

things are much more comfortable and
reliable when using a tool like the AVR
Playground.

Figure 1. The AVR Playground can be divided into four functional zones.

Table 1. The functions of DIP switch S15.
S15 Function Off On

1 Buzzer Disconnected Connected to PB1
2 LEDs Port B Disconnected Connected to GND
3 LEDs Port C Disconnected Connected to GND
4 LEDs Port D Disconnected Connected to GND
5 USB-to-serial RXD Disconnected Connected to PD1
6 USB-to-serial TXD Disconnected Connected to PD0
7 USB-to-serial DTR Disconnected Connected to Reset

Table 2. The functions of 7-way DIP switch S25.
S25 Function Off On

1 MCU voltage 5 V 3.3 V
2 ‘Arduino LED’ Disconnected Connected to PB5
3 LCD SDA Disconnected Connected to PC4
4 LCD SCL Disconnected Connected to PC5
5 Not used
6 LCD Backlight On (if S25-7 in On position) Connected to PD7
7 LCD Backlight Off Controllable

Table 3. The functions of DIP switch S24.
S24 Port Down Middle Up

1 PB0 Pulled down Not pulled Pulled up
2 PB1 Pulled down Not pulled Pulled up
3 PB2 Pulled down Not pulled Pulled up
4 PB3 Pulled down Not pulled Pulled up
5 PB4 Pulled down Not pulled Pulled up
6 PB5 Pulled down Not pulled Pulled up
7 PB6 Pulled down Not pulled Pulled up
8 PB7 Pulled down Not pulled Pulled up

www.elektormagazine.com March & April 2017 53

code from Figure 3:

https://raw.githubusercontent.
com/ElektorLabs/arduino/
master/package_elektor_
boards_index.json

3.3 V. Because the quartz crystal is dis-
connected by default, ports PB6 and PB7
are available for user applications. If a
crystal is required, it can be soldered on
the board and connected to the MCU by
moving two jumpers.
In normal operation port PC6 functions
as the reset input of the MCU. It is pos-
sible to disconnect it from its reset func-
tion by programing the MCU’s RSTDSBL
fuse. However, that’s not recommen-
ded as it will disable MCU programming
over the serial port and through the ISP
connector. The only way to reprogram
the MCU is to remove it from the board
and land it in a so-called parallel pro-
grammer. Because disabling the reset
input is incompatible with the objectives
of the AVR Playground, PC6 is not treated
like the other port pins and there is no
LED connected to it (there is, however,
a pushbutton for it: Reset).

Installing the AVR Playground
Although it is possible to use the AVR Play-
ground without installing any software,
we would not recommend it. Because
the board sports features not supported
by the standard Arduino IDE, we prepa-
red some libraries that make using the
on-board peripherals easier. Having that
said, if, for some reason, adding a board
to the Arduino IDE is unwanted, know that
the standard board ‘Arduino Pro or Pro
Mini’ with as processor (from the ‘Tools à
Processor’ menu) the ‘ATmega328 (3.3 V,
8 MHz)’ can be used instead. The voltage
is not important, what counts is the fre-
quency having to match that of the MCU’s
clock oscillator.

Adding a new board to the IDE is not
difficult and there is even a special tool
for this: the Boards Manager, accessible
at the top of the ‘Tools à Boards’ menu.
The Boards Manager allows installing,
updating and removing third-party
boards. For this to work, the manufac-
turer of such a board must provide a
Boards Package telling the IDE what to
download and use for the board.

The procedure to install the AVR Playg-
round’s Boards Package is quite simple
but requires an Internet connection. It
starts from the ‘File’ menu by opening
the ‘Preferences’ dialog of the Arduino
IDE (see Figure 2, Arduino version
1.6.13 or newer from arduino.cc; do not
use 1.7.x from arduino.org). Copy the
URL below or, even better, read the QR

Table 4. The functions of DIP switch S33.
S33 Port Down Middle Up

1 Port B pushbutton level Low Disconnected High
2 Port C pushbutton level Low Disconnected High
3 Port D pushbutton level Low Disconnected High
4 PC0 Pulled down Not pulled Pulled up
5 PC1 Pulled down Not pulled Pulled up
6 PC2 Pulled down Not pulled Pulled up
7 PC3 Pulled down Not pulled Pulled up
8 PC4 Pulled down Not pulled Pulled up
9 PC5 Pulled down Not pulled Pulled up

10 Not used

Table 5. The functions of DIP switch S27.
S27 Port Down Middle Up

1 PD0 Pulled down Not pulled Pulled up
2 PD1 Pulled down Not pulled Pulled up
3 PD2 Pulled down Not pulled Pulled up
4 PD3 Pulled down Not pulled Pulled up
5 PD4 Pulled down Not pulled Pulled up
6 PD5 Pulled down Not pulled Pulled up
7 PD6 Pulled down Not pulled Pulled up
8 PD7 Pulled down Not pulled Pulled up

Figure 2. This is where you enter the url to access the AVR Playground Boards Package.

Figure 3. Avoid typing mistakes by reading this
QR code with your webcam, then copy-paste
the URL into the ‘Additional Boards Manager
URLs’ box of the ‘Preferences’ dialog.

54 March & April 2017 www.elektormagazine.com

famous game from the early years of the
microcontroller. The original game came
as a round black plastic box with four
large, backlit, colored buttons: red, blue,
green and yellow. The computer plays a
random luminous sequence where every
light is accompanied by a musical note.
When done the player is invited to play
the same sequence. If the player fails, the
game restarts. If the player succeeds the
sequence is extended by one randomly
chosen color/note. The game is still rather
popular among programmers and you can
easily find a version of the game for your
smartphone or to play online.

The AVR Playground has everything nee-
ded to create and play the game: LEDs,
pushbuttons, a buzzer and, of course, a
microcontroller. What’s more, the game
can be extended by adding the LCD to
show things like instructions, the high
score, and some other statistics. There
are no colored lights but bits of colored
plastic film or paper can help here.

In what follows, fragments of the demo
program are highlighted, the complete
source code can be downloaded freely
from [1].

Port mapping
The first step is to decide which ports will
be used for what function (Table 6). This
also greatly determines the setting of the
configuration DIP switches (see Tables 7
to 11). The settings chosen will switch
the LCD’s backlight on, and, because the
level of the pushbuttons on port D is
set to logic high, an LED will automati-
cally light when the corresponding but-
ton is pressed. To make this free visual
feedback work properly, the pull-down
resistors on these pushbuttons need to
be activated.

Controlling the LEDs…
… is slightly more complicated than usual
because the pushbuttons are connected
to the same pins. Also, to improve flexibi-
lity, a lookup table is added allowing the
use of other LEDs simply by modifying
the table. (Listing 1)

Reading the pushbuttons…
... is based on the same technique as
lighting the LEDs, except for an input now
being read instead of an output being
driven. Due to the way the DIP switches
are set, a pressed button will produce a
logic high.

them to right location. When done, close
the window. Now the AVR Playground
will be listed somewhere in the ‘Boards’
menu, under the header ‘Elektor Labs’
(Figure 5). Of course you should connect
the AVR Playground to your computer
before you can select its ‘Port’.

Enter game programming
We developed a fun application using
many of the board’s options, it’s a sim-
ple game called ‘Simon Says’ inspired by a

(one line, no spaces, beware of typing
errors) into the ‘Additional Boards Mana-
ger URLs’ box of the ‘Preferences’ dialo-
gue. Close it when done.

Open the Boards Manager (‘Tools à
Boards’). In the upper left corner of the
window that opens select ‘Contributed’,
look for the AVR Playground in the list
that appears, click on it and then click
the ‘Install’ button (Figure 4). The IDE
will download the required files and copy

Figure 4. Once the IDE has found the AVR Playground Boards Package it will allow you to install it.

Figure 5. After installing the Boards Package, scroll through the Boards list and select the AVR
Playground.

Table 6. The ports, their pins and their functions in the game.
Ten GPIO pins remain unused, showing that a microcontroller with fewer
pins might suffice, making the final design cheaper.
Port B Function Port C Function Port D Function
PB0 Not used PC0 Not used PD0 RXD
PB1 Buzzer PC1 Not used PD1 TXD
PB2 Not used PC2 Not used PD2 LED0
PB3 Not used PC3 Not used PD3 LED1
PB4 Not used PC4 LCD SDA PD4 LED2
PB5 Not used PC5 LCD SCL PD5 LED3
PB6 Not used PD6 LED4
PB7 Not used PD7 LED5

www.elektormagazine.com March & April 2017 55

RAND_MAX (which corresponds to 32,767
in Arduino). A quick and dirty way to
bring the output in the wanted range
is by doing a modulo division (‘%’).

up. The table can be filled at the start
of a game.
The function rand is available for pro-
ducing random values in the range 0 to

A problem with pushbuttons is that they
are mechanical devices in essence, exhi-
biting milliseconds or more of time lag for
the contact to settle, hence it is neces-
sary to ‘debounce’ the buttons. An easy
way to do this when there are no par-
ticular (timing) constraints as in our
simple game, is to scan the buttons a
second time after having waited a short
while. Only if a button is read twice as
being pressed, the program decides it’s
a valid button press. By scanning periodi-
cally at a high enough rate (10 Hz or so)
the chances of missing a key press are
minimal. A logic AND (‘&’) of two scan
results will remove inconsistent reads.
(Listing 2)

Random numbers
The game needs a sequence of random
numbers (corresponding to the LED num-
bers) that’s long enough to make most
players fail before reaching the end. The
sequence can be stored in a table. The
size of the table is important. If it is too
small, it is too easy for the player to
outplay the computer; if it is too large,
the player gets discouraged and will give

Listing 1.

#define LED_BUTTON_TABLE_SIZE (4)
uint8_t led_button_table[LED_BUTTON_TABLE_SIZE] = { 4, 5, 6, 7 };

void led_set(uint8_t nr, uint8_t value)
{
 pinMode(led_button_table[nr],OUTPUT);
 digitalWrite(led_button_table[nr],value);
}

Listing 2.

uint8_t button_read_all_debounced(void)
{
 uint8_t buttons = button_read_all();
 delay(10); // Wait for any bouncing to stop.
 buttons &= button_read_all(); // AND the second scan.
 return buttons;
}

Table 7. Settings of S15 according to our plans.
S15 Function Position

1 Buzzer On
2 LEDs Port B Off
3 LEDs Port C Off
4 LEDs Port D On
5 USB-to-serial RXD On
6 USB-to-serial TXD On
7 USB-to-serial DTR On

Table 11. S27 controls Port D.
S27 Port Position

1 PD0 Middle
2 PD1 Middle
3 PD2 Down
4 PD3 Down
5 PD4 Down
6 PD5 Down
7 PD6 Down
8 PD7 Down

Table 10. S33 controls Port C and the pushbutton’s
active levels.

S33 Function Position
1 Port B pushbutton level Middle
2 Port C pushbutton level Middle
3 Port D pushbutton level High
4 PC0 Middle
5 PC1 Middle
6 PC2 Middle
7 PC3 Middle
8 PC4 Middle
9 PC5 Middle

10 Not used

Table 9. S24 controls Port B,
it’s not used in our game.

S24 Port Position
1 PB0 Middle
2 PB1 Middle
3 PB2 Middle
4 PB3 Middle
5 PB4 Middle
6 PB5 Middle
7 PB6 Middle
8 PB7 Middle

Table 8. Settings of S25 for our game.
S25 Function Position

1 MCU voltage Off
2 ‘Arduino LED’ On
3 LCD I²C SDA On
4 LCD I²C SCL On
5 Not used
6 LCD Backlight Off
7 LCD Backlight On

56 March & April 2017 www.elektormagazine.com

However, from a mathematical point
of view this approach is questionable
because the distribution of the output
may no longer be uniform and indepen-
dent due to the random number genera-
tor’s implementation. Listing 3 shows
a better technique to produce random
numbers in a small range.

Random numbers in programming are
problematic because programming is
deterministic by definition. For the fun-
ction rand to work properly it must be
initialized with a random number (the
seed), and a chicken-and-egg problem is
the result. A trick often encountered is to
use the time as the seed, because time,
as you know, never stops and thus makes
an excellent seed… except in microcont-
roller systems where time is reset to zero
at every (re)start.

For our game time can be used to seed
the random number generator if we mea-
sure the time it takes for the player to
press the first button. Measured in mil-
liseconds the result will hardly ever be
the same. (Listing 4)

Play a sequence, add sound
Every game round, the sequence is a
bit longer and must be played to the
user starting from the beginning. If the
sequence is played too fast, the player
may not be able to memorize it; if it
is too slow, he or she may get bored.

Listing 3.

void sequence_create(uint8_t nr_of_leds)
{
 for (int i=0; i<SEQUENCE_LENGTH_MAX; i++)
 {
 sequence[i] = rand()/(RAND_MAX/nr_of_leds + 1);
 }
}

Listing 4.

void setup(void)
{
 while (button_pressed()==false);
 srand(millis());
 sequence_create(LED_BUTTON_TABLE_SIZE);
 game_round = 1;
}

Listing 5.

const uint8_t buzzer = 9;
const uint16_t button_sound[LED_BUTTON_TABLE_SIZE] =
{ 554, 659, 880, 1319 }; // C#5, E5, A5, E6 in Hz

#define SEQUENCE_SPEED (400) /* ms */

void sequence_play(uint8_t len)
{
 for (int i=0; i<len; i++)
 {
 tone(buzzer,button_sound[sequence[i]],SEQUENCE_SPEED/2);
 led_set(sequence[i],true);
 delay(SEQUENCE_SPEED);
 led_set(sequence[i],false);
 delay(SEQUENCE_SPEED/4);
 }
}

Figure 6. The AVR
Playground playing
Simon Says.

www.elektormagazine.com March & April 2017 57

To enhance Player Experience we add a
musical note to every LED, made audible
by the buzzer (connected to pin 9, PB1).
(Listing 5)

The table button_sound holds the fre-
quencies in hertz of the notes to play.
The constant SEQUENCE_SPEED (in milli-
seconds) determines the replay speed of
the sequence. The function sequence_
play takes as its argument the length
of the sequence to play.

Processing user input
Once the sequence has been played, it
is time for the player to repeat it. As
soon as the player makes a mistake the
program can stop reading pushbuttons.
There is one little complication to take
care of: avoiding that a very long key
press gets interpreted as two or more
presses. (Listing 6)

Play the game
All that remains to do is to add the fun-
ction loop to glue together the func-
tions sequence_play and sequence_
read_buttons and to keep track of the
sequence length and the state of the
game. (Listing 7)

The bodies of the if-else statem-
ents have been left largely empty here
because it is up to you what to put inside.
Consider playing a tune depending on the
state of the game, a ‘Well Done’ tune, a
‘You Win’ tune and a ‘Game Over’ tune,
most probably accompanied by flashing
LEDs. Let your creativity run wild and
have fun designing special effects.

(160316)

Web Link

[1] www.elektormagazine.com/160316

Listing 7.

void loop(void)
{
 sequence_play(game_round);
 if (sequence_read_buttons(game_round)==true)
 {
 if (game_round<SEQUENCE_LENGTH_MAX)
 {
 // Next round, play ‘well done’ tune?
 game_round++;
 }
 else
 {
 // Player wins, play ‘you win’ tune?
 game_start();
 }
 }
 else
 {
 // Game over, play ‘game over’ tune?
 game_start();
 }
}

Listing 6.

bool sequence_read_buttons(uint8_t len)
{
 for (int i=0; i<len; i++)
 {
 uint8_t nr, buttons;

 // Wait for a button press.
 do
 {
 buttons = button_read_all_debounced();
 }
 while (buttons==0);

 // Check that we have a valid button press.
 nr = button_as_number(buttons);
 if (nr!=BUTTON_PRESS_INVALID && nr<LED_BUTTON_TABLE_SIZE)
 {
 // Play sound & wait until it finishes.
 tone(buzzer,button_sound[nr], SEQUENCE_SPEED/2);
 delay(SEQUENCE_SPEED/2);
 // Wait until the player releases the button.
 while (button_pressed()==true);
 // Fail on wrong button.
 if (sequence[i]!=nr) return false;
 }
 else return false;
 }
 return true;
}

FROM THE STORE
ª129009-2:
PCB

ª129009-41:
Programmed microcontroller

ª129009-91:
Ready assembled module

