Temperature-to-period circuit provides linearization of thermistor response

S Kaliyugavaradan, Anna University, Madras Institute of Technology, Chennai, India

Designers often use thermistors rather than other temperature sensors because thermistors offer high sensitivity, compactness, low cost, and small time constants. But most thermistors' resistance-versus-temperature characteristics are highly nonlinear and need correction for applications that require a linear response. Using a thermistor as a sensor, the simple circuit in Figure 1 provides a time period varying linearly with temperature with a nonlinearity error of less than 0.1K over a range as high as 30K. You can use a frequency counter to convert the period into a digital output. An approximation derived from Bosson's Law for thermistor resistance, R_{T} , as a function of temperature, θ , comprises $R_T = AB^{-\theta}$ (see sidebar "Exploring Bosson's Law and its equation" on the Web version of this article at www. edn.com/051110di1). This relationship closely represents an actual thermistor's behavior over a narrow temperature range.

You can connect a parallel resistance, R_p , of appropriate value across the thermistor and obtain an effective resistance that tracks fairly close to $AB^{-\theta} \approx 30$ K. In **Figure 1**, the network connected between terminals A and B provides an effective resistance of $R_{AB} \approx AB^{-\theta}$. JFET Q_1 and resistance R_s form a current regulator that supplies a constant current sink, I_s , between terminals D and E.

Through buffer-amplifier IC₁, the voltage across R_4 excites the RC circuit comprising R_1 and C_1 in series, producing an exponentially decaying voltage across R_1 when R_2 is greater than R_{AB} . At the instant when the decaying voltage across themistor R_T , the output of comparator IC₂ changes its state. The circuit oscillates, producing the voltage waveforms in **Figure 2** at

DIs Inside

82 Two wires control SPI high-speed ADC

84 Volume-unit meter spans 60-dB dynamic range

90 Pacer clock for microcontrollers saves subroutine calls

What are your design problems and solutions? Publish them here and receive \$150! Send your Design Ideas to edndesignideas@ reedbusiness.com.

IC₂'s output. The period of oscillation, T, is $T=2R_1C_1ln(R_2/R_{AB})\simeq 2R_1C_1$ [ln(R₂/A)+ θ lnB]. This equation indicates that T varies linearly with thermistor temperature θ .

You can easily vary the conversion sensitivity, $\Delta T/\Delta \theta$, by varying resistor R_1 's value. The current source comprising Q_1 and R_1 renders the output period, T, largely insensitive to variations in supply voltage and output load. You can vary the period, T, without affecting conversion sensitivity by

designideas

varying R_2 . For a given temperature range, θ_L to $\theta_{H^{1}}$ and conversion sensitivity, S_C , you can design the circuit as follows: Let θ_C represent the center temperature of the range. Measure the thermistor's resistance at temperatures θ_L , θ_C , and $\theta_{H^{*}}$. Using the three resistance values R_L , R_C , and R_H , determine R_p , for which R_{AB} at θ_C represents the geometric mean of R_{AB} at θ_L and θ_H . For this value of R_p , you get R_{AB} exactly equal to $AB^{-\theta}$ at the three temperatures, θ_1 , θ_C , and θ_H .

At other temperatures in the range, $R_{_{AB}}$ deviates from $AB^{-\theta},$ causing a nonlinearity error that is appreciably less than 0.1K for most thermistors when the temperature range is 30K or less. You can easily compute R_p using: $R_{p} = R_{C}[R_{C}(R_{T} + R_{H}) - 2R_{L}R_{H}]/(R_{L}R_{H} - 2R_{L}R_{H})/(R_{L}R_{H} - 2R_{L}R_{$ R_{c}^{2}). Because temperature-to-periodconversion sensitivity, S_c , is $2R_1$ C_1 lnb, you can choose R_1 and C_1 such that $R_1C_1 = S_C[\theta_H - \theta_C]/\ln(R_{AB} \text{ at } \theta_I)$ R_{AB} at θ_{H}) to obtain the required value of S_c . To get a specific output period, T_1 , for the low temperature, θ_1 , R_2 should equal (R_{AB} at θ_L)e^Y, in which Y represents $(T_1/2R_1C_1)$. In practice, use a lower value for R_2 because the nonzero response delay of IC, causes an increase in the output period.

Next, set potentiometers R_1 and R_2 close to their calculated values. After you adjust R_1 for the correct S_C , adjust R_2 until T equals T_L for temperature θ_L . The two voltage-divider resistances, R_3 and R_4 , should be equal in value and of

close tolerances. As a practical example, use a standard thermistor, such as a Yellow Springs Instruments 46004, to convert a temperature span of 20 to 50°C into periods of 5 to 20 msec. This thermistor exhibits resistances for R_L, R_C, and R_H of 2814, 1471, and 811.3 Ω , respectively, at the low, midpoint, and high temperatures. Other parameters for the design include S_C=0.5 msec/K, θ_L =20°C, θ_H =50°C, θ_C =35°C, and T₁=5 msec.

Because only a fraction of current I_S is through the thermistor, I_S should be low to avoid self-heating effects. This design uses an I_S of approximately 0.48 mA, which introduces a self-heating error of less than 0.03K for a thermis-

tor's dissipation constant of 10 mW/K. Figure 1 illustrates the values of the components in the example. All resistors are of 1% tolerance and 0.25W rating; use a polycarbonate-dielectric capacitor for C_1 .

Simulating various temperatures from 20 to 50°C by replacing the thermistor with standard, 2814 to 811.3 Ω , 0.01%-tolerance resistors produces T values of 5 to 20 msec with a maximum deviation from correct readings of less than 32 µsec, which corresponds to a maximum temperature error of less than 0.07K. Using an actual thermistor produces a maximum error of less than 0.1K for a thermistor dissipation constant of 10 mW/K or less.EDN