Temperature-to-period circuit provides
linearization of thermistor response
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Designers often use thermistors

rather than other temperature
sensors because thermistors offer high
sensitivity, compactness, low cost, and
small time constants. But most ther-
mistors’ resistance-versus-temperature
characteristics are highly nonlinear
and need correction for applications
that require a linear response. Using a
thermistor as a sensor, the simple cir-
cuit in Figure 1 provides a time peri-
od varying linearly with temperature
with a nonlinearity error of less than
0.1K over a range as high as 30K. You
can use a frequency counter to convert
the period into a digital output. An
approximation derived from Bosson’s
Law for thermistor resistance, R asa
function of temperature, 6, comprises
R, =AB™" (see sidebar “Exploring
Bosson’s Law and its equation” on the
Web version of this article at www.
edn.com/051110di1). This relation-

ship closely represents an actual ther-

mistor’s behavior over a narrow tem-
perature range.

You can connect a parallel resistance,
R, of appropriate value across the ther-
mistor and obtain an effective resist-
ance that tracks fairly close to AB 0=
30K. In Figure 1, the network con-
nected between terminals A and B pro-
vides an effective resistance of
R,;=AB" JFET Q, and resistance R
form a current regulator that supplies a
constant current sink, I, between ter-
minals D and E.

Through buffer-amplifier IC,, the
voltage across R, excites the RC circuit
comprising R, and C, in series, pro-
ducing an exponentially decaying
voltage across R, when R, is greater
than R, .. At the instant when the
decaying voltage across R falls below
the voltage across thermistor R, the
output of comparator IC, changes its
state. The circuit oscillates, producing
the voltage waveforms in Figure 2 at
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IC,’s output. The period of oscillation,
T, is T=2RCIn(R,/R,;)=2R C,
[In(R,/A)+6InB]. This equation indi-
cates that T varies linearly with ther-
mistor temperature 6.

You can easily vary the conversion
sensitivity, AT/A®, by varying resistor
R/s value. The current source com-
prising Q, and R, renders the output
period, T, largely insensitive to varia-
tions in supply voltage and output load.
You can vary the period, T, without
affecting conversion sensitivity by
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Figure 1 This simple circuit linearizes a thermistor's response and produces an output period that's proportional to temperature.
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varying R,. For a given temperature
range, 6, to 6, and conversion sensi-
tivity, S, you can design the circuit as
follows: Let 6. represent the center
temperature of the range. Measure the
thermistor’s resistance at temperatures
B, 6, and 8,,. Using the three resist-
ance values R, R, and R, determine
R,, for which R, at 6, represents the
geometric mean of R, ;at 8, and 6. For
this value of R, you get R, exactly
equal to AB™? at the three tempera-
tures, 0, B, and 6.

At other temperatures in the range,
R, deviates from AB™, causing a non-
linearity error that is appreciably less
than 0.1K for most thermistors when
the temperature range is 30K or less.
You can easily compute R, using:
R,=R.R.(R +R,)—2R R J/(R R;,—
R.?). Because temperature-to-period-
conversion sensitivity, S, is 2R,
C Inb, you can choose R, and C, such
that R .C,=S_[0,—6.)/In(R,, at 6,/
R, at8,,) to obtain the required value
of S.. To get a specific output period,
T,, for the low temperature, 6, R,
should equal (R, at 6, )e¥, in which Y
represents (T, /2R C)). In practice, use
alower value for R, because the nonze-
ro response delay of IC, causes an in-
crease in the output period.

Next, set potentiometers R, and R,
close to their calculated values. After
you adjust R, for the correct S, adjust
R, until T equals T, for temperature 6, .
The two voltage-divider resistances, R
and R, should be equal in value and of
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Figure 2 Waveforms show input to comparator IC, (lower trace) and its output
(upper trace). In the lower trace, IR, represents the voltage across R,.

close tolerances. As a practical exam-
ple, use a standard thermistor, such as
a Yellow Springs Instruments 46004, to
convert a temperature span of 20 to
50°C into periods of 5 to 20 msec. This
thermistor exhibits resistances for R,
R, and R, of 2814, 1471, and 811.3(),
respectively, at the low, midpoint, and
high temperatures. Other parameters
for the design include S =0.5 msec/K,
6, =20°C, 6,=50°C, 6.=35°C, and
T, =5 msec.

Because only a fraction of current I
is through the thermistor, I should be
low to avoid self-heating effects. This
design uses an I of approximately 0.48
mA, which introduces a self-heating
error of less than 0.03K for a thermis-

tor’s dissipation constant of 10 mW/K.
Figure 1 illustrates the values of the
components in the example. All resis-
tors are of 1% tolerance and 0.25W rat-
ing; use a polycarbonate-dielectric
capacitor for C,.

Simulating various temperatures
from 20 to 50°C by replacing the ther-
mistor with standard, 2814 to 811.34),
0.01%-tolerance resistors produces T
values of 5 to 20 msec with a maximum
deviation from correct readings of less
than 32 psec, which corresponds to a
maximum temperature error of less
than 0.07K. Using an actual thermis-
tor produces a maximum error of less
than 0.1K for a thermistor dissipation
constant of 10 mW/K or less.Ebn






