
36 September & October 2017 www.elektormagazine.com

Do you ever wonder what happens in
and around your home when you are not
there? Are the children inside or outside?
Did they set the house on fire? Is the
heating on? Did you leave a tap open

not cooling enough? Is water flowing
where it should be? Would you like to
follow your dog on Facebook? All of this
is possible simply by putting the right
sensor in the right place on the object
of interest, connect it to GoNotify and
you’re done. It’s that easy.

The beginning
Some time ago I wondered what the
requirements for a connected device
would be. First off, it had to be wireless,
meaning it’s battery- or solar-powered.
This in turn implies that it should con-
sume as little energy as possible; hence
it must be a low-power design all over.
Furthermore, the system should be sim-
ple and low cost, and there should be no
connection costs. Finally, the device has
to be flexible and easy to develop with.
Wi-Fi fits almost perfectly what I was
looking for and the popular Wi-Fi chip
ESP8266 makes this technology acces-
sible at low cost. The low-power side
of things, on the other hand, might be
a challenge. With all this in mind I set
out to work.

The hardware
The design that I came up with consists
of four major blocks (Figure 1):

or is water leaking somewhere else? Is
someone ringing the doorbell? Or vice
versa: you are at home, but is every-
thing going fine at the factory? Maybe a
machine is overheating? Is that cooler

GoNotify,
a Flexible IoT Sensor Interface
Join the bubble
By Gino De Cock (Belgium)

IoT; the Internet of Things; IIoT, connected devices, fridges… we keep hearing a lot about it. Industry
watchers predict a huge market and billions of connected devices in a few years’ time, but you still
have to walk over to a wall-mounted switch to turn on a light in your home. Now those dark days are
over, because with GoNotify you too can connect whatever you like to the Internet.

PROJECTLABS

LDO

2x AA battery

SerialData Serial

160333 - 11

USB UART ESP8266

Sensor

Reset Trig

micro
USB

Step-up

I/O
, I2

C,
On

ew
ire

, S
PI,

 A
na

log

ATMEGA328PB

Figure 1. GoNotify’s functional overview.

www.elektormagazine.com September & October 2017 37

two of its GPIO pins. Its power supply is
switched by T1 under control of the MCU.
For a reliable connection to the Internet
it is important to enable the 3.3 V power
rail before switching on T1.
R13 and C6 have been provided to
allow Over-the-Air (OTA) update of the
ATmega328PB’s firmware. When the
ESP-01S receives the new firmware and
pushes it to the MCU a reset of the lat-
ter is required to make it enter boot-
loader mode. While the MCU is rebooting,
releasing the control of T1, the ESP-01S
must remain powered on; R13 and C6
ensure this is indeed the case.
IC4, an FT230XS, is a USB-to-UART
bridge that provides a convenient pro-
gramming and debugging port on the
MCU’s serial port 0 (Serial0). The falling
edge of its RTS signal, extracted by C4
and R11, is used as a reset signal for the
MCU, allowing it to receive firmware from
the Arduino IDE.
IC3 transforms the 5 V from the USB
bus into 3.3 V. Actually, due to R6, IC3’s
output is slightly higher than 3.3 V in
order to overcome the threshold voltage
of Schottky diode D1.
The circuit is in all cases powered
through IC2, independently of its state
(i.e. enabled or not) because when its

• for Internet connectivity a cheap
ESP-01S module containing the
ESP8266 Wi-Fi microcontroller;

• an ATmega328PB to handle the
sensors;

• a USB serial port for programming
and debugging;

• a power module consisting of an LDO
and a step-up regulator.

The schematic is shown in Figure 2.
The microcontroller (MCU) used in this
design is the ATmega328PB, an upgraded
version of the popular ATmega328P with
many new features. One of them is its
reduced power consumption, but it also
has a more accurate internal RC oscilla-
tor eliminating the need for an external
quartz crystal, and — most importantly
— it has two serial ports. Serial0 is used
in this design for uploading firmware and
for debugging it. Serial1 is reserved for
communicating with the ESP-01S mod-
ule. The main task of the ATmega328PB
is monitoring the sensor while consuming
as little power as possible.
In this design the ESP8266 is used in
its module form factor, easily available
on the Internet under the name ESP-
01S. Plugged on K4 it is connected to
serial port 1 (Serial1) of the MCU and to

project information
ATmega328PB

intermediate levelÆ
entry level

expert level

4 hours approx.

£25 / €30 / $35 approx.

SMD soldering,
PC,
Arduino IDE

ESP8266
AllThingsTalkIoT

IFTTT FFA 2016

Features
• Universal wireless sensor interface
• Supports Wi-Fi and ESP-Now
• Ultra low-power
• Arduino compatible
• Grove compatible

38 September & October 2017 www.elektormagazine.com

VB
US

K3

GN
D

D– D+ ID

1 2 3 54

Mi
cr

o
US

B

R1
5 27

R

C9 47
p

C8 47
p

C1
0

10
0n

C7 10
0n

+5
V

FT
23

0X
S

3V
3O

UT
VC

CI
O

RE
SE

T

CB
US

0
CB

US
1

CB
US

2
CB

US
3

US
BD

M

US
BD

P

IC
4

TX
D

VC
C

GN
D

GN
D

RX
D

RT
S

CT
S

12

13

10 11

15 14 161

3

5

42 6 7

9 8
R1

6 27
R

C1
1

10
0n

+3
V3

C4 10
0n

K1

12

K4

ES
P-

01
S

1 2 3 4

5 6 7 8

K2
1

82

73
64

5

Pr
og

ra
m

LE
D1

R1 1kR1
2

47k

T2 2N
70

02

BU
Z1

+3
V3

+3
V3

SW
1

RE
SE

T

R1
1

1k

SW
2

TR
IG

R2 47k

RE
1

+3
V3

K5

3
4

2
15

6

MI
NI

-D
IN

6S

AT
ME

GA
32

8P
B

PC
6_

RE
SE

T

PB
3_

TX
D1

PC
5_

SC
L0

PD
2_

IN
T0

PD
3_

IN
T1

PB
4_

RX
D1

PC
0_

AD
C0

PD
0_

RX
D0

PD
1_

TX
D0

PB
6_

OS
C1

PB
7_

OS
C2

PC
4_

SD
A

AR
EF

IC
1

AV
CC

PB
0

PB
2

PD
4

PD
5

PD
6

PC
1

PB
5

PE
2

PE
3

PE
0

PE
1

PD
7

PB
1

PC
2

PC
3

GN
D

GN
D

VC
C

18

20

21

29

12 13 14 15 16 17 23 24 25 26 27 28

19 2230 31 32 10 11

5

87

4

1 2 9 3 6
R9 4k7

R1
0

4k7

R8 47k

T3

NT
S2

10
1P

T1
G+3

V3

T1NT
S2

10
1P

T1
G

+3
V3

C5 10
u

C6 1u

R1
3 10
0k

T4 NT
S2

10
1P

T1
G

BA
T1

2x
 A

A

D1

BA
T7

60
R5

1k R7 47k

+1
V5

...+
3V

3

NC
P1

11
7

IC
3

3
2

14 R6 56RST
33

T3
G

C3 10
u

+5
V

+1
V5

...+
3V

3

C1 10
u

L1

4u
H7

C2 10
0u

R3

976k

R4

562k

MC
P1

64
2DVO

UT

IC
2

PG
ND

SG
ND

-A
DJ

VF
B

VI
N

SW

EN
PG

8

2

6

4

5

7

1
3

+3
V3

16
03

33
 -

 1
2

Figure 2. Full schematic of the device. The Wi-Fi module is connected to K4.

www.elektormagazine.com September & October 2017 39

01S module to use the same Wi-Fi
channel as the access point.

• Avoid DHCP: DHCP negotiations at
startup can be avoided by fixing the
device’s IP address (at the expense
of reduced flexibility, of course).

• Avoid DNS lookup: using the IP
address of the destination (Cloud or
other) avoids DNS lookup time, and
saves power.

• Optimize the ESP-01S RF initializa-
tion process: normally the ESP-01S
executes an RF alignment when it
starts up, which consumes quite
some current. This can be done with
the API function system_phy_set_
powerup_option(2). The ESP8266
Download Tool also can change this
behavior, but the best option (no. 2)
is not available.

• Reduce the MCU’s clock frequency by
setting the DIV2 fuse. Now the MCU
will run at 4 MHz instead of 8 MHz,
allowing operation until the battery
voltage drops below 1.8 V.

Enclosure
Besides a circuit, a PCB and a lot of soft-
ware I also created a 3D-printable enclo-
sure for GoNotify (Figure 3). You can
print it at home or online (find a ser-
vice near you with www.3dhubs.com);
it will only cost you a few euros. The
design files for the enclosure, as all other
GoNotify files, BTW, can be downloaded
from [2].

Updating the firmware
The Arduino IDE can be used to update
the firmware of the MCU over USB thanks
to a compatible bootloader. Furthermore,
K2 is available for in-circuit program-
ming with an AVR programmer. How-
ever, to program the ESP-01S module
over the USB connection a more elabo-

it consume hardly anything. Now only
the ATmega328PB (IC1) is powered as
it is connected to either the batteries
(through T4) or to the low dropout device
(LDO) IC3 (through D1) if 5 V is present
at pin 1 of the micro USB connector K3.
With reduced RF transmit power and
Internet connection periods kept as
short as possible GoNotify consumes
about 1.5 mAh on average per message
even when a REST protocol over a secure
HTTPS connection is used. Battery life
can be extended even further by utilizing
the ESP-01S modules with the (propri-
etary) ESP-Now technology. In this case
one device acts as a master/bridge while
the other acts as a remote sensor slave.
Communication between the master and
slave is done without any overhead from
the TCP/IP stack (more on this later).
When powered from two 2500 mAh bat-
teries, 1.5 mAh per message means that
3,000 to 4,000 messages can be sent
with a single set of fresh batteries. This
corresponds to about five months’ usage
at a rate of one message per hour. Pro-
graming some intelligence into the MCU
to reduce the number of Internet con-
nections is therefore useful. Furthermore,
when a condition is detected that requires
an alarm, GoNotify can still inform the
user via buzzer BUZ1 (switched by T2)
without requiring an Internet connection.
Using the buzzer should be done as a
last resort.
If an application requires an ‘Always On’
Internet connection, for example when
it is an MQTT client, it is best to power
the device via the micro USB connector
(K3). In this case the batteries will act
as a back-up power supply when the USB
power is disconnected.
To maximize the number of messages
on one battery charge the following fine-
tune options are available (besides writ-
ing cleverer software):

• Reduce transmit power: by default
the ESP-01S operates on a rather
long range and draws a lot of power
when transmitting. Depending on
the situation the range may be
reduced, saving power in the pro-
cess. This can be done through soft-
ware, but also with the ESP8266
Download Tool (V3.4.4), on the
‘RFConfig’ tab (the tool is available
from the Espressif website).

• Fix the Wi-Fi channel: scanning Wi-Fi
channels consumes power. Scanning
can be avoided by telling the ESP-

enable input is held Low, the output volt-
age will follow the input voltage thanks to
its bypass mode. IC2 is available in sev-
eral versions, here the adjustable type is
used for more flexibility. An MCP1642D-
33I/MS 3.3 V fixed-output model may
be used also. If you do, do not mount
R3 and R4. Do not use a ‘B’ version
(MCP1642B-…) as it does not have the
input bypass mode.
Sensors are connected to mini DIN con-
nector K5. The wiring of this connector is
such that you can either mount a Seeed-
Studio 4-pin Grove connector or, for extra
connectivity, use a regular 6-way mini-
DIN connector instead.
When it is time to do a sensor reading
the micro enables power to the sensor
by activating T3. If the sensor requires
3.3 V then the step-up convertor IC2
must be enabled too (this depends, of
course, on the sensor and has to be done
by the application programmer, i.e. you).
Reed switch RE1 and pushbutton SW2
(‘Trigger’) can be used for testing the
device in the absence of an external sen-
sor. They use external interrupt INT1 to
wake up the MCU.
K2 is available for in-circuit programing
of the MCU with for instance the custom
bootloader. SW1 allows resetting the MCU
with a button press.
K1 allows access to the second serial
port of the ESP8266 microcontroller. This
can be useful for debugging your Wi-Fi
code without breaking communication
with the MCU.
LED1 is a general purpose “Arduino
Pin 13” LED. It can have any function
you like.

Power management
When powered from two AA batteries it
is possible to consume as little as 10 µA
in “guarding mode”. In this low-power
mode as much circuitry as possible is
disabled without stopping sensor moni-
toring. The ESP-01S is switched off, the
step-up converter is in bypass mode
and the MCU is sleeping; only the MCU’s
watchdog timer is running to periodically
wake up the MCU to do a sensor read-
ing. An external interrupt can also be
used for this.
In guarding mode the ESP-01S module
is powered off via T1 and the step-up
regulator IC2 is disabled by pulling its
enable pin low. In this situation IC2 is
actually in bypass mode, meaning that
its output is connected to its input; its
internal circuitry is switched off making

Figure 3. A design for a 3D-printed enclosure is
available too.

40 September & October 2017 www.elektormagazine.com

rated mechanism is needed. To achieve
this, the MCU must put the ESP-01S in
bootloader mode first and then create
a bridge between its two serial ports to
pass the new firmware to the ESP-01S.
This has been accomplished by custom-
izing the MCU’s bootloader.
The programing data rate for the ESP-01S
is currently limited to 57600 bits/s until
a better bridge algorithm for the MCU is
found. Faster programming is possible
if you include Over-the-Air (OTA) code
into your sensor application. The ESP-01S
module has 8 Mbit of Flash memory, the
minimum needed for OTA updates.
Network R13-C6 is intended for OTA firm-
ware updates of the ATmega328PB. When
the ESP-01S receives the new firmware
and pushes it to the ATmega328PB a
reset of the latter is required to make it
enter bootloader mode. During this pro-
cess the ESP-01S must keep on running,
which is accomplished by C6 together
with R13.

Application development
For practical applications it is best to
divide the tasks over the two microcon-
trollers. The ATmega328PB monitors the
sensor and, if needed, triggers an alarm,
and activates the ESP-01S module. The
latter then takes care of connecting
securely to the Internet and handles the
communication using the protocol of your
choice (e.g. HTML, REST, MQTT). The
ESP-01S can also take care of the user
interface (UI) for configuring or monitor-
ing via a standard Internet browser on
your computer or smartphone.
For comfortable application develop-
ment it is important that programing the
device is as easy as possible. Further-
more, debugging of the sensor applica-
tion must be possible too. For GoNotify
the Arduino IDE was elected to do all this.
To set up your Arduino IDE the URLs
of two board definition files need to be
added to the ‘Additional Board Manager
URLs’ field of the ‘Preferences’ dialog
window (under the ‘File’ menu). You can
add multiple URLs, separating them with
commas (there are no spaces in the fol-
lowing URLs):

• For the ATmega328PB: https://raw.
githubusercontent.com/ginodecock/
V3GoNotify/master/ArduinoBoard/
package_gonotify_v3_index.json

• For the ESP-01S: http://arduino.
esp8266.com/versions/2.3.0/pack-
age_esp8266com_index.json

Online statistical analysis with ThingSpeak

Monitor the temperature of some machine with a suitable sensor (a thermocouple
for instance). Connect GoNotify to the online service ThingSpeak and analyze the
captured data with Matlab.
Source: https://goo.gl/tthgeJ
ThingSpeak: https://thingspeak.com

Join the Weather Underground Network

Use GoNotify to connect a BMP180 sensor to the Weather Underground network
and make quality weather information available to every person on this planet.
Source: https://goo.gl/A3QByX
Weather Underground: www.wunderground.com

Movement detection with IFTTT

Monitor movement and get alerted via the popular online ‘If This Then That’
(IFTTT) service. A Grove PIR motion sensor from SeeedStudio can be connected to
GoNotify. To make this work the sensor’s 10-kΩ resistor (see photo) in the output
signal must be bypassed because it will interfere with GoNotify’s 4.7-kΩ I2C pull-
up resistors. Connect your IFTTT applet to a Google spreadsheet and start logging
movements.
Source: https://goo.gl/shSWe6
IFTTT: https://maker.ifttt.com

Short the encircled resistor.

www.elektormagazine.com September & October 2017 41

tion is less than 0.5 l. In other words,
when water consumption is continuous
GoNotify considers that there is a leak.
Also, when water consumption remains
high for 30 minutes or more, GoNotify
will assume that a tap has been left open
and it will send an alert too.

In case of a problem with the Internet
connection, GoNotify will alert the user
by activating its buzzer.

For this application the MCU’s integrated
temperature sensor must be calibrated.
Press and hold the trigger button SW2
and reset the device. While keeping SW2
pressed, cool de processor to 0° Celsius.
GoNotify will beep when the temperature
changes, when it stops beeping it has
reached the reference temperature. You
can now release SW2.

• URL: https://wma-gonotify.rhcloud.
com

• User: demo
• Password: demo
• Source code: https://goo.gl/UIkaXJ

In this sample the ATmega328PB is pro-
gramed from within the Arduino IDE, the
ESP-01S module is programed using the
native IoT SDK2.0 (available from the
Espressif website). The Cloud solution
is created using Redhat’s OpenShift
(https://www.openshift.com/) and is
programed with Nodejs and Mongodb.

a test message is sent; its contents and
destination depend on how you config-
ured the device. The example in Figure 4
sends a message to a PushBullet service
(www.pushbullet.com). From this point
on GoNotify will enter normal operation
in its low-power guard mode.

Virtual machine
Now that you know how GoNotify works,
how to build one and how to program it,
it is time to look at some practical appli-
cations. Note that the shortened URLs
all lead to my GitHub repository at [2].
Useful to know also is that I have pre-
pared a virtual machine (VM) with all the
tools preinstalled so you can get started
quickly. It is available in the ‘GoNoti-
fy-Development-Env’ folder of [2].

Californian water meter with
alert in the Cloud
In this example GoNotify monitors the
water meter via a reed switch mounted
on it producing a pulse for every 500 ml
of water used. When a leak is detected
or a tap runs too long GoNotify sends
a notification. It also reports the water
consumption every hour to help to dis-
cover when the most water is used and
why. To save power, only when there is a
problem the ESP-01S module is powered
up to send an alert message. In this case
an alert is sent when, measured over a
period of 24 hours, there are no 2-hour
periods where the total water consump-

Programing is quite easy when using the
Arduino IDE:

• Connect GoNotify to your PC. The
first time you do this a virtual COM
port will be installed.

• Install the ATmega328PB and ESP-
01S boards packages in the Arduino
IDE:

 - Open the Boards Manager (from
the ‘Tools’ ª ‘Board’ menu), select
‘Contributed’ and install ‘GoNoti-
fy-V3 ATMEGA’.

 - Do the same for the ESP-01S by
installing the ‘esp8266 by ESP8266
Community’.

• From the ‘Tools’ ª ‘Port’ menu
select the virtual COM port that cor-
responds to your device.

• To program:
 - ATmega328PB: select the board
‘GoNotify @ 4 MHz (internal RC)’.
Clicking the ‘Upload’ button is
enough to start programming.

 - ESP-01S: select the board ‘Generic
ESP8266 Module’. Press and hold
trigger pushbutton SW2 before
clicking the IDE’s ‘Upload’ button.
When programming has started the
pushbutton can be released.

• Open the ‘Serial Monitor’ to debug.

When new firmware has been programed
into the device, and all memory has been
erased it must be (re)configured before it
can be used (configuration data is stored
in the MCU’s EEPROM, Wi-Fi configura-
tion data is stored in the ESP-01S mod-
ule). Start by pressing Reset button SW1.
GoNotify will now act as an access point
(AP) by default at 192.168.4.1 (but the
user can change this in the software),
see Figure 4. After configuration GoNo-
tify expects a trigger, either by press-
ing SW2, closing RE1 or by making the
sensor pass a certain threshold value
(to be defined in the software first). The
buzzer produces a notification beep and Figure 4. Connect to the GoNotify access point to configure the device for your Wi-Fi network.

About the Author
Gino De Cock (1977) has been fascinated with electronics from his youth. He studied electronics in Ghent, Belgium where
he graduated in 1999. Tormented by the existential question “Isn’t there a better way?” Gino keeps pursuing his ideas with
projects like GoNotify! as a result.

Fast Forward Award 2016

GoNotify was one of the entries for the Fast Forward Award organized by Elektor in collaboration with the governors of the 2016
electronica tradeshow in Munich. It was a great opportunity for hobbyists and professionals alike to share and present projects,
products and startups.

42 September & October 2017 www.elektormagazine.com

back-up power supply in case USB power
is lost for some reason.
In this sample the ATmega328PB is pro-
gramed from within the Arduino IDE, the
ESP-01S module is programed using the
native IoT SDK2.0.
URL: https://maker.allthingstalk.com/
device/Kx7vo0kSYI5P6e9PrJIOKWS7.
In order to see this page you must first
create your own AllThingsTalk account
and connect to it.
Source code: https://goo.gl/OIF6Rw

Monitoring a greenhouse with
ESP-Now
ESP-Now is a proprietary communication
protocol developed by Espressif, which
enables devices to talk to each other,
peer-to-peer (P2P), without using Wi-Fi

MQTT client with AllThingsTalk
Being compatible with Arduino and
using popular microcontrollers like the
ATmega328PB and the ESP8266 has the
advantage that many IoT Cloud plat-
forms have an API that is compatible too.
This application shows how to interface
GoNotify to the AllThingsTalk Maker API
(https://maker.allthingstalk.com) as an
MQTT client. This is accomplished with
a few lines of code. The example illus-
trates two-way communication between
the AllThingsTalk server and a GoNotify
client. It allows you to control GoNotify
remotely and receive status information
in return.
In this setup GoNotify is always on and
connected, meaning that it must be pow-
ered over USB. The batteries act as a

There are several advantages to using
a private Cloud approach:

• You own the data: data is valuable
and private.

• Notifications: GoNotify has the intel-
ligence to detect that a problem has
occurred and to create an alert for
it. These alerts are reported to the
Cloud where they are relayed to a
notification system. Also, when an
expected reading does not arrive (in
time), the Cloud will flag the absence
of the sensor.

• Time synchronized readings: the
Cloud can act as a clock for the sen-
sor. With each reported reading the
Cloud replies in the REST header
when the next reading is expected.

component list

www.elektormagazine.com September & October 2017 43

part of an ecosystem where the recorded
data can be processed to extract useful
information. This is where the additional
value is of any IoT idea.
Finally, a word of thanks to all of you
open source enthusiasts. Many open
source projects are available for both
the ESP8266 and ATmega328PB micro-
controllers without which doing this proj-
ect would have been much more diffi-
cult. Reusing these projects in your own
applications will speed up prototyping
tremendously. Therefore, hats off to the
maker community!

(160333)

or handshaking. It is intended for remote
sensors that connect to a bridge (another
ESP8266/ESP-01S) providing an Internet
connection (see Figure 5).
In this application one GoNotify device
acts as a bridge to the Internet and as a
secure MQTT client to the AllThingsTalk
server, the other will read the sensor. The
bridge device is an ESP-Now slave and is
always on. To make sure the MQTT client
remains active (persists) ping packets
are sent periodically to the AllThingsTalk
server to check connectivity.
The sensor GoNotify plays the role of
ESP-Now controller. When it wants to
communicate something, an event for
example or an alert, it wakes up and con-
nects to the MAC address of the bridge
to send and verify a few bytes.
In this example ESP-Now is used to mon-
itor a greenhouse. The remote sensor
GoNotify is equipped with a DHT12 sen-
sor to measure relative humidity of the
air and the temperature. Another sensor
checks the humidity of the soil to find
out if the plants are in need of water
(Figure 6). Powered from Lithium bat-
teries this setup can send 400,000 sen-
sor readings, with regular cheap alkaline
batteries approximately 200,000 sensor
readings will be possible.
In this application the bridge and remote
sensor have both been programed as
Arduino sketches.
• Source code for humidity sensor:

https://goo.gl/9mqLos
• Source code for ESP-Now:

https://goo.gl/18Qhd5

From idea to IoT
The GoNotify device presented in this
article can be used as a connected device
to capture data from a sensor and mon-
itor it online or it can be used as a sim-
ple remote-controlled system. It is your
application that can transform it into a
smart device capable of producing alerts
and taking actions.
I really hope that GoNotify will get used
as a true Internet product and becomes

GoNotify sensor GoNotify MQTT bridge Wi-Fi AP, internet connectivity

Figure 5. The ESP-Now communication protocol allows peer-to-peer connections between ESP8266
devices.

Figure 6. GoNotify busy monitoring air humidity and temperature and soil humidity in a
greenhouse.

from the store
ª160333-1
GoNotify PCB, unpopulated

ª160333-41
ATmega328PB microcontroller with
bootloader

Web Links

[1] www.elektormagazine.com/160333

[2] https://github.com/ginodecock/V3GoNotify/

[3] www.elektormagazine.com/labs/flexible-iot-sensor-interface-gonotify-1

