$\mu \mathrm{C}$ controls digital potentiometer

Lukasz Sliwczynski, University of Mining and Metallurgy, Krakow, Poland

Many digitally controlled potentiometers (for example, the LM1971/2/3 from National Semiconductor, www. national.com) incorporate a three-wire serial digital interface, using data, clock, and enable lines. In Figure 1, the potentiometer's nomenclature for these lines is Data-In, Clk, and Load/Shift, respectively. The assembler program in Listing 1 provides an interface to an SAB80535 $\mu \mathrm{C}$. The main idea of the method is to use the capture/compare capability of Timer 2 in the $\mu \mathrm{C}$ to provide the timing relationship between the Data-In and Clk signals. The principal control of the interface comes from subroutine S16BIT in Listing 1.

To program the potentiometer, the $\mu \mathrm{C}$ must send 2 bytes to it-the "channel address," followed by the attenuation value with its most significant bit first. Sending a byte starts
by loading the number of bits to send into the $\mu \mathrm{C}$'s BCOUNT register and initiating the P1 lines (setting P1.0 through P1.3 to a low state). Next, Timer 2 starts with overload enabled. The routine sets two digital compare/capture units (CC1 and

The rising edge of the clock signal validates data loading into the Data-In and Load/ Shift pins of the potentiometer.

EDN |DESIGN IDEAS

CC3 in the $\mu \mathrm{C}$) to the "compare" mode by writing 88 H into the CCEN register. The contents of the register decrease after each interrupt. In this way, eight consecutive interrupts occur, each to send 1 bit of data. The interrupt subroutine at address 006BH manages the transmission of the data bits via P1.2.

The CC1 unit generates the Clk signal on pin P1.1 when the contents of the Timer 2 count register (composed of TH2 and TL2 8-bit registers) equal the values set in registers CCL1 and CCH1. This value depends on the length of the interrupt subroutine. After transmission of the last bit, the routine stops Timer 2 by setting the value 0ECH in register T2CON. During data transmission, the main program spends its time waiting in the loop, as long as the bit FLAGS. 0 is at logic 1. This bit clears in the last pass of the subroutine and sets just before Timer 2 starts. Transmission of the second byte of data occurs in exactly the same way after the routine reprograms the related registers. The Channel and Volume registers hold the 2 bytes to send.

Figures 2 and $\mathbf{3}$ show the timing relationships of the interface. In Figure 2, the 2 bytes Channel and Volume are 05 AH and 081 H , respectively. Data is valid on the rising edge of the Clk signal. Figure 3 shows the time dependence in the interrupt-routine calls and the Clk rising edges. In this design, it takes approximately $740 \mu \mathrm{sec}$ to program 2 bytes into the potentiometer with an $8-\mathrm{MHz}$ clock frequency (a $1.5-\mu \mathrm{sec}$ machine-cycle time). (DI \#2256).

To Vote For This Design, Circle No. 400

The rising edge of the clock signal appears approximately $32 \mu \mathrm{sec}$ after the CC3 compare/ capture unit in the $\mu \mathrm{C}$ generates an interrupt.

The subroutine in Listing 1 provides a simple serial digital interface to National's (and others') digital potentiometers.

Listing 1-S16Bit subroutine

 QQU BCOUNT,004FH
 EQU CHANNEL,004DH
 EQU VOLUME,004EH
 *********************INTERRUPT SUBROUTINE
 HANDLER
 CHINE CYC
THE NUMBER OF MACHINE CYCLES TO EXECUTE THE COMMAND ARE
GIVEN AT THE RIGHT-HAND SIDE. THREE ADDITIONAL CYCLES ARE ADDED
FOR THE RESPONSE TO :THE INTERRUPT REQUEST
ORG 006BH
CLR IENO.7; DISABLE ALL INTERRUPTS
PUSH ACC,
PUSH PSW
MOV A,BCOUNT:
JZ ALL_BY: TEST IF THE LAST BIT TO SEND $\quad 2>8+3=11$
DEC A;
MOV BCOUNT, $A_{;}$
MOV A,CHANNEL;
RLC A;
MOV P1.2.C: SEND THE BIT $\quad 2 \rightarrow 14+3=17$
MOV CHANNEL,A;
SETB IENO.7;
POP PSW:
POP ACC;
ALL_BY: MOVA
RLC A; CHANNEL; THE LAST BIT TO SEND ${ }_{1}^{2}$
MOV P1.2.C; SEND THE BIT
CLR FLAGS. 0 ; WFORM S16BIT FUNCTION
POP PSW:
ANL T2CON, \#OECH; STOP TIMER 2
SETE IENO.7; ENABLE INTERRUPTS
RET;

DEFINITIONS ${ }^{*+4 * 1+4 * * * * * * * * * * * * * * ~}$
EQU FLAGS, 002FH
***********************INTERRUPT SUBROUTINE
CHINE CYCLES TO EXECUTE THE COMMAND ARE GIVEN AT THE :RIGHT-HAND SIDE. THREE ADDITIONAL CYCLES ARE ADDED ORG 006B

R IENO.7; DISABLE ALL INTERRUPT PUSH PSW
PUSH A,BCOUNT
JZ ALL BY: TEST: IF THE LAST BIT TO SEND DEC A;
MOV BCOUNT, $A_{;} ;$
MOV A,CHANNEL;
RLC A;
MOV P1.2.C: SEND THE BIT MOV CHANNEL
SETB IENO. 7 ;
SETB IEN0.
POP PSW: POP ACC;
MOVA,CH
RLC A;
MOV P1.2.C; SEND THE BIT
CLR FLAGS. 0 ; WFORM S16BIT FUNCTION POP PSW:
POP ACC:
ANL T2CON, \#OECH; STOP TIMER 2 RETI;

```
'THIS COMMANDS SHOULD BE PLACED SOMEWHERE IN THE BEGINING OF
':THIS COMMANDS SHOULD BE PLACED SOMEWHERE IN THE BEGINING OF
    MOV SP.#OVH; SET THE STACK POINTER
    MOV FLAGS.#OOH: CLEAR ALL BITS
```


MOV TL2, \#\# (255-25);SET TMMER 2 COUNT REGISTER

 MOV TH2, HOFFHMOV CRCL., (255-25);SET TIMER 2 RELOAD REGISTER MOV CRCH,\#OFFH
MOV CCL1.\#OFCH: SET VALUE FOR CC1-CLK SIGNAL
MOV CCH1,\#JFFH;
MOV CCL3,\#(255-25); SET THE BEGINING OF INTERRUPT
MOV CCH3,\#0FFH
MOV BCOUNT, \#O7H; NUMBER OF BITS TO SEND-1
SETB FLAGS. 0
ANL P1, \#070H;; INITIATE PORT 1
MOV CCEN, \#1 188 B ; ENABLE COMPARE MODE FOR CC1 AND CC SETB IEN1.5; ENABLE INTERRUPT FROM CC3 ORL T2CON,\#011H; START TIMER 2 WITH OVERLOAD ENABLED JB FLAGS.0.S16_1; WAIT UNTIL THE FIRST BYTE IS SEND
MOV TL2,\#(255-25): REINITIATE TIMER 2 COUNT REGISTER MOV TH2,\#OFFH
MOV BCOUNT,\#O7H: REINITIATE NUMBER OF BITS TO SEND MOV A, VOLUME; SWAP VOLUME AND CHANNEL CONTENTS MOV CHANNEL.A SETB FLAGS 0
ORL T2CON,\#O11H, START TIMER 2 WITH OVERLOAD ENABLED
JB FLAGS. 0 S 16 2; WAIT UNTIL THE SECOND BYTE IS SEND JB FLAGS. 0, S16 2; WAIT UNTIL THE SECOND BYTE IS SEND
MOV CCEN, HOOH ; DISABLE CC1 AND CC3 UNITS CLR IEN1 5: DISABLE CC3 INTERRUPT ORL P1,\#07H: SET OUTPUT PINS TO THE HIGH STATE
RET

