TYPE NUMBERS AND SYMBOLS USED IN THIS HANDBOOK

<Type Numbers>

Type numbers described in this handbook are those of the standard types which have been manufactured at present and will be in the near future. The special ordered devices are not included here.

There are many kinds of type numbers in this handbook. But these are divided to two kinds.

One is the EIAJ(Electronic Industries Association of Japan) number and the other is SANYO number. The table shows this.

<Symbols>

Generally, capital letters are used in order to show dc characteristics, and small letters are to ac characteristics and specially small signal

TABLE OF SANYO TYPE NUMBER INDEX

Type Number	Description Reg	stered to
LA××××	monolithic bipolar linear IC	SANYO
LB××××	monolithic bipolar digital IC	SANYO
$LC \times \times \times \times$	monolithic C-MOS IC	SANYO
$LD \times \times \times \times$	thin film IC	SANYO
$LM \times \times \times \times$	monolithic P-MOS IC	SANYO
$STK-\times\times\times$	thick film IC	SANYO
2SA×××	high frequency PNP transistor	EIAJ
2SB×××	low frequency PNP transistor	EIAJ
2SC××××	high frequency NPN transistor	EIAJ
2SD×××	low frequency NPN transistor	EIAJ
2SF××××	reverse blocking triode	EIAJ
2SJ××	P-channel FET	EIAJ
$2SK \times \times$	N-channel FET	EIAJ
$2SM \times \times \times$	bidirectional triode	EIAJ
1\$××××	diode	EIAJ
$TS \times \times \times$	silicon transistor	SANYO
$TG \times \times \times$	germanium transistor	SANYO
$DS \times \times \times$	silicon diode	SANYO
$DG \times \times \times$	germanium diode	SANYO
$SZ \times \times$	reference diode	SANYO
$SZA \times \times$	reference diode	SANYO
$SDT \times \times \times$	thermistor	SANYO

characteristics.

Many suffixes are used in order to show supplementary explanations of symbols. These are very often used specially when the symbols refer to voltage or current as follows.

example 1: I_{CER} example 2: V_{CBO} third item second item suffix

The first item of suffix gives the electrode in question.

The second item gives the grounded electrode.

The third item shows the state of the third electrode which is not described at first and second items. That is:

- s : The third electrode is shorted to the second electrode.
- o : The third electrode is to be open free.
- R : The appointed resistance is to be connected between the second and the third electrodes.
- x: The third electrode is to be on the state biased as appointed.
- (sat): That device is to be on the saturation state.

Figure symbols are used as follows.

temperature

 $10^9 \ 10^6 \ 10^3 \ 10^0 \ 10^{-3} \ 10^{-6} \ 10^{-9} \ 10^{-12}$ symbol G M k Units are as follows. v voltage A current W power impedance Ω admittance S F capacitance inductance time sec(s), min, hour(h) Hz frequency dBgain degree, • phase angle