FM TONE GENERATOR

TX7

SERVICE MANUAL

- CONTENTS

SPECIFICATIONS 1
HOW TO USE THE TX7 2
MIDI DATA FORMAT . 9
CONSTRUCTION OF THE TX7................ 22
TEST PROGRAM 27
DISASSEMELYINSTRUCTIONS 29
ELOCK DIAGAAM 30
CIRCUIT BOARDS 31
PAATS LIST 34

- SPECIFICATIONS

Sound Source	FM Tone Generator (6 Operators)
Simulaneous Ouput Notes	Polyphonic: 16 (first note priority)
	Monophonic: 1 llast note priority)
Internal Memory	32 Performances
	$(32$ VOICEs + 32 FUNCTIONS).
	32 DX FUNCTIONs
Control Panel.	Preset volume
	program Change/cassette (2)
	Store/midi
	Function (1)
	NORMAL/SHIFT (1)
	data entry (2)
Display	LCD (16 characters x 1 line)
Connection Terminals	MIDI IN (DIN JACK 5P)
	MIDI OUT (DIN JACK 5P)
	MIDI THRU (Din Jack 5p)
	CASSETTE (DIN JACK 8P)
	OUTPUT (PHONE JACK MONO)
	head phone (Phone Jack stereo)
Power Requirements	US \& Canadian models: $120 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
	General model: $220.240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
Power Consumption	US \& Canadian models: 12 W
	General model: 10 W
Dimensions ($\mathbf{~} \times \mathrm{H} \times \mathrm{D}$)	$351 \times 50 \times 241 \mathrm{~mm}$
	(13.5/6" $\left.\times 2^{\prime \prime} \times 9.1 / 2^{\prime \prime}\right)$
Weight	$2.3 \mathrm{~kg}(5 \mathrm{lbs} .1 \mathrm{oz}$.)

- All specifications are subject to change without notice.

IMPORTANT NOTICE

This manual has been provided for the use of authorized Yamaha Retailers and their service personnel It has been assumed that basic service procedures inherant to the industry, and more specifically Yamaha Products, are already known and understood by the users, and have therefore not been restated.
WARNING:
Failure to follow appropriate service and safety procedures when servicing this produc may result in personal injury, destruction of expensive components and failure of the
product to perform as specified. For these reasons, we advise all Yamaha product owners that all service required should be performed by an authorized Yamaha Retailer or the appointed service representative,
IMPORTANT: The presentation or sale of this manual to any individual or firm does not constitute authorization, certification, recognition of any applicable technical capabilities, or establish a principle-agent relationship of any form.
The data provided is believed to be accurate and applicable to the unit(s) indicated on the cover. The products. Modifications are, therefore, inevitable and changes in specification are subject to change withou notice or obligation to retrofit. Should any discrepancy appear to exist, please contact the distributor's
Service Division.
WARNING: Static discharges can destroy expensive components. Discharge any static electricity your body may have accumulated by grounding youtself to the ground buss in the unit (heavy gauge black wires connect to this buss).
IMPORTANT: Turn the unit OFF during disassembly and parts replacement. Recheck all work before you apply power to the unit.

1. What is the TX7?

The TX7 is a tone generator module that can be controlled by MIDI signals from the $D \times$ series, $Q X 1, C X 5$ etc. It the equivalent of the $D \times 7$ tone generating section. When connected to a $\mathrm{DX7}$ or $\mathrm{DX9}$, it can act as a function memory for the DX7 or DX9, and thus allow you to create sounds just like a DX1.

[Features]

- FM tone generation system.
- 16 note polyphonic.
- Internal memory: 32 voice data, 32 function data, stored in pairs. Each voice memory has its own function memory.
- Individual volume and high and low note limits can be set for each voice memory. Also, independently of the voice memory, two volumes may be preset, and recalled instantly by a front panel switch. This can be used for muting.
- Besides the TX7's own 32 voice memories and 32 func tion memories, it will store 32 function memories for memory for the DX7.

2. Memory diagram and flowchart of the TX7

The internal memory structure is shown below.

Diagram 1
The internal memory is as follows.

> | Voice edit buffer |
| :--- |
| Function edit buffer |
| 32 voice memories |
| 32 function memories |
| 32 DX function memories |
| Volume, master tune |

The voice and function data of the selected memory number is loaded into the voice and function buffers. Then, the voice and function data is loaded into the FM tone generator, and it is ready to produce sound
All editing of voice and function data is done on the data in he buffers.
When the store command is executed, the data in the buffers is stored into the respective memories.
The data in the function edit buffer will be stored into the memory that you designate.

3. How the switches work

 There are four kinds of switches on the front panel of theTX7. (1) Switches to enter volume and data, (2) Switches that have different operations when in normal or shif mode, (3) Selector The operation of switches types (2) ~ (4) is shown below.

$$
\begin{array}{ll}
\text { NORMAL MODE: } & \begin{array}{l}
\text { Program change mode } \\
\text { Store mode } \\
\text { Sunction mode }
\end{array} \\
\text { SHIFT MODE: } & \begin{array}{l}
\text { Cassette mode } \\
\\
\text { MIDI mode } \\
\text { Function mode }
\end{array}
\end{array}
$$

When changing from program change or store modes to cassette or MIDI modes, press MODE switch to change to SHIFT mode. Then press the cassette or MIDI switch. When changing the other way back to program change or NORMAL mode. Then press the program change or store mode switch.

The diagram below shows the assignment of the TX7's switches. When you press each switch (left), this message
will appear (right).

4. Program change mod

This is the mode to select voices. Use this mode when playing the TX7. This mode has the following two choices.

- Combined mode (when power is switched on, it will be
in this mode.)
- Individual mode

The list below shows the abbreviations used with the TX7, and their full meaning.

Select voices using the [YES +1] [$N O-1$] switches.

1) Combined mode

Here is a diagram showing the data flow when a DX7 is To MIDI IN. OUT when the TX7 is in combined

- When you press a voice select switch on the 0×7 program change data is sent from MIDI OUTT The TX7
will load voice and function data for the selected pro. ram number into its edit buffers for the selected pro At the same time, the DX function data for that pro gram number will be sent from the TX7 MIDI OUT as one performance bulk data (2)
- The same thing will happen if you select a program number using the $T X 7$ switches.
In this way, by using the program select switches of either the $T \times 7$ or the $D \times 7$, you can change both fundeither memories simultaneously, simulating the operation of the DX 1 performance memory.

2) Individual mode

- In the setup shown in diagram 3, when you press a DX7 voice select switch, program change data will be sent The TX7 will send the DX function data for that proThe TX7 will send the DX function data for that pro-
gram number out of its MIDI OUT as one performance gram number out of its MIDI OUT as one performance
bulk data.... ${ }^{2}$
However, the $\times \times 7$ voice and function will not change, ie. (1) will not occur.
- In the setup shown in diagram 3, when you change the TX7 voice number, the TX7 will load the selected voice and function data into its buffers..... (1) However, DX function data will not be sent from MIDI UT, ie. (2) will not occur.
In this way, you may select programs independently for the TX7 and DX7, and change voice and function memories as a pair, thus expanding the possibilities of combinations.

3) Editing voices of the TX7

You may edit $T \times 7$ voices by sending the voice data from
the $T X 7$ to an editing device (such as the DX7) editing it he $T \times 7$ to an editing device (such as the DX7), editing it. and sending the edited voice data back to the TX7.
(x)

Diagram 5
(1) Turn the TX7 Data Entry Receive ON. (MIDI mode)
(2) Set the editing device to accept TX7 voice data. (For example, using the DX7, set the internal memory
tect OFF, and set system information to AVAIL.)
(3) When the TX7 display shows edit voice out, press [YES When the TX7 display shows edit voice out, pres
$+1]$ to transmit the voice data in the edit buffer.
(4) Put the editing device in edit mode, and edit the voice. Put the editing device in edit mode, and edit the voice.
This will change the data in the TX7 voice edit buffer This will change the data in the TX7 voice edit buffer
(one parameter at a time). At present (January 1985), possible editing devices are DX7, DX9, DX1, YRM13.
*When in program change mode (combined mode, individual mode), if the DX7 system information is AVAIL and you press a voice select switch, 1 voice bulk data will
be sent from MID OUT, and the data in the TX7 voice edit buffer will be replaced by the new data from the
0×7. Ox. or
s

5．Cassette mode

In this mode，you may store 32 voice and 32 TX function data，or 32 voice and 32 DX function data onto a cassette Or，you may load this data from the cassette，
1）Save … Saving data onto a cassette．Press SAVE／ VERIFY while in shift mode．
（1）To keep track of data stored on a cassette，assign an To keep track of data stored on a cassette，assign an
index number to the data．When loading，the $T X 7$ will
display this number．

（2）Select the function data you want to save．

SAVE FUNC？		
1.2	VOICEMEMORY	
12	TX FUNCTION MEMORY	
1.2	DX FUNCTION MEMORY	32－Ex
	Save 32 voice data and 32 TX function data． －This is automatically selected when power is turned ON． Save 32 voice data and 32 DX function data．	
＂EXT＂		

（3）Execute save

	This will take about 45 second If you want to abort，press［－1］

FINISHEDIII ．．．．Save completed．
－Atrenuation function data will not be saved on tape．
－Saving the DX7 data together with the TX7 data as a performance．
1．Set ${ }^{\text {SAVE }}$ FUNC ， 10 INT and save．（Save the TX7 data as in steps（1）～（3）．［TAPE 1］
2．Turn the TX7 memory protect OFF．
3．Send $32 \mathrm{DX7}$ voice data to the TX7．（MIDI TRANS． MIT） 32
The 32 TX7 voice memories now hold the DX7 voices．
4．The TX7 will display＂MIDI RECEIVED＂．
5．Change to $\sqrt{\text { STAVE }}$ NUMBER to distinguish betweenDX7 and TXI data．

6．Set 「SAVE FUNC to EXT and save．（Save the DX7 data as in steps（1）～（3）．［TAPE 2］）

TX－x	TX－Y
32 vOICE DATA 32 TX FUNCTION DATA	32 （DX7）VOICE DATA 32 DX FUNCTION DATA

2）Verify \ldots Checking to see if data has been correctly

VERIFY CASSETTE？．．．Press［ +11 ．	
NOW WORKINGII	Play the tape．If you want to quit，press $\{-11$ ．
FOUND TX $=$ ，	
1 Save nu	
［FINISHED！！	Tape data is OK．If there is a problem TTAPE ERROR」 will be displayed．

3）Protect ．．．Protect memory．Press LOAD／PROTECT．
（1）Turn off memory protect．When loading from a cassette， receiving 32 voice and 64 performance data via MIDI，or receiving 32 voice and 64 performance datav OFF．When
storing to memory，protect must be turned
the the power is turned $O N$ ，memory protect will be ON． MEMPROTECTON \ldots To turn memory protect OFF． $\stackrel{\downarrow}{\mathrm{OFF}}$

4）Load ．．．Load data from tape．Press LOAD／PROTECT （1）Select the function data you want to load．

（2）Execute load．

－If you attempt to laod while memory yrotect is ON，「MEMO－
RY PROTECTJ will be displayed，and you will not be abie to

6．Store mode

In this mode you may store data from the edit buffers into memory．

1）Store $T X$ performance－Store voice and $T X$ function data in the buflers into Pe Pess TX PERF．
（1）Selecting the memory number to store into．
number you selected．
－The TX7 stores voice and function data as a pair．You canno
save only one or the other．
2）Store DX function \cdots ．Store the function data in the edit buffer into the DX function memory you select．Press DX FUNC．
（1）Seiecting the memory number to store into．

To store，press［ +1$]$	
FINISHED！！	Function data has been saved into the $O X$ function memory you selected．

7．MIDI mode

In this mode，you may set the conditions for MIDI data reception
1）Setting TX7 MIDI reception condition－Press（MODE）
（1）Control change reception

> "ON" ... The following control signals will be received. - Modulation wheel
> - Breath controller
> - Foot controller
> - Portamento time $\begin{aligned} & \text { Volume (Not the same } \\ & \text { via the data entry slider.) }\end{aligned}$
> - Sustain switch
> "OFF"... The above control signals will not be received

- Control change reception is memorized.

（2）Data entry reception

```
D.ENTRYRCV.\,...Select using [+1],[-1].
    ON or OFF
＂ON＂．．．The following MIDt signals will be received
（when editing TX7 voice or function data）
－Data entry
－Increment
＂OFF＂．．．The above signals will not be received．
－Data entry reception ON／OFF is memorized．
－This switch and the data entry volume switch cannot both be
ON at the same time．When you set the daate entry volume ON at the same time．When you set the daze entry volume
switch ON，this switch will automaticaliy go OFF．
```

（3）MIOI receive channel．
MIDI RCV． $\mathrm{CH}=\ldots$ ． Select using $\{+1\},[-1\}$ ． MIDI channel ：~ 16
The TX7 MiDI output channel is automatically channel ？
The elected receive channel number is memorized
（4）Omni mode
OMNI MODE $\ldots \ldots$ ．．．．Select using $[+1][-1]$
＂ON＂．．．The MIDI receive channel setting will have no effect，and MIDI signals on all channels will be received．
＂OFF＂．．．Only MIDI signals with the same channel number as the receive channel setting will be received．

Omni mode ON／OFF is memorized．

（5）Data entry volume

$\frac{\text { D．} \text { ENTAY VOL }}{\text { ON or OFF }} \ldots$

＂ON＂．．．You may control the TX7＇s volume using the data entry slider on the DX7，DX9 or DX1． OFF＂．．．The data entry slider will not affect the TX ${ }^{\prime}$ volume．
－Data entry volume ON／OFF is memorized．
This switch and the data entry receive switch cannot both be
ON at the same time．When you sea the data entry reccive
ON at the same time．When you sel the data a
swich ON，this switch will automatically go OFF．
2) Transmitting and initializing voice data - Press (DUMP INIT)
(1) MIDI transmit ... 32 voice and 64 performance data will (1) MIDI transmit $\ldots 32$ voice and 64
be sent from the TX7 MIDI OUT.

MIDI TRANSMIT?	Press $[+1]$ to transmit.
1	
NOW WORKING!	Transmitting data.
\downarrow	
FINISHEDI!	Transmission complete

-When transmit...1s to the DX7, set the DX7 memory protect
OFF and ser system information AVAIL. - For the data format, see MIDI Data Format 4.8 (32 voice)
and 4.7 (64 performance).
(2) Voice initialize.. This will set all data in the $T \times 7$ voice and function edit buffers, 32 voice, 32 TX function, and
32 DX function memories to the initial valves shown in table 1.

$\frac{\text { VOICE INIT? }}{\square} \ldots$. ${ }^{\text {a }}$ Press $[+1$ to initialize.	
NOW WOAKING!! ... Initialization in progress.	
\downarrow	
FINISHED!!	Initialization completed

-If vou want to initiaizize all memory to the valves in table 1,
set memory protect $O F F$. If memory protect is ON when you initialize, MEM. PRO.
TECTED wive e disopayed, and only the voice and function
Tuffers will pe initialized. $\frac{\text { TECTED }}{\text { buffers will we initialized. }}$

Data that will be initialized					
	1	2	3	VICE VEMAFY	
	1	2	3	X fuctow heme	32
	1	2	3	Oxfmentos	
Diagram 7					

Table 1
<Initialize data>
VOICE

Algorithm		1
Feedback		0
Pitch		8 feet
EG		
EG scaling		None
Output level		$\begin{array}{lr} \hline P_{1} & 99 \\ O P 2 \sim 6 \end{array}$
Modulation		0
Oscillator key sync		ON
Transpose		C3
LFO	Valve	Triangle
	Speed	35
	Delay	0
	Pitch modulation sensitivity	3
	Pitch modulation depth	0

Master tune		440 Hz
Play mode		POLY
Pitch bend	Range	7
	Step	0
Portamento	Mode	RETAIN
	Glissando switch	Portamento
	Time	0
Modulation wheel	Range	8
	Pitch	1
	Amplitude	0
	EG bias	0
Foot controller	Range	8
	Pitch	0
	Amplitude	0
	EG bias	0
Breath controlier	Range	15
	Pitch	0
	Amplitude	0
	EG bias	0
After touch	Range	8
	Pitch	0
	Amplitude	0
	EG bias	0
Key limit	Lowest	C-2
	Highest	G8
Attenuation		7

(3) Function copy \cdots Copy the data in the function edit
buffer to all 32 TX function memories or to all 32 DX function memories.

$$
\begin{aligned}
& \text { FUNCTION COPY? } \ldots \text {. . Press } i+1 \text { to topy. } \\
& \text { FINISHEDIII } \ldots \ldots \text { Finished copving. }
\end{aligned}
$$

The copying destination is determined by the cassette mode
save function. save function.
"INT" "EXT" $\ldots \begin{gathered}\text { mempries. } \\ \text { Copy function edit buffer to all } 32 \mathrm{DX} \text { function } \\ \text { memories. }\end{gathered}$
Before you copy, set memory protect OFF,

(4) Edit voice out \cdots. Send the voice and function data in the edit buffers from MIDI OUT
edit buffers from MIDI OUT.
$\frac{\downarrow}{\text { FINISHEDII! }}$. Data transmitred

- Data is sent in the following order.

1. Function (1 performance bulk).
2. Function 1 performa.
-When transmitting to the DX7, set the DX7 memory protec
OFF and set system information AVAl

8. Function mode

In this mode you may edit the data in the function edit buffer. Choose the parameter using the [FUNCTION]
switch, and set the valve using the $\{+1][-1]$ switches. switch, and set the valve using the $\{+1][-1]$ switches.
The $[F U N C T I O N]$ switch will step through the functions in the order shown in table 2, and in shift mode, will step in the reverse order. Except for MASTER TUNE, all parameters may be set independently for each of the 32

Table 2
[PARAMETER]

mastiea tune			masten tune - $^{\text {d }}$
PLay Mode			plar mo
Pitch wheel fange			
PITCH WHEEL STEP			d
portamento mooe	:rin flw.		porta - --m.
GLISSANDO Switch	(GLS. Pati	$\cdot 2$	porta
portamento time			TA
Modulation wheel	hange	${ }^{3}$	S.P.A
	PITCH SW	\cdot	Ps. A^{4}
	amp sw		
	eg ras sw		MW *
FOOT CONTROL	range		P-A-E.
	PITCH SW		
	AMP Sw		FC = - P- A A A.E. E J
	EG BIAS Sw		
Breath Control	range		A A. E
	Pitch sw		
	amp sw		- P-A A A E
	Eg bias sw		
After touch	range		A
	Pitch sw		
	amp Sw		
	Eg ras sw		
Limit lowest	xEY	'5	[]:- H=, -
Limit highest	KEY		- - . Q
attenuation		6	tenuation

RETAIN (RTN) sus key FOLLOW (FLW) sus key FINGERED (FGD)
FULLTME (FUL)
2 GLISSANDO (GLS) or PORTAMENTO (PRT)

* 3 The RANGE for MODULATION, FOOT, BREATH and AFTERTOUCH will be displayed on a scale of 0 - 1 . The same as the DX1.)
is shown below.

* 4 SW . will be displayed as $O N=1$, OFF $=0$.
*5 LIMIT KEY will be displayed as note name C-2~G8. Key limit settings and note production range for the TX7 is shown below.

6 ATTENUATION is on a scale of $0 \sim 7$.
The volume may be changed in 8 steps, with 7 as maximum and 0 as minimum. Settings of the preset volume switch or MIDI volume data will be adjusted on this scale.

9. Preset volume

You may raise or lower the volume of the TX7, and estab lish 2 preset volume levels.
(1) Raise volume \ldots Press the $[>]$ switch. (press and hold) *The volume will increase on a scale of $0 \sim 80$ (81 levels), and the dark section of the LCD will increase or levels), and the dark section ohen you release the switch,
decrease with the volume. When decrease with the volume. When you release the switch,
the volume will stay at that level. The $[<]$ switch has the same operation.
(2) Lower volume ... Press the $[<]$ switch. (press and hold)
3) Store volume (LOW) ... While pressing the [LOW] switch, set the volume using the $[>][<]$ switches. Then release the [LOW] switch.
(4) Store volume (HIGH) \ldots While pressing the [HIGH] switch, set the volume using the $[>][<]$ switches. Then
relase release the $[\mathrm{HIGH}]$ switch.
(5) Recall volume \cdots Press and release the [LOW] or [HIGH switch. The volume you preset will be recalled.

1. Reception condition

-9-
OMN ON
MONO
POLY

2. Reception data

2.1 Reception Channel, Omni

Using the panel switches, you may select the TX7 MID eception basic channel $1 \cdot 16$ and OMNI ON/OFF, and store this in memory. When OMNI OFF, only data with a chan will be received, but when OMNI ON, data for, ail channel will be received.

2-2.2 Channel Vorf
Status $1000 n n n n n=$ channel number. Noteno. 0 k k k k k k k k=0 (C-2)~127 (G8) velocity 0 v v v v v v v v:ignored
2-2-2 Key ON/OFF
 Note no. 0 k k k k k k k k $=0$ (C-2) ~ 127 (G8) Velocity $0 \vee v v v v \vee v v=0$ Key OFF

2-2-3 Control change
Status $\quad 1011 \mathrm{n}$ n n
Control No. 0 c c c c c c c Control value 0 v v v v v v v
(a) Data received when CONTROL CHANGE RECEIVE SWITCH ON

$C=1$	Modulation
$C=2$	Breath controller
$C=4$	Foot controller
$C=5$	Portamento time
$C=7$	Volume
$C=64$	Sustain SW.
$C=64$	Portamento SW.

b) Data received when DATA ENTRY RECEIVE SWITCH

$\mathrm{C}=6$	Data entry
$\mathrm{C}=96$	Increment
$\mathrm{C}=97$	Decrement

This data will change the voice or function parameter which has been selected by a system exclusive mes sage.
(c) Data received when DATA ENTRY VOLUME ON $C=6$ Data entry
The data entry data will be received as volume data.
2.2.4 Program change

Status
$1100 n n n n$
Program no. $0 p p p p p p p$
It will disregard the 2 most significant bits of program no. and select programs $1 \cdot 32$. ram gram change mode (COMBINED or INDIVIDUAL).

2-2-5 After touch
Status $0101 n n n$
Pressure 0 v v v v v v v
2-2.6 Pitch bend
$1110 \mathrm{nn} n$
$\begin{array}{lllllllll}\text { Value (LSB) } & 0 & u & u & u & u & u & u & u \\ \text { Value (MSB) } & 0 & \text { v } & \text { v } & v & v & v & v & v\end{array}$
8 bit resolution
2-3 Channel Mode Messages

| Status | 1 | 0 | 1 | 1 | n | n | n | n |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 0 | c |
| | 0 | v |
| | | | | | | | | |
| $C=124$ | $V=0$ | | OMNI | MODE | OFF | | | |
| $C=125$ | $V=0$ | | OMNI | MODE | ON | | | |
| $C=126$ | $V=1$ | | MONO MODE | ON | | | | |
| $C=127$ | $V=0$ | | POLY | MODE | ON | | | |

OMNI ON/OFF may also be selected using panet switches. OMNI ON/OFF may also be selected using panel switches.
Whichever signal arrives last has priority.
When the mode is changed the voice will be dumped and key assign will be cleared.

2-4 System Realtime Messages

Status 11111110 active sensing
Once this code has been received, sensing will begin. If it does not receive any data or status for longer than 300 m t sustain pedal oft set portamento switch on, and stop sensing.

2.5 System Exclusive Messages

2-5-1 1 voice bulk data

Status $\quad 11110000$
 $10 \quad 01000011$

Substatus/ch $00000 n n n n n=$ channel number
Byte count 000000001
Byte count 000111011
Data $0 d d d d d d d$
$0 d d d d d d d$
155 bytes
Check sum 0 eeeeee
The 155 bytes of voice data will enter the edit buffer and the voice of the currently sounding note wil change. Check sum is the lowest 7 bits of the sum of all the data bytes.

2-5-2 1 performance bulk data

> Status $\quad 11110000$ ID 0:000011 Substatus/ch $000000 n n n n$ Format no. 000 | 0 | 0 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllll} \\ \text { Byte count } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0\end{array}$ Data $\quad 0 d d d d d d d$ Check sum $0 d d d d d d d$

94 bytes

Out of the 94 bytes, only the data applying to the X7 will enter the edit buffer. The function para meters of currently sounding notes will change.
Ch A or 8 will receive the data according to the voice memory select flag in the data bytes.
2-5-3 $\mathbf{6 4}$ performance bulk data
$\begin{array}{ll}\text { Status } & 11110000\end{array}$
ID $\quad \begin{array}{llllll}010 & 0 & 0 & 0 & 1 & 1\end{array}$
Substatus/ch 00000 nnnn
format no. 000000010
Byte count 00100000
Byze count 00000000
Data $\quad 0 d d d d d d d$
Check sum $\begin{aligned} & \text { 0ddddddd } \\ & 0 \text { eeeeeee }\end{aligned}$
4096 byte

The above data can be received only when memory protect is OFF. When it has been received, the LCD will show MIDI RECEIVED If. Of the 64 perfor mances, side A of the first 32 performances will b
oaded into the function memories of programs 1.32 . Whether the function memories are for the DX or TX will depend on the LOAD FUNCTION when you load the data from cassette. (When the power is
turned on, it is be set to TX functions.)

2-5-4 32 voice bulk data

Status
Substatus/ch 110000
ubstatus/ch 00000011
Format no. 0000 nn n
Byte count 00000110001
Byte count 0001000000
Data
00000000
$0 d d d d d d d$ $\int_{d d d d}$

4096 bytes
$0 d d d d d d d$
heck sum
oeeeeeee

The above data can be received only when memory protect is OFF. When it has been received, the LCD grams 1.32 will change.

2-5.5 Parameter change

Status $\quad 11110000$
iD 1100001
Substatus/ch 0001 n n n n
arameter 0 gggggh
$\left(\begin{array}{l}(g=0,1,2,4) \\ (h=0,1)\end{array}\right.$
Proup no.
Parameter no. $00 p p p p p p p$
Data
0
Data
Voice and function data-in the edit buffer will
change. 2-5-6 Dump request

Status
 $\begin{array}{llllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1\end{array}$
 ID
 01000011

Substatus/ch
$0 f f f f f f f(f=0,1,2,9,125$
When this has been received, the appropriate bulk data will be dumped from MIDI OUT.

3. Transmission data

Normally, there will be no data transmission. Data will be transmitted when there is a dump request signal from outside, or through operation of the panel switches. The transmitted data is voice and function system exclusiv data. Data will always be sent on channel 1 .
3.1 Transmission Conditions
(a) Transmission on dump request

The following 5 types of data will be transmitted according to format No. (f).
$f=0 \quad 1$ voice bulk data
The contents of the voice edit buffer will be sent.
$f=1 \quad 1$ performance bulk data
The contents of the function edit buffer
will be sent, and bank A and B will have dentical data.
$f=2$
64 performance bulk data
he contents of the TX function memo
ies $1-32$ will be sent
32 voice bulk data
Voice data of programs $1-32$ will be
sent.
The above formats are the same for
$f=125 \quad$ Conditions acknowled
$\begin{array}{ll}\text { Status } & 11110000\end{array}$
$\begin{array}{llllllllll} & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ \text { Status } & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1\end{array}$
00000000
Substatus/ch
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1\end{array}$
Format no. $\begin{array}{llll}0 & 0 & 0 & 0\end{array} 00000$
Byte count $\begin{array}{lllllllll} \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{ll}\text { Byte count } & 0 \\ \text { Data } & 0 d d d d d d d\end{array}$
(
<
$0 d d d d d d d$
Check sum 0 e e e eet
EOX
11110111
(b) Transmission by panel switch in MIDI TRANSMIT ,
When the display shows MIDI TRANSMIT? and you press

32 voice bulk data
64 performance bulk data
(c) Transmission by panel switch in ГCOMBINED \quad mode When in combined mode, if ever you select a voice or it receives a program change signal, the following dat ill be sent.

- 1 performance data
(d) Transmission by panel switch in IINDIVIDUAL mode
When in individual mode, if it receives a program - 1 performance data
(e) Transmission by panel switch in TEDIT VOICE OUT mode
When the display shows EDIT VOICE OUT and you press the YES $/+1$ switch, data will be sent in the following order.

1) 1 performance dat
2) 1 voice data

4. System exclusive data format 4.1 DX7 VOICE PARAMETER CHANGE $(\mathrm{g}=0$)				
Sub-group Number h	Parameter Number P	Parameter	Dats	Notes
0	0	OPG EG RATE:	0~99	
	1	OPG EG RATE 2	0~99	
	2	OPG EG RATE 3	0~99	
	3	OPG EG RATE 4	0~99	
	4	OPG EG LEVEL I	0~99	
	5	OPG EG LEVEL 2	0~99	
	6	OPG EG LEVEL 3	0~99	
	7	OPG EG LEVEL 4	0~99	
	8	OPG Keyboard level scaling break point	0~99	$\cdot 1$
	9	opg Keyboard level scaling left depth	0~99	
	10	OPG KEYBOARD LEVEL SCALING RIGHT DEPTH	0~99	
	11	OPG KEYBOARD LEVEL SCALING LEFT CURVE	0~3	$\cdot 2$
	12	OPG Keyboard level scaling right curve	0~3	$\cdot 2$
	13	OPG Keyboard rate scaling	0~7	
	14	OPG AMPLITUDE MODULATION SENSITIVITY	0~3	
	15	OPG KEY VELOCITY SENSITIVITY	0~7	
	16	OPG OPERATOR OUTPUT LEVEL	0~99	
	17	OPG OSCILLATOR MODE	0~1	- 3
	18	OPG OSCILLATOR FREQUENCY COARSE	$0 \sim 31$	$\cdot 4$
	19	OPG OSCILLATOR FREQUENCY FINE	0~99	$\cdot 4$
	20	OPG OSCILLATOR DETUNE	$0 \sim 14$	$\cdot 5$
	$21 \sim 41$	OP5		
	$42 \sim 62$	OP4		
	$63 \sim 83$	OP3		
	$84 \sim 104$	OP2		
	105 ~ 125	OP1		
	126	Pitch eg rate 1	0~99	
	127	PITCH EG RATE 2	$0 \sim 99$	
1	0 (128)	PITCH EG RATE 3	0~99	
	$1(129)$	Pitcheg rate 4	0~99	
	2 (130)	Pitch eg level 1	0~99	
	3 (131)	Pitch eg level 2	0~99	
	4 (132)	Pitcheg level 3	0~99	
	5 (133)	Pitch eg level 4	$0 \sim 99$	
	6 (134)	ALGORITHM SELECT	$0 \sim 31$	
	7 (135)	feedback	0~7	
	8 (136)	OSCILLATOR KEY SYNC	0~1	
	9 (137)	Lfo speed	0~99	
	10 (138)	lfo delay	0~99	
	11 (139)	LFO PITCH MODULATION DEPTH	0~99	
	12 (140)	LFO AMPLITUDE MODULATION DEPTH	$0 \sim 99$	
	13 (141)	LFO KEY SYNC	0~1	
	14 (142)	Lfo wave	$0 \sim 5$	- 6
	15 (143)	LFO PITCH MODULATION SENSITIVITY	0~7	
	16 (144)	transpose	$0 \sim 48$	Concert
	$17 \text { (145) }$	VOICE NAME 1	ASCII	pitch at 24
	26 (154)	Voice name 10	ASCII	
1	27 (155)	OPERATOR ON/OFF	xeeeees	- 7
	28 (156)	OPERATOR SELECT	0~5	$\cdot 8$

- 1 BREAK POINT

BREAK POINT

BREAK POINT	0	1	2	3	4	5	15	27	39	51	63	75	87	99
MIDINOTE \#	21	22	23	24	25	26	36	48	60	72	84	96	108	120
NOTE	A_{1}	$\mathrm{~A}_{1} \#$	$\mathrm{~B}_{1}$	C_{0}	$\mathrm{C}_{0} \#$	D_{0}	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}	C_{8}

*2 KEYBOARD LEVEL SCALING CURVE

	0	1	2	3
CURVE	- LIN	- EXP	+ EXP	+ LIN

3 OSCILLATOR MODE

4 FREQUENCY COARSE FINE

i) For Frequency Ratio

When $\operatorname{FINE}=0$

COARSE	0	1	2	3	10	30	31
FREQUENCY RATIO	0.5	1	2	3	10	30	31

When COARSE $=1$

FINE	0	1	2	3	10	50	99

FINE	0	1	2	3	10	50	99
FREQUENCY RATIO	1.00	1.09	1.02	1.03	1.10	1.50	1.99

ii) For Fixed Frequency
When FINE $=0$

COARSE	0	1	2	3	4	5	6	7		31
FREQUENCY $(H z)$	1	10	100	1000	1	10	100	1000		1000

When COARSE $=0$

FINE	0	1	2	3	4	5	10	20	50	99
FREQUENCY (Hz)	1.000	1.023	1.047	1.072	1.096	1.122	1.259	1.585	3.162	9.772

*5 DETUNE

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
DETUNE	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7

*6 LFO WAVE

	0	1	2	3	4	5
WAVE	TRIANGLE	SAWDOWN	SAWUP	SQUARE	SINE	SAMPLE/HOLD

*7 OPERATOR ON OFF

Bit	b_{5}	b_{4}	b_{3}	b_{2}	b_{1}	b_{0}
BP	OP1	OP2 Map				
	OP3	OP4	OP5	OP6		

*8 OPERATOR SELECT

	0	1	2	3	4	5
OPERATOR	OP6	OP5	OP4	OP3	OP2	OP1

4-2 DX PERFORMANCE PARAMETER CHANGE $(\mathrm{g}=1)(\mathrm{h}=0)$

Parameter Number P	Parameter	Data	Notes
0			
1	SOURCE SELECT	1~16	$\cdot 3$
2	POLY/MONO	$0 \sim 1$	
3	pitch bend range	$0 \sim 12$	
4	PITCH EEND STEP	$0 \sim 12$	
5	portamento time	$0 \sim 99$	
6	PORTAMENTO/GLISSANDO	$0 \sim 1$	
7	Portamento mode	$0 \sim 1$	$\cdot{ }^{1}$
8			
9	modulation wheel sensitivity	$0 \sim 15$	
10	MOdULATION WHEEL ASSIGN	0~7	- 2
11	FOOT CONTROLLER SENSITIVITY	$0 \sim 15$	
12	FOOT CONTROLLER ASSIGN	$0 \sim 7$	-2
13	AFTER TOUCH SENSITIVITY	$0 \sim 15$	
14	AFTER TOUCH ASSIGN	0~7	- 2
15	breath Controller sensitivity	$0 \sim 15$	
16	BREATH CONTROLLER ASSIGN	$0 \sim 7$	$\cdot{ }^{2}$
17			
18			
19			
20			
21			
22			
23			
24			
25 26	AUDIO OUTPUT LEVEL ATTENUATOR	$0 \sim 7$	
27			
28			
29			
30			
31			
32			
33			
34 1			
63			Concert
64	master tuning	0~127	pitch at 64

* 1 PORTAMENTO MODE
" 0 ". .. sustain-key piteh retain
* 2 EFFECT ASSIGN

Bit	b_{2}	b_{1}	b_{0}
ASSIGN	EG BIAS	AMPLITUDE	PITCH

*3 SOURCE SELECT
Corresponds to RECEIVE BASIC CHANNEL $1 \sim 16$
4.3 DX7 FUNCTION PARAMETER CHANGE $(\mathrm{g}=2)(\mathrm{h}=0)$

Parameter Number P	Parameter	Data	Notes
64	POLY/MONO	$0 \sim 1$	
65	pitch bend range	$0 \sim 12$	
66	Pitch bend step	$0 \sim 12$	
67	portamento mode	$0 \sim 1$	
68	portamento/glissando	$0 \sim 1$	
69	portamento time	0~99	
70	MOduLATION WHEEL SENSITIVITY	0~99	$\cdot 1$
71	MODULATON WHEEL ASSIGN	$0 \sim 7$	
72	FOOT CONTROLLER SENSITIVITY	0~99	$\cdot 1$
73	FOOT CONTROLLER ASSIGN	$0 \sim 7$	
74	breath controller sensitivity	0~99	$\cdot 1$
75	breath Controller assign	$0 \sim 7$	
76	AFter touch sensitivity	$0 \sim 99$	$\cdot{ }^{\prime}$
77	AFTER TOUCH ASSIGN	$0 \sim 7$	

4.4 TX FUNCTION PARAMETER CHANGE $(\mathrm{g}=4)(\mathrm{h}=1)$

Parameter Number P	Parameter	Data	Notes
0	DATA ENTRY RECEIVE SWITCH	0.1	
1	CONTROL CHANGE RECEIVE SWITCH	0.1	
2	DATA ENTRY VOLUME SWITCH	0.1	
3	COMPUTE COMMUNICATION SWITCH	0.1	
4	COMBINED IOI OR INDIVIDUAL (1)	0.1	
5	NOTE LIMIT LOW	$0 \sim 127$	
6	NOTE LIMIT HIGH	$0 \sim 127$	
7	MEMORY PROTECT OFF/ON	0.127	
11	LOAD FUNCTION SELECT INT/EXT	0.127	

$\cdot 1$ When data 1 is received, COMBINED MODE, CONTROL CHANGE RECEIVE, DATA ENTRY RECEIVE will be set, and 1 performance data will not be sent. is received, COMBINED MODE, CONTROL CHANGE RECEIVE, DATA ENTRY OFF will be sent, and 1 performance data will be sent.
4.51 VOICE BULK DATA

155 bytes of data. For the data format, see $0 \sim 154$ of 4-1.

[^0]| Parameter Number P | Parameter | Data | Notes |
| :---: | :---: | :---: | :---: |
| 0 | | | |
| 1 | | | |
| 2 | VOICE A POLY/MONO | $0 \sim 1$ | |
| 3 | Voice a pitch bend range | $0 \sim 12$ | |
| 4 | VOICE A PITCH BEND STEP | $0 \sim 12$ | |
| 5 | VOICE A PORTAMENTO TIME | 0~99 | |
| 6 | VOICE A PORTAMENTO/GLISSANDO | $0 \sim 1$ | |
| 7 | VOICE A PORTAMENTO MODE | $0 \sim 1$ | |
| 8 | | | |
| 9 | VIICE A MODULATION WHEEL SENSITIVITY | $0 \sim 15$ | |
| 10 | VOICE A MODULATION WHEEL ASSIGN | $0 \sim 7$ | |
| 11 | VOICE A FOOT CONTROLLER SENSITIVITY | $0 \sim 15$ | |
| 12 | VOICE A FOOT CONTROLLER ASSIGN | 0~7 | |
| 13 | VOICE A AFTER TOUCH SENSITIVITY | $0 \sim 15$ | |
| 14 | VOICE A AFTER TOUCH ASSIGN | 0~7 | |
| 15 | VOICE A BREATH CONTROLLER SENSITIVITY | 0~15 | |
| 16 | VOICE A BREATH CONTROLLER ASSIGN | $0 \sim 7$ | |
| 17 | | | |
| 18 | | | |
| 19 | | | |
| $\begin{aligned} & 20 \\ & 21 \end{aligned}$ | | | |
| 22 | | | |
| 23 | | | |
| $\begin{aligned} & 24 \\ & 25 \end{aligned}$ | | | |
| 26 | VOICE A AUDIO OUTPUT LEVEL ATtENUATOR | $0 \sim 7$ | |
| 27 | | | |
| $\begin{aligned} & 28 \\ & 29 \end{aligned}$ | | | |
| 30 | | | |
| 2 | VOICE B | | |
| 59 | | | |
| 60 | | | |
| 61 | VOICE MEMORY SELECT FLAG | 0~1 | |
| 62 | | | |
| 63 | | | |
| 64 | Performance name 1 | AscII | |
| 65 | PERFORMANCE NAME 2 | AsCII | |
| 2 | l | ASC:I | |
| 92 | PERFORMANCE NAME 29 | ASCII | |
| 93 | PERFORMANCE NAME 30 | ASCII | |

4.7 64 PERFORMANCE BULK DATA ($f=2$

Data are listed in order for the 64 performances in units of 64 bytes (64 performance). The TX7 uses the first 32 performance groups.

With the Key Assign in Single mode $(K M O D=0)$ VOICE A or B are loaded with VMS With Key Assign in DUAL, SPLIT ($K M O D=1,2$), VOICE A is always loaded.

4.832 VOICE BULK DATA ($f=9$)

128 bytes of data per voice, voices $1 \sim 32$

4.9 CONOITION ACKNOWLEDGE ($\mathrm{f}=125$)

Address	Parameter	Data	Notes
0	CLASSIFICATION ASCII 'L.	54.	
1	Classification ascil 'm.	\$40	
2	classification ascil' - -	\$20	
3	classification ascil - -	\$20	
4	model name ascil ${ }^{\text {8 }}$.	\$38	
5	model name Ascil 9 .	\$39	
6	mOoel name Ascil ${ }^{\text {5 }}$	\$35	
7	mODEL NAME ASCII 0°	\$30	
8	model name ascir L \square,	\$20	
9	model name ascil \sqcup.	\$20	
10	SOFTWARE VERSION:	v	
11	SOFTWARE REVISION:	R	
12	CONDITION DATA $1 \cdot 1$		
13	Condition data 2 receivech	$0 \sim 15$	
14	CONDITION DATA 3 battery volt		1 unit =
15	CONDITION DATA 4	0	0.1 volts

1 Bit format

bit	Parameter	Data	Notes
b0	PERFORMANCE ECHO BACK MODE	0	$\cdot 2$
b1	COMPUTER COMMUNICATION MODE	1	$\cdot 3$
b2	VOLUME CONTROL BY DATA ENTRY LEVER	0	$\cdot 4$
b3	CONTROL CHANGE RECEIVE	1	$\cdot 5$
b4	OMNI MODE	$0 / 7$	$\cdot 6$
b5	MEMORY PROTECT	$0 / 1$	$\cdot 7$
b6	DATA ENTRY RECEIVE	$0 / 1$	$\cdot 8$

-2 Data is 1 only when in COMBINED MODE and internal mode has been selected.
$\cdot 3$ Data is 1 only when in COMBINED MODE, CONTROL CHANGE RECEIVE, DATA ENTRY RECEIVE
4 Data is 1 only when DATA ENTRY VOLUME ON.
5 Data is 1 only when CONTROL CHANGE RECEIVE SWITCH ON.
Data is Only when OMNI MODE ON
Data is only when MEMORY PROTECT SWITCH ON.
8 Data is 1 only when DATA ENTRY SWITCH ON.

| Mode 1 | OMNI ON, POLY | Mode 2 : OMNI ON, MONO | OM | Yes |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Mode $3:$ OMNI OFF, POLY | Mode 4 4 OMNI OFF, MONO | $x:$ No | | |

CONSTRUCTION OF THE TX7

You may think of the TX7 as a DX7 without the sub CPU. that is to say, a DX7 without the keyboard section. The
circuitry of the TX7 is on four boards; DM, AS, PN, and AD. circuitry of the TX7 is on four boards; DM, AS, PN, and AD. The DM board contains the micro computer which controlis the FM tone generator, panel switches, MIDI and the LCD.
The AS board contains the FM tone generator. Its EGS and OPS (the same ICs as the DX7) are controlled by the MPU. The PN board contains the panel switches. The MPU on the DM board is constantly checking to see if any of these switches are being pressed. The AD board contains the power supply. To make it light and compact, we have used a switching po
verter) type.

1. Memory map

The memory map of the TX7 is shown below.

$\$ 0000$ S001F $\$ 0040$S00FF	MPU internal registers
	Free area
	MPU internal RAM
	Free area
$\$ 4000$$\$ 4800$	Panel switches
	VCA control
$\begin{aligned} & \$ 5000 \\ & \$ 5800 \end{aligned}$	EGS
$\$ 6800$$\$ 6600$$\$ 6800$	OPS
	RAM1
\$7000	RAM2
$\begin{aligned} & \text { \$7800 } \\ & \text { S7FFF } \end{aligned}$	RAM3
	RAM4
\$c000	Free area
	ROM
sffff	

1) Voice and function memory, and edit buffers

The data in RAM1, 2,3 is as follows.

\$601E ~ \$701D	
\$701E ~ \$7088	: Voice edit buf
\$70c9 ~ \$72C8	32 T
\$72C9~\$74C8	32 D
\$74C	

Here is a comparison of the data format with the illustra tion on page 1.

Since the master tune data is common to all 32 voices, there are 2 additional bytes beside the 17 bvtes in the function edit buffer. (When the DX performance parameter since the TX internal tuning data uses 14 bits, 2 bytes of memory space are needed.)

The format of each memory is as follows.

- Voice edit buffer data $\cdots 155$ bytes

Format is the same as DX voice parameter change Format is the same as
perameter numbers $0 \sim 154$. See MIDI data format 4-1.

- 32 voice data $\cdots 128$ bytes $\times 32=4 \mathrm{~K}$ bytes Format for each voice is the same as the voice edit buffer. but 155 bytes of data is packed into 128 bytes of
memory space. (Unused bits are moved over.)
- Function edit buffer data $\ldots 17$ bytes

Format is the same as MIDI data format 4-2 (DX performance parameter change) parameters $2 \sim 7,9 \sim 16,26$. Key Limit High make up the total of 17 bytes.

- 32 TX function data $\ldots 17$ bytes $\times 32=544$ bytes

Format for each function is the same as the function edit buffer. (When saving data to tape, attenuation data will not be saved.)

- 32 DX function data $\ldots 16$ bytes $\times 32=512$ bytes Format is the same as MIDI data format 4.2 (DX performance parameter chenge) parameters $2 \sim 7,9 \sim 16$. These 14 bytes plus the 2 bytes Key Limit Low and Key Limit High make up the total of 16 bytes.

2. Circuitry of the TX7

1) MPU (HD63A03X)

The TX7's MPU is the same as that of the TF1 (tone generation module for the TX816). The MPU contains an ACIA (Asyncronous communication unit), I/O ports s, and RAM. The ACIA transmits and receives MIDI messages, send information to the LCD.

Vcc, Vss	Vcc is the SV power supply termina the ground terminal.
Extal	This receives a 4.71 Mhz clock with a 50% duty cycle. (Since an external clock is used the XTAL terminal is left open.)
- MP $\mathrm{P}_{0}, \mathrm{MP}_{1}$	This sets the operation mode of the $M P_{0}=$ "High", MP $P_{1}=$ "Low".
- $\overline{\mathrm{RES}}$	This terminal resets the MPU.
$\overline{S T B Y}$	This terminal is for setting the MPU to stand by mode, but since it is not used in this circuit, it has been fixed at "High".
$\overline{\mathrm{NMI}}$	This terminal if for non-maskable interrupt but since it is not used in this circuit, it has been fixed at "High".
Z	In this circuit, $\mathrm{P}_{20} \sim \mathrm{P}_{27}$ are used as f
P20 (out)	Transmission to cassette. Transmission speed: 1200 band $(1200 \mathrm{~Hz}-1$ cycle " 0 ", 2400 Hz - 2 cycle " 1 "), modulation: FSK.
	Data is compatable with the CX5 (YRM-13) (However, the YRM-13 will not accept Key
	Limit or Attenuation data.)

P22 (in)	This is a 500 Khz clock input which termines the MIDI transmission speed. clock is internally divided by 16. Ther MIDI transmission is 31.25 K baud.
$\begin{aligned} & \text { P23 (in) } \\ & \text { P24 (out) } \end{aligned}$	Receives MIDI messages. Sends MIDI messages.
P25 (out)	This sends a signal to the RS terminal the LCD. This signal tells the LCD whet the data from port $6 \mathrm{P} 60 \sim \mathrm{P} 67$ is an struction or data to be displayed. "High" means data to be displayed.
P26 (out)	This determines input or output data. "High": read. "Low": write.
P27 (out)	Finalize LCD data. Data finalized down.
Port 5	
P50 (in)	Condition of "Low" switch
P51 (in)	Condition of " 4" switch
P52 (in)	Condition of " ${ }^{\text {c }}$ " switch
${ }^{P} 53$ (in)	Condition of "High" switch
P54, 55	Not used
P56 (in)	Battery voltage condition
P57 (in)	
Port 6 Port $6 P_{60} \sim P_{67}$ transmit instructions and data to the LCD.	
Bus The address bus is $A_{0} \sim A_{15}$. The data bus is $D_{0} \sim D_{7}$,	
BA Bus available terminal. When the MPU has received HALT and the bus is free, this terminal will be "High" Not used in this circuit.	
LIR This indicates that the data bus is carrying the op code of an instruction.	
R \bar{W} When the MPU is reading, this is "High". When writing, this is "Low".	
When the MPU is reading, this is "High".	

2) Tone generator section

The tone generator section is the same as that of the DX7 The EGS and OPS use the same IC as the DX7 The OGS is master is slave All the OPS does is to perform FM calculations on the data sent to it from the EGS (FM calculation parameters EC ${ }_{1}$ $\underset{\text { set. }}{E C_{12},} F_{1} \sim F_{14}$) according to the algorithm to which it is

- EGS

This is an acronym for Envelope Generator of Synthesizer. This is the LSI that reads voice data (rate level key code etc) from the MPU into its internal registers and produces (digital) envelope shape information according to the key on/off signals it receives from the MPU. It also produces (digital) frequency data for the key which has been pressed. date $E C_{1} \sim \mathrm{EC}_{12}$ and (KON) data, the volume envelope the OPS, in ${ }^{12}$ and frequency data $F_{1} \sim F_{14}$ are sent signal SYNC (92 Y 96).

- Vdd, Vss Vdd is +5 V power supply, Vss is ground - RES This terminal resets the EGS
- SYNC Input terminal for synchronizing the OPS (92Y96)
- $\overline{C E} \quad$ Pulse input terminal for enabling reception of data from the MPU.
- $\overline{W R} \quad$ Pulse input terminal for writing data from Pulse input terminal for writing data from
the MPU into internal registers. In the TX7, this is connected to GND.
- $A_{0} \sim A_{1}$ Address input terminal for specifying internal registers.
- $D_{0} \sim D_{7}$ Data input terminals
- $F_{1} \sim F_{14}$ Parallel output for frequency data of each channe
- $E C_{1} \sim$ Parallel output for volume data of each - C_{12} Channe
- OE Data output control terminal, but in the - KON Output terminal for key ON data of the - KON Output terminal for key ON data of the
- ϕ_{1}, ϕ_{2} System clock input terminals
- OPS

This is an acronym for Operator of Synthesizer. By performing FM calculations on the volume envelope frequency and KON data sent to it from the EGS and on
the data already stored in the OPS registers (algorithm NO., feedback level), the OPS produces audio data (in 12 bit digital form). The data that the OPS receives directly from the MPU is 2 bytes as follows.

Mode (operation mode of OPS) 1 byte
Algorithm no
Algorithm no. (upper 5 bits)
Feedback level (lower 3 bits)
1 byte
The terminal WR writes to the OPS, and has been assigned to addresses $5800(\mathrm{H}) \sim 5801(\mathrm{H})$. Since the address line A_{0} is connected to the data set terminal DS of the OPS,
the OPS mode selector is $A_{0}=$ "Low" ie. 5800 (H) the OPS mode selector is $A_{0}=$ "Low", ie. $5800(H)$.
When $A_{0}=$ "High", ie. 5801 (H) specifies data register (algorithm no., feedback level).
The output data of the OPS is 12 bit. However, to make this the equivalent of 14 bit, the lower levels are ex panded 2,4 , and 8 times respectively. To return this to the original valve, shift data $\left(S F_{0} \sim \mathcal{S F}_{3}\right)$ is sent 0
$S F_{0}: 1$ times, $S F_{1}: 1 / 2$ times, $S F_{2}: 1 / 4$ times,
$\mathrm{SF}_{3}: 1 / 8$ times.

	Vd
- DS	This determines whether data input $D_{0} \sim$ D_{7} is mode or algorithm no and feedback. Mode is " L ".
	Input terminal indicates whether to write the data at $D_{0} \sim D_{7}$ into an internal register.
	d
	ff
- $D A_{1} \sim$ DA_{12}	Digital aud
SF_{3}	Shift data outputs (to restore expanded output data)
$\mathrm{C}_{1} \tilde{E_{1}}$	Parallel inputs for volume envelope data from the EGS
	dat
- $\mathrm{D}_{0} \sim \mathrm{D}_{7}$	Inputs for mode, algorithm number, and feedback level from the MPU
	System clock inputs

3) D/A converter section

The 12 bit digital data from the OPS is sent to the DAC IC24 and converted into an analog signal. This 12 bit digital data has been expanded inside the OPS, so the IC26 and the connected resistances will return it to the original evel. $\sim \mathrm{SF}_{3}$), which is sent at the same time as the 12 bit digital data. The shift data is as follows.
When the data sent to the DAC has been shifted 1 time, F_{0} sends "High".
When the data sent to the DAC has been shifted 2 times, When the data sent to the DAC has been shifted 4 times, SF_{2} sends "High".
號 the dant When the data sent
At this point, the level has been corrected, but it is still not true analog waveform. Until the digital audio data comes into the sample and hold circuit, it is being outplut in teps (first note, second note, third note,). Controlled by the sampling signals SH_{1} and SH_{2}, the IC27 samples the digital audio signal. A 120 pf cabacitor holds the eevel through eighth notes, SH_{2} samples the ninth through sixteenth notes.) This waveform still has a stair-step shape, so it is put through a low-pass filter to become a true analog
waveform. This signals volume is controlled by the VCA. and it is sent out.
4) Volume control and battery voltage check circuitry Volume is controlled by the VCA IC38. The volume is determined by the following information.

- Panel switch preset volume ... LOW \triangle HIGH
- Attenuation (function mode). . ATTENUATION $0 \sim 7$

Data entry volume control These two are
mutually exclu-- Control change... control number 7- sive; ie only

When $4800(H)$ comes up, IC28 (data latch) will latch th data on the data bus line. (At this time, it latches only the upper 6 bits of the data bus.) sent out of the \circ termina as "High" +5 V , "Low" 0 V , and is input to rader resistance RM ${ }_{1}$. This voitage passes through IC35 (which makes up
the low pass filter) and appears at pin 1 of IC35. It is divided by a 270Ω and a 22Ω resistors and added to pin of the VCA IC38. This controls the VCA which control the volume of the analog signal sent from the tone generato section. When the control voltage of the VCA is OV, th volume is greatest and when it is 0.37 V , the volume is least
As you can see from the software flow diagram 0 , battery voltage check is performed when the power is turned on A voltage identical to the volume control voltage is sent to pins of IC35. The output of that is sent to pin 3 of IC18 (battery voltage converter) on the DM board. When the power is turned on, the battery check routine will be
entered, and pin 7 of IC35 has been programmed to rise from OV . As long as the battery voltage is higher than this voltage, the output of IC18 pin 7 will be "High". When this voltage becomes higher than the battery boitage, the outpu of pin 7 will reverse to "Low". The MPU is checking fo this, and when the battery voltage is less than 2.3 V , th

5) Power supply

The power supply used in the TX7 is of the type know as RCC (Ringing Choke Converter). The basic RCC circuit is shown in diagram $10 . \mathrm{Tr}_{1}$ is a switching transistor. When
this transistor is ON , energy accumulates in inducter L_{1} of transformer T, and when OFF, the accumulated energy is released to side L_{3}. As the transistor Tr_{1} repeats this swithcing, power is sent out. R_{2} is a base current limiting resistor for T_{1}. R_{1} is a starting resistor, and when the
resistance is low, $T_{r_{1}}$ will start easier. Transformer T tis an oscillating transformer, and isolates the primary and secondary. You may calculate the energy accumulated transformer T (inductor) using the following equation.

The operation of the RCC circuit is as follows.

1. When you turn on $S W$ in diagram 10, current flows and current flows in L_{1}, inducing voltage in L_{2}.

The voltage at point A increases, and works to increase The voitage at point A increases, and works to increase saturates, and there is no more time difference in the current flowing in L_{1}, so there is no more induced
voltage in L_{2}. At this time, reverse electromagnetic force (accumulated energy) is generated, and this energy indvces voltage in L_{3}. When this happens, the base of $T r_{1}$ will have reverse bias because of the reversed e.m.f. in L_{2}, and Tr_{1} will go OFF.
Next, when the accumulate
Next, when the accumulated energy of L_{1} is released,
base current flows again to $T r_{1}$ through R_{1}, and $T T_{1}$ will begin operating again.
In this way, the desired voltage is attained as the accumulated energy in L_{1} is released to L_{3} by the switching action of Tr_{1}.

The following is a block diagram of the TX7 power supply.

The actual circuitry of the TX7 is as follows.

1. In diagram 12 the base driving circuit is D_{2}, C_{1} and R_{2}. This controls the base current of $T r_{2}$ through R_{2}.
$r_{r_{2}}$ controls the base current of $T r_{1}$, thus controiling 3. The voltage that appears in the secondary. tion of the +5 V , and feeds back the fluctuation to the control circuit through a photocoupler PC_{1} (which 4. Olectricall isolates the primary and secondary). control circuit increases the base current of $T r_{2}$, and by thus changing the oscillating frequency of $T r_{1}$, controls
the output voltage. The output voltage $(+5 \mathrm{~V})$ may be adjusted u sing the $V R_{1}$ connected to the base of Tr_{3} in the error detection circuit.

The power switch SW_{1} turns the voltage to the emitter of Tr_{1} on and off. Thus, as the converter circuit switches or does not switch, voltage is generated or stopped in the
secondary. Therefore, even when the power switch $S W_{1}$ is off, voltage is present at the primany, so when servicing, please be careful.

3. Software flow

This is basically the same as the DX7.
The software can be divided into the main routine, timer interrupt routine and ACIA interrupt routine.
Diagram 13 below shows the main routine flow from power on, diagram 14 shows the timer interrupt routine, and diagram 15 shows the ACIA interrupt routine.

Main routine

The data from the ACIA interrupt routine that accurnulates in the input buffer is taken out and interpreted one byte t a time. When a complete MIDI message has been assembled, the appropriate operation is performed.
This routine also scans the panel switches and displays and This routine also scans the panel
sets the appropriate information.

2) Timer interrupt routine

The internal timer cycles once every 2.6 ms .
This checks MIDI reception for active sensing, panel switches for auto +epeat, and calculates and loads data such as LFO, pitch EG and pitch bender to the tone generator.

ACIA interrup:

1．Entering the test program

By turning the power on while pressing the following two
switches，you will enter the test program．

When this appears，you
may release the switches．

2．Executing the test program ．．．．The tests will be carried out in the order described below．However，you may not return to a previous test．
1）When you respond to＂TEST y／n？＂by pressing
YES +1 ，the following tests will be carried out． RAM read／write test
ROM read test
Backup battery voltage test
2）TEST 1 ．．．When you respond to the battery voltage display by pressing［YES＋1］，it will pro eest．） test．）
Pitch，
3）TEST $2 \ldots$ When TEST 1 is over（or you press YES +1 I，it will proceed automatically LCD flash test．
4）TEST $3 \ldots$ When TEST 2 is over and you press YES＋1．it will proceed to the next test． This test cannot be skipped．）

5）TEST 4 ．．
When TEST 3 is over and you press However，you must make the proper set tings and connections for this test before entering it．Otherwise，an error will result．
（After the display has indicated （After the display has indicated error， Cassette interface test．
6）TEST $5 \ldots$ When TEST 4 is over（or you press When TEST 4 is over（or you press
YES +1 ），it will automatically proceed to the next test．However unless you make the proper connections and settings before entering this test，you will not be ble to proceed to the next test．
MIDI IN／OUT test
7）TEST $6 \ldots$ When TEST 5 is over and you press MIDI THRU circuitry test．
When the above tests have been completed，the display will operating mode．

3．Details of each test program

1）RAM read－write／ROM read／backup battery voltage test When you enter the test program and press YES＋1 these tests will be carr

（1）RAM read－write test
 \qquad

This carries out read ．write tests on certain bytes of RAM $1 \sim 4$ ．Since not all bytes are tested，the 32 voice data， 32 TX function data， 32 DX function data，voice and edit buffer data will be preserved unchanged． Since only part of RAM is testa
100% accuracy．） Test result］
ITest result
If everything is OK ，it will move to the ROM read test without displaying anything．
［If there is an error］
ERROR RAM＿ITl will be displayed，and you will not $\underset{1 \sim 4}{\text { RAM number }} \underset{\text { be able }}{\text { test }}$ a proceed to the next

（2）ROM read test

If the RAM read－write test was OK，this test will be carried out automatically．It reads the entire program ROM area（except for the check sum data）and does a check sum，which it then compares with the check sum
written in ROM．
（The check sum process adds the contents of ROM and comes up with a number which it compares to a stored known correct number．
［Test result］
If everything is OK，it will move to the backup battery
voltage test without displaying anything． voltage test without display ing anything．
［1f there is an error］
ROM TEST ERROR will be displayed，and you will not e able to proceed to the next test．

（3）Backup battery voltage tes

If the ROM read test was OK，this test will be carried out automatically．It checks the backup battery voltage and displays the voltage in the LCD．
［Test result］
The backup battery voltage will be displayed in the LCD as follows．If the voltage is below 2．3V，there is a possibility hat the mer

BATTERY VOLT $=\underset{\text { Voltage display }}{\text { 立 }}$

To proceed to the next test，press YES＋1
［There is no error display．］
2）TEST 1 Audio output pitch and volume，volume check TEST I PUSH VOL \rangle will be displayed，and a sine wave 440 Hz ．
When this test is entered，the volume will be at maximum， \therefore about 250 mV at the output jack．When you press the 1．switch，the upper dark section of the LCD will shrink， and the volume will go down．When you press the
switch，the upper dark section of the LCD will grow，and the volume will go up．

［Test result］

Whether or not the test was OK，you may proceed to TEST 2 by pressing YES +1 ］
［If there is an error）
he problem is probably in the FM tone generator，DAC，

3）TEST 2 LCD flash test

All dots of the LCD will flash on and off．
［Test result］
When it is OK，you may proceed to TEST 3 pressing
［There is no display．］
4）TEST 3 Panel switch test
EST 3 NOW SW．－？？will be displayed．When you press the left switch（ LOW switch），the switch number will be
displayed like this：TEST 3 NOW SW） displayed like this：TEST 3 NOW SW．-1 ．Continue will be displayed． ［Test result］
If all switches are OK，PANEL SWITCH OK will be dis－ played．To continue to TEST 4 ，press［YES＋1

Before you press YES＋1 to go to the next test，make the connections for TEST 4．If you proceed without making
the connections．CASSETTE ERROR will be displaye

作放 no error display，but you will not be able to pro－ ceed to the next test．
5）TEST 4 Cassette interface test
When you finish TEST 3 and PANEL SWITCHOK is dis－ played，make the connections as shown below and press YES +1 ．The cassette interface test will be carried out automatically．

gain．

6）TEST 5 MIDI IN／OUT test
When you finish TEST 4 and CASSETTE OK！or CAS．
 SETTE ERROR iayed，connect the MIDI terminals as shown below and ress YES +1 ．The MIO matically be tested．
［Test result］
MIDI TEST OK！will be displayed． You may then proceed to TEST 6 by pressing YES +1 ．

Whe：

$$
\begin{aligned}
& \text { When you press YES +1, TEST } 6 \text { will automatically } \\
& \text { begin, so before proceeding, make the connections for } \\
& \text { TEST } 6 \text {. }
\end{aligned}
$$

［If there is an error］
If you did not make the connections or if the connection is will not be able to proceed to the next test，so make the correct connections．
If there is a hardware error in the MIDI IN／OUT interface，
MIDI TEST ERROR will be dislayed MIDI TEST ERROR］will be displayed，and you will not be able to proceed to TEST 6．Please check the hardware． 7）TEST 6 MIDI THRU circuitry test
When you have made connections as shown below，the LCD will display LISTEN EXT．TX7！］and the tone generato THRU hardware

－You may use any MID instrument as a tone gererator
for example $T X 7, D \times 7$ ，etc．

［Test result］

If everything is OK，the following MIDI data will be sent
from MIDI THRU．When all the data has ENDI！will be dispen all the data has been sent，TES： normal operating mode（combined mode）
［Test result］
everything is OK，CASSETTE OK！］will be dispalyed， and you may proceed to TEST 5 by pressing YES +1 ．

NOTE

Before pressing $\overline{Y E S}+1$ and advancing to TEST 5，make解 110 ．
If there is an error］
you did not make the connections，if the connections were incorrect，if gain was insufficient，or if there is a hard－ ware malfunction，the display will read CASSETTE ERROR．If this happens，turn off the power，re Even if CASSETTE ERROR Mode and try again． ceed to TEST 5 by pressing YES＋1． Output data（Hexadecimal）＂ O ＂symbol indicates time gap．

－28－transmission，check MIDI hardware

- DISASSEMBLY IN STRUCTIONS

-29-

LC92422

LC924302

LC92441

PARTS LIST

- pC board parts

 Model

 13 P

	$\begin{array}{\|l\|l\|} \hline \text { Ref } \end{array}$	Part No	Description		\％\％	Remarks	Common Mocel	Markets	ラン？
＊		NA 814330,	AD Circuit Board		A D $=1$			J	
＊		NA 814340	－＂		＂			u	
＊		NA 814350	－		＂			$\underline{6}$	
＊		NA 814360	－＂		＂			c	
＊		NA 814810	－＂		－＂			wG．A	
＊		FR 203100	Meitared Polyester Fiim Cap	0.14 F	19アイス・＊ツエスデクフィM2	C2			
＊		FR 20.3100	－＂	0.14 F	－＂	C1		J．U．C	
＊		Fr 2032.20	－	$0.22 \mu^{\mathrm{F}}$	$"$	C1		G．wG	
＊		FZ 006860 A	AL．Electrotic CAP	$1000 \mu \mathrm{~F} / 10 \mathrm{~V}$	ヶミカルコンデンサー	C15．16			
＊		FF2 007440	＂	$100 \mathrm{p} / 25 \mathrm{~V}$	－	C12．14			
＊		IF2 006840	－	220／25V	＊	C11，13			
		FF2 006880	－	$100 \mathrm{~F}^{\mathrm{F} / 200 \mathrm{~V}}$	＂	C5		JU．C	
＊		FF2 006890	－＂	$47 \mu \mathrm{~F} / 400 \mathrm{~V}$	－	C5		G．WG	
		HL 314680	Metal Oxide film Resistor	688／1W	サンキン＊执	R5			
		HL 325220	－	2208／2W	－	R12		J．U．C	
		HL 328120	－＂	120kR／2w	\cdots	R3			
		HL 328120	－＿－	$120 \mathrm{k} / 2 / 2 \mathrm{~W}$	＊	R4．6		G．WG	
		HL 327680	－＂	68k $\Omega / 2 \mathrm{~W}$	＂	R6		J．U．C	
		HL 328120	－	$120 \mathrm{k} / 2 / 2 \mathrm{~W}$	\cdots	R17		G．WG	
＊		Hz 004840	Thermal Fusing Resistor	108／2w		R2		c	
＊		Hz 004850	Wire Wound Resistor	108／3W	せメント接热	R2		J．U	
		HZ 004860	＂	22ת／3W	\cdots	R2		G．WG	
		H2． 004870	－＂	2．28／3W	＂	R11		L．U．C	
＊		HZ 004880	\square	4．78／3W	－＂	R11		G．WG	
		ic 26：55：00	Transistor	$2 \mathrm{SC2655}$	トランシスタ	TR2			
		iC $26: 34 \cdot 00$	＂	2SC2634	132，	tr3			
		iC 27，92．00	＂	$2 \mathrm{SC2792}$	＂	TR1		G．WG	
＊		ic 25，55，00	＂	$2 \mathrm{SC2555}$	－＂	TR1		J．U．C	
		If 00：13：80	Diode	15884	タイ才－F	D4，5，9			
		IiH 00：12 20	\cdots	S2K20	，	D8			
－		if 0085.90	－	ERB4402	＂	06.7			
		in 00 17：40	＂	ERB4406	＂	D3			
		it 0017.50	［．	ERB4302	－＊	D2			
＊		iH 001710	Diode Bridge	Sirba4o	ダイオートプリッシ	D1		J．U．C	
＊		iH 001720	－	Sirbabo	－＂	D1		G．WG	
		if 001470	Zener Diode	RD6． $2 \mathrm{EB2}$	シェナーダイオート	2 D 1			
		16.063900	IC	${ }_{1} \mathrm{~A}_{\mu} \mathrm{PC} 7815 \mathrm{H}$	c	IC1			
		if 077500	＂	${ }_{1} \mathrm{~A}_{\mu} \mathrm{P}$ C 7915 H	－＂	IC2			
＊		iK 00．0480	Photo Conductor	PC817	フォトカフラー	PC1		J．U．C	
＊		iK 00．04．90	＋	PC511	－	PC1		G．WG	
		GA 84.1400	Transformer	TYAO18	15 ン	T1		c	
		GA 83：9100	－	TM205	\cdots	T1		1.4	
		GA 83：9500	－	TM206	－	T1		G．WG	
		GE 300820	Coil	$150 \mu \mathrm{H}$	$2 \quad 1 \quad n$	12			
＊		G0 90.0760	AC Line Filter	PLA3021A	ACラインフィルタ	4		J．U．C	
＊		GD 90，0790	＂${ }^{\text {n }}$	R5E203A	\cdots	11		G．WG	
		HT 57.0540	Semi Variable Resistor	B1K	＊压定VR	VR1			
		KB 00.0350	Fuse	2A 250V				3	
		K8 00.12 .40	＂	2A 250A				U．C	
		KB 0000710	＂	T500mA 250A				G．WG	
		LB 60 2460	NH Connector	T．E． 7 P					
		LB 20.1530	Fuse Holder Pin						

－DISASSEMBLY VIEW

－PARTS LIST
－MECHANISM CHASSIS UNIT

	$\begin{aligned} & \text { Ref } \\ & \text { No } \end{aligned}$	Part No	Description			Remarks	$\begin{gathered} \text { Common } \\ \text { Model } \end{gathered}$	Markets	ラック
	，	NX 8013.40	Top Cover		トツフカハー			0	
	．	NX 801350	，					Lic：	
	2	ED 330106	Bind Head Screw	$3 \times 10 \mathrm{BL}$	ハイント小＊＊				
	3	EV 410000	Toothed Lock Wacher	M3 BL	围付 杜 金；				
	4	NB 831510	Bottom Cover		＊$\quad 1 \quad 4$			u	
	＂	NB 832700	＂		\square				
	5	Ei 340086	Bind Tapping Screw	$4 \times 8 \mathrm{BL}$	ハインドタッビン＊゙				
	6	EV 40.3046	Toothed Lock Wacher	M4	－付 重 全				
	7	Ei 340126	Bind Tapping Screw	$4 \times 12 \mathrm{BL}$	ハイントタダンビンシ｜				
	8	AA 832670	Circuit Board Ral		シートレール！				
	9	NA 81.4320	PN Circuit Board		$\mathrm{P} \mathrm{N}=$－				
	10	CB 835380	Key Top		スイッチッフミ				
＊	11	CB 835390	Spacer		ス－－＋				
	12	NA 814310	AS Circuit Board		A s \％－＋1				
＊	13	AA 832720	ANGLE JK		シャックアング				
	14	NA 814300	DM Circut Board		D M \％－，				
	15	AA 83.2730	ANGLE DIN		D1Nアング				
	16	Mi 803730	Card Wire	13 P	ス				
	17	Mi 803750	\cdots	11 P	＂				
	18	Mi 803740	－	178	－＂				
	19	ED 33.0066	Bind Head Screw	$3 \times 6 \mathrm{BL}$	ハイント小＊				
	20	NA 814410	LCD Module	JN200060	LCDキシュール				
＊	21	CB 835650	Nvion Rivet						
＊	22	MZ 821280	Wring	LCD to DM	$7 \quad 1+$				
＊	23	NA 814330	AD Circur Board		A D シ－1			J	
＊	＂	NA 81.4340	＂．＂		－			U	
＊	＂	NA 814350	－＂		＂			6	
＊	＂	NA 81.4360	．		＂			c	
＊	＂	NA 814810	－		－${ }^{\text {a }}$ ，			WG．A	
＊	24	AA 832680	Panel AC		A C－＊M			1	
＊	＂	AA 832690	＋		－			U	
＊	$"$	AA 832700	．		＂			c	
＊	＂	AA 832710	－		＂			G	
＊	＂	AA 83.3440	．		－＂			Wg	
	25	ED 340086	Bind Head Screw	$4 \times 8 \mathrm{BL}$	ハイント小＊ン				
＊	26	KA 101120	Power Switch．		シーツースイッチ				
	27	MG 00.0600	Power Cora		－${ }^{\text {a }}$－ 个			1	
	＂	MG 000100	－		I			U	
	＂	MG．00．0130	－		\cdots ！			A	
	＂	MG 000270	＂		．			c	
	＂	MG 000860	＊		＊			G	
	＂	MG 000450	－＂		＊			wg	
	28	CB 032840	Cord Stopper		コートストッバ			WG．A	
	\cdots	CB 068630	＂		－1			J	
	＂	CB 072750	＂．		，			i	
	＂	CB 806850	－		．			c	
	－	CB 811230	－		．			U	

Notes)
DH Circuit Board

1 Cl	; HD63a03x (iG107OO)
$\begin{aligned} & \text { IC1 } \\ & \text { IC3~6 } \end{aligned}$: EPROM 27128 (($\mathrm{NOOL1OO}$)
$1 \mathrm{CC} 7^{6}$:74LSI38-151 (iG16700)
IC8	;TC40H240 (iG08100)
IC9	:TC40H074 (ic01100)
IC10	; ТС40Н008 (iG064O0)
IC11	;TC40HOO4 (iGO1000)
IC12	:TC4069ubP (icoil20)
IC13	;TC40HC14BP (iRO14O0)
IC14	; HD7405P (iG15500)
${ }^{\text {IC15 }}$;TLP552 (iK00470)
${ }^{\text {IC16 }}$;PST518 (iG16200)
IC17, 18	:IR9311 (iG14900)
IC19	;NJM072 (iG17000)
$\begin{gathered} \mathrm{r} 1 \\ \mathrm{r}_{\mathrm{r}} \mathrm{l} \end{gathered}$;2SA1015 (0, Y)
D1, 2, 4, 5	:15S133

Address Map

[^0]:

