SERVICE MANUAL for

meog minimoog

Model 204D
SECTION PAGE NO.
SPECIFICATIONS vi
1
INTROOUCTION 1.1/2. 1
1.1 GENERAL 9.1/2.1
1.2 PRECAUTIONARY MEASURES 1.1/2.1
CIRCUIT OESCRIPTION 1-1/2. 1
21 GENERAL 1.1/2.1
22 GENERAL CIRCUIT DESCRIPTION 1. $1 / 2.1$
23 "O" OSCILLATOR PAINTEO CIFCUIT BOARO 2.3
24 MODULATION MIX AMPLIFIER 2.5
2.5 NOISE GENERATOR 2.5
2.6 HEADPHONE AMPLIFIER $2 \cdot 6$
2.7 POWER 5UPPLY 2.6
2.8 VOLTAGE CONTROLLED FILTER 2.7
29 VOLTAGE CONTAOLLEO AMPLIFIER 2.7
210 CONTOUR GENERATORS 2.7
2.11 A. 440 REFERENCE OSCILLATOR 2.9
212 EXTERNAL PREAMPLIFIEA ANO OVERLOAD LAMP ORIVER 29
213 OLD MINIMOOG OSCILLATOR BOARD 2.9
$214-5$ VOLT REFERE NCE SUPPLY 2.9
215 OCTAVE SWITCHE5 2.9
2.16 OSCILLATOR ONE $2 \cdot 10$
2.17 OSCILLATOR TWO $2 \cdot 10$
2.18 OSCILLATOR THREE 2.10
219 KEYBOARD CIRCUIT $2 \cdot 10$
3 TROURLESHOOTING 3.1
31 OVERALL DUICK REFERENCE TROUBLESHOOTING 3.1
3.2 OSCILLATOR PRINTEO CIACUIT BOARO NO. I TROUBLESHODTING (SERIAL NUMBERS 10175 AND ABOVE) 3.3DISASSEM8LY PROCEOURES4.1/50
4 4 OISASSEMBLY 4.1/5-0
5 AOJUSTMENT AND TUNING 4. $1 / 5-0$
5 ! PRINTED CIRCUIT BOARD REPLACEMENT ADJUSTMENTS 41/5.0 41/5.0
52 VOLTAGE AOSUSTMENTS 5.1
5.3 TUNING OSCILLATORS \{SERIAL. NUMBER 101方 AND ABOVE\} $5 \cdot 3$
5.4 TUNING THE OSCILLATOR ISERIAL NUMBER5 BELOW 10175) $5 \cdot 4$
55 DETAILED ADJUSTMENT PROCEDURES $5 \cdot 4$
5.6 POWER SUPPLY ADJUSTMENT 5.8
5.7 A-440 ADJUSTMENT $5 \cdot 8$
5 B SIGNAL FLOW 5.8
5.9 MAIN OUTPUT 5.8
510 PHONE OUTPIT 5.8
511 LON MAIN OUTPUT 59
512 EMPHASIS CALIBRATION $5-9$
5.13 FILTER CUTOFF ADIUSTMENT 5.9
5.14 FILTER SCALE 5.9
5.15 KEYBOAAO $1 / 3$ 5.9
616 EXTERNAL FILTER CONTROL 5.9
5.17 AMOUNT OF CONTOUR 5.9
518 FILTER CONTROL 5.9
519 AMOUNT OF MODULATION 5.9
820 FILTER CONTOUR 5.9
5.21 DOUBLE TRIGGERING 5. 10
5.22 LOUONESS CONTOUR $5 \cdot 10$
5.23 EXTERNAL LOUONESS CONTROL UNIT 5.10

TABLE OF CONTENTS \{Continued\}

524 NOISE 5.10
525 CONTOUR GENERATOM BALANCE 5.10
\$,26 EXTERNAL SIGNAL INPUT 5.10
527 AUDHO NOISE GENERATOR 5.10
5.28 GLIDE 5.10
5,29 KEYBOARD PITCH CONTACTS 5.11
5.30 OSCILLATOR ADJUSTMENTS FOR 8OARO 5.11
531 OSCILLATOR RANGE 5.11
5,32 OSCILLATOR 1 TUNING 5. 11
5.33 OSCILLATOR 2 AND 3 TRACKING 5. 11
5.3 OCTAVE ADMUST $5 \cdot 11$
5.35 RANGE OF TUNE, PITCH AND FREOUENCY ADJUST CONTROLS 5.11
536 OSCILLATOR 3 WIDE RANGE 5.12/6.0
537 MODULATION OF OSCILLATOR 5.12/6.0
538 EXTERNAR CONTROL OF OSCILLATOR 5.12/6.0
6 KEVBDARD MAINTENANCE 5. 12/6. 0
81 CLEANING 5.12/6.0
62 KE YBGARD ADJUSTING PROCEDURE 6.1
7 REPLACEMENT PARTS LIST 7.0
11 ORDERING 7-0
8 MODIFICATIDNS 8.1
81 SERVICE BULLETINS. 8.1
82 OSCILLATOR BOARD ASSEMBLY B. 1
8.3 CONTOUR GENERATOR ASSEMBLY B. 1
8.4 POWER SUPPLY ASSEM8LY 81
85 FILTER ASSEMBLY 8.1
8.6 KEYBOARD CIRCUIT PRINTED CIRCUIT BOARO NO. 2 8.1
87 MINIMOOG OSCILLATOR TUNING 8.2
88 OSCILLATOR BOARO NO. 1. POWER SUPPLY CONNECTION ANO OCTAVE BUFFER 8.2
9 SCHEMATIC DIAGRAMS AND PRINTED CIRCUIT 8DARDS 8.8/9.0
LIST DF ILLUSTRATZONS
2.1 Simplified Block Diagram 2.11
2.2 Subassembly Location Diagram $2 \cdot 12$
2.3 Printed Circuit Board Sacket Location. 2.12
2.4 Left Hand Controller 3.1
5.1 Power Supply Adjustment Location Diagram 5.2
$5 \cdot 2$ Rear Panel Tuning Control Location Diagram (Serlas Numbers 10175 And Above) 5.2
$5 \cdot 3$ Filter Adjustment Location Diegram 5-2
5.4 Front Panel Control Settings (Serial Numbers 10175 And Below) 5-2
5. 5 Front And Rear Panel Location (Serial Numbers 10175 And Below) 5.2
6.1 Use Of Keyboard Adjusting Tool 6.1
7.1 Front Panel Control Diagram 7.9
8. 1 Printed Circuit Board 2 Modification B. 3
82 Rear Panel Modification Diagram 8.4
8.3 Front Panel Controls Diagram 8.5
8.4 Rear Panel Adjustment Location Diagram 8.5
B. 5 Connector Modification Diagratn 8.7
8.6 Detave Buffer Schematic 8.8/9-0

MULTIMOOG SYNTHESIZER MOOEL 326A

MICROMOOG
SYNTHESIZER
MODEL 2090

12 STAGE PHASER MDDEL 307A

Specifications

SOUND SOURCES

NO. OF SOUND SOURCES: 5 (3 Oscillatoms, 1 Noise Source, 1 External Input/Microphone Preamp).

OSCILLATOR FREQUENCY. 0.1 so 20 kHz (cycles/second) in six overlapping ranges.

SHORT TERM OSCILLATOR STABILTIY: Better than 0.25%.

OSCIBLATOR WAVEFORM OUTPUTS TYianculay, Sawtooth, Trıengular-Sawtooth Mex (Oscillators 1 and 2 only), Reverse Sawtooth (Oscillator 2 only), 3 widths of Rectangular.

NOISE SOURCE OUTPUTS. White or Fink random waveforms.

PREAMPLIFIER INPUT: 10 millivolts minimum; 2 volts maximum.

PREAMP INPUT LMPEDANCE: 100K ohms or greater.

FILTER

Filler characteristic: Wide-range lowpass filter with vamable-height resonant peak at cut-oif frequency, and $24 \mathrm{~dB} / o c t a v e ~ c u t o I t$ slope.

RANGE OF CUTOFF FREQUENCY: Con tinuously vanable from 40 Hz to 20 kHz (9 octaves).

VOLTAGE CONTROLLED AMPLIFIERS

NUMBER OF AMPLIFIERS: 2 (one controlled only by its. Contour Generator; the other controlled by optional external controlles).

DYNAMIC RANGE OF EACH AMPLIFIER: 80 dB .

CONTOUR GENERATORS

NUMBER OF CONTOUR GENERATORS: 2 (one cantrolling filter through an attenuator; the other controlling the first voltage Controlled Amplifier).

RANGE OF ATTACK TME: 10 milliveconds to 10 seconds.

RANGE OF DECAY TKME: 10 milliseconds to 10 seconds.

RANGE OF SUSTAIN LEVEL: 0 to 100% of contour peak

WIDTH OF SWEEP OF EILTER BY ITS CONTOUR GENERATOR: Continuously variable from 0 to 4 octaves.

AUDIO SIGNAL OUTPUTS

HIGH LEVEL OUTPUT: 0.5 volts typical, with 3 K ohms nomınal output ampedance.

LOW LEVEL OUTPUT: 15 millivolts typical, with 1 K ohm output impedance.

HEADPHONE OUTPUT: 0.3 volts maximum, into standard 8-ohm stereo headphones.

CONTROLLERS

KEYBOARD FUNCTION: Permanently connected to (a) control Oscillators 1 and 2, and (b) trigger Contour Generators. Keyboard may be switched to control Oucillatoz 3 and Filter.

DESCRIPTION OF KEYBOARD: Standard 44 key ($8 \cdot 1 / 2$-octave) organ keybourd. Only lowest key depressed has effect in controlling Oscillators and Filter. Contour Generators are actwated whenever a single key is depressed.

RATE OF KEYBOARD GLIDE: Continuously variable from 1 millisecond to 1 second/octave.

PITCH BENDING RANGE: 5 memitones minimum.

MODULATION INJECTION R.ANGE: 0 to 1-1/4 octaves.

CONTROL AND POWER CONNECTIONS

EXTERNAL PITCH GONTROL INPUT CHARACTERISTIC: I volt change produces 1 octave frequency change, ± 2 percent.

EXTERNAL FLLTER CONTROL INPUT: 1 polt change produces I octave change in cutoff frequency, ± 5 percent.

EXTERNAL AMPLIFIER CONTROL INQUT: Linear control voltage/gain relationship. Gain range spanned by 0-4 volts.

EXTERNAL TRIGGER INPUT Switch-clasing activates both Contour Generators.

AUXILIARY DC POXER SOCKET: +10 volts and $\mathbf{- 1 0}$ voltt at 50 millamperes.

DIMENSIONS AND WEIGHT

OVERALL SIZE (with Front Panet down): $28.5 / 8$ inches (72 cm) wide, $17.1 / 8$ inches (41 cm) deep, $5 \cdot 3 / 4$ inches (14 cm) high.

NET WEIGHT: 28 pounds (12.7 kg).
SHIPPING WEJGHT: 45 pounds (20.5 kg).

POWER REOUIREMENTS

$100-135$ and 200.270 volts, $50.60 \mathrm{~Hz}, 40$ watts maxamum. Spectications subject to change.
major differences in the two boards is that common summing is used on the new board while individual summing is used on the old hoard.

All three ascillators have individual octave switching signals applied to three adjustable potentiometers providing precision octave switching of the individual oscillators.

2.2.2 MODULATION MIX AMPLIFIER

A modulation mix amplifier selects the output of oscillator 3 or noise, or both, sums and routes them to the smount control in the left hand controller.

2.2.3 NOISE GENERATOR

The Minimoog contains a noise generator using a transistor generating white noise in the range of -60dB which is amplified to produce white, pink or red noise, selected by the noise selector switch. White or pink noise is used for audio and pink or red for modulation.

2.2.4 HEAD PHONES

An amplifier is provided to supply sufficient current to drive standard stereo headphones.

2.2.5 POWER \$UPPLY

A dual output power supply with the rectifier on Board 3, the filter on Board 5 and the transformer on the chassis, provides $亡 10$ volt regulated power. The inpat is either 115 or 230 voll as sellected through a switch on the top of the panel.

22.6 KEYBOARD CIRCUIT

The keyboard circuit consists of a temperature compensated current source, the actual keyboard and a track and hold amplifier. The keyboard voltape is routed to a track and hold amplifier where, with no keys depressed, the circuit is its a hotd mode. With a key depressed, the pitch voltage occurs before the trigger and the trigger goes of before the pitch voltage is released.

227 A-440 REFERENCE OSCILLATOR

The A-440 reference oscillator is based on a standard Wein Bridge oscillator design. The bridge has a phase shitt of etero degrees at approximately 440 Hz , supplying a positive feedback and causing the circuit to oscillate. The frequency of the oscillation is set by a resistor. Three capacitors and a resistor limit the signal amplitude to a transistor collector resulting in a clean sine wave output.

2.2.8 EXTERNAL AMPLIFIER

The external proamplifier is fed to the EXTERNAL INPET VOLUME control where the out. put is fed through a 200 gain amplifier and in turn routed to the EXTERNAL INPUT ON/OFF switch. This switch allows an external source to be summed with other signal sources.

2.2 .9 OVERLOAD LAMP DFIVER

The output from the 200 gain amplifier is also fed to the overload lamp driver circuit. The amplitude envelope of the signal is detected and fed to a voltage divider. When the AC input voltage reaches ap proximately 1.2 volts, the OVERLOAD lamp illumi nates and is held for a suitable period.

2.2.10 VOLTAGE CONTROLLED FILTER

"Audio" signals are summed and a differential sigmal current is gemerated and applied to a fitter ladder. Cutoff frequency of the flter is controlled by the standing current through the ladder. The higher the standing current, the higher the cutoff frequency. A differential signal is created and fed to a gain amplifier which converts the dufferential input to a single ended output in turn fed to a transistor in the voltage control amplifier. The FILTER EM. PHASIS control is also connected to the gain amplin fier providing positive feedback at the cutoff frequeacy. As the amount of emphasis is increased, the Q itcreases and the filter starts a sine wave oscillation at the cutolf frequency.

The cutoff frequency control current originates in an exponential voltage to a current converter. Control voltages from the external input, keybaard
switches, modulation and the contour generator are summed and fed to the exponential convertor. A resistor sets the keyboard scale at one volt per octave and in turn the front panel filter CUIOFF FRE QUENCY control is calibrated in a similar manner.

2.2 .11 VOLTAGE CONT ROLLED AMPLIFIER

The input signal from the voltage controlled filter is AC coupled to a differential transconductance multiplier. The gain of the transistor is current controlled; the areater the current, the bigher the gain.

2.2.12 CONTOUR GENERATORS

Separate contour generators ase provided for both fitter and loudness contours. Each contour generator has its own controls consisting of ATTACK, DECAY and SUSTAIN. Contour generazors are triggered by an internal voltage trigger from the keyboard and/or the rear panel S-TRIG jack. The amount of contour control adjusts the sweep of the voltage controlled lowpass filter.

2.3 "D" OSCILLATOR PRINTED CIRCUIT BOARD
 (Refer to Figures 9-1 and 9.2)

The new " D " oscillator printed circuit board is a plug. in replacement card for eartier oscillator boards. This board contains three precision voluage controlled oscillators with a variety of control inputs and a number of waveform outputs for each of the three oscillators.

The schematic diagram shows not only the oscillator board itself, but several of the associated control circuits and output selection circuits for circult clarigy. A variety of input control signals namely, PTTCH WHEEL, TUNE, MOD WHEEL and OSCILLATOR (three oscilators) are summed vis the "primary osceilator summer" amplifier IC \& A. This common summing (as opposed to individual summing sections for these contral inputs in the old Minimoog oscillator printed circuit board) guarantees that when the oscillators track the keyboard input, they also track these other common drive signals. The output of the primary oscillator summer, IC1A , is scaled at this point to provide 1.00 voll per octave by adjusting
oscillator scale adjust potentiometers R16, R55 and R91 of the three oscillator sections. These three scale potentiometers are adjusted so that the three oscil. lators on each board track the keyboard drive signal exactly. Final adjustments of these scale potentiometers must be made for an assembled unit, since the keyboard scale factor for different frames will vary slightly.

All three oscillators have individual octave switching signals applied to the octave adjust potentiometers R18, R5̄? and R92. These octove adjust inputs provide precision octave switchung of the individual oscillators, and as the scale adjusts, must be adjusted to thetr final value in the assembled unit.

Oscillator 2 has an additional input labeled OSCILLATOR-2 FREQUENCY which provides for tuning \pm a musical fifth. Oscillator 3 has two addi. tional inputs which are both driven by the OSCLL LATOR-3 FREQUENCY CONTROL providing \ddagger a musical fifth control when the OSCILLATOR-3 CONTROL is on (namely, when the keyboard control voltage is applied to oscillator 3 by the switch ting FET Q2) or providing ± 3 octaves of control when the OSCIELATOR-3 CONTROL is off. Wben this control is off, both feed resistors R96 and R97 are connected to the OSCILLATOR-3FREQUENCY front panel potentiomeler.

The various frequency control inputs for the three osciliators are summed together in amplifiers 1C1B, IC3A and IC3B. Resistors R22, R62 and R100 provide for bias current temperature drift compensa. tions. It should be noted at this point that all three oscilators are identical from this porat on, except for the addition of a reverse sawtooth circuit associated with Q20 in oscillator 3. For this reason we will discuss the detailed operation of only oscillator 3 .

The composite frequency control signal appearing at the output of IC3B is applied to the precision voltage divider comprised of R101 and R102 which divides the composite frequency control signal down to 21.0 mV octave. This divided down frequency control signal is applied to the base of the exponentiating transistor Q17 which is contained along with its companion transistor Q18 in a tempera ture stabilized package, IC15 (Fairchild 726). This
integrated circuit is maintained at a constant temperature of approximately $78.4^{\circ} \mathrm{C}$ by eircuitry internal to the integrated circuit. The actual temperature of the chip is set hy the resistor R105. Transistor Q18 is a $\mathrm{V}_{\text {he }}$ compensation transistor whose collector current is maintained constant by a combination of R108, RI06 and IC16. The plus input of C 16 is maintained at ground. The output of IC 16 sinks current through the emitter of Q18 such that the voltage appearing on pin 2 of 1 C 16 is also ground. If we assume that there is no bias current clowing into the negative input of 1 C 16 (valid since this integrated circuit is a FET input operational amplifier) then we see that 5.0 microamperes of current is flowing into the collectar of transistor Q18, regardless of the current drawn through the emitter of transistor Q17. This circuit configuration provides a precision temperature compensated hase emitter reference subtraction voltage for the exponentiating transistor Q17. The current flowing into the collector of Q17 is exponentially related to the voltage applied to the base on pin 1. This current is applied to the oscillator integrating capacitor C29 v12 the "high end comp" potentiometer R109. The reference side of the integrating capacitor C29 is tied to a 5.0VDC reference rail derived from the +10 VDC rail via the resistor divider network R103 and R104, and the voltage follower IC14A whose output is bypassed to ground via C28. The FET Q14 shunts the integration capacitor C29 to +5 phenever the voltage appearing at the input of the comparator amplifier 1 C17 reacbes ground. The voltage appearing on the lower side of the integrating capacitor C29 is a ramp headed toward 0.0 VDC . The voltage appearing on the integrating capacitor plus the voltage drop across the "high end comp" potentiometer R109 is buffered by the voltage follower comprised of 1C17 and emitter follower Q15, R114. R115 and R116. The buffered negative ramp appearing on the emitter of Q15 is applied to the comparator IC18B which switches the shunt FET Q14 on when the ramp voltage reaches zevo via coupling diode CR5 and capacitor C31. When the shunt transistor Q14 tums on, the capacitor voltage is returned to +5 VDC which in turn causes the shunt FET Q14 to turn off via the buffer amplifier IC17, the comparator IC18B and pull up resistor R110. Then the negative going ramp integration begins again. As the integration current supplied via R109 is increased, a residual voltage up and above the linear ramp signal appearing across

R109 shows up at the voltage followey IC17 and therehy at the voltage comparator IC18B. This residual voliage means that the actual ramp value appearing on the capacitor required to trigger the comparator $1 \mathbf{C 1 8 B}$ is reduced at higher frequencies. It is possible to set R109 so that the effect of nonlinearities due to a finite reset time of the capacitor C29 are compensated for by this additional residual voltage. Resistor R112 and capacitor C34 provide for a small amount of postive regeneration (Schmitt trieger action) to insure clean switching during sawtooth reset. The sawtooth voltage appearing at the emitter of Q15 is applied to the bias network comprised of R114, R115 and R116. The values of this network are chosen so that the voltage appearing on the sewtooth output (pin 13B) is precisely +1.75 VDC to -1.75 VDC . Resistor R137 is a selected resistor whose value is chosen to achieve accurate symmetry in this output waveform. This symmetry is important to achieve an accurate 50 percent duty cycle of the rectangular waveform appearing on pin 15B.

While the sawtooth appearing on the emitter of Q15 goes precisely from +5 VDC to 0.0 VDC , a voltage equal to $V_{\text {be a }}$ ahove this is available at the base of Q15. This base voltage is also applied to the triangular wave converter transistor Q16. Trianguiar conversion circuit comprised of Q16,R118 and R120 aets as a precision inverter as the sawtooth waveform travels between OVDC and +2.5 VDC. From 2.5 VDC to 5.0VDC transistor Q16 is in saturation with essentially zero collector to emitter voltage drop. In this condition the emitter of Q16 follows very closely the emitter of Q15 which, of course, is the sawtooth waseform. Since there is negligible col-lector-to-mitter voltage drop in this saturated condition, the collector of Q16 then follows accurately the sawtooth waveform between 2.5 VDC and 5 VDC . Therefore, during half of the cycle the triangular conversion circuit acts as a precision inverter and during the second half of the cycle it acts as a precision voltage follower, resulting in a precision triangular waveform output. This precision triangular waveform appearing at the collector of Q18 is then applied to the buffer with gain comprised of CC14B, R121 and R122 via the de-glitehing RC network comprised of 8119 and C35. This suppresses the fast transient which occurs in the triangular wave output which occurs during tbe sawtooth waveform
reset. The output of the follower 1 C 14 B is a triangular waveform which goes from +1.75 VDC to -1.75 VDC .

The sawtooth waveform appearing on the output pin 13 B is applied to the rectangular wave shaping circuit comprised of 1C18A, R117, R125 through R127, and R131 and R132. A control voltage which ranges between OVDC and -2.5 VDC is applied to the negative input of C188 via the biased divider net. work R126 and R127. The sawtooth waveform is applied to the positive input of IC18A wia R117. Resistor R125 provides a very small amount of positive regenerative feedback to give clean square wave switching. When the control voltage on pin 16 B is 0.0 VDC , a square wave output swinging between the negative rail and ground appears on the output of IC18A. This voltage is divided down by R131 and R132 to give a OVDC to -3.5VDC triangular wave output. When the voltage applied to the control input on 16 B is taken to -2.5 VDC , a 15 percent duty cycle should appear on pin 1 of IC18A. All of this paragraph is relepant to oseillators 1 and 2. However, oscillator 3 has a sawtooth inverter circult comprised of R123, R124, R128, R129, R130, R133, R134 and Q20. This is a standard common emitter transistor inverter with a biased network on the output comprised of R133 and R134 to provide a reverse sawtooth signal which goes from $\div 1.75 \mathrm{VDC}$ to -1.75 VDC (unloaded).

A minus 5 volt regulator comprised of the voltage divider R9, R10 and emitter follower comprised of IC2, R11, R8 and Q1 provides a precision -5 wolk potential for the octave switching network shown to the far left of the schematic. This circuit has remote sense via pin 18A to eliminate effects of edge connector voltage offsets.

Combined sawtooth and triangulat waveforms are achieved by the mix resistor shown to the righthand side of the schematic, off the printed circuit board.

It should be noted that the voitage applied to the base of exponentiating transistor Q17 is scaled so that 21.0 mV equals one octave. This means that a 17.5 microvalt level on the base of Q17 is equiv. alent to 1 percent. If an accuracy of 1 percent is required, then all noise contributions appearing at
the base of Q17 must be kept below 17.5 microvolts. While this is not an unusually tight specification for a 741 type operational amplifier, occasional problems may be encountered. Popeorn noise or supply decoupling in the integrated circuit or supply spiking due to larger board trace resistances may lead to occasional instruments which exhibit jitter.

2.4 MOOULATION MIX AMPLIFIER

There are two modulation signals available in the Minimoog; the output of Oscillator 3 and noise. Oscillator 3 produces periodic modulation utilizing triangle, sawtooth and pulse waveforms. Noise produces random modulation utilizing noise voltages in the pink and red spectrum. The Modulation Mix amplifier selects either or both modulation signals, sums them and routes them to the Modulation Amount Control in the Left-hand controller. The output of OSCILLATOR-3's WAVEFORM SELECTOR SWITCH, SW8, and the output of the NOISE SELECTOR SWITCH, SW14, are fed thru R23 and R24 respectively and to the MODULATION MIX potentiometer R3. The wiper of R 23 is connected to ground and, therefore, when the MODULATKON MIX potentiometer is zotaled, it pans between the two modulation signals. The two ends of R3 feed the input resistors of the Modulation Mix amplifier composed of QT, Q17 and Q18. The Modulation Mix amplifier is an invertor with a gain of 2 . The output of the modulation mix amplifier is fed through R57 to the AMOUNT of MODULATION control in the Left-Hand Controller. Resistor R38 and capacitor C14 provide phase compensation to the amplifier to suppress oscillation.

2.5 NOISE GENERATOR

The noise generator of the Minimoog uses a small signal transistor operated in the avalanche mode. The base-to-emitter junction is biased in reverse breakdown which generates white noise in the range of -60 dB . This signal is amplified to produce white, pink and red noise. The noise selector switch selects white or pisk noise for audio and pink or red noise for modulation. Transistor Q15 is the noise generator transistor which is selected, burnedin and retested for uniform noise clear of pops and
clicks. Resistor R47 and capacitor C25 form a noisetree bias supply for this transistor. The noise on Q15 is fed to common emitter amplifier Q12. Resistor R26 adjusts the gain of this amplifier until the white noise output is -5 dB . Q4 forms an emitter follower which provides a low impedance output drive for the white noise cireuit. The white noise output is filtered hy R16, C3, R8, C2 and R13 to protide pink noise. Transistor Q3 amplifies the pink noise and provides a low impedance output. The pink noise output is then filtered by 212 and C7 and amplified hy Q6 to provide the red aoise output.

2.6 HEADPHONE AMPLIFIER

The headphone amplifier in the Minimoog is a push-pull current amplifier that provides sufficient current to drive standard 8 ohm headphones. The signal from the final VCA is fed to the beadphone volume control R21. This is AC coupled through C19 through driver transistor Q16. Diodes, CR1 and CR2 provide the 1.2 voltage drop required to bias Q10 and Q11 into class AB operation. CR1 and CR2 ase connected to Q10 and Q11 for temperature compensation. Audio signals are AC coupled through C21 into the headphone output jack.

2.7 POWER SUPPLY

The Minimoog employs a ± 10 volt dual regulated supply. The regulators are located on the left hand portion of Board 3, the rectifier and filter capacitors are located on Board 5, and the AC line circuitry and low voltage transformer are mounted on the chassis. The regulated supply can operate on either 115 volt or 230 volt $A C$ line voltage selected hy a rear panel line voltage switch. The supply has both primary $A C$ line fuses and secondary $D C$ line fuses.

Raw AC from the line eord passes through fuse F3 and to POWER switch SW20. VOLTAGE SELECTOR SW21 connects the primaries of $T 11$ in series for 230 volt operation and in parallel for 115 volt opera tion. The step-down secondary voltage from T1 is applied to rectifier Board 5 .

The low voltage $A C$ is bridge rectified by diodes CR1 through CR4 on Board 5. Capacitors Cl and

C2 filter the raw DC to provide unregulated ± 15 volts. This raw output is fed through secondary fuses F1 and F2 to Board 3. Raw +15 volts is also fed to various boards in the system to provide additional power.

The power supply on the Minimoog employs two series pase voltage regulators. The +10 volts is regulated first and the -10 volts tracks the +10 voltage. The +10 voltage regulator is composed of Q1, Q2, Q5, Q8, Q9 and referenced diode CR3. Diode CR3 is the master voltage reference for the -10 wolt regulator and, therelore, the master reference for the entire system. The negative voliage regulator is composed of Q13, Q14, Q19 and Q20.

The +10 volt regulator operates in the following manner: Resistor R44 feeds 7.5 milliamperes through zener drode CR3 giving a 6.2 voltage drop across CR3. This 6.2 volts is virtually insensitive to hoth changes in temperature and current, therehy providing a very stahle voltage reference. Transistors $Q 9$ and Q8 compare the voltage drop across CR3 with a voltage drop at the wiper of R21. To provide 6.2 volts at the wiper of R21, 10 volts must appear across the total resistor string comprised of R39 abd R21 aod R34. Therefore, the voltage across CR3 sets the +10 volt power supply voltage. Transistors Q8, Q9, Q5, and Q1 form a negative feedhack regulator to maintain the voltage at exactly +10 volta. If the voltage on the collector of Q1 rises ahove 10 volts. the voltage on the hases of Q8 ends up heing lower than the voltage on Q9. Transistor Q9 cuts off the drive to $\mathrm{Q5}$, which reduces the drive to Q1. This hriags the vollage on the collector of Q1 hack to +10 volts. Variahle resistor $\mathbf{R 2 1}$ sets the output voltage to precisely $+\mathbf{1 0 . 0 0 0}$ volts. Transistor Q2 only operates during the initial turn on of the instrument. When the power is first applied, the collector of QI has no voltage on it, therefore the regulator will not function. Fransistor Q2 has no drive and is, therelore, turned ofl allowing raw DC to he fed through R5 and R14 to the hase of Q5, turning Q5 on. Trancistor Q5 supplies drive to Q1, turning Q1 on causing the voltage on the collector of Q1 to rise towards +10 volts. As this voltage rises, Q2 is turned on, therehy removing the raw DC feed to Q5 allowing the regula. tor to operate normally. Plus 10 volts is remote seased at the oscillator card to insure a stahle oscillator voltage. Resistor $\mathbf{R} 45$ provides +10 volt sensing
in case the internal sense lines to the oscillator open. Witbout R45, the regulated voltage would jump to the raw supply voltage if the sense line opens. Resistor R45 protects the electronic circuitry from damage. The various capacitors throughout the system suppress parasitic oscillations.

The -10 volt supply is referenced to the $+\mathbf{1 0}$ voltage and the operation is identical to the +10 wolt supply. Resistors R65, R58 and R52 form a voltage divider across the +10 and $\mathbf{- 1 0}$ volt supply rails. Transistors Q13 and Q14 compare the voltage on the wiper of R58 with ground potential. Transistors Q13 and Q14 adjust the drive to Q20 to maintaln ground potential on the wiper of R58 which provides $\mathbf{- 1 0}$ volts on the rail. Variable resistor R58 adjusts the -10 voltage to precisely -10.000 volts. Again, remote sensing is used for uscillator stability with sense resistor R66 providing sense line protection and various capacitors are placed throughout the regulator to insure stable operation. Both the +10 volt and -10 volt supply voltages are applied directly to the oscillators and to Board 5 for distribution to the rest of the syscem.

2.8 VOLTAGE CONTROLLED FILTER

Audio signals from the three VCO's, the noise generator, and the external audio input are summed and applied to the hase of Q29. Trasisistors Q29 and Q30 generate a differential signal current and apply it to the lowpass filter ladder. The four-pole lowpass filter ladder is a patented design consisting of the base-emitter junction of transistors Q2, Q3, Q10, Q11, Q19, Q20, Q23, Q24, and capacitors C16, C11, C7 and C3. Cutoff frequency of the filter is controlled by the standing current through the ladder. The higher the standing current, the higher the cutoff frequency. The filtered signal is taken differentially across C3 and therefore the control current is rejected. This differential signal is fed to the gain recovery amplifier consisting of $\mathrm{Q} 5, \mathrm{Q} 6, \mathrm{Q} 7$, and $Q 8$ which converts the differential input to a single ended output. This is then fed to Q16 in the voltage control amplifier. The FILTER EMPHASIS control, R14, is also connected to the gain recovery amplifier to provide positive feedback at the cutoff frequency. As the amount of emphasis is inereased, the Q increases until the filter hreaks into a sine wave
oscillation at the cutoff frequency. The FILTER EMPHASIS control is calibrated by resistor R73.

The cutoff frequency control current originates in an linear voltage to exponential current convertor consisting of a matched NPN-PNP pair Q26 and Q28. Control voltages from the external input, the keyboard sritches, modulation, and the contour generator are summed hy their individual control resistors and ted to the exponential convertor. Resistor R49 sets the keyboard scale at one solt per octave and R39 calibrates the front panel filter CUTOFF FREQUENCY control.

29 VOLTAGE CONTROLLED AMPLIFIER

The input signal from the voltage-controlled filter is AC coupled to the base of Q16. Transistors Q16 and Q15 form a differential input transcon. ductance multiplier. The pain of the differential amplifier is controlled by the current through Q18; the greater the current, the higher the gain. Transistor Q18 is connected to the loudness contour generator which gives the signal from the VCF its overall loudness contour. Resistor R14 adjusts the common mode rejection of the first stage to minimize pops and clicks resulting from the control voltage. The output of Q16 and Q15 is fed to another transconductance multiplier consisting of Q14 and Q13. The control voltage for this multiplier comes frorn the EXTERNAL LOUDNESS control input jact, J3. This shorting jach applies â positive bias which keeps the VCA stage ON when external control of loudness is not necessary. When an 1120 Foot Pedal controller or another volkage controller is plug. ged into $\sqrt{3}$, this internal connection is broken and the external applied control voltage controls loudness. Resistor R12 balances this stage to minimize pops and clicks. Transistors Q12 and Q17 convert the differential signal to a sigmalended output voltage which is routed to the main output and headphone output VOLUME controts. The high level output signal appears on 34 while a resistor divider consisting of R5\% and R.58 provide the low level output.

2.10 CONTOUR GENERATORS

The Minimoog has separate contour generators for both filter and loudness contours. Each contour
generator has its Owa separate ATIACK, DECAY, and SUSTALN controls. The final decay rate is equal to the initial decay rate and is selected by means of a switch on the left hand controller. The contour generators are triggened by an internal voltage trigger from the keyboard and/or the rear panel S-trigger jack. The filter contour generator consists of the following parts:

- R.SFlip-Flop-Q1 and Q4
- Attack Time Electronic Switch - Q5
- Decay Time Electronic Switch - Q7
- Sustain Driver - Q8
- Voltage Follower - Q22 and Q21
- Trigger Driver - Q20
- Voltage Trigger Driver - Q12
- ATTACK TIME Control - R12
- DECAYTME Control-R15
- SUSTAIN LEVEL Control-R18
- Amount of FILTER EMPHASIS Control - R17

When there is no external S-trisser applied or there are no keys depressed, the contour generator is in the off mode. In this mode, transistor Q20 is kurned off and therefore, Q12 is turned on. Current is fed through R37, R35, and CR1 to the base of Q4, holding the flip-flop in the reset mode. Q12 shorts CR2 and CR7 to ground eliminating the sustain voltage and discharging C5 to ground. Therefore, the outpat trom pin 11 of the contour generator is ground.

When any key on the keyboard is depressed, the following events occur. The kevbourd triger on pin 20 of the contour hoard turns Q20 on. This removes the reset voltage from the flip-flop and turns Q12 off removing the short on CR2 and CR7. The voltage rise on the collector of Q12 is AC coupled to the
hase of Q1 turning the flip-flop on. This turns Q5 on putting +9.3 volts on the collector of $Q 5$. Current is then fed throurh the ATTACK TTME potentiometer R12 to C5 resulting in an exponentially rising attack voltage on C5. The resistance of R12 sets the RC time constant and, therefore, the attack time. The voltage on 65 is followed by Q22 and Q21 and appears at one end of R33. When the voltage on R33 reaches approximately 5 volts, CR3 conducts, turning on Q4 and resetting the flip-flop. This turns Qu off and turas Q7 on. C5 is then discharged through the decay control, R16, to the sustain voltage on the emitter of Q8. The resistance of R16 sete this initial decay time. The SUSTAIN LEVEL potentiomater, R18, connected to pin 12, sets the voltage on Q8 which sets the sustain level. After the initial decay time, C5 is maintained at the sustain level for as long as a key is depressed.

When all keys are released, the contour genera. tor goes into the final decay mode. There are two final deray modes available which are selected by the final DECAY switch on the Left Hand Controller. In the final DECAY ON position, CR7 is open circuited. When all the keys are released, the emitter of Q8 is shorted to ground and $C 5$ is discharged through R15 resulting in a final decay constant rate to the initial decay. In the final DECAY OFF position, CR7 is coupled through a 1.5 K resistor to the collector of Q12. When all the keys are yeleased, Q12 discharges C5 abruptly resulting in no final decay. The output from pin 11 is passed through the AMOUNT OF CONTOUR control R17 and then to pin $\mathbf{1 6}$ on hoard numher 4. The AMOUNT OF CONTOUR control adjusts the sweep of the voltage controlled low pass filter.

The loudneas contour generator is composed of the following parts:

- Set Reset Flip-Flop - Q25 and Q15
- Attack Time Electronic Switch - Q16,R13
- ATTACK TIME Control-R13
- Decay Time Electronic Switch - Q13
- DECAY TLEE Control - R16
- Voltage Follower - Q3 and Q2
- Sustain Driver-Q19
- SUSTATN LEVEL Control - R19

The loudness contour section also utilizes Q20 and Q12, the trigger drivers and the final decay switch. Operation of this clrcuit is identical to the filter contour generator.

Both contour generators are driven from a decoupled supply circut which is derived from the +15 raw DC voltage. Since the timing capacitors can generate 10 milliampere charging spikes, the decoupling circuit keeps these spikes off the regulated $=10 \mathrm{~V}$. The base of Q26 is referenced to the +10 voltage so a +9.3 voltage follower appears at the emitter. An external Strigger is connected to the base of Q12 through R42 for use with such accessories as the Moog SAMPLE and HOLD and RIBBON CONTROLLER.

2.13 A-440 REFERENCE OSCILLATOR

The A-440Reference Oscillat or in the Minimoog is based on a standard Wien Bridge oscillator desim. The Wien Bridge consists of the following parts; R17, C13, R68, R71, C19, R55, and R50. The input of the bridge is connected to the collector of $\mathrm{Q9}$ and the output of the bridge is connected to the base of Q22, where it is amplitied by Q22 and phase inverted by Q9. At approximately 440 Hz the Wien Bridge has a phase shift of zero degrees, supplyine positive feedback, and the circuit will oscillate. The frequency of the oscillation is set by R68. Capacitors CR3, CR4, C12, and resistor R27 limits the signal amplitude at the collector of Q 22 resulting in a clean sine wave. Transistor Q4buffers the output to reduce circuit loading and provides a low impedance drive to the VCA. The A-440 switch, SW18, activates the A. 440 reference oscillator by connecting the + rail to +10 volts.

2.12 EXTERNAL PREAMPLIFIER ANO OVERLOAD LAMP ORIVER

The external preamplifier signal is fed into 36 to EXTERNAI, INPUT VOLUME control R9. The
output of R9 is fed through R.78 and C23 to the base of Q27. Transistors Q27, Q32, and Q33 form a 200 gain amplifiex. The output of Q33 is fed through C20 to the EXTERNAL INPUTT ONOFF switch, SW10. This switch allows an external source to be summed with the other sigmal sources. The output of Q33 is also ted to the overload lamp driver circuit. Transistor Q25 detects the amplitude envelope of the signal and feeds that to voltage divider R56 and R48. Q33 follows this voltage and applies it to the base of Q34. When the AC input voltage on $Q 25$ reaches approximately 1.2 volts, Q34 turns on lighting the OVERLOAD lamp, B1. R56 and R48 set the trigger threshold and CR14 bolds the OVERLOAD lamp on for a suitable time period.

2.13 OLO MINIMOOG OSCILLATOR BOARO (SERIAL NUMBERS BELOW 10175)

The Minimoog oscillator board contains three independent voltage control oscillators whicb produce sawtooth, triangle, and pulse wave forms. The master TUNE control is provided to transpose the entire instrument. Oscillators two and three have individual tune controls for transposing individual oscillators. Each oscillator also has its own independ ent octave and waveform select switches. In addition, oscillator three can also be used for modulation purposes.

2.14 - 5 VOLT REFERENCE SUPPLY

The -5 volt reference supply is derived from the -20 volt rall and is used as a reference voltage on the oscillator board. Resistors R173 and R177 divide the -10 volt supply to -5 volts and apply that to the buffer IC9 and Q38. The -5 volts appears at the emitter of Q238 and is routed through the harness to the octave switches and then back to the oscillator board. The -5 volts is remote sensed at the octave switches to compensate for connector resistance.

2.15 OCTAVE SWITCHES

Current from the -5 volt supply flows through the octave ressitors, R25 to R26, and then through R169 and R168 to ground. Resistor R168 varies the voltage drop across the octave resistors which adjust the octave scaling. One voltage divider is shared by
all three octave switches. The output Foltage from each octave switch goes through its own separate operational amplifier huffer to each one of the oscillators.

2. 16 OSCILLATOR ONE

Voltages from the pitch bend wheel, tune potentiometer, keyhoard, modulation wheel, external oscillator input, and the octave switch are summed and inverted by 1C1. This voltage is applied to an exponential current convertor consisting of transistors $Q \mathrm{Q}, \mathrm{Qh}$, and Qc . The exponential convertor consits of two major parts; exponentiating uransistor, Qa, and a constant current reference consisting of Qh, Qc, and 1C3. As the input voltage on IC1 increases, the output of IC1 decreases, causing the emitter voltage on Oh to decrease, in turn causing the collector current of Q_{a} to increase. A one volt increase on the keyhoard voltage input causes a 20 mV decrease at the output of IC1 which generates a one octave increase in collector current from Qa . This gives the oscillator the scale factor of one volt per octave frequency change. The exponential characteristic of Q a is not perfect situce there is a scale factor change with temperature. TC resistor, R20, changes the gain of ICI with temperature to compensate for this effect. Also, hecause of hase resistance in the transistors, the exponential relationship tends to flatten at bigher frequencies. Resistor R42 applies positive feedhack around IC1 to compensate for this effect. Resistor R11 sets the frequency of the oscillator and Re8 sets the keyboard scale for one volt per octave. An RC network across R 78 phase compensates to maintain AC stahility.

The oscillator is a precision sawtooth relaration oscillator consisting of timing capacitor C 1 , and 2 x FET input amplifier consisting of Q7, Q8, Q9, Q4, and $Q 3$, a Schmitt trigger consisting of $Q 5$ and $Q 6$, and discharge transistor Q10. The cycle starts with Cl fully discharged and Q10 off. This leaves the input of the FET amplifier at zero yolts and the collector of Q3 at +4 volts. Transistor Qa pulls a constant current out of Cl causing a linearly decreasing ramp voltage. When the voltage on C1 reaches -4 volts, the voltage on the collector of Q3 also reaches -4 volts. This causes the Schmitt trigger, Q5 and

Q6 to fire, turning on transistor Q10 which resets C1 to zero. Therefore, a +4 volt to -4 volt sawtonth appears on the collector of Q3. The frequency of the oseillator is controlled by the current comine from Q3; the higher the curent, the higher the frequency. The amplitude of sawtooth generator is divided by R33 and R34 and applied to the waveform switch.

The triangle wave is derived from the original sawtooth by Q2. The +4 volts on the collector of Q3 causes the hase to-collector junction of Q 2 to he forward hiased resulting in +3.3 volts on the collector of Q2. This voltage will follow sawtooth vollage until the sawtooth passes zero volts. Then Q2 switches state causing the hase-to-mitter junction to forward hias forming an inverter. As the voltage on the hase of Q2 continues to drop, the voltage on the collector of Q2 will rise, generating a triangle waveform. Transistor Q1 buffers the output and sends that to the waveform switch.

The variahle duty-cycle pulse is also derived from the sawtooth by Schmitt trigger transistora Q11 and Q12. The sawtooth is summed with a hias voltage hy R1 and R40. The hias voltage causes the Schmitt trigger to fire at a specific point on the sawtooth. Changiag the hias voltage generates a variahle duty-cyele pulse. This pulse width is controlled hy the waveform switch and varies from a 50 percent to a $\$ 5$ percent duty cycle.

All waveforms are sent to the WAVEFORM select switch, SW6, the LEVEL control R45, and the OSCILLATOR ONMFF Ewitch SW9. Resistors R32, R33, and R34 supply the hias voltages for the pulse width eircuit. Resistors R36 and R37 on the WAVEFORM select switch sum the swwtooth and triangle to generate another waveform.

237 OSCILLATOR TWO

Oscillator two is identical to oscillator one with one exception. Oscillator two has its own tune potentiorneter mo that it can he varied in frequency from oscillat or one.

2.18 OSCILLATOR THREE

Oscillator three can he used as a tone oscillator or as a rodulation oscillator. A switch. SW2,
interrupts the keyboard, modulation, external, and pitchbend voltage on oscillator three and also increases the range of the oscillator three's tune control. This allows oscillator three to be used as a wide ramge modutation oscillator. Transistor Q37 inverts the sawtootb of oscillator three and applies that to the WAVEFORM select switch so this waveform can also be used for modulation.

2.19 KE YBOARD CIRCUIT

The keyboard circuit senerates a low note priority pitch woltage and a +10 V (V-Trig) to ground every time a key is depressed. The keyboard circuit consists of three parts: a temperature compensated current source, the actual keyboard, and the track and bold amplifier.

Transistors Q9 and Q11 form the temperature compensated current source. Resistors R20 and R21 apply +5 volts to the base of Q11. Since Q9 and Q11 are complimentary matched NPN/PNP pairs, +5 voits appears at the emitter of Q9. This causes 8.5 mijliamperes to flow through RL , out the collector of Q9, and through the $\mathbf{4 3}$ resistors in the keyboard string to ground. This current flowing tbrough the 10 ohm resistors in the keyboard string gives the characteristic 1.0 volt per octave keyboard voltage. Stoce the low end of the keyboard is grotunded, the keyboard roltage is the lowest note depressed giving low note priority. The matched pair of transistors result in temperature compensation and C3 stops parasitic oscillations in the two transistors.

The keyboard voltage is routed to a track and hold amplifier consisting of differential amplifier

Q23, Q24, and Q14, sampling switch Q13, storage element C6, and output buffer Q10. With no keys depressed, the circuit is in the "hold" mode. The gate of Q13 is pulled down to -10 volts by CR5 and R34, this turns Q13 off, C6 holds its "tracked" voltage and Q 10 follows this voltage. When any key is depressed, two things happen: the pitch voltage appears at the base of Q23 atsd +10 volts from the trigger buss appears on the junction of CR5 and R34. This reverse biases CR5, turning Q13 on, which closes the amplifier feedback loop. Q24 then charges or discharges C6 until the voltage on the source of Q10 equals the input pitch voltage. Therefore, the circuit has "tracked" the input voltage. Capacitox C6's charge time depends on the resistance of the GLIDE potentiometer connected between pins 7 and 8 of the printed circuit board connector. With no resistance (with the GLIDE switch off, for example) Q24 can charge C6 very rapidly resulting in an instant pitch change. As the resistance is increased, the charge time for C 6 is increased resulting in the familiar "Portamento" effect. When the key is released, Q13 is tumed off and the pitch voltage is held. The keyboard is mechamically set up so that the pitcb voltage always occurs before the trigger and that the trigger goes off before the pitch voltage is released. This insures that the pitch voltage is constant when the amplifier goes from the "track to hold" mode, and a reliable pitch voltage is beld. When no keys are depressed, R53 saturates the input of the differential amplifier putting +10 volis on the collector of Q14, This insures that Q13 will remain pinched off, thereby holding the voltage on C6. Capacitor C9 slows down the voltage on the input of Q23 to minimize switch bounce noise.
wrybvig soev axinunt 4 3uthe

FIGURE 24 LEFT HAND CONTROLLER

FIGURE 2 SPANATED CIRCUIT BOAKD SOCREF LOEATHON

SECTION 3 TROUBLESHOOTING

3.1 OVERALL QUICK REFERENCE TROUBLESHOOTING

Refer to Table 3-1 for specific aymptoma to deterxine which printed circuit boand or component part is malfunctioning. As an aid in troubleshooting, refer to Figure 2.2 subassembly location diagram, and to Section 9 for a specifie schematic diagram and printed circuit hourd cormponent location diagram.

TABLE 3.1
OVERALL TROUBLESHOOTING

SYMPTOM	PROBABLE CAUSE AND REMEDY
No sound and POWER indicator light off.	1. Blown $A C$ fuse $F 3$. 2. Defective POWER switch SW20. 3. Defective line cord or plug.
No sound, POWER indicator light on and OVERLOAD indicator light off.	1. Defective power supply (Board 3). 2. Defective power transformer TI. 3. Defective output amplifier (change filter Board 4).
No sound, POWER and overload indicator lights on.	1. Blown DC fuse F1 or F2. 2. Defective Power Supply (Board 3).
Excessive hum and constant modulation of als signals.	1. Defective rectifier diode $\mathrm{CR} 1, \mathrm{CR} 2, \mathrm{CR} 3$ or CR4 (Board 5). 2. Defective filter capacitor C 1 or C 2 (Board 5), 3. Defective power supply (Board 3). 4. Broken ground wire.
No outpuz from any mixer source (A-440 operating).	1. Defective contour generator (Board 2). 2. Defective VCA or filter (replace filter Board 4).
No oscillator output (noise functioning).	1. Defective oscillator (Board 1).
One oscillator dead or malfunctioning - other two operating normally.	1. Defective oscillator (Board 1).
Oscillator 3 modulates oscillator 1 or 2 with MODULATION switcher off.	1. Refer to Section 8, Modifications.
Impro per or missing waveform foscillators 1, 2 or 3).	1. Defective oscillator (Board 1). 2. Defective WA VEFORM switch.

TABLE 3-1
OVERALL TROUBLESHOOTING (Continued)

SYMPTOM	PROBABLE CAUSE AND REMEDY
Noise source dead or producing poor quality noise.	1. Defective noise transistor Q15 (Board 3). 2. Defective noise generator (replace powey supply Board 31
No external input.	1. Defective pre-amplifier (replace filter Board 4).
Filter inoperative or malfunctioning.	1. Defective filter (Board 4),
Fiter reqeneration weak or absent (EMPHASIS at 10).	1. Defective filter (Bound 4). 2. "Regen Cal" R73 not adjusted properly.
Excessive drift or pitch change after key is released (greater than 1 semitone per minute).	1. Replace 2N4303 (Q13 or Q10) on contour generator (Board 4).
Loudness and or filter contour generator operating improperly.	1. Defective contour generator (Board 2),
No output at PHONES jack (main output nomal).	1. Monaural plug in stereo head phone jack. 2. Defective headphone amplifier (replace power supply Board 3).
OVERLOAD light fails to operate when excessive signal is applied.	1. Defective bulb. 2. Defective lemp driwer circuit (replace filter Board 4).
Thumping sound heard when depressing a key (AMOUNT OF CONTOUR at 0).	1. First VCA out of balance. Refer to Section 5. 2. Defective VCA (replace filter Board 4). 3. Refer to Section 8, Modifications.
Keyboard glides when glide is off.	1. Defective keyboard circuit (replace contour generator Board 2).
Unit cannot be tuned ("A-440" on frequency within IHz).	1. Defective oseillator (Board 1). 2. Defective keyboard circuit (replace contour generator Board 2).
Unit cannot be tuned ("A-440" off frequency more than 5 Hz).	1. Power supply voltases improperly adjusted. 2. Defective power supply (Board 3).
" $\mathrm{A}-440$ " reference oscillator dead (other outputs normal).	1. Defective reference oseillator (replace filter Board 4).
Scale and tracking problems.	1. Replace 3046, IC2 and IC7, on oscillator (Board 1).

TABLE 3-1
OVERALL TROUBLESHOOTING (Contimued)

SYMPTOM	PROBABLE CAUSE ANO REMEOY
No modulation (filter or oscillator).	1. Defective modulation mix amplifier (replace power supply Board 3). 2. Defective MOD wheel control. 3. Bad "Flag" contacts at Cinch-dones connectors. Refer to Section 8 , Modifications.
RANGE switches have little or no effect.	1. Octave Range misadjusted. 2. -5 volt source defective (replace oscillator Board 1).
Noise or static when turning a control.	1. Control dirty - spray clean. 2. Control worn out - replace.
Noisy intermittent or non-functioning lefthand controller.	1. Connector corrosion: Use a dry cotton swab or eraser to clean contacts.
Intermittent or constant modulation bleed through when modulation switch is in the off position from oscillator 3 .	1. Connector or printed circuit board connector corrosion: Clean with eraser and selectively adjust flag lugs not making contact. If this fails, selectively solder wire to individual flag lugs; isolate by slightly moving each wire. Refer to Section 8, Modifications.

3.2 OSCHLATOR PRINTEO CIRCUIT BOARO 3 TROUBLESHOOTING
 (Serial Numbers 10175 and Above)

Refer to Table 32 so determine which component part of the printed circuit board is malfunctioning for a specific symptom, As an aid in troubleshooting, refer to applicable schematic aod printed circuit board diagrams in Section 9.

TABLE 32
OSCILLATOR PRINTEO CIRCUIT BOARD 1 TROUBLESHOOTING (Serial Numbers Above 10175)

SVAPTOM	PROBABLE CAUSE IN OROER OF OCCURRENCE
All 3 oscillators dead.	IC2 (741) ($\sim 5 \mathrm{~V}$ source)
Oscillator 1 dead.	IC5 (726), IC6 (TLO81), IC8 (393), N2 resistor
	network, R23 (2.32K).
Oscillator 2 dead.	IC10 (726), IC11 (TL081), IC13 (393),
Oscillator 3 dead.	CR3 (1N4148), R63 (2.32K).
	IC5 (726), IC16 (TL081), IC18 (393), R101 (2.32K).

TABLE 32
OSCILLATOR PRINTEO CIRCUIT BOARO 1 TROUBLESHOOTING (GOMtinued)

SYMPTOM	PROBABLE CAUSE IN OROER OF OCCURRENCE
Will sot tune on "Seale", "Octave" and "Hi End". High frequency (screams). Low frequancy. Jitters. No low frequency. No triangulur waveform output. No rectangular waveform output. Glitch in triangular waveform. No shift in frequency	TOR 1 $\begin{aligned} & \text { IC5 (726). } \\ & \text { N2 resistor network, IC6 (TL081), C7 (.001uf), } \\ & \text { C12 (18Pf). } \\ & \text { N2 resistor network. } \\ & \text { IC6 (TL081), Q4 (E112), C7 (.001uf), C12 (18Pf). } \\ & \text { Q4 (E112), C7 (0.001uf). } \\ & \text { IC4 (1458), Q6 (2N3904). } \\ & \text { C14 (.01uf). } \\ & \text { Q4 (E112), C7 (.001uf). } \\ & \text { R14 (10K). } \end{aligned}$
Will not tune on "Scale", "Octave" and "Hi End": High frequency (screams). Jitters. No low Prequency. No triangular waveform output. No triangular and saw tooth waveform output. Gliteh in triangular waveform.	ATOR 2 IC10 (726). N3 resistor network, IC11 (TLO81), C18 (.001ufi), IC3 (1458). IC11 (TL.081), Q9 (E112), C18 (.001uf). Q9 (E112), C18 (.601uf). fC9 (1458). F11 (TLO81). Q9 (E112), C18 (.001uf), IC12 (TL081).
Will not tune on "Scale", "Octave", and ". "Hi End" High frequency (screams). Jitters. No low frequency. No triangular waveform output. Reversed sewtooth waveform. All waveforms distorted. Glitch in triangular waveform.	TOR 3 1C10 (726). IC16 (TL081), Q14 (E112), C29 (.001uf), IC16 (TL081), Q14 (E112), C19 (.001uf). Q14 (E112), C29 (.001uf), 1C15 (726). IC14 (1458). Q20 (2N3904), R113 (100K). IC17 (TL081). Q14 (E112), C18 (.001uf), IC17 (TL.081).

SECTION 4
 DISASSEMBLY PROCEDURES

4.1 DISASSEMBLY

Prior to disassembly, perform the following procedures.

CAUTION

Ascertain that the instrument is disconnected from the power source before disassembly.

In order to service the Minimoog circuitry, it is necessary to remove the rear cover assembly. Remove 18 screws (5 top, 5 lower back, and 4 each end of cover); then lift the cover off.

Gircuit boards are plugged into sockets (Figure 2-3) at the bottom and secured at the top with two mounting screws. To remove a circuit board, first re-
move the screws then unplug from connector. When replacing, be sure board is firmly seated in the connector before tigbtening the mounting screws. Remember to reinstall the fiber washers between the boards.

If necescry to remove the keyboard, proceed as follows:

Remove the eight wood screwt securing the bottom cover and remove the cover. This exposes the battom side of the keyboard, the two lateral keyboard supports and the four screws securing the keyboard. A disconnect plug on the left side of the lower support connects the wiring to the keyboard. Remove the tie around the plug and receptacle and separate the two, then remove the four screws that hold the keyboard. Carefully tilt the keyboard sufficiently to permit retroval from the bottom of the circuit.

SECTION 5 ADJUSTMENT AND TUNING

5. 1 PRTNTED CIRCUIT BOARD REPLACEMENT ADJUSTMENTS

Each time a Minimoog is serviced, the tuning should be verified. When a board bas been replaced it will be becessary to make additional adjustments. Refer to Table $5-1$ to deternine which adjustments must be mede aceording to the board that has heen replaced and refer to paragraphs 5.3.1 through 5.3.4 and Tables 5-2 through $5-4$ as applicable, for a specific adjustment. Refer to Section 4 for the necessary procedures to be performed prior to printed circuit board removal.

TABLE 5-1
PRHTED CIRCUIT BOARD REPLACEMENT ADJUSTMENTS

WHEN REPLACING	MAKE THESE ADJUSTMENTS
Oscillator Board 1	1. Oscillator 1,2 and 3 tunine.
Contour Generator Board 2	1. Check tuning (adjust if necessary).
Power Supply Board 3	1. +10 volts. 2. $\mathbf{- 1 0}$ volts. 3. Noise level. 4. Check tuning (adjust if necessary).
Filter Board 4	1. VCA balance (1 and 2). 2. "A-440" frequency. 3. Regeneration calibration. 4. Filter range. 5. Fitter scale.
Left Hand Controller	1. Check function (adjust if necessary).
Keyboard	1. Check function (adjust if necessary).

5.2 VOLTAGE ADJUSTMENTS

Tuning and other functions rely heavily on accurate power supply voltages. Always be sure the +10 volt and - 10 wolt supplies are properly set before making other adjustments. Refer to Table 5-2, Figures $5-1$ through 5.5 (adjustment location diagrams) and applicable scbematic and printed circuit board diagrams in Section 9.

TABLE 5-2
VOLTAGE ADJUSTMENTS

TO AD.JUST	FOLLOW THESE PROCEDURES
+10 volts	Connect $3-1 / 2$ digital DC voltmeter (0.1 t wepuracy) to pins 1 A and 2 A on the oscillator (Board 1). Adjust the +10 V trimpot on the power supply (Board 3) for +10.00 volts.
- 10 volts.	Connect $\$ 1 / 2$ digital DC volemeter (0.1 㐌 accatracy) to pins 2 A and 3 A on the oscillator (Blard 1). Adjust the -10 V trimpot on the power supply (Board 3) for -10.00 volts.
A-440 Board 4 Reference Osedlator.	Turn on A-440 and allow to warm up for two minutes, Adjust A-440 trimpot on the filter (Boand 4) for zero beat with an "A" turing fork. By brigging the struck tuning fork in physical contact with the shell of a pair of headpbones, while listening to tbe A- 440 output, the beat note becomes more audible.

FIGUAE 5-1 POWER SUPPLY ADUUSTMENT LOCATION DIAGRAM

FIGURE 5-2 REAR PANEL TUNING CONTROL LOCATION DIAGRAM (SERIAL NUMAERS 10175 A ND ABOVE)

FIGURE 5-3 FILTEA ADJUSTMENT LOCATION DIAGRAM

FIGUAE S-A FRONT PANEL CONTROL SETTINGS ISERIAL NO. 10175 ANO ABOVEI

5.3 TUNING THE OSCILLATORS
 (Serial Number 10175 and Above)

This new stabilized owidlator board uses temperature regulated circuits and because of the very precise tracking of the three oscillators on tbis board, it may seem at times that the instrument does not produce the "fat", rich, multiple oscillator sound. This is NOT the result of a change in the sound of the oscillator but can be the result of setting the osciliators too precisely at the same pitch. To achieve the rich sound, it may be necessary for the customor to detune the oscillators stichty us desired for the rich, rolling sound.

Adjustments for tuning the oscillators are focated behind the access holes on the rear panel as shown on the adjustment location diagrams of this section. Use a $1 / 8$ inch (3.2 mm) tlat blade serew driver for all rear panel adjustments. To minimize spurious effects, adjustments must be performed with the rear panel cover in place.

Set front panel controls as shown in Figure ${ }^{5}-4$ and ascextatn that the PITCH wheel is in center position. Turn POWER switch ON and allow a 30 minute warmup period for optimum accuracy before performing the procedutes described in paragraphs 5.3.1 through 5.3.4. To and in servicing, a front panel wirng diagram, schematics and component location diagrams are meluded in Section 9.

NOTE

To tune OSCILLATOR 1, turn A-440 ON, OSCILLATOR 1 ON, octave RANGE 1 at 8^{\prime} and center TUNE control.

To tune OSCLLLATOR 2,turn A-4400FF, OSCILLATOR 1 and 2 ON, octave RANGE 1 and 2 at 8^{\prime} and center OSCILLATOR 2 cantrol.

To tune OSCILLATOR 3,turn A-4400FF, OSCILLATOR 1 and 3 ON, octave RANGE 1 and 3 at 8^{\prime} and center OSCILLATOR 3 control.

NOTE 2
To obtuin a zero beat, it may be necessary to make a slight adjustment on the front panel as follows:

TLNE control when tuning OSCILLATOR 1.

OSCILLATOR 2 control when tuning OSCILLATOR 2.

OSCILLATOR 3 control when tuning OSCILLATOR 3.

5.3.1 SCALE TRIMPOT ADIUSTMENTS

(Figures 5-2 and 5-4)

a. Set octave RANGE at $\mathbf{8}^{\prime}$. Refer to Note 1 .
b. Press low $A(55 \mathrm{~Hz})$ and zero beat with shift trimpot. Refer to Note 2.
c. Press high A $(440 \mathrm{~Hz})$ and zero beat with seale trimpot.
d. Repeat steps b and c until low A and high A zero beat.

5.3.2 HIGH END COMPENSATION

a. Octave range is 2 . Refer to Note 1 and substitute 2^{\prime} for $8^{\prime \prime}$.
b. Press low A $\left(440 \mathrm{H}_{2}\right)$ and zero beat with shift trimpot. Refer to Note 2.
c. Press high A $(3520 \mathrm{~Hz})$ and zero beat with high ead trimpot.
d. Repeat steps b and c until low A and high A zero beat.
e. Recheelt paragraph 5.3.1 and repeat para. graphs 5.3.1 and 5.3.2 if necessary.

5.3.3 OCTAVE ADJUSTMENT

2. Octave RANGE is 32 , Feter to Note 1 and substitute 32 ' for 8^{\prime}.
b. Press high A (220 Hz) and zero beat using shift trimpot. Refer to Note. 2.
c. Octave RANGE is 2^{\prime}. Refer to Note 1 and substitute 2^{\prime} for 8^{\prime}.
d. Press high $\mathrm{A}(3520 \mathrm{~Hz})$ and zero beat using octave trimpot.
e. Repeat steps a, b, c, and d until both 32' and 2'zero beat.

5.3.4 SHIFT TRIMPOT ADJUSTMENT

Press A^{3} (440 Hz) and zero beat using shift trimpot. Refer to Note 1. Oscillators are now in tune.

5.4 TUNING THE OSCILLATOR (Seria) Numbers Below 10175)

The Minimoog can be tuned to an exacting degree. Under ideal studio conditions, the initial factory turing of the instrument should be sufficient for a considerable length of time. However, in situations where the instrument is moved often and exposed to paried weather conditions, retuning may be
required. Over a long period of time the A-440 reference oscillator may require adjustment. Provision is made for easy tuning of all oscillators.

Adjustments for tuning the oscillators are 10 . eated behind the access holes on the rear panel. Use a $1 / 8$ inch (3.2 mm) that blade serewdriver for all rear panel edjustments. To minimize spurious effects, adjustments must be performed with the rear panel cover in place.

Ascertain that tha PITCH wheel is in center position. Turn POWER switch ON and allow 30 minute warmup period for optimum accuracy before performing the procedure specified in Table 5.3. To aid in servicing, a front panel wiring diagram, schematics and printed circuit board diagrams are included in Section 9.

5.5 DETAILED ADJUSTMENT PROCEDURES (All Serial Numbers)

The adjustment procedures specified in Table 5.4 apply for all Minimoogs. Adjustments for tuning the oscillators, power supply and filter are located behind access holes on the rear panel. Use a $1 / 8$ ineh (3.2 mm) flat blade serewdriver for all these adjust. ments. Refer to Figures 5-1 through 5-5 for location of adjustment trimpots. To aid in servicing, a front panel wiring diagram, schematics, and grinted circuit diagrams are included in Section 9.

Before performing these procedures, read instructions specified in paragraph 5-4.

TABLE 5.3
OSCILLATOR TUNING PROCEDURE
[Serial Numbers Below 10175)

TO ADJUST	FOLLOW THESE PROCEDURES
Oscillator Tuning With Equipment	1. Connect a frequeney counter to the HIGH MAIN OUTPUT jack. (Top of front panel). 2. Ascertain that PTTCH wheel is in center position. 3. Set TUNE contral to 0, RANGE switches to 2^{\prime} and WAVEFORM switches to A. 4. Set MIXER VOLLME controls to 4. 5. Turn OSCILLATOR MODULATION switch to OFF and OSC. 3 CONTROL switeh to on. 6. Set OSCILLATOR 2 and 3 FREQUENCY controls to mid-position. 7. Set MIXER OSCLLLATOR 1 switch ON. 8. Adjust oscillator 1 Range trimpot (rear panel Figure 5.5) for 3520 Hz while holding high " \mathbf{A} " key down. 9. Depress and hold low "A" while adjusting oscillator 1 Scale trimpot (rear panel) for 440 Hz . 10. Repeat procedure until no further improvement is attainable. 11. Set MIXER OSCILLATOR switch off. 12. Repeat above procedures for ascillator 2; then repeat for oscillator 3. 13. After oscillators have been tuned properly, check tracking between any two oseillators and make any necessary warm-up adjustments to improve tracking.
Oscillator Tuning Without Equipment	OSCILLATOR 1 1. Set front panel controls as shown in Figure 5-5 and ascertain that PITCH wheel is in center position. 2. Turn POWER switch ON and allow 80 -minute warm-up period for optimum aceteracy. 3. Turn A-440 switch on. 4. Set MIXER OSCLLLATOR 1 switch to ON, 5. Depress high "A" and zero beat with A-440 using oscillator 1 Range trimpot (rear panel). Fine tune with front panel TUNE control. 6. Depress low "A" and zero beat using Scale trimpot (rear panel, Figure 5-5). 7. Depress high "A". Observe that adjustment of Scale trimpot has slight effect on Range trimpot adjustment. 8. Repeat steps 4,5 , and 6 until perfect unisou is obtained.

TABLE 5-3
OSCILLATOR TUNING PROCEOURE (Contmued)
(Serial Numbers Below 10175)

TO AOJUST	FOLLOW THESE PROCEDURES
Osciliator Tuning Without Equipment (Continued)	OCTAVES 1. With OSCIL ATOR 1 ON and high " A " depressed, turn front panel OSCELEATOR I RANGE switch from 4^{\prime} to 32^{\prime} and zero beat using Octave trimpot (rear panel). 2. Turn OSCILLATOR 1 RANGE switch from 32^{\prime} to Z. 3. Depress low "A" and zero beat using TUNE control. Observe that adjustment of TUNE control bas slight effect on Octive trimpot adjustment. 4. Repeat stepe 1,2 and 3 until perfect unison is obtained.
	OSCILLATORS 2 ANO 3 1. Turn A-440 switch off and OSCILLATOR 2 ON . 2. Turn OSCHJATTOR 2 RANGE witch to 4'. 3. Depress high " A " and zero beat using Range 2 trimpot (rear panel). 4. Depress low "A" and zero beat using Scale trimpot. 5. Repeat steps 1 through 4 using OSCLLLATOR 2 TUNE control until perfect unison is obteined. 6. Repent steps 1 through 5 for OSCLLLATOR 3 tuning.

TABLE 5-4

ABBREVIATED ADJUSTMENT AND TUNING PRDCEDURES

(All Serial Numbers)

TD ADSUST	FDLLDW THESE PRDCEDURES
Noize Level	Noise level is factory-tet to yrield -5 dB maxiroum in the white position. If the level becomes low it may be increased by counterclockwise rotation of the Noise Level trimpot (Figure 5-1, power supply, Board 3). It tra, be necessary to use an offset screwdriver to reach this trimpot.
VCA Balance	Turn all MIXER switches off. Connect headphones and set VOLUME fully clockwise. Connect a jumper from point " A " on the fileer board (Figure 5-3) to point " A " on the oscillitor broad (Figure 5-2), While listening to the head phones, adjust the 2nd VCA Balance trimpot on the filter board (figure 5.3) for the minimum audio signal. Depress and hold a key. Adjust the 1 Ist VCA Balance trimpot for minimum audio sjpual. Remove the jumper.
Regeneration Calibration	Turn all MEXER switches off. Monitor output with head phones. Set CUTOFF FREQUENCX control to $\mathbf{- 1}$. Insert an S-Trigger plug. Rotate FILTER EMPHASIS control clockwise. Regeaeration should start when the FILTER EMPHASIS control is between 7 and 8 . If it does not, set FELTER EMPHASIS control to 7.5 and motate the Regen Cal trimpot on filter board (Figure 5-3) slowly clockwise until regeneration just starts.
Filtar Range	Turn KEXBOARD CONTROL switches 1 and 2 off. Set CUTOFF FREQUENCY \&t -1, FILTER EMPHASIS at 10. Turn os A. 440 and adjust Filter Range trimpot on filter bosrd (Figure 5-3) for zero beats.
Filter Scale	Set CUTOFF FREQUENCX to - $\mathbf{3}$, FILTER EMPHASIS et 10 , AMOUNT OF CONTOUR at 0 . Turn KEYBOARD CONTROL switches 1 and 20 N . Tum A-440 ON and depress third " A " key from the bottom. Adjust CUTOFF FREQUENCY for zero beats (t wo octaves above 440). Depress low "A" and adjust Filker Scale trimpot on filter hoard (Figure 5.3) for zero beats. Repeat these adjustments until the filter will track three octaves.

TABLE 5-4
ABBREVIATED ADJUSTMENT AND TUNING PRDCEDURES (Contmued)
(All Serial Numbers)

FO ADJUST	FDLLDW THESE PRDCEDURES
PITCH Wheel	Loosen the Allen head setscrew in the PITCH wheel. Rotate PITCH wheel until it drops into the center detent. Unplug the Left Hand Control connector. Connect an ohmeter to the orange and green wires on the pitch potentiometer. Adjust the pitch potentiometer for a reading of $15,3 k$ ohms. Tighten the setscrew and check to see that the resistance remains between 15 and 15. 6 K ohme when in detent.
MOD, Wheel	Loosen the Allen head setscrew in the MDN. wheel. Rotate the modulation potentiometer fully counterclockwise. Turn MOD. wheel down to its physical limit. Retighten the setscrew.

5.6 POWER SUPPLY ADJUSTMENT

NOTE

Before attempting adjustment, refer to Paragraph 4.1 for the necessary preliminary procedures.

Using at least a $3.1 / 2$ digit DVM, measure the +10 volt line on the ascillator board. Adjust the top trims potentiometer on the power supply board for +10.000 volts. Connect the DVM to the -10 volt line on the oscillator board and adjust the bottom trim potentioneter on the power supply board for -10.000 volts. Be sure to ground the DVM at the oseilator board since ground sensing is also accomplished there.

Using pin 2 for ground, check for +10 volts at pin 1 , and -10 volts at pin 3 of the external REGULATED DC POWER OUT sockets. Refer to Figure 5.4.

5.7 A-440 ADJUSTMENT

Connect scope, frequency counter and AC voltmeter to a monitor plug inserted in HIGH MAIN OUTPUT (On Top of Panel). Turn on A-440 switch and adjust A-440 trim potentiometer (On Lower

Left Corner of the Filter Board) for $440 \pm 1 \mathrm{~Hz}$ (Figure 5.3). Check to see that output is $-8 \pm 2 d \mathrm{~B}$ and then turn off $A-440$ switch. If trim potentiometer will not adjust, compensate with a paralled capacitor across C13 to adjust pitch, or a parallel resistor across R47 to adjust level.

5.B SIGNAL FLOW

Install S-Trigger plug, turn on OSCILLATOR-1 and check for a triangular out put of $1 \pm 3 \mathrm{~dB}$. Tum of OSCILLATOR-1 and repeat test for OSClL LATORS 2 and 3.

5.9 MAIN DUTPUT

Turn on an oscilator, operate the MANN OUTPUT switch and the VOLUME control and check for proper functioning. Allow switch to remain on and VOLUME control in full clockwise position.

5. 10 PHDNE OUTPUT

Remove monitor plug from HIGH MAIN OUT. PUT and insert half way in the front panel PHONES jack. Turn VOLUME control clockwise to maximum position. Output should be $-1 \pm 3 \mathrm{~dB}$. Remove monitor plug and turn volume down to 2. Insert stereo headphones and listen for undistorted sound in both phones.

5.11 LOWY MAIN OUTPUT

Lnsert monitor plug into LOW MANN OUTPUT jack, Output should be $-30 \pm 3 \mathrm{~dB}$. Turn off oscillator and return monitor plug to HIGH MAIN OUTPUT jack.

5.12 EMPHASIS CALIBRATION

Set CUTOFF FREQUENCY control to -1.1. Rotate EMPHASIS control clockwise. Filter tegeneration should start when the EMPHASIS control is between 7.5 and 8.0 on the dial. If regeneration does not start in this area, adjust the Regen Cal trim potentiometer (Located on the Lower Right Comex of the Filter Board, Figure 5-3) for the proper threshold.

5. 13 FILTER CUTOFF ADJUSTMENT

With CUTOFF FREQUENCY control at -1.1 and EMPHASIS nontrol at 10, turn on A-440 and adjust Range trim potentiometer (Located on the Center Right Side of the Filter Board, Figure 5-3), for zero beats. Turn off A-440 and rotate CUTOFF FREQUENCY to a full clockwise position. The amplitude should not vary more than 2 dB and frequency should increase to at least 16 kHz . Rotate CUTOFF FREQUENCY control counterclockwise and check that low frequency is less than 300 Hz before regeneration dies out.

5.14 FILTER SCALE

Turn on A-440 switch and the KEYBOARD CONTROL switches 1 and 2. Depress the third " A " from the bottom of the keyboard and adjust the CUIOFF FREQUENCY control for 1760 Hz (heat note two octaves above A-440). Depress low "A" and adjust the Filter Scale trim potentiometer for zero beat. Repeat this until filter scale covers three octaves, zero beating at each "A".

5. 15 KEYBOARD 1/3

Turn off KEYBOARD CONTROL switch number 2. Using CUTOFF FREQUENCY control, tune low " A " to 440 Hz by zero beating with internal A-440. Depress high " A " key; frequency should be $880 \pm 50 \mathrm{~Hz}$.

Thm of both KEYBOARD CONTROL switches. Tune filter to 440 Hz and apply +2.00 volts to the external FILTER CONTROL jack, (Refer to Figure 5-4), The pitch should rise to $1760 \pm 100 \mathrm{~Hz}$. Remove external control voltage.

5.17 AMOUNT OF CONTOUR

Rotate AMOUNT OF CONTOUR control fully clockwise. Pitch should rise from 440 Hz to 35 kEkz $\pm 10 \mathrm{kHz}$. Return AMOUNF OF OONTOUR control to 0 .

5.18 FILTER CONTROL

Rotate the CUTOFF FREQUENCY control knob clockwise until the frequency rises from 440 to 1760 Hz (two octaves up). A rotation of approximately 2 divisions should be required.

5.19 AMOUNT OF MODULATION

Turn on the FILTER MODULATION switch and set the MOD wheel fully up. Tune OSCIE LATOR-3 to produce the lowest frequency square wave. Adjust CUTOFF FREQUENCY control for 440 Hz when pitch is low. When pitch switches to hith, check to see that frequency is a minimum of 2.4 kHz . Turn off FILTER MODULATION switch.

5.20 FILTER CONTOUR (ATTACK-DECAY-SUSTAIN)

Remove Sotrigger plug and set CUTOFF FRE. QUENCY control to -2 , AMOUNT OF CONTOUR control to 3 and FILTER SUSTAIN to 0. Hit a key repeatedly while slowly increasing the FlLTER ATTACK time. Listen for increasing length of attack with sudden fall. Retum ATTACK to 0 and check DECAY time in the same manner. This time listen for sudden attack with sow decay. Return DECAY control to 0. Depress and hold a key and rotate SUSTAIN control fully clockwise. The pitch should rise and hold and with release of the key, sound should diminish instantly.

5.27 DOUBLE TRIGGERING

Set AMOUNT OF CONTOUR and all LOUD. NESS CONTOUR controls to fully counterclockwise. While striking a key, adjust CUTOFF FRE QUENCY tor sharp audio click. Check each key for double tragering by hitting it rapidly tbree times and then slowly depressing each key three times. If necessary, clean the center buss bar with ethyl alcohol on a cotton swab to ensure good contaet.

5.22 LOUONESS CONTOUR
 (ATTACK-DECAYSUSTAIN)

Set CUTOFF FREQUENCY control fully clockwise, EMPHASIS control to 0 and AMOUNT OF CONTOUR control to 0 . Tum on OSCILLATOR-1. Cheek ATSACK, DECAY and SUSTAIN controls of the LOUDNESS CONTOUR section. Hit a key repeatedly while slowly increasing the FILTER ATTACK time. Listen for volume changes at increasing length of attack with sudden fall. Return ATTACK control to 0 and check DECAY time in the same manner. This time listen for volume changes in sudden attack with slow decay. Return DECAY control to 0 . Depress and hold a key and rotate SUSTAIN control fully clockwise. The pitch should rise and hold and with release of the key, the sound should dimunish instantly. Set DECAY control to 1 second and turn DECAY switch on. The note should decay gradually after key is released. Turn DECAY switch off and insers a plug in the DECAY jack receptacle. The operation should be the same as having the DECAY switch on.

5.23 EXTERNAL LOUDNESS CONTROL UNIT

Set LOUDNESS ATTACK and DECAY con trols to 0, SUSTAIN contzol to 10 and insert S-trigger plag. OSCILLATOR. 1 should now be audible. Note the output level and apply +2.00 volts to LOUDNESS EXTERNAL CONTROL INPUT jack. The output should decrease by $10 \pm 3 \mathrm{~dB}$. Remove the external control voltage.

5.24 NOISE

Turn off OSCILLATOR.1. Noise level at HIGH MAIN OUTPUT jack with volume fully clockwise and Strigger inserted should be 66dB maximum.
524.7 EXTERNAL LOUDNESS INPUY BALANCE (Second VCA Adyustment|

Apply a zero dB IkHz square wave to the LOUDNESS EXS. input jack. Remove S-trigger plug and adjust the second VCA trim potentiometer for a null (Figure 5-3). Filter board level should be -60 dB maximum.

5.25 CONTOUR GENERATOR BALANCE (First VCA Adjustment)

lasert Strigger plug, set LOUDNESS SUSTAN LEVEL at 10 and adjust first VCA balance trim potentiometer (Figure 5.3) for minimum output. Level should be -55 dB maximum. Remove ikHz signal from the LOUDNESS EXT. input jack.

5.26 EXTERNAL SIGNAL INPUT

Apply $-30 \mathrm{~dB} \quad 1 \mathrm{kHz}$ sinewave to the INPUT EXT. SIGNAL jack. Turn on front panel MIXER switch and check VOLUME control operation. The OVERLOAD lamp should illuminate before any distortion is seen on the scope. Remove external signal and rotate MIXER VOLCME control to a point where noise level is maximum. Noise level should be less than -45 dB . Turn off MLXER switch.

5.27 AUDIO NOISE GENERATOR

Tum on NOISE VOLUME MIXER switch and check both WHITE and PINK noise for quality and the absence of thumping or popping. Noise level should be $-5 \pm 3 \mathrm{~dB}$. If not, adjust noise level trim potentiometer (risht side of power supply board) so that both wbite and pink fall within specification. Turn off NOISE VOLUME MIXER switch.

5.28 GLIDE

Turn on OSCILLATOR. 1 and alternately depress the lowest and highest keys. Pitch should change instantly. Turn on GLIDE switch and alternately depress lowest and highest keys again. Pitch should ascend and descend slowly. Check to see that the GLIDE control waries the speed and then turn the GLIDE switch off. Test the GLIDE jack to ensure it turns GLIDE on by inserting a plug and again
aiternately depressing the lowest and highest keys. Remove the plug from the GLIDE jack.

5.29 KEYBOARO PITCH CONTACTS

Remove the S-trigger plug. While holding down the highest key, gently depress and release sach other key one at a tirne. Listen for "squawks" and "chirps". If necessary, clean the front buss bar with ethyl alcohol to ensure good contact. Release highest key and slowly depress each key. Be sure pitch changes immediately without gliding. Re-insert S-trieger plug.

5.30 OSCILLATOR AOJUSTMENTS FOR BOARO

NOTE

Use a $1 / 8$ inch (3.3 mm) flai blade screw driver for all rear panel adjust ments.

Touch up ± 10 volt adjustments to prepare for oscillator tuning. Adjust for exactly 10.000 poits, measured at the oscillator board.

Tum OSC 3 CONTROL switch on (up position). Check all three oscillatore for proper WAVEFORMS and OCRAVE RANGING. Operate TUNE and FREQUENCY controls. TUNE control will only vary the pitch slightly, while the FREQUENCY controls will have a greater effect. Leare WAVEFORM switches at TRIANGLE (marked A), RANGE switches at 2^{\prime} and MIXER VOLUME controls at. 4. Turn off MEXER switches.

5.31 OSCILLATOR RANGE

Ensure the PTTCH wheel is centered and the TUNE and FREQUENCY controls are at 0. Apply a $-30 \mathrm{~dB}, 3520 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$ sinewave to the INPUT EXT. SIGNAL jack with CUTOFF FREQUENCY control at +4. Turn on EXTERNAL MIXER switch. Adjust level for -10 dB at EXTERNAL INPUT VOLUME control. Turn on OSCILLATOR. 1 MIXER switch, depress high "A" and hold key down. Adjust OSCILLATOR 1 RANGE trim potentiometer for zero beats. Turn off OSCILLATOR-1 and repeat procedure for OSCILLATOR-2 and OSCLLLATOR-3. Turn off EXTERNAL MIXER switch,
5.32 OSCILLATOR 1 TUNING

Turn on OSCILLATOR. 1 and A-440 switches Hit low "A" and adjuat OSCLLLATOR. 1 scale for zero beats. Recheck high "A" for 3520 Hz and turn ofl A-440.

5.33 OSCILLATOR 2 ANO 3 TRACKJNG

With OSCILLATOR-1 already on, turn on OSCILLATOR.2. Hit bigh "A" and adjust OSCLL" LATOR-2 FREQUENCY control for zero beats using a sawtooth waveform. Hit low "A" and adjust. OSCILLATOR-2 seale for zero beats. Tum off OSCLELATOR-2 MIXER switch. Turn on OSCLL-LATOR-3 MIXER switch. Hit higb " A " and adjust OSCILLATOR-3 FREQUENCY control for zero beats. Hit low "A" and adjust OSCILLATOR. 3 SCALE trim potentiometer for zero beats. Turn off OSCILLATOR-3 MIXER switch.

5.34 OCTAVE AOJUST

Turn on $\mathrm{A}-440$ switch and hit key low " A ". Adjust TUNE control for zero beats against OSCIL LATOR-1. Set OSCILLATOR 1 RANGE switch to the 16 " position. Depress and hold high " A " while adjusting OCTAVE SCALE trim potentiometer for zero beats. Tum off switch A-440. This completes rough tuning at the oscillators.

5.35 RANGE OF TUNE, PITCH ANO FREQUENCY AOJUST CONTROLS

Set controls listed below fully counterclockwise and test as follows:

Depress middle "C" and remember the pitch, then qradually turn the first TUNE control fully clockwise. Find how many semitones are required to descend nearest to the original pitch. Return each control to center after testing it,

NE costrol	Semitones
OSCILL ATOR. 2 FREQbeNCT adjusi.	14-17 Semitones
OSCLLLATOR. 3 FREQUENCY adjust	14.17 Semitones
PITCH WHEEL PITCH adjust.	13-17 Somatones

5.36 OSCILLATOR 3 WIDE RANGE

Turn on OSCILLATOR-3 MIXER switch. Place OSC. 3 CONTROL switch in down (ofl) position Assure that the keyboard has no effect on OSCILLATOR. 3 pitch. Set WAVEFORM selector switch to siwtooth, RANGE switch to LO, and OSCIL. LATOR. 3 FREQUENCY counterclockwise to minimum.

Listen to the audible clicks which should occur between two to five seconds apart. By operating the RANGE switch and the FREQUENCY control, check that the bigh end of the LO range overlaps the low end of the 32 range. Leave controls set for the lowest possible frequency and set WAVEFORM selector to square wave. Turn off OSCILLATOR. 3 MIXER switch.

5.37 MOOULATION OF OSCILLATOR

Place OSCMLLATOR 1 switch in ON position and set RANGE control for 2^{\prime} and WAVEFORM control for TRIANGLE A). Turn on OSCILLATOR MODULATION switch and rotate MOD control wheel fully up. The oscilletor should change 13 to

23 semitones. Use keyboard to determine how many sernitones it actually changes. Rotate MODULATION MIX control slowly clockwise. Listen for gradual change over to pure noise modulation. Try both PLNK and WHITE nolse. White noise should cause less rumbling.

Retum MODUL ATION MIX potentiometer control to OSC. 3 position (counterclockwise). Set MOD control wheel all the way down. No modulation should be evident. Tum off OSCLLLATOR-1 MIXER switch. Check OSCILLATOR-2 for 13 to 23 semi tone ragge with MOD control wheel fully up and OSCILLATOR-3 WAVEPORM control on low square wave Ω.

5.38 EXTERNAL. CONTROL OF OSCILLATOR

Tune OSCILLATOR. 1 to $\mathbf{4 4 0 H z}$. Apply +2.00 volts to OSCLLLATOR INPUTS jack. At this time, frequency should rise to $1760 \pm 150 \mathrm{~Hz}$. Twrnoff OSCILLATOR. 1 MIXER switch. Test OSCLLLATOR2 and OSCILLATOR 3 by setting RANGE control at 2^{\prime} and WAVEFORM control to sawtooth for extemal control using the same procedure.

SECTION 6 KEYBOARD MAINTENANCE

6.1 CLEANING

Occasionally it will become necessary to clean and adjust the keyboard. The contacts, although gold plated, may become dirty, contaminated, or corroded. When contacts become poor, noises and erratic sounds may be generated while playing the instrument.

To service the keyboard, the bottom cover must be removed. This cover is held on with eight wood screws. If the keyboard compartment is found to be excessively dirty, it should be blown out witb air. Aroid touching the buss bars or tbe spring
contacts witb the fingers since hand oils and perspiration will cause comosion. Under normal conditions, any dirt can be removed hy using a solution of isopropyl alcohol on a cotton swah in the area of the problem keys. If alcohol does not cure the problem, clean the buss har with a soft pencil eraser. For the most severe corrosion it may be necessary to rotate the buse bar 90 degrees.

CAUTION

Do not under any circumstances use abrasives or ahrasive tools, since this will destroy the gold plating.

SECTION 7 REPLACEMENT PARTS LIST

7.1 ORDERING

The following Lists specify parts available from Mooc Music Inc., Customer Service Department, 2500 Walden Avenue, Buffalo, New York 14225, (716) 681.7242. Please specify the unit name, model, serial number, part description, electrical reference designator if applicable and part number when ordering. Parts may be ordered thyough the agencies listed on the back cover of this manual.

TABLE7.
GENERAL MECHANICAL REPLACEMENT PARTS LIST

PART R UM88ER	OESERIPTIOM	aTY	PART HUMBER	OESCRIPI10N	QTY
997.043940-001	Bach fover	1	932-041175001	Shippimg Carton.	1
918043238.802	Buss Bor, Gold Plated	3	$993-041181-001$	Strag Plug	1
978041204.001	Cahinel, Complete	1	954-042611.601	Black Key.	18
978543379-001	Cabinet, Top Trim Stinp.	1	964-041418-903	White Key, A	4
961.0432665061	"Fiag Iod (For Comnecters) . . .	1	964-041418-004	White Key, 8 ,	4
997041950.001	Front Panel	1	\$64-041418-005	Whate Ker. C . .	3
937.042900.001	Keyhozid, 44 Note	1	554.041418.006	White Key, O .	3
\$17.043235-001	Key Goptact, Goic Plated Spring .	88	954.04141*.007	White Key, E	3
¢15.041916.002	Kniob, Lurge	2	\%64041418.008	Whrte Ker. F	4
955-841917,001	Knolb, Pounter	6	9540414188009	Whare Key, G.	4
915041916.001	Knotb, Small	15	964.041418010	Whate Key, High C	1
957.0417892.001	Power Cors, 120VAC,	1			

JABLET. 2
FRONT PANEL ASSEMBLY REPLACEMENT PARTS LIST

INDEX NO. OH REF DESIG	PART NUMEER	DESCRIPTION	OTY
		Fram Parul Controls consistikg oft-	
81	906-041927-001	Socket, Lamp	1
B1 Lamp	939.041922.001	L.amp.	1
82	935.041919 .001	Light Assambly, Plot .	1
37	910-041306-004	Jack, Phone, 2 Circuit, Nan-Shortion	1
J1401, J1402	910-041632-001	Jack, Phone, 0.206 Dia., 3 Conductor, Shorting.	2
R1,R4, R5, R11	925-040294-504	Ressator, Rotary Pot, Lanear, 5K Ohrn	4
$\begin{gathered} \text { R2 } \\ 83, \mathrm{~A} 6, R 7 . \end{gathered}$	925.040293-901	Resstor, Rotary Por, No 1 Taser, 5 Miegohm	1
RB,R10.R1403	925-040294-001	Resistor, Rotary Pot, Linmear, 25K Othm	θ
R25,R16	925-040294.005	Resistor, Rotery Pot, Audio, 1 Megohm	5
R14	925-040294-003	Resistor, Rotary Pot, Rev. Audio, 50k Ohm,	1
R17 thru R21	925-040292-001	Resstior, Rotary Pot, Linear, 5K Ohm	5
$\begin{gathered} \text { R1402 } \\ \text { S1.S2.S15. } \end{gathered}$	925-040294-002	Resibtor, Rotery Por, Audio, 50\% Ohm	1
516,517	960.041761-002	Switch, Rocker, Orange, DPDT	5
S3 thru S14	960.047760 .001	Swutch, Retary, 2 Pole, 6 Postion	12
S18,S19	560-041761-001	Swatch, Rocker. Blue, DPDT	2
S20	960-041755-003	Switch, Rocker, Black, DPD T	1
S1401.\$1402	960-041761-003	Swith, Rocker, Whue, DPDT.	2
	964-040865-001	Wheel, Left Hand Controlier .	2
	909040938007	Pin, Dowel, 0.05 inch $\times 05$ inch .	4
	982-041179-001	Detent .	1
	963-041178-001	Dezent Spknig .	1
	903-040486-062	Serew, Allen Set 6.32×0.38 tneh	2

TABLE $7-4$
NEW OSCILLATOR PRINTED CIRCUIT BOARD ASSENELY BOARD I REPLACEMENT PARTS LISY (SERIAL NUMBERS 10175 AND ABOVE)

TABLET4
NEW OSCLLLATOR PRINTED CIRGUIT BOARD ASSEMBLY BOARD 1 REPLACEMENT PARTS LIST ISERIAL NUMBERS IOI75 AND ABOVE) (COntInUPd)

TABLE 75
OLD OSCILLATOR PRINTED CIACUIT BOARD ASSEMBLY BDARD I REPLACEMENT PARTS LIST (SERIAL NUMBERS BELOW 10175)

OLD OSCHL LATOR PRINTEO CIRCUIT BOARO ASSEMBLY BOARD I REPLACEMENT PARTS LIST (SERIAL NUMAERS BELOW 1OY75) (COmtmued)

TABLE75
OLD OSCHLLATOR PRINTED CIRCUUT BOARD ASSEMBLY BOARD I REPLACEMENT PARTS LIST (SERIAL, NUMBEAS BELOW 1OF75) (Continued)

INDE X NO, OR REF DESIG	PART NUMEER	DESCRIPTION	OTY
R68,R105. R141. R 180 F78 R106.R128			
	852.512153.001	Rasistor, 15 K Ohm, $\pm 5 \%, 1 / 2 \mathrm{~W}$	4
	949.042129.001		1
F78 R106.R128 R87	852512913.001	Hesistampe Capaeitance Network. flasumor, 91 K Ohrr, $\pm 5 \%, 1 / 2 \mathrm{~W}$	1
R95	852.512224001		1
R99	852.512971 .001	Fesstor, 810 Ohm, $\pm 5 \%$, 1/2W	i
R148	852.512272001	Resisior, 2.7 K Ohm, $\pm 5 \%, 1 / 2 \mathrm{~W}$.	1
R150	853-421007-031	Retiktor, 1K Onm, $\mathbf{1} \mathbf{1 \% , 1 / 4 W} . . .$.	1
R $155 . R 162$	853.423011 .031	Rasistor, 3.01K Ohmm. $51 \%, 1 / 4 \mathrm{~W}$.	2
R163	852.512333-009	Resistor, 33K Ohm, $\pm 5 \%, 1 / 2 \mathrm{~W} . . .$.	1
R164	852.512331 .001	Resistor, 330 Mmm , 5\%, 1/2W	1
R168	925-040279.002	Resistor, Trim Pot. 25 Ohm , ..	1
R169	853.426918 .031	Ressitor, 68 ithm, $\pm 1 \%$, 1/4W	1
R172	852.512752 .001		1
R174	852.612352 .001	Resistor, $39 \times \mathrm{Ohm}, \pm 5 \%, 1 / 2 \mathrm{~W} . . . \mathrm{C}$.	1
R175	852.512683001	$\text { Resistor, } 68 \mathrm{~K} \text { Ohm } \pm 5 \%, 1 / 2 \mathrm{~W} \text {. }$$\text { Resishor, } 48 \mathrm{~K} \text { Ohm, } \pm 5 \%, 1 / 2 \mathrm{w}$	1
R176	852 512183-001		1
ค!78	852.512512 .001		1
R181	852.512513 .001	Resistor, $51 \mathrm{KOhm}, \pm 5 \%, 1 / 2 \mathrm{~W}$ Socket, Integrated Carcurt, 7 Pis.	1
	903.040307 .007		4

TABLE 7.6
CONTOUR GENERATOR PRINTED CIRCUIT BOARO ASSEMBLY BOARD 2 REPLACEMENT PARTS LIST

INDEXNO. OR REF DESIG	PART NUMBER	DESCRIPTION	QTY
	996-041938-001	Pranted Curcuit Board Assembly conasting of:	
C1,C4, C13	946.041978 .103	Capactior, Polyester, $0.01 \mathrm{f}, \pm 10 \%, 50 \mathrm{~V}$.	3
C2, C_{5}	945-040209008	Capacitor, Electrolytic. 10ut, $+50 /-10 \%, 50 \mathrm{~V}$	2
C3, 67	946-041978-104	Cupacrtor, Polvester, 0.1us, 210%, 60V	2
C6	946-040226-105	Capacitor, Polyestar, 1ut, $\pm 10 \%$, 63V	1
C8	947.042020-104	Capacitor, Ceramie Oise, 100PF, $\pm 10 \%, 50 \mathrm{~V}$	1
¢9	948.040190 .334	Capacrtor, Polyester, 0.33uf, $\pm 10 \%$, 50 V	1
C1 1	947.042020.470	Capacitor, Ceramic Disc, 47Pf, $\pm 10 \%$, 50V	1
C 12	947-042020-501	Capacator, Cerumic Oisc, 500Pf, $\pm 10 \%$, 50V	1
CR1,CR3,CR6. CR8,CR10	919.041074.00t	Drode, 1N34A. .	5
CR2,CR4,CR5. CM7,CR9	919-042019001	Orode, tN4004 .	5
01 thru Q_{4}, Q_{6}, 07,015,017. 018,020,022.			

TABLE 7.6
GDNTOUP GENERATOR PRINTED CIRCUIT EOARD ASSEMELY EOAFD 2
AEP\&ACEMENT PAFTS LIST (COMTHMEI)

TABLE7-7
POWEA SUPPL Y PAINTED CIRCUIT BOARD ASSEMBL Y BOARD 3 REPLACEMENT PARTS LIST

INDEX NO. OR REF DESIG	PART NUMEER	DESERIPTION	OTY
	995-041931.001	Printed Curcult Sourd Astembly consisting of.	
C1.C4, C8,			
C19.C20	945040209005	Capacitor, Electrolytic. 2.2uf, +75/-10\%.50V	5
C 2	946.041978 .333	Capactor, Poly ester, $0.033 \mathrm{uf}, \pm 10 \%, 50 \mathrm{~V}$	1
C3	946.042260124	Capacitor, Polyester, $0.12 \mathrm{ul}, \pm 10 \%, 50 \mathrm{~V}$,	1
C5,CE, C11,C23	947.042020 .101	Capactor, Ceramuc Disc, 100Pf, 1 10\%, 50V .	4
c7.C18.c22	946.042260.154	Copacitor, Polytster, $015 \mathrm{uf}, \pm 10 \%$, 50V	3
C10,613,C27	946-041978.104	Capactor, Polyester, $0.1 \mathrm{uF}, \pm 10 \%$, 50 V	3
C 12	946.040231.005	Capacitor, Polyester, 5.6 f . $\pm 10 \%$, 50V	1
C14	946-041978-223	Copecitor, Polyester, $0022 \mathrm{uf}, \pm 10 \%, 50 \mathrm{~V}$.	1
C1尤	947.042020 .221	Capactior, Ceremic Oisc, 220PP, $£ 10 \%$, 50V	2
C21	045.040209 .070	Capacitor, Electrolytic, $470 \mathrm{uf}, 450 j=10 \%$, 50 V	1
C24.C26	945-040209-009	Cepacitor, Electraiyte, 100uf, $+50 \mathrm{i}-10 \mathrm{~K}, 25 \mathrm{~V}$	2
C25, 228	945.040209.008	Capacitor, Evectrolvtic, 10uf, $+50 /-10 \%$, 50 V	2
C29.C30	945-040020-470	Capacitor. Cerernic Disc, 47Pf, $\pm 10 \%$, 50V	2
CR3.CR2	919041081.001	Diode, 1N458.	2
CR3	919.041078 .001	Drode, IN821	1
01	991041057.001	Jransistor, MPS-U55.	1
02,05,010	991.041061 .001	Transistor, TIS92	3
03,04,06,			
Q12,Q17,018	991.042017.00t	Trensistor, 2N3392	6
07,08,09	$597.041060-001$	Transistor, 2N4058	3
011,016,019	997.041062.00t	Trensistor, TJS93	3
Q13,014	991041126001	Transistor, TIS97.	2
015	991.041062 .001	Transstor, 2 N3392 Selected	1
019	991.041062-001	Trensistor. T1593. Alternate 2N3906	1
020	991.041056-007	Fransistor, MPS-U05	1
R 1	852.512121 .001	Resistor, $120 \mathrm{Ohm}, \pm 5 \%, 1 / 2 \mathrm{~W}$	1
R2,R12.R16,			
R24,R30	852512103.001	Resistor, 10K Ohm, $\pm 5 \%, 1 / 2 \mathrm{~W}$	5
R3,R8,R19	852.512332 .001	Resistor, 3 3K Ohm, $\pm 5 \%, 5 / 2 \mathrm{~W} . .$.	3
A4, R10,R11.			
R20,R48,R61.			
R63	852.512821 .001	Resistor, 820 Omm, $\pm 5 \%, 1 / 2 \mathrm{~W}$.	3
+55.R14	$8525: 2123001$	Resistor, 12 K Ohm, $\pm 5 \%, 1 / 2 \mathrm{~W}$	2
R6, R7	852.512564 .001	Ressitor, 560 K Ohm, $\pm 5 \%, 1 / 2 \mathrm{~W}$	2
R9	852.512471 .001	Resstor, $470 \mathrm{Ohrm}, 55 \% 1 / 2 \mathrm{~W}$	1
R13	852.512221-001	Resster, 220 Ohm. $\ddagger 5 \%$, $1 / 2 \mathrm{~W}$	1
R15	852.512392-001	Rebstor, 3.9 K Qnm, $25 \%, 1 / 2 \mathrm{~W}$.	1
R17.R59	852 \$12104.00t		2
R18.R55	852.512330001	Ressstor. 33 Ohm, $\pm 5 \%, 1 / 2 \mathrm{~W}$	2
R21	925.040279.002	Resstor, Trim Pot, 250 mm ,	1
R23.R28	853.513225-001	Resstor, $2 \mathbf{2} \mathrm{Megohm}, \pm 10 \%, 1 / 7 \mathrm{~W}$.	2

TABLE 7.7
POWER SUPPLY PAINTEO CIRCUIT BOARD ASSEMBLY BOARO 3
REPL ACEMENT PARTS LIST (Continued')

INDEX NO. OR REF DESIG	PART NUMEER	DE SCRIPTION	QTY
R26	925.040279.005	Resrstor, Thm Pot, 2.5 K Ohm	1
R27,R51	852.512301001	Resistor, $300 \mathrm{Omm}, \pm 5 \%, 1 / 2 \mathrm{~W}$	2
R29	852.513475 .001	Pleshtor. 4.7 Megohm. $\pm 10 \%, 1 / 2 \mathrm{~W}$.	1
R31	852.512561 .001	Resistor, $5800 \mathrm{hm}, \pm 5 \%, 1 / 2 \mathrm{~W}$	1
R32.R33	852.512047401	Fieststor, 4.70hm, $\pm 5 \%, 1 / 2 \mathrm{~W}$	2
R34	853-423070-033	Resistor, 301 Ohm, $\pm 1 \%$, 1/4W	1
R 35.8518 ,			
ค 38.856	852.512391 .001	Resstor. $3900 \mathrm{hm} . \pm 5 \% .1 / 2 \mathrm{~W}$	4
R39,R44	853425110.031	Ressistor, 5110 mm , $\pm 1 \%, 1 / 4 \mathrm{~W}$	2
R40.R41.			
R45.R66	852.512100 .001	Resistor, 10 Ohm, $\pm 5 \%, 1 / 2 \mathrm{~W}$.	4
R42,R50	852512622.001	Resistor, $620 \mathrm{hm}, \pm 5 \%, 1 / 2 \mathrm{~W}$	2
R43	852.512911 .001	Resistor, $9700 \mathrm{hm} . \pm 5 \%, 1 / 2 \mathrm{~W}$	1
R47	852.512753.001	Resistor, $75 \mathrm{~K} \mathrm{Ohm}, \pm 5 \%, 1 / 2 \mathrm{~W}$	1
R49	852512122.001	Resistor, $12 \mathrm{KOhm}, \pm 5 \%, 1 / 2 \mathrm{~W}$.	1
F52.R65	853-429090031	Resstor, $9090 \mathrm{hmm} \pm 1 \%, 1 / 4 \mathrm{~W}$	2
R53	852.512243001	Restasior, $24 \mathrm{~K} \mathbf{O h m}, \pm 5 \%, 1 / 2 \mathrm{~W}$	1
R54, R62, R64	$852.512433-001$	Resistor, $43 \mathrm{~K} \mathbf{O h m}$, $\pm 5 \%, 1 / 2 \mathrm{WH}$	3
R 55	852.512330008	Ressistor, $33 \mathrm{Ohm}, \pm 5 \%, 7 / 2 \mathrm{~W}$.	1
R57	852.512102 .001	Fiesistor, 1 K Ohm, $\pm 5 \%$, 1/2W	1
R58	925.040279-100	Ressistor, Frim Pot, 10 Ohm	1
R60	852.512973 .001	Resistor, 91 K Ohm. $\pm 5 \%, 1 / 2 \mathrm{~W}$!
f67	852.512474.001	Resstor, 470K Ohm, $55 \%, 1 / 2 \mathrm{~W}$.	1
	801.023221000	Nut, 4.40	2
	$806-023039.006$	Serew, Pan Hd, 4.40 $\times 3 / 8 \mathrm{in}$.	2
	\$04.040495.015	Wesher, Lock, No. 4	2
	905-040498-004	Rowet. Pop. 1/8 in. Dia .	2
	967.043195 .003	Heat Sink . . .	2

TABLE $7-8$
FILTER PRINTED CIACUIT BOARD ASSEMBL Y BOARD 4 REPLACEMENT PARTS LAST

TABLE 78
FILTER PAINTED CIPCUIT BOARO ASSEMBLY BOARD 4 REPLACEMENT PARTS LIST (Continued)

INDEX NO. OR REF DESIG	PART NUMBER	DESCRIPFION	OTY
R12	925-040279-003	Rusistor, Trim Pot, 100 Omm	1
R14	926.040279.002	Resistor, Tram Pot, 250 hm	1
R15	853-423321-031	Resistor, $3.32 \mathrm{~K} 0 \mathrm{hm}, \pm 1 \% .1 / 2 \mathrm{~W}$	t
R17, R 71	853-424751-031	Resistar, 4.75K Ohm, $\pm 1 \% \mathrm{~K}, 1 / 2 \mathrm{~W}$	2
R18.R21.R45.			
R76	852.512331-001	Resistor, 330 Ohm. $\pm 5 \%, 1 / 2 \mathrm{~W}$	4
R19,R23, R64	852.512101-001	Resistor, $100 \mathrm{Ohm}, \pm 5 \mathrm{~K}, 1 / 2 \mathrm{~W}$	3
R20,R56,R66	852-512104-001	Resistor, 100 K Ofrm. $\pm 5 \%, 1 / 2 \mathrm{~W}$.	3
R24	852-512224-001	Ressuter, 220K Omm. $\pm 5 \%, 1 / 2 \mathrm{~W}$	1
R25	853.427502-031	Riesstor, 75 K Ohm, $\pm 1 \%, 1 / 4 \mathrm{~W}$	1
R27	852.512474001	Resistor, 470K Ohm, $\pm 5 \% .1 / 2 \mathrm{~W}$	1
R29,R30,R60	852.512681-001	Resistor, $680 \mathrm{Omm}, \pm 5 \%, 1 / 2 \mathrm{~W}$	3
R31.R38,R74	852.512473 .001	Resistor, 47 K Ohrri, $\pm 5 \%$, 1/2W	3
R33,R54	852-512471-001	Resistor, $4700 \mathrm{hm}, \pm 5 \%, 1 / 2 \mathrm{~W}$	2
R34	852.512821-001	Resistor, $8200 \mathrm{~mm}, \pm 5 \%, 1 / 2 \mathrm{~N}$	1
R36	852.512511001	Resistor, $5100 \mathrm{hm}, \pm 5 \%, 1 / 2 \mathrm{~W}$,
R37	852.512682-001	Reststor, 6.8K $0 \mathrm{hm}, \pm 5 \%, 1 / 2 \mathrm{~W}$.	1
R39	925.040279.006	Resistor, Trim Pot, 10 K 0 hm	1
R40	$852512222-001$	Resistar, 2.2 K Ohm, $\pm 5 \%, 1 / 2 \mathrm{~W}$	1
R41,R62	852.512161-001	Reststor, $1500 \mathrm{hm}, \pm 5 \%, 1 / 2 \mathrm{~W}$	2
R42	852.512332 .001	Ressistor, 3.3k $\mathrm{Ohm} \pm 5 \%, 1 / 2 \mathrm{~W}$.	1
R43	852.612274-001	Resistor, 270 K Ohm, $\pm 5 \%, 1 / 2 \mathrm{~W}$	1
R44,R58	852.512154.001	Resstor, $150 \mathrm{~K} \mathrm{OHm}, \pm 5 \%, 1 / 2 \mathrm{~W}$	2
R46, R 59	852.512683.001	Resisuar, $68 \mathrm{~K} 0 \mathrm{hm}, \pm 5 \%, 1 / 2 \mathrm{~W}$	2
P47	853-423322-031	Resistor, 33.2 K Ohmm $\pm 1 \%, 1 / 4 \mathrm{~W}$	1
R48	852.512684 .001	Resstor, 680K Ohm, $\pm 5 \%, 1 / 4 \mathrm{~W}$?
R48	925.040280-001	Resistor, Trim Pot, 5000 mm . .	1
P50	852.512823 .001	Resistor, 82K Ohm, $\pm 5 \%$, 1/2W	t
R51	852.512333 .001	Reststor, 33 K Ohm, $\pm 5 \%$, $1 / 2 \mathrm{~W}$, .	1
R53.R57.R69	852512103001	Reststor, 10 K Ohmm, $\pm 59 \%$, $/ 2 \mathrm{WW}$	3
R56	853-421692-031	Ressstor, 16.9K Ohm, $\pm 1 \%, 1 / 4 \mathrm{~W}$	1
R59	$852512683-001$	Reststor, 68K $04 \mathrm{~mm}, \pm 5 \%, 1 / 2 \mathrm{~W}$	1
R6i	852.512204.001	Resustor, $200 \mathrm{~K} 0 \mathrm{Km}, \pm 5 \%, 1 / 2 \mathrm{~W}$	t
R65	852512273001	Resistor, 27 K Ohm, $\pm 5 \%, 1 / 2 \mathrm{~W}$.	1
R67	852.512201-001	Resistor, $200 \mathrm{Ohm}, \pm 5 \%, 1 / 2 \mathrm{w}$	1
R68,R73	925-040279-004	Resistor, Trim Pot, 1K Ohm .	2
R70	852.512182 .001	Resistor, 1.8K $\mathrm{Ohm}_{\text {\% }} \pm 5 \%, 1 / 2 \mathrm{~W} . .$.	1

TABLE 7-9
RECTIFIER AND FILTER PRINTED CIRCUIT BOARD ASSEMBLY BOARD 5 REPLACEAENT PARTS LST

INDEXNO. OR REF DESIG	PART NIJMEER	DESCRIPTION	OTY
	996041906-001	Printed Circuit Board Assembly consisting of:	
C1,C2	945-040209.011	Capacitor, Elearolytic, 8000 uf $+50 /-10 \%, 35 \mathrm{~V}$	2
$\mathrm{C3}$	946.040190.103	Capector, Polvester, 0.01 f. $\$ 10 \%, 50 \mathrm{~V}$	1
C4	945.040209.010	Capecitor, Electralytic, 470uf, $450 / 10 \%$, 50V	1
CR1 thruCR4	919.042019 .001	Diode, 1N4004	4
	$911.041866-001$	Lug, Turret.	11
	976.040791-001	Tie Wrap. .	1

TABEET:10
OCTAVE BUFFER PRINTED CIRCUIT BOARD ASSEMBLY BOARD 6 REPLACEMENT PARTSLIST

INDEX NO. OR REF DESIG	PART NUMBER	DESCR3PTION	QTY
IC1,IC2, IC3	996-041895-001	Derave Buffer Prented Circenit Board Assambly eonsisting of.	
	991-041101.001	Intugrated Circuit. Operationat Amplifrer, IC741	3
	980-041184-001	Printed Circuit Board. Octave Buffer	1
	995.040982.003	Sracket, Angle .	1
	904.040495.015	Washer, Lock No. 4 .	2
	806.023038-004		2

TARLE 7.IT
RIBBON CONTROLLER
REPLAGEMENT PARTS LIST

INDEX NO. OR REF DESIG	PART NUMBER	DESCAIPTION	OTY
	980-042902-001	Printed Circuit Board Assembly anosisting of	
	980-042901-001	Primed Circum Board	1
	997.040585.001	Ribbon Assembly.	1
	997.041597 .001	Wheet Asstmbly + . .	1
CA1,CR2	919.041075-001	Diode, Sipras	2
fi d2	910.041632001	Jack, Phone	2
PL2	910.042832.012	Connector, 12 Pin. .	1
A1.R3	$653-424751.031$	Ressstor, 4.75 K Ohm, 1%, 1/4W, Metal Film. Fixed .	2
R2	925-042389.001	Resustor, 5K Ohm, Trim Cermez	1
R4	925.040275.001	Resistor, 100 K 0 hm, Trim Carbort	1
R5	852312222.001	Resstor, 2.2 K Ohm, $\pm 5 \%, 1 / 4 \mathrm{~W}$, Carbon Film, Fixed.	1
R6	925-040294.001	Resistor, Potertiomerer, Rotary, 50 K Onm	1
A7	852.312152001	Resistor, 1.5 K Ohm, $\pm 5 \%, 1 / \mathrm{WW}$, Carbon Film, Fixed.	1
SW1 SW2	960.042638.002	Swrtch, Shide, SPDT .	1

SECTION 8 MODIFICATIONS

8.1 SERVICE BULLETINS

Minimoog Service Bulletins are issued as netessary to increase product capability or to enhance performance. These are included in this manual ascuming the information contained therein may be necessary for future maintenance. Each bulletin is identified by title.

8.2 OSCILLATOR BOARD ASSEMBLY (Board 1, Serial Numbers between 1300 and 10175)

Subjeet: To improve tracking and pitch sta. bility,

Modifications:

1. Change R69, R105 and R141 from 6.8 K abms to 15 K obms, $1 / 2 \mathrm{~W}, \pm 5 \%$ carbon.
2. Replace R7B, R106 and R128 with RC Network, part number 949-041129-001.
3. Change PR181 from 56 K ohms to 51 K ohms, $1 / 2 \mathrm{~W}, \pm 5 \%$, carbon.
4. Change R170 from 15 K ohms, $\pm 5 \%$ to 15 K chms, $\pm 1 \%$, metal tilm.
5. Cbange R162 from 3 K ohms, $\pm 5 \%$ to 3.01 K ohms, $\pm 1 \%$, metal film.
6. Change C3, C5 and C7 from 47 pf to 100 pt .

All parts listed are availahle in kit form, part number 997-043185-001.

8.3 CONTOUR GENERATOR ASSEMBLY
 (Board 2, Serial Numbers below 2000)

Subject: To reduce thumping which may accur when a key is depressed.

Modification:
Add a 10pf capacitor between pin 4 B and pin 58 on the contour generator printed circuit hoard.

8.4 POWER SUPPLY ASSEMBLY
 (Board 3, Serial Numbers below 2000)

Suhiect: To reduce oscillator bleed-through and cross modulation.

Modification:

Replace 10 ohm resistor next to the +10 V ADJ trim pot with a straight wire, Make sure wire does not touch the hody of 110 V ADJ trimpot.

8.5 FILTER ASSEMBLY

(Board 4, Serial Numbers below 2000\}
Suhbeet: To reduce intermodulation distortion which oceurs when mixing two or more signals.

Modifications:

1. Cbange R2 from 47 K ohms to 160 K ohms.
2. Change R8 and R28 from 27 ohms to 4.7 ohms.
3. Change R 40 from 1 K ohms to 10 K ohms.

8.6 KEYBOARD CIRCUIT PRINTED CIRCUIT BOARD NO. 2

This modification is estimated to require $\mathbf{1}$ hour to perform. (Serinl Numbers in the 7000's).

Fitch drift when key is released (DECAY switch on), keyboard circuit not sampling voltage consistently (correct pitch inconsistent) or keyhoard circuit not functioning at and.

Excessive printed circuit board leakage caused by contaminants in board is usually only exhibited in humid conditions where molsture is apparently absorbed by the board. The keyboard sample and hold circuit is high impedance and is affected by this leakage.

8.8.2 MOOIFICATION

Critical circuit components should be lifted off the board and soldered point-to point on tap of the board to eliminate any chance of voltage leakage from nearby traces to tbese critical areas. The accompanying sehematic diagram shows the area affected by the leakage. The printed circuit board diagram shows leads lifted, jumper wires in place, and sections of traces to be cut. (Figure 8.1).

1. Lift the gate of Q30 and the drain of Q13. Bend the drain of Q13 under the transistor and bring it ap between its source and gate.
2. Remove R21 (10K) from the board and solder it point-to-point (gate Q10 to drain Q13) on top of the board.
3. Solder a jumper wire from the drain of Q13 to the lead of C6. The lead of C6 must be either fifted from the board or the trace cut as shown.

Route a trace with a -10 volt potential away from the gate of Q13. This trace supplies R18 (3.9K), R34 (300 K), R52 (43 K) and R54 (1.5K) with -10 volts.

1. Cut this trace just above R52 and just below R18 as shown.
2. Lift the leads of R34 and C13.
3. Connect a jumper from R18 to R34 and C13 to R52.

8.7 MINIMOOG OSCILLATOR TUNING (Ser alal Numbers around 4185)

Subject: With filter contour ATTACK as some duration other than " 0 ", oscillator number 2 appears
to have a slight amount of gilide present. At the end of the selected duration, oscillator number 2 settles. This ouly occurs when a new trigger is generated, as by high stepping the keyboard.

Reason: Contour generator board 2 transistors Q1, Q4, Q6, Q7 and Q23 have been previously yeplaced with Motorola M62272A.

Modification:

Replace M62272A transistors with the normally used 2N3392.

B. 8 OSCILLATOR BOARD 1, POWER SUPPLY CONNECTION AND OCTAVE BUFFER

Subject: Stabilized Oscillator Installation atid Tuning (Serial Numbers below 10175).

Power Supply Connection Modification (All Serial Numbers).

Octave Buffer Kit Installation (Serial Numbers below 5000), Supercedes Bulletin M101 Octave Buffer Installation.

These out-of warranty modifications are summarized below for labor estimation purposes by an authorized Moog Service Center:

> Stabilized Oscillator Installation 1.0 bours
> Octave Buffer Installation. 1.5 bours

Part number	deschiption	OTY
997.043298 .081	Stalinzd Oscilitior Kit consminy of:	1
996.041828 .882	Stubulizd Osciliator Eorrd.	1
913.043293 .001	Templute for rave penil	1
977.041638.003	Grommers	13
908.043294 001	Ingulatrang "Fisth" fagar tor math frame.	1

FIGURE \&I PAINTED CIRCUIT BOARD 2 MUDIFICA TTUNS

FIGUAE R.3 FRONT PANEL CONTROLS DIAGAAA

FIGURE B- 4 REAR PANEL ADUUSTMENT $\angle O C A T T O N ~ D I A G R A M ~$

NOTE I

To tune OSCILLATOR 1, turn A-440 ON, OSCILLATOR 1 ON, octave RANGE 1 at 8 and center TUNE control.

To tune OSCILLATOR 2, turn A-440 OFF, OSCILLATOR 1 and 20 N , octave RANGE 1 and 2 at 8^{\prime} and center OSCILLATOR 2 control.

To tune OSCILLATOR 3, turn A-4400FF, OSCILLATOR 1 and $3 O N$, octave RANGE 1 and 3 at 8^{\prime} and center OSCILLATOR 3 control.

NOTE 2
To obtain \& zero beat, it may be necessary to make a slight adjustment on the front panel as follows:

TUNE control when turing OSCILLATOR 1.

OSCILJ.ATOR 2 control when tunigg OSCLLLATOR 2.

OSCILLATOR 3 control when tuning OS. CLLLATOR 3.

8.8.3 SCALE TRIMPOT ADJUSTMENTS

a. Set octave RANGE at 8', Refer to Note 1.
h. Press low A $(55 \mathrm{~Hz})$ and zero beat with shift trimpos. Refer to Note. 2.
c. Press high A $(440 \mathrm{~Hz})$ and zero beat with scale trimpot.
d. Repeat steps b and c untii low A and high A zero beat.

8.8.4 HIGH END CONPENSATION

a. Octave range is 2 . Refer to Note 1 and substitute $2^{\prime \prime}$ for 8^{\prime}.
b. Press low A (440 Hz) and zero beat with shift trimpot. Refer to Note. 2.
c. Press high A (3520 Hz) and zero beat with high end trimpot.
d. Repeat steps b and e until low A and high A zero beat.
e. Recheck paragraph 8.8 .3 and repent paragraphs 8.8 .3 and 8.8 .4 if necessary.

8.8.5 DCTAVE ADJUSTMENT

a. Octave RANGE is 32^{*}. Refer to Note 1 and substitute 32 for $8^{\prime \prime}$,
b. Press high $A(220 \mathrm{~Hz})$ and zero beat using shift trimpot. Fefer to Note. 2.
c. Octave RANGE is 2'. Refer to Note 1 and substitute 2^{\prime} for 8^{\prime}.
d. Press high $\mathrm{A}(3520 \mathrm{~Hz})$ and zero beat using octave trimpot.
e. Repeat steps a, b, c, and d until both 32^{\prime} and ${ }^{2}$ zero beat.

8.8.8 SHIFT TRIMPOT ADUUSTMENT

Press $A^{3}(440 \mathrm{~Hz})$ and zero beat u sing shift trimpot. Refer to Note 1.

NOTE

The Minimoog is now in tune. Because of the very precise tracking of the three oscillators on the new board, it may seem at times that the instrument does not produce the "fat" rich, multiple oscillator sound. This is not tbe result of a change in the sound of the oscillator but can be the result of setting the oscillators too precisely at the same pitch. To achieve the rick souid, it will be necessary for the player to detune the front panel oscillat or frequency control as desired for a ricb, rolling sound.

8.8.7 POWER SUPPLY CONNECTION MDDFFICATION

In the event that all oscillators appear to change scale or frequency, the power supply and/or power supply connectors are probably affecting the oscillator as well as the keyboard current drive circuitry.

To ensure that the power supply sense lines are terminated properly with the lowest possible resistance, solder the appropriate main harness wires to the "individual flag" lugs located in the printed circuit board connectors. (Figure 8.5).

The points are as follows:
Connector CO1A, Pins 17, 18, 19, -5 wolt supply, Board 1 Connector.

Connector CO1B, Pine 1, 2, 3, 4, 5, 6, Main supply, Board 1 Connector.

Connector CO3, Pins 13, 14, 15, 16, 19, 20, Main supply, Board 3 Connector.

Flag tools (Part Number 961-043266-001) are available from the factory to remove the "flag" lugs from the nylon AMP connectors. With care, i paper clip can be used in an emergency.

FIGURE \&-5 CONNEGTOR MODIFICA IION DIAGRAM

Each metal "flag" Iug is constructed so that a one-way mechanical latch, consisting of a spring clip, locks the "flag" lug into the nylon connector bousing. To remove the "flag", the tool is inserted into the connector as shown. This releases the syring clip. Using needlenose pliers, gently pull the associated wire straight out of the connector. The "tlag" should freely slide out with the wire. Excessive force indicates that the spring clip is still engaged. When replacing, simply slide the "flag" back until it locks Itself in place.

8.B.B OCTAVE BUFFER KIT INSTALLATION

Buffer Kit, Part Number 997-043185-007, elim. inates interaction between OSCILLATOR RANGE s witches and improves overall tuning. Installation is as follows:

1. Remove the oscillator and contour boards from unit to expose the chassis wiring
2. Replace the matched set of resistors mounted on the octave switch SW3 with the resistor values as indicated in the Parts List that follows.
3. Using the bracket provided in the kit as a guide, drill two holes for No. $4-40$ screws in the chassis top and mount the octave huffer board between the RANGE switch and the WAVEFORM switches. Ensure the octare buffer board is mounted close enough to the front panel to prevent inter-
ference with the contour board. Refer to the furnished schematic, Figure 8-6 to connect the buffer board wiring.

BUFFER KIT PARTS LIST

PART NUMEER	DESCRIFTION	OTY:
997043185.007	Buffer Krt conssting of Restotors, 825 thru R2 8 , Natched. Precision, 1K, $\pm 1 \%$. Reastac, R29, Precision, 475 K , 21\%	1
943 6et130-001		
		4
853.424751 .031		
		1
996-043249.001	Board, Octave Buffer	t
995-040982-003	Bracket, Angle	1
904040495-015	Whashr. Lock, No 4.	2
$806-423039-004$	Screw, Phillipg 4-40 x $1 / 4$ inch	2

8.8.9 WIRE ROUTING

Oscillator 1, SW3, white green, to terminal 5 .
Oscillator 2, SW4, violet, to terminal 8.
Oscillator 3, SW5, whitezed, to terminal 2.
Oscillator 1, Terminal 1, white/yellow, so CO1A. 14.

Oscillator 2, Terminal 4, orange, to CO1A. 13.

Oscillator 3,Terminal 6, white/brown, to $\mathrm{CO}^{2} \mathrm{~A}-$ 11.

SECTION 9 SCHEMATICS AND PRINTED CIRCUIT BOARDS

FIGURE
91 Obellator Printed Circut Board No. 1 Amembly (Serlal Number 10175 and Above) 91
9.2 Oscilinor Primed Circutit Board No, 1 Schamatic (Serial Number 10175 and Abovel 9.1
9.3 Oscillator Prented Circuit Goard No. 1 Schematic Diagram (Serial Numbars Below 10175 t 9.2
9.4 Oscil能tar Pinted Gircuit Board No. 1 Assembly (Senal Numbers Balow 10175) 9.2
95 Matchung Transstor Circuits 9.3
9.8 Contour Gemerator and Kayboard Printed Cïrcuit Board No. 2 Assembly 9.4
9.7 Contour Generator and Kayboasd No, 2 Schamatce Disgram 9.5
9.8 Powet Supply Primted Circuit Board No. 3 Schematce Diagram 96
9.9 Power Supply Prmted Circuit Board No. 3 Asmambly 9.7
9.10 Filtar Printed Gircart Boand No. 4 Assembly $9 . \mathrm{B}$
Q-11 Filar Printed Circuit Board No. 4 Schemanc Dhagram. 9.9
912 Left Hans Controllar Schematic Diagram 9.10
9.13
Fectisier Printed Circurt Board No. SSchematic Diagran and Board Assembly 9109.14$9-15$Octava Bufter Board No, 6 Schamatic Diagram and Board Assembly9.919.16Left Hand Controller Assembly and Transformer Wiring9.12
Fiont Panel Assembly Wiring Diagyam9.13
917 Intarcomecting Wiring Dwgram 9.14
$9.1 B$ Minimage With Separata Kayboard $9-15$
9.10 Ribbon Controller 916
920 Ribson Controllar Schematic Diagram and Board Assembly 9.77
9.21 Moog Accessories 9.18
9.22 Buffer Board Installation Kit 9.18
9.23

TITLE

PAGE

WOTES:

1. UHL ESS OTHE RWISE SWEC TFIEO ALL RESASTOR VALUES ARE IN OHMS 1/4W \& 5 \%
2. MINTMCOG BETWEEN SERTAL mumger 113 AR ANO 11734 MAY HAVE 725 integmateo CIRCUTS FRCM OATE COOEE T060 ANO 7507 WhICH WILL HOT HOLO THE INSTALMENT IN TUAME. THESE DEVICES SHOULO PE RE PLACEO IF FOUND WITH PARTS OF OATED CODES \%RIOH TO OA SLREEOUENT TO THESE DATE CODES.
3) RTT, RETANO h105 are SELECTEOTO CAUSE DSCIL LATOR TC CHANGE EXACTLY ONE OCTAVE WHTH DYM ACHOSS FINS 1 ANO 10 OF ICS. SEL ECT R27 FOF 20.5 MV \pm. mint USIMO A 49.9K, 7SK Oh 100K. SWMILAHLY, REFEAT FOR IC10 AND ICIS.
A. FACTOFY SELECTED IIF NECEStany) TOACHIEVE E0\% 4 1\% RECT. DUTY CVCLE. AED AESISTOF OELETED ON SEMTAL NUMBERS ABOVE 10175.

OBEILLATOR 1 FANGE SWITCH

COMPONENT AASINO (TOF VIEW)

$\binom{1+7}{c 8 E}$	
$\begin{aligned} & 2 N 8004 \\ & 2 N 3906 \end{aligned}$	$\begin{aligned} & 5101 \\ & \text { E112 } \end{aligned}$
WCitssep-1 TLoss	56
$\begin{gathered} \text { LM3. } \\ 741 \end{gathered}$	128

FIGURE 9. 3 OSCILLATOR PRINTED CIRCUST BOARD NO. I SCHERAITIC OHAGRAM ISERIAL NUMBEAS BELOW 1OT75)

NPN TRANSISTDRS 2N3904. $2 N 3392$ [ETC.)

PNP TRANSISTORS 2N3006, (ETC.)

MATCHING PROCEDURE

1. SETUP $\pm 10 \mathrm{~V}$ SUPPLIES 10 $\pm 10.00 \mathrm{~V}$ DR $\pm 15.00 \mathrm{~V}$.
 INATELY 201 AND PLACE THEM IN STYROFOAM TD STABILIZE AT ROOM TEMPERATURE.
2. PLAGE TRANSISTDFS INTO SOCKET, DNE AT A TIME, AND MEASURE BASE TO EMITTER VOLTAGE. DD NOT USE VOUR FiNGERS. USE GLOVES DR PLIERS WITH WNSULATING JAWS. YOUR FINGER HEAT WILI CAUSE THE READINGS TO VARY.
3. MARK DOWN THE V FROM THE DVM AND FIND TWO TRANSISTORS THAT THE $V_{b e}$ MATCHES to $\pm 2 \mathrm{MV}$.
4. EXAMPLE:

TRANSISTOR $1=0.600$
TRANSISTOR $2=0.598$
0.002

nrasmo juvinust 6 ov devced

$14 \quad \mathrm{CB}$
1B 4 ER4 ER 3

2A BAREFA
풀ㅇ

$3 A$
c

F

3* m

FIGUGE \#1G FRONT PANEL ASSENUL Y WIFTNG DLGGAAM

FIGUAE Z IT INTERGONNECTNG WIA HGC DIAGAAM

AVAILABLE UPON SPECIAL REQUEST
FOR AODITIONAL INFORMATION CONTACT YOUA LOCAL DEALER
SPECIFY CABLE LENGTH WHEN ORDEAING

THE AIBEON CONTROLLER SHOWN HERE, ALONO WTH A SINGLEMULTHLE TRIGGEA KEYBDARD AND TOUCH SENSITVE KEYBOARD MAY BE SPECIAL OROERED THROUGH MOOG CUSTOM ENGINEERING OR YOUR INTERNATIONAL DISTRIBUTOR

FIGURE 9.21 MOOG ACCESSORIES

FIGURE 9.22 BUFFER BOARD INSTALLATION KIT

FIGURE 923 OSCILLATOR BOARD INSTALLATION KIT

MOOG Music Manufacturing
 17 Blackstone Avenue
 Jamestown, New York 14701

