mackie.

PPM series

Professional Powered Mixers:
406M, 408M, 808M, 408S and 808S

CAUTION AVIS

> RISK OF ELECTRIC SHOCK DO NOT OPEN RISQUE DE CHOC ELECTRIQUE NE PAS OUVRIR

CAUTION: TO REDUCE THE RISK OF ELECTRIC SHOCK DO NOT REMOVE THE COVER (OR BACK) NO USER SERVICEABLE PARTS INSIDE REFER SERVICING TO QUALIFIED PERSONNEL

WARNING: TO REDUCE THE RISK OF FIRE OR ELECTRIC SHOCK, DO NOT EXPOSE THIS PRODUCT TO RAIN OR MOISTURE

TO PREVENT ELECTRIC SHOCK, DO NOT USE THIS POLARIZED PLUG WITH AN EXTENSION CORD, RECEPTACLE OR OTHER OUTLET UNLESS THE BLADES CAN BE FULLY INSERTED TO PREVENT bLADE EXPOSURE.

ATTENTION: POUR EVITER LES RISQUES DE CHOC ELECTRIQUE,NE PAS ENLEVER LE COUVERCLE. AUCUN ENTRETIEN DE PIECES INTERIEURES PAR L'USAGER. CONFIER L'ENTRETIEN AU PERSONNEL QUALIFIE.

AVIS:POUR EVITER LES RISQUES D'INCENDIE OU D'ELECTROCUTION, N'EXPOSEZ PAS CET ARTICLE A LA PLUIE OU A L'HUMIDITE.

POUR PREVENIR LES CHOCS ELECTRIQUES NE PAS UTILISER CETTE FICHE POLARISEE AVEC UN PROLONGATEUR, UN PRISE DE COURANT OU UNE AUTRE SORTIE DE courant, SauF siles lames PEUVENT ETRE INSEREES A FOND SANS LAISSER AUCUNE PARTIE A DECOUVERT.
 noise emissions from digital apparatus as set out in the radio interference regulations of the Canadian Department of Communications.

ATTENTION :Le présent appareil numérique n'émet pas de bruits radioélectriques dépassant las limites applicables aux appareils numériques de class A/de class B (selon le cas) prescrites dans le réglement sur le brouillage radioélectrique édicté par les ministere des communications du Canada.

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio energy and, if not installed properly and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

 (servicing) instructions in the literature accompanying the appliance.

CONTENTS

Introduction 3
Overview 4
808S Front Panel 5
Block Diagrams 6
Spec ific ations 8
Amplifier Theory 10
Safety test 13
Amplifier test and calibration 14
EFX signal flow 16
EFX overview 18
Connectors 19
Quick parts 21
Exploded views 24
Parts A 1
Fold-out Sections
Assembly Drawings B1
Schematics and pcb layoutsEFX board192-1
Amplifier 808M/808S 193-1
Mixer 408S/808S 194-1
Amplifier 406M/408M/408S 204-1
Mixer 408M/808M 205-1
Mixer 406M 206-1
Output, 1/4" jacks 224-1
AC Power 406M/408M/408S 225-1
AC Power 808M/808S 252-1
Output, Speakon ${ }^{\circledR}$ 263-1

INTRODUCTION

This manual conta ins basic service information. It is essential that you have a copy of the user's manual as this conta ins the complete operating instructions.

SERVICE TECHNICAL ASSISTANCE

Mackie Designs, Service Technic al Assista nce, is a va ila ble 8AM - 5PM PST, Monday through Friday forAuthorized Mackie Service Centers, at 1-800-258-6883. Feel free to call with any questions and speak with a carefully-calibrated technician. If one is not available, leave a detailed message and a qualified Mackoid will retum your call asap.

DISC LAIMER

The information contained in this manual is proprietary to Mackie Designs, Inc. The entire manual is protected under copyright and may not be reproduced by any means without express written permission from Mackie Designs, Inc .

Marccile

Overview

The powered mixerseriesc onsists of 5 models: the 406M, 408M, 408S, 808M and 808S. Each consists of five circ uit boards: Effects, Amplifier, Mixer, Output and AC power.
This table shows which boards are used in each mixer. Note: Each schematic chapter is labeled with the number of the board it describes. For example, chapter 252 conta ins schematic sand pcb layouts forcircuit board number550-252-00, chapter 193 is forcircuit board 550-193-00.

MODEL	EFFECTS	AMPLFIER	MIXER	OUTPUT	AC POWER
406M	192	204	206	224	225
408M	192	204	205	224	225
408S	192	204	194	224	225
808M	192	193	205	224	252
808S	192	193	194	224	252

Two types of power transformer are used, one for the 406M, 408M and 408S a nd one for the 808M and 808S.

All models use the same effects board and output board. There are two different a mplifier boards (800 watts and 400 watts), three different mixer boards (8 channel Mono, 8 channel Stereo and six c hannel Mono) and two types of AC power board (one for the 800 watt models, one for 400 watts).
All models use the same cabinet, feet, handles, power switch, IEC power jack.

808S front panel

The Effects board is a small circ uit piggybacked to the Mixerboard.

Behind the front panel is the Mixer board.

POWERED MIXER SERVICE MANUAL
Mascran Bo

POWERED MIXER SERVICE MANUAL

Specific ations

Frequency Response	Equalization
Mic Input to Main MixerOutput (Trim at 0dB):	Rumble Reduction: 75Hz, -18dB/octave
+0, $-1 \mathrm{~dB}, 32 \mathrm{~Hz}$ to 20 kHz	ChannelEQ:
+0, $-3 \mathrm{~dB}, 16 \mathrm{~Hz}$ to 80 kHz	High $\quad \pm 15 \mathrm{~dB} @ 12 \mathrm{kHz}$
Mic Inputto PowerAmp Output	Mid $\quad \pm 12 \mathrm{~dB} @ 2.5 \mathrm{kHz}$
@ rated poweroutput:	Low $\pm 15 \mathrm{~dB}$ @ 80 Hz
+0, $-1 \mathrm{~dB}, 32 \mathrm{~Hz}$ to 20 kHz	Graphic EQ (9bands):
+0, $-3 \mathrm{~dB}, 16 \mathrm{~Hz}$ to 55 kHz	$\mathrm{Q}=1.414$, ISO octave centers
Distortion, THD and SMPIE IMD; 201tto 20kHz	$\begin{array}{r} +15 \mathrm{~dB} @ 63,125,250,5001 \mathrm{k} \\ 2 \mathrm{k}, 4 \mathrm{k}, ~ 8 \mathrm{k}, 16 \mathrm{kHz} \end{array}$
Mic Input to Main MixerOutput: <0.005\%@+4dBu output	Output
Mic Inputto PowerAmp Output:	Main Mixer, Monitor, \& Effects,
$<0.15 \%, 250 \mathrm{~mW}$ to rated	+4 dBu
power	Maximum Main MixerSection
	Output: +20 dBu
Ration (CMRR)	Maximum InputLevels
60 dB @ 1kHz, Trim @ 0 dB	Mic Input:
Noise, 20Hzto 20kHz (1502 source impedance)	$\begin{array}{ll}\text { Trim @ } 0 \mathrm{~dB}(\mathrm{HI}) & -20 \mathrm{dBu} \\ \text { Trim @-40 dB (LOW) } \\ +20 \mathrm{dBu},\end{array}$
Equivalent Input Noise (EIN): $-127 \mathrm{dBu}$	Line Input: Trim @ 0 dB (H) $\quad 0 \mathrm{dBu}$
Residual Output Noise:	Trim @-40 dB (LOW) +40 dBu
Main Mixer, Monitor, \& Effects	Stereo Line Input: $\quad+20 \mathrm{dBu}$
outputswith Channel\&Mas -ter levelsoff: $\quad-95 \mathrm{dBu}$	Tape Input: $\quad+20 \mathrm{dBu}$
Ma in MixerOutput Noise:	Effec tsRetum: +20 dBu
Master@ nominal (-10 dB), all	PowerAmp In: $\quad+22 \mathrm{dBu}$
channelsoff: -92dBu	InputSensitivity
Master\& 1 input channel @ nominal ($-10 \mathrm{~dB} \&-20 \mathrm{~dB}$),	Minimum Input Level to produce
Trim @ 0 dB: $\quad-85 \mathrm{~dB}$	+4 dBu @ Main MixerOutput
	Mic Input: $\quad-68 \mathrm{dBu}$
Crosstalk@1kHz	Insert Input: $\quad-28 \mathrm{dBu}$
Adjacent Inputsor Input to Out-	Line Input: $\quad-48 \mathrm{dBu}$
put: $\quad-90 \mathrm{~dB}$	Stereo Line Input: $\quad-28 \mathrm{dBu}$
	Tape Input: $\quad-18 \mathrm{dBu}$
FaderOff -90dB	EffectsRetum: -18dBu
Break Switch Mute -80 dB	
Input Level Trim Control Range	
0 to -40 dB	
Phantom Power	
+15V DC	

Maximum Voltage Gain

Mic Inputto
Insert Output: $\quad 40 \mathrm{~dB}$

Tape Output: $\quad 60 \mathrm{~dB}$
Main MixerOutput: 72 dB
Line Input to Insert Output: $\quad 20 \mathrm{~dB}$
Tape Output: $\quad 20 \mathrm{~dB}$
Ma in MixerOutput: 52 dB
Stereo Line Input to Tape Output: $\quad 20 \mathrm{~dB}$
Main MixerOutput: 32 dB
Tape Input to Tape Output: $\quad 10 \mathrm{~dB}$
Main MixerOutput: 22 dB
EffectsRetum to
Main MixerOutput: 22 dB
MonitorOutput: $\quad 22 \mathrm{~dB}$
InputImpedance

Mic Input:	$3 \mathrm{k} \Omega$, bal
Insert Input:	$10 \mathrm{k} \Omega$, unbal
Line Input:	$40 \mathrm{k} \Omega$, bal
Stereo Line Input: $10 \mathrm{k} \Omega$, unbal	
Tape Input:	$10 \mathrm{k} \Omega$, unbal
Effect Retum:	$10 \mathrm{k} \Omega$, unbal
PowerAmp In:	$10 \mathrm{k} \Omega$, unbal

Outputimpedance

Main MixerOutput:	150Ω
Insert Output:	150Ω
Tape Output:	150Ω
MonitorOutput:	150Ω
EffectsSend:	150Ω
PowerAmp Out:	0.032Ω @ 1 kHz

Digital Effects
Resolution: 16-bit, 2-channel
Sample Rate: $\quad 31.25 \mathrm{kHz}$
Bandwidth: $\quad 15.6 \mathrm{kHz}$
VUMeters
Main and Monitor
8 segments: Clip, +5, 0, $-5,-10$,
$-15,-20,-30$

Maximum Powerat1\%7HD, midband, both channels driven

406M, 408M, 408S
250 watts perchannel into 2Ω
200 watts perchannel into 4Ω
125 wattsperchannel into 8Ω
808M, 808S
600 watts perc hannel into 2Ω 450 watts perc hannel into 4Ω 300 wattsperchannel into 8Ω

Continuous Sine Wave Average OutputPower, both channels driven (rated power)

406M, 408M, 408S
180 watts perchannel into 4Ω from 40 Hz to 20 kHz , with no more than 0.15\%THD
110 wattsperc hannel into 8Ω from 40 Hz to 20 kHz , with no more than 0.10\%THD

808M, 808S
340 watts perc hannel into 4Ω from 40 Hz to 20 kHz , with no more than 0.15\%THD
240 watts perchannel into 8Ω from 40 Hz to 20 kHz , with no more than 0.10\%THD

PowerBandwidth

$<10 \mathrm{~Hz}$ to $30 \mathrm{kHz}(+0,-1 \mathrm{~dB}$) @ rated powerinto 4Ω

Frequency Response

$<10 \mathrm{~Hz}$ to $30 \mathrm{kHz}(+0,-1 \mathrm{~dB})$
$<10 \mathrm{~Hz}$ to $55 \mathrm{kHz}(+0,-3 \mathrm{~dB})$

Distortion

SMPTE IMD: $\quad<0.10 \% @ 8 \Omega$
Signal-to-Noise Ratio
>105 dB below rated power, 8Ω

Slew Rate

$406 \mathrm{M}, 408 \mathrm{M}, 408 \mathrm{~S} \quad>40 \mathrm{~V} / \mu \mathrm{s}$
808M, 808S $>50 \mathrm{~V} / \mu \mathrm{s}$

Load Angle

8(\#jx) time independent at 8Ω 4(1+jx) time dependent at 4Ω

High Frequency Overload and Latching:

No latch up at a ny frequency or level.

High Frequency Stability:

Unc ond itiona lly sta ble, driving a ny reactive orcapacitive load

Tum On Delay:

3 seconds

AC PowerRequirements

United States: $120 \mathrm{VAC}, 60 \mathrm{~Hz}$ Europe: $240 \mathrm{VAC}, 50 \mathrm{~Hz}$ Japan: 100VAC,50/60Hz Korea: $220 \mathrm{VAC}, 60 \mathrm{~Hz}$
(Capable of operation from 75\%
to 110% of rated line voltage)

Physical

Height:	11.7 inches (297mm) 20.5 inches
Width:	(521mm) Overall Depth: 13 inches (330mm)

Weight:
406M, 408M, 408S
32 pounds (14.5 kg)
808M, 808S
36 pounds(16.3 kg)

Disclaimer

Since we are always striving to make ourproducts betterby incomorating new and improved materials, components, and manufacturing methods, we reserve the right to change these specificationsat a ny time without notice.

M A S Cll

808M/808S Power Amplifier Theory of Operation

The poweramplifier used in the 800 series powered mixer istypic ally referred to ashaving a high efficiency output stage. It uses a C lass-H topology.

When signal levels are low, one can pull power from the $H-45 \mathrm{~V}$ supplies. Only when signal levels are high is current pulled from the +-90 V supplies. For a given output power, the output stage delivers a certa in a mount of output curent to the load. If that current is pulled from the +45 V supply rather than the +90 V supply, the overall power pulled from the supply half as much. Part of this power is delivered to the load, and the rest is given off as heat in the output stage. If we pull from the +45 V rather than the +90 V supply in this example, there will naturally be less dissipation in the output stage, giving the output stage higherefficienc y.

A class-H design switches the supply for the output transistors from the lower to the upper rail. When the peak output voltage gets close to the lower rail voltage, the rail quic kly switches to the highersupply. In a class-G design (such asthe SRM-450 powered speaker) as the peak amplitude of the output waveform goes above the lower supply rail, the output stage supply rail increases slightly to follow the signal. The supply linearly follows the output waveform, staying just slightly higher than the output signal.

Referming to schematic 193 channel 1, for the $\mathrm{charactensticsof} \mathrm{the} \mathrm{class-H}$ topology. At low signal levels, power is supplied to the output stage (Q12-Q14 and Q71Q73) from the 45 V supplies through schottky diodesD2 and D101.

On positive going signals, when the output waveform is within a bout 10 V of the +45 V rail, the gate of Q8 is driven negative by about 15 V from the +90 V rail. This in tum quic kly pulls the drain of Q8 and the collector's of Q12-Q14 to the +90 V rail.
Action on the bottom half (Q76) operatesidentic ally.

Refeming to the channel-1 switching circuit shown here. There are two pairs of jumper resistors. The first pair (R121, R106) allow both class-H switches to operate in tandem. When operating in tandem, if the positive switch actuates, the negative switch also does, and visa versa. By switching both halves at the same time, the charge that the switc hes imparts to the output line tends to cancel out, reducing high frequency distortion some. It was found that the distortion improvement was minimal, so we made both the positive and negative switchesact totally independent of each other. The independent function is activated by stuffing the shorting jumpers at R105 and R122.

The positive FET'sgate is driven by a little level shifting amplifier comprised of Q27, Q28, Q29 and Q38. The gate is driven through R38/C11 from the emitter follower stage Q27/Q28. This follower can swing as much as 15 V below the +90 V rail, limited by the loc al 15 V supply consisting of D44, D37 and C59. Bias forthis supply is provided by R23 and the +15 V supply.

When the output signal voltage is low, pin-7 of U6 is open, and there is no voltage drop across R82. As signal level inc reases, the comparatortums on, and pin-7 is pulled to within one diode drop of ground (via pin -8 and D67). Around 14 V is dropped across R82. This voltage drop causes a current to flow through the emitter of Q38, this curent is also present on the connectorand is coupled to the casc ode stage above (Q29). Eventually this same current is a vailable at the collector of Q29 and to R94. Since R94 and R82 are both the same values, 14 V also appears ac ross R94. This drives the Base of Q28 low and it's emitter follows. The emitter then ultimately feeds the gate of the switch. This topology allows the FETto be switc hed on quite fast (on the order of 100nS or less, or at a rate of greater than $450 \mathrm{~V} / \mu \mathrm{S})$. The switch is actually slowed down by C 10 . The output current from Q29 is constant, so C10 breaking a gainst this constant curent allows the switch to "slowly" ramp up. We say "slowly" as the switch still transitions from +45 V to +90 V in less than $1 \mu \mathrm{~S}$ (greater than $45 \mathrm{~V} / \mu \mathrm{S}$). We slow the switch down to improve the high frequency distortion figures on the amplifier.

The negative half works identic ally with the following exceptions: When the negative half is tumed on pin-12 of U6 is pulled close to ground. This drops around 15 V across R103 and

M A E POWERED MIXER SERVICE MANUAL

R104 (Both 2.2 K ohms) allowing around 1.4 mA to flow into pin-12. This current flows out of pin-3 and approximately half of it flows through D38 / R83 and the other half to the emitter of common base amplifier Q34. The curent flowing in the collector of Q34, pulls the high side of R120 to ground potential, allowing again around 14 V to be dropped across R120. The curent through R120 also appears at R127, as in the operation of the positive half.

What determines where things switch? On the positive half, the +45 V supply is first filtered (R5/C9) and then divided down in voltage (R5, R4, R152 and R151 through D69). This divided-down supply reference is present on the-non inverting input of U6 (pin-9). With no output signal, the inverting input is always kept one diode drop below the non-inverting input, as D69 is biased via R151. With the non-inverting input higher than inverting, pin-7 is high, and the FET is still switched off. When the output swings more and more positive, the divided-down signal is presented to U6-10 via R112, D56 and R151. When Pin-10 goes above Pin-9, the switch tums-on. D69 and D68 are present to limit the voltage range to the compa rator inputs to $+/-0.7 \mathrm{~V}$: This inc reases the switc hing speed.

R153 a nd D70 are the positive switc h's tum-off hysteresis network. When the switch is finally activated (about 10V below the 45 V rail), D70 is forward biased and R153 drives U6-9 slightly lower. The result is that when the output signal eventually starts to decrease in level, the switch will actually switch off at an even lower level (around 12V below the +45 V supply). This hysteresis is important so that the switch only tums on and off once as it follows the output signal. Picture a switch without this hysteresis: When the output was hovering a round 10 V below +45 V the switch could continually toggle between +90 V and +45 V . This can cause all sorts of themal, relia bility and distortion problems.

The action of the negative detector is identic al to the positive half desc ribed above.

Sa fety test

You must perform the following leakage test before retuming the mixer to your customer. Take every safety precaution to protect yourself while doing this test.

1. Make a small loading RC circuit as shown in the diagram below, and connect the AC volt meter between the AC power source ground and any exposed metal on the unit under test.
2. Connect the mixer undertest to an AC power source using a ground-lift adaptor, leaving the mixer's safety ground floating. Tum the mixer on.
3. The meter reading should be less than 750 mVAC (note: this is equivalent to 0.5 mA of leakage current).
4. Flip the plug over in the receptical so the hot and neutral are swapped. Verify that the reading is still less then 750 mVAC .
5. If either reading is greater than 750 mVAC , then you must investigate and repair the mixer before retuming it to your customer.

WARNING: FUSIBLE RESISTORSMUSTONLY BE REPLACED BY THE EXACTREPLACEMENTPARTS. ALWA YSC HEC KTHE PARTSUSTSTO VERIFY WHICH RESISTO RSARE THE FUSIBLE TYPE BEFOREREPLACING ANY RESISTORSIN THISAMPLFIER.

Amplifier tests for the 808M a nd 808S
 Power Consumption

With no signal and no load, the power consumption from the AC mains should be:
Variac

```
Power consumption
< 5W
< 20W
    < 50W
```


DC supplies

Set the Variac up to 120vac (US models)
Measure the DC supplies: (see page 193-5 for the pcb layout)

+96 to +98 vdc	@pcb test point +100 v
-96 to -98 vdc	@pcb test point -100 v
+86 to +89 vdc	@pcb test point +90 v
-86 to -89 vdc	@pcb test point -90 v
+42 to +44 vdc	@pcb test point +45 v
-42 to -44 vdc	@pcb test point -45 v
+14.5 to +16.5 vdc	U1 Pin 3
-14.5 to -16.5 vdc	U2 Pin 3
+4.75 to +5.25 vdc	U7 Pins $2 \& 3$

Bias Adjustment

The bias a djustment is best done when the amplifier has been warmed up. Run it with a music program into a dummy load until the heatsink is warm to the touch.
The actual adjustment is done with no signal and no load:
Channel 1
Measure the DC voltage between J 23 \& J 24

Adjust R7 for 18 to 20mvdc,

 Seal the pot with a drop of nail paintChannel2
Measure the DC voltage between J 21 \& J 22
Adjust R6 for $\mathbf{1 8}$ to 20mvdc
Seal the pot with a drop of nail paint

Power Tests

Continuous Sine Wave Average Output Power, both channels driven (rated power): 340 watts per channel into 4Ω from 40 Hz to 20 kHz , with no more than 0.15% THD 240 watts per channel into 8Ω from 40 Hz to 20 kHz , with no more than 0.10% THD Check for symmetric al clipping and correct operation of the DC rail switching.

Amplifier tests for the 406M/408M/408S Power Consumption

With no signal and no load, the power consumption from the AC mains should be:
Variac
Up to 40vac Power consumption
< 3W
Up to 60vac <8W
Up to 120vac <40W

DC supplies

Set the Variac up to 120vac (US models)
Measure the DC supplies: (see page 204-4 for the pcb layout)

+69 to +71 vdc	Q5 Pin 2
-69 to -71 vdc	Q50 Pin 2
+59 to +61 vdc	Q10 Pin 2
-59 to -61 vdc	Q47 Pin 2
+14 to +15.5 vdc	U1 Pin 3
-14 to -15.5 vdc	U2 Pin 3
+4.75 to +5.25 vdc	Across U5 Pins $2 \& 3$

Bias Adjustment

The bias a djustment is best done when the amplifier has been warmed up. Run it with a music program into a dummy load until the heatsink is warm to the touch.
The a ctual adjustment is done with no signal and no load:
Channel 1
Measure the DC voltage between the two pins of f 7
Adjust R2 for 19 to 21 mvdc ,
Seal the pot with a drop of nail paint
Channel2
Measure the DC voltage between the two pins of J 6

AdjustR1 for 19 to 21mvdc

Seal the pot with a drop of nail paint

Power Tests

Continuous Sine Wave Average Output Power, both channels driven (rated power): 180 watts per channel into 4Ω from 40 Hz to 20 kHz , with no more than $0.15 \% \mathrm{THD}$ 110 watts per channel into 8Ω from 40 Hz to 20 kHz , with no more than 0.10% THD Check for symmetric al clip ping.

EFX signal flow

BLOCK DIAGRAMS

Stereo mixers

Mono mixers

FRONT PANEL CONTROLS AND ADJ USTMENTS

NOTE: the following schematic pieces are all from the stereo mixer circuit board chapter 194, page 9, and show what happens before a nd after the EFX board. See also EFX circ uit board chapter 192.

EFX CONTROLS (ON THE MIXER BOARD)

The adjustment of these two pots directly affects the CODEC IC U3. Note that Pa rameter $1=$ POT1, Parameter $2=$ POT2 at connectorJ 1.

SIGNALS TO THE EFX BOARD

This section of the schematic shows the single analog signal going into the EFX circuit
board. It also shows the EFX Drive Level pot R429.

This shows the effect of the footswitch and EFX Mute (BYPASS) switch SW5. The FLAG signal goes off to the EFX board DSP IC U2. The FXMUTE signal will mute the EFX a nalog outputs, see below.

SIGNALS FROM THE EFX BOARD

This shows the two analog output signals coming from the EFX board, ready to take their place in society. The CUP light will tum on if the EFX Drive Level is set too high.

$\begin{array}{ll} \\ \\ & \end{array}$

This shows the signa ls present on the EFX board connectorJ 1.

EFX overview

The EFX circ uit board schematics and pcb layouts a re shown in chapter 192.
The circuit is made from the following ma in elements: Clock, CODEC, DSP and SRAM

INTEG RATED CIRCUITS

PART NO.	DESC RIPTIO N	VALUE	REF
$080-088-00$	IC, ADSP-2163		
$315-017-00$	CRYSTAL, 24.576 MHZ	24.576	U1
$325-027-03$	IC, SMD, DUALD F/F	74HC 74A	U6
$325-071-03$	IC, HEX, INV, SMD	74HCU04	U1
$329-042-03$	IC, AD1819 QFP	AD1819	U3
$329-047-03$	IC, 32KX8 SRAM 20nS	7C 256-20	U4-5

EFX OVERVIEW

The CODEC receives a mono analog input from the mixercircuit board and converts it into a digital signal. The CODEC also receives analog control signals from the two Parameter pots, converts this to digital and sends a combined digital signal to the DSP.

The DSP and the two SRAM ICs, form a powerful DSP system. The DSP receives the digital data from the CODEC as well as the direct control signals from the rotary encoder and the EFX WIDE switch. The DSP programing selects and performs the appropriate DSP function on the signal data, and sends it back to the CODEC.

The CODEC converts the incoming digital signals to two analog outputs. For DELAY and PHASER effects, these a re identic al signals. Forothereffect selections, these have subtle differences. For stereo mixers, these are sent to the main left and night mix, and also summed to the monitor mix. For mono mixers, they are summed and sent to the main and monitor mixes.

Connectors

MIXER TO EFX BOARD

The details for the mixer to EFX board connectorare shown on the previous page.
MIXER TO AMPUFIER BOARD
The connection between the mixer and amplifier boards is the

AMPUFIER BOARD CONNECTIONS
The powertransformersecondary wiresconnect directly to the amplifier boards, using J 14 for the 193 circ uit board, and J 10 for the 204 circ uit board. The AC volta ges are rectified and the resulting DC voltagessupply the amplifier DC rails and the mixercirc uit board.

193 a mplfier board

204 amplfier board

Single spade connectionson the amp boards are used to send the speaker-level outputs to the output board 224, and there is a ground connector to the mixer board.

$\sqrt[3]{A} \sqrt{3}$? POWERED MIXER SERVICE MANUAL

OUTPUT BOARD

The amplifier channel outputs connect to J3 on the output board.

J3

