

PPM series

Professional Powered Mixers: 406M, 408M, 808M, 408S and 808S

SERVICE MANUAL

SERVICE ON THIS EQUIPMENT IS TO BE PERFORMED BY EXPERIENCED REPAIR TECHNICIANS ONLY CONFIER L'ENTRETIEN AU PERSONNEL QUALIFIE

installed properly and used in accordance with the instruction manual, may cause narmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

The lightning flash with arrowhead symbol within an equilateral triangle is intended to alert the user to the presence of uninsulated "dangerous voltage" within the product's enclosure, that may be of sufficient magnitude to constitute a risk of electric shock to persons.

Le symbole éclair avec point de flèche à l'intérieur d'un triangle équilatéral est utilisé pour alerter l'utilisateur de la présence à l'intérieur du coffret de "voltage dangereux" non isolé d'ampleur suffisante pour constituer un risque d'éléctrocution.

The exclamation point within an equilateral triangle is intended to alert the user of the presence of important operating and maintenance (servicing) instructions in the literature accompanying the appliance.

Le point d'exclamation à l'intérieur d'un triangle équilatéral est mployé pour alerter les utilisateurs de la présence d'instructions importantes pour le fonctionnement et l'entretien (service) dans le livret d'instruction accompagnant l'appareil. POWERED MIXER SERVICE MANUAL MARKEN

CONTENTS

Introduction	3
808S Front Panel	5
Block Diagrams	6
Specifications	8
Amplifier Theory	
Safety test	
Amplifier test and calibration	
EFX signal flow	
EFX overview	
Connectors	
Quick parts	
Exploded views	24
Parts	A1
Fold-out Sections	
Assembly Drawings	B1
Schematics and pcb layouts	
EFX board	
Amplifier 808M/808S	
Mixer 408S/808S	
Amplifier 406M/408M/408S	
Mixer 408M/808M	
Mixer 406M	
Output, 1/4" jacks	
AC Power 406M/408M/408S	
AC Power 808M/808S	
Output, Speakon [®]	

INTRODUCTION

•

SERVICE ON THIS EQUIPMENT IS TO BE PERFORMED BY EXPERIENCED REPAIR TECHNICIANS ONLY CONFIER L'ENTRETIEN AU PERSONNEL QUALIFIE

This manual contains basic service information. It is essential that you have a copy of the user's manual as this contains the complete operating instructions.

SERVICE TECHNICAL ASSISTANCE

Mackie Designs, Service Technical Assistance, is available 8AM - 5PM PST, Monday through Friday for Authorized Mackie Service Centers, at 1-800-258-6883. Feel free to call with any questions and speak with a carefully-calibrated technician. If one is not available, leave a detailed message and a qualified Mackoid will return your call asap.

DISCLAIMER

The information contained in this manual is proprietary to Mackie Designs, Inc. The entire manual is protected under copyright and may not be reproduced by any means without express written permission from Mackie Designs, Inc.

Overview

The powered mixer series consists of 5 models: the 406M, 408M, 408S, 808M and 808S. Each consists of five circuit boards: Effects, Amplifier, Mixer, Output and AC power.

This table shows which boards are used in each mixer. Note: Each schematic chapter is labeled with the number of the board it describes. For example, chapter 252 contains schematics and pcb layouts for circuit board number 550-252-00, chapter 193 is for circuit board 550-193-00.

MODEL	EFFECTS	AMPLIFIER	MIXER	OUTPUT	AC POWER
406M	192	204	206	224	225
408M	192	204	205	224	225
408S	192	204	194	224	225
808M	192	193	205	224	252
808S	192	193	194	224	252

Two types of power transformer are used, one for the 406M, 408M and 408S and one for the 808M and 808S.

All models use the same effects board and output board. There are two different amplifier boards (800 watts and 400 watts), three different mixer boards (8 channel Mono, 8 channel Stereo and six channel Mono) and two types of AC power board (one for the 800 watt models, one for 400 watts).

All models use the same cabinet, feet, handles, power switch, IEC power jack.

808S front panel

Block diagram (Stereo models: 408S, 808S)

Specifications

Frequency Response

Mic Input to Main Mixer Output (Trim at 0 dB): +0, -1 dB, 32Hz to 20kHz +0, -3 dB, 16Hz to 80kHz Mic Input to Power Amp Output @ rated power output: +0, -1 dB, 32Hz to 20kHz +0, -3 dB, 16Hz to 55kHz

Distortion, THD and SMPTE IMD; 20Hz to 20kHz

Mic Input to Main Mixer Output: < 0.005% @ +4 dBu output Mic Input to Power Amp Output: < 0.15%, 250mW to rated power

Common Mode Rejection Ration (CMRR)

60 dB @ 1kHz, Trim @ 0 dB

Noise, 20Hz to 20kHz $(150\Omega \text{ source impedance})$

Equivalent Input Noise (EIN): -127 dBu Residual Output Noise: Main Mixer, Monitor, & Effects outputs with Channel & Mas -ter levels off: -95 dBu Main Mixer Output Noise: Master @ nominal (-10 dB), all channels off: -92 dBu Master & 1 input channel @ nominal (-10 dB & -20 dB), Trim @ 0 dB: -85 dB

Crosstalk@1kHz

Adjacent Inputs or Ir put:	-90 dB
Fader Off	–90 dB
Break Switch Mute	–80 dB

Input Level Trim Control Range

0 to -40 dB

Phantom Power

+15V DC

Equalization

Rumble Red	uction:
/5Hz, –18	dB/octave
Channel EQ:	
High	±15 dB @ 12kHz
Mid	±12 dB @ 2.5kHz
Low	±15 dB @ 80Hz
Graphic EQ	(9 bands):
Q = 1.414	4, ISO octave centers
±15 dB @	63, 125, 250, 500 1k,
	2k, 4k, 8k, 16k Hz

Main Mixer Section Rated Output

Main Mixer, Monitor, & Effects: +4 dBu Maximum Main Mixer Section Output: +20 dBu

Maximum Input Levels

Mic Input:	
Trim @ 0 dB (HI)	–20 dBu
Trim @ –40 dB (LC)W) +20 dBu,

Line Input:	
Trim @ 0 dB (HI)	0 dBu
Trim @ -40 dB (LOW)	+40 dBu
Insert Input:	+20 dBu
Stereo Line Input:	+20 dBu
Tape Input:	+20 dBu
Effects Return:	+20 dBu
Power Amp In:	+22 dBu

Input Sensitivity

Minimum Input Leve	l to produce
+4 dBu @ Main Mixer	Output
Mic Input:	-68 dBu
Insert Input:	–28 dBu
Line Input:	–48 dBu
Stereo Line Input:	–28 dBu
Tape Input:	–18 dBu
Effects Return:	–18 dBu

Maximum Voltage Gain

Mic Input to	
Insert Output:	40 dB
Tape Output:	60 dB
Main Mixer Output:	72 dB
Line Input to	
Insert Output:	20 dB
Tape Output:	20 dB
Main Mixer Output:	52 dB
Stereo Line Input to	
Tape Output:	20 dB
Main Mixer Output:	32 dB
Tape Input to	
Tape Output:	10 dB
Main Mixer Output:	22 dB
Effects Return to	
Main Mixer Output:	22 dB
Monitor Output:	22 dB

Input Impedance

Mic Input: $3k\Omega$, balInsert Input: $10k\Omega$, unbalLine Input: $40k\Omega$, balStereo Line Input: $10k\Omega$, unbalTape Input: $10k\Omega$, unbalEffect Return: $10k\Omega$, unbalPower Amp In: $10k\Omega$, unbal

Output Impedance

Main Mixer Output	t: 150Ω
Insert Output:	150Ω
Tape Output:	150Ω
Monitor Output	1500
Effects Send	1500
Power Amp Out:	$0.032\Omega @ 1kHz$

Digital Effects

Resolution:	16-bit, 2-channel
Sample Rate:	31.25kHz
Bandwidth:	15.6kHz

VU Meters

Main and Monitor 8 segments: Clip, +5, 0, -5, -10, -15, -20, -30

POWERED MIXER SERVICE MANUAL

Maximum Power at 1% THD, midband, both channels driven

406M, 408M, 408S

250 watts per channel into 2 Ω 200 watts per channel into 4Ω 125 watts per channel into 8Ω

808M, 808S

600 watts per channel into 2Ω 450 watts per channel into 4 Ω 300 watts per channel into 8Ω

Continuous Sine Wave Average Output Power, both channels driven (rated power)

406M, 408M, 408S

180 watts per channel into 4Ω from 40Hz to 20kHz, with no more than 0.15% THD 110 watts per channel into 8Ω from 40Hz to 20kHz, with no more than 0.10% THD

808M, 808S

340 watts per channel into 4Ω from 40Hz to 20kHz, with no more than 0.15% THD 240 watts per channel into 8Ω from 40Hz to 20kHz, with no more than 0.10% THD

Power Bandwidth

< 10Hz to 30kHz (+0, -1 dB) @ rated power into 4Ω

Frequency Response

< 10Hz to 30kHz (+0, -1 dB) < 10Hz to 55kHz (+0, -3 dB)

Distortion

SMPTE IMD: < 0.10% @ 8Ω

 $< 0.15\% @ 4\Omega$

Signal-to-Noise Ratio

> 105 dB below rated power, 8Ω

Channel Separation

> 75 dB @ 1kHz

Damping Factor

> 250 @ 1kHz

Amp Input Impedance

$10k\Omega$ unbal, $20k\Omega$ bal

Input Sensitivity

406M, 408M, 408S 1.35 volts (+4.8 dBu) for rated power into 4Ω 808M, 808S 1.76 volts (+7.1 dBu) for rated power into 4Ω

Gain (Amp In to Speaker Out)

26.4 dB (21V/V)

Maximum Input Level

9.75 volts (+22 dBu)

Rise Time

406M, 408M, 408S	< 5µs
808M, 808S	< 6.2µs

Slew Rate

406M, 408M, 408S	> 40V/µs
808M, 808S	> 50V/µs

Load Angle

 $8(\pm jx)$ time independent at 8Ω $4(1\pm ix)$ time dependent at 4Ω

High Frequency Overload and Latching:

No latch up at any frequency or level.

High Frequency Stability:

Unconditionally stable, driving any reactive or capacitive load

Turn On Delay:

3 seconds

AC Power Requirements

United States: 120VAC, 60Hz 240VAC, 50Hz Europe: Japan: 100VAC, 50/60Hz Korea: 220VAC, 60Hz (Capable of operation from 75% to 110% of rated line voltage)

Physical

Height:	11.7 inches			
Width	(297mm) 20 5 inchos			
width.	(521mm)			
Overall Depth:	13 inches			
	(330mm)			
Weight:				
406M, 408M, 408S				
32 pounds (14.5 kg)				
808M, 808S				
36 pounds (16.3 kg)				

Disclaimer

Since we are always striving to make our products better by incorporating new and improved materials, components, and manufacturing methods, we reserve the right to change these specifications at any time without notice.

808M/808S Power Amplifier Theory of Operation

The power amplifier used in the 800 series powered mixer is typically referred to as having a high efficiency output stage. It uses a Class-H topology.

When signal levels are low, one can pull power from the +/-45V supplies. Only when signal levels are high is current pulled from the +/-90V supplies. For a given output power, the output stage delivers a certain amount of output current to the load. If that current is pulled from the +45V supply rather than the +90V supply, the overall power pulled from the supply half as much. Part of this power is delivered to the load, and the rest is given off as heat in the output stage. If we pull from the +45V rather than the +90V supply in this example, there will naturally be less dissipation in the output stage, giving the output stage higher efficiency.

A class-H design **switches** the supply for the output transistors from the lower to the upper rail. When the peak output voltage gets close to the lower rail voltage, the rail quickly switches to the higher supply. In a class-G design (such as the SRM-450 powered speaker) as the peak amplitude of the output waveform goes above the lower supply rail, the output stage supply rail increases slightly to follow the signal. The supply **linearly** follows the output waveform, staying just slightly higher than the output signal.

Referring to schematic 193 channel 1, for the characteristics of the class-H topology. At low signal levels, power is supplied to the output stage (Q12 - Q14 and Q71 -Q73) from the 45V supplies through schottky diodes D2 and D101.

On positive going signals, when the output waveform is within about 10V of the +45V rail, the gate of Q8 is driven negative by about 15V from the +90V rail. This in turn quickly pulls the drain of Q8 and the collector's of Q12-Q14 to the +90V rail.

Action on the bottom half (Q76) operates identically.

POWERED MIXER SERVICE MANUAL MAXGLADE.

Referring to the channel-1 switching circuit shown here. There are two pairs of jumper resistors. The first pair (R121, R106) allow both class-H switches to operate in tandem. When operating in tandem, if the positive switch actuates, the negative switch also does, and visa versa. By switching both halves at the same time, the charge that the switches imparts to the output line tends to cancel out, reducing high frequency distortion some. It was found that the distortion improvement was minimal, so we made both the positive and negative switches act totally independent of each other. The independent function is activated by stuffing the shorting jumpers at R105 and R122.

The positive FET's gate is driven by a little level shifting amplifier comprised

of Q27, Q28, Q29 and Q38. The gate is driven through R38/C11 from the emitter follower stage Q27/Q28. This follower can swing as much as 15V below the +90V rail, limited by the local 15V supply consisting of D44, D37 and C59. Bias for this supply is provided by R23 and the +15V supply.

When the output signal voltage is low, pin-7 of U6 is open, and there is no voltage drop across R82. As signal level increases, the comparator turns on, and pin-7 is pulled to within one diode drop of ground (via pin -8 and D67). Around 14V is dropped across R82. This voltage drop causes a current to flow through the emitter of Q38, this current is also present on the connector and is coupled to the cascode stage above (Q29). Eventually this same current is available at the collector of Q29 and to R94. Since R94 and R82 are both the same values, 14V also appears across R94. This drives the Base of Q28 low and it's emitter follows. The emitter then ultimately feeds the gate of the switch. This topology allows the FET to be switched on quite fast (on the order of 100nS or less, or at a rate of greater than $450V/\mu$ S). The switch is actually slowed down by C10. The output current from Q29 is constant, so C10 breaking against this constant current allows the switch to "slowly" ramp up. We say "slowly" as the switch down to improve the high frequency distortion figures on the amplifier.

The negative half works identically with the following exceptions: When the negative half is turned on pin-12 of U6 is pulled close to ground. This drops around 15V across R103 and

MAGKER POWERED MIXER SERVICE MANUAL

R104 (Both 2.2K ohms) allowing around 1.4mA to flow into pin-12. This current flows out of pin-3 and approximately half of it flows through D38 / R83 and the other half to the emitter of common base amplifier Q34. The current flowing in the collector of Q34, pulls the high side of R120 to ground potential, allowing again around 14V to be dropped across R120. The current through R120 also appears at R127, as in the operation of the positive half.

What determines where things switch? On the positive half, the +45V supply is first filtered (R5/C9) and then divided down in voltage (R5, R4, R152 and R151 through D69). This divided-down supply reference is present on the-non inverting input of U6 (pin-9). With no output signal, the inverting input is always kept one diode drop below the non-inverting input, as D69 is biased via R151. With the non-inverting input higher than inverting, pin-7 is high, and the FET is still switched off. When the output swings more and more positive, the divided-down signal is presented to U6-10 via R112, D56 and R151. When Pin-10 goes above Pin-9, the switch turns-on. D69 and D68 are present to limit the voltage range to the comparator inputs to +/-0.7V: This increases the switching speed.

R153 and D70 are the positive switch's turn-off hysteresis network. When the switch is finally activated (about 10V below the 45V rail), D70 is forward biased and R153 drives U6-9 slightly lower. The result is that when the output signal eventually starts to decrease in level, the switch will actually switch off at an even lower level (around 12V below the +45V supply). This hysteresis is important so that the switch only turns on and off once as it follows the output signal. Picture a switch without this hysteresis: When the output was hovering around 10V below +45V the switch could continually toggle between +90V and +45V. This can cause all sorts of thermal, reliability and distortion problems.

The action of the negative detector is identical to the positive half described above.

Safety test

You must perform the following leakage test before returning the mixer to your customer. Take every safety precaution to protect yourself while doing this test.

- 1. Make a small loading RC circuit as shown in the diagram below, and connect the AC volt meter between the AC power source ground and any exposed metal on the unit under test.
- 2. Connect the mixer under test to an AC power source using a ground-lift adaptor, leaving the mixer's safety ground floating. Turn the mixer on.
- 3. The meter reading should be less than 750mVAC (note: this is equivalent to 0.5mA of leakage current).
- 4. Flip the plug over in the receptical so the hot and neutral are swapped. Verify that the reading is still less then 750mVAC.
- 5. If either reading is greater than 750mVAC, then you must investigate and repair the mixer before returning it to your customer.

WARNING: FUSIBLE RESISTORS MUST ONLY BE REPLACED BY THE EXACT REPLACEMENT PARTS. ALWAYS CHECK THE PARTS LISTS TO VERIFY WHICH RESISTORS ARE THE FUSIBLE TYPE BEFORE REPLACING ANY RESISTORS IN THIS AMPLIFIER.

Amplifier tests for the 808M and 808S Power Consumption

With no signal and no load, the power consumption from the AC mains should be: Variac Power consumption

variac	POWE
Up to 40vac	< 5W
Up to 60vac	< 201

< 20W < 50W

DC supplies

Up to 120vac

Set the Variac up to 120vac (US models)

Measure the DC supplies: (see page 193-5 for the pcb layout)

 +96 to +98vdc
 @pcb test point +100v

 -96 to -98vdc
 @pcb test point -100v

 +86 to +89vdc
 @pcb test point +90v

 -86 to -89vdc
 @pcb test point -90v

 +42 to +44vdc
 @pcb test point +45v

 -42 to -44vdc
 @pcb test point -45v

 +14.5 to +16.5vdc
 U1 Pin 3

 -14.5 to +5.25vdc
 U7 Pins 2 & 3

Bias Adjustment

The bias adjustment is best done when the amplifier has been warmed up. Run it with a music program into a dummy load until the heatsink is warm to the touch.

The actual adjustment is done with no signal and no load: Channel 1

Measure the DC voltage between J23 & J24

Adjust R7 for 18 to 20mvdc,

Seal the pot with a drop of nail paint

Channel 2

Measure the DC voltage between J21 & J22

Adjust R6 for 18 to 20mvdc

Seal the pot with a drop of nail paint

Power Tests

Continuous Sine Wave Average Output Power, both channels driven (rated power): 340 watts per channel into 4Ω from 40Hz to 20kHz, with no more than 0.15% THD 240 watts per channel into 8Ω from 40Hz to 20kHz, with no more than 0.10% THD Check for symmetrical clipping and correct operation of the DC rail switching.

Amplifier tests for the 406M/408M/408S

Power Consumption

With no signal and no load, the power consumption from the AC mains should be: Variac Power consumption

Power consumption < 3W

Up	to	40vac	
Up	to	60vac	
Up	to	120vac	

< 8W

< 40W

DC supplies

Set the Variac up to 120vac (US models)

Measure the DC supplies: (see page 204-4 for the pcb layout)

 +69 to +71vdc
 Q5 Pin 2

 -69 to -71vdc
 Q50 Pin 2

 +59 to +61vdc
 Q10 Pin 2

 -59 to -61vdc
 Q47 Pin 2

 +14 to +15.5vdc
 U1 Pin 3

 -14 to -15.5vdc
 U2 Pin 3

 +4.75 to +5.25vdc
 Across U5 Pins 2 & 3

Bias Adjustment

The bias adjustment is best done when the amplifier has been warmed up. Run it with a music program into a dummy load until the heatsink is warm to the touch.

The actual adjustment is done with no signal and no load: Channel 1

Measure the DC voltage between the two pins of J7

Adjust R2 for 19 to 21mvdc,

Seal the pot with a drop of nail paint

Channel 2

Measure the DC voltage between the two pins of J6

Adjust R1 for 19 to 21mvdc

Seal the pot with a drop of nail paint

Power Tests

Continuous Sine Wave Average Output Power, both channels driven (rated power): 180 watts per channel into 4Ω from 40Hz to 20kHz, with no more than 0.15% THD 110 watts per channel into 8Ω from 40Hz to 20kHz, with no more than 0.10% THD Check for symmetrical clipping.

EFX signal flow

BLOCK DIAGRAMS

FRONT PANEL CONTROLS AND ADJUSTMENTS

NOTE: the following schematic pieces are all from the stereo mixer circuit board chapter 194, page 9, and show what happens before and after the EFX board. See also EFX circuit board chapter 192.

EFX CONTROLS (ON THE MIXER BOARD)

POWERED MIXER SERVICE MANUAL MARCHA

This section of the schematic shows the single analog signal going into the EFX circuit board. It also shows the EFX Drive Level pot R429.

This shows the effect of the footswitch and EFX Mute (BYPASS) switch SW5. The FLAG signal goes off to the EFX board DSP IC U2. The FXMUTE signal will mute the EFX analog outputs, see below.

SIGNALS FROM THE EFX BOARD

This shows the two analog output signals coming from the EFX board, ready to take their place in society. The CLIP light will turn on if the EFX Drive Level is set too high.

This shows the signals present on the EFX board connector J1.

EFX overview

The EFX circuit board schematics and pcb layouts are shown in chapter 192. The circuit is made from the following main elements: Clock, CODEC, DSP and SRAM

080-088-00 IC, ADSP-2163 U2 315-017-00 CRYSTAL, 24.576 MHZ 24.576 Y1 325-027-03 IC, SMD, DUAL D F/F 74HC74A U6 325-071-03 IC, HEX, INV, SMD 74HCU04 U1	PART NO.	DESCRIPTION	VALUE	REF
329-042-03 IC, AD1819 QFP AD1819 U3 329-047-03 IC, 32KX8 SRAM 20nS 7C256-20 U4-1	080-088-00 315-017-00 325-027-03 325-071-03 329-042-03 329-047-03	IC, ADSP-2163 CRYSTAL, 24.576 MHZ IC, SMD, DUAL D F/F IC, HEX, INV, SMD IC, AD1819 QFP IC, 32KX8 SRAM 20nS	24.576 74HC74A 74HCU04 AD1819 7C256-20	U2 Y1 U6 U1 U3 U4-5

EFX OVERVIEW

The CODEC receives a mono analog input from the mixer circuit board and converts it into a digital signal. The CODEC also receives analog control signals from the two Parameter pots, converts this to digital and sends a combined digital signal to the DSP.

The DSP and the two SRAM ICs, form a powerful DSP system. The DSP receives the digital data from the CODEC as well as the direct control signals from the rotary encoder and the EFX WIDE switch. The DSP programing selects and performs the appropriate DSP function on the signal data, and sends it back to the CODEC.

The CODEC converts the incoming digital signals to two analog outputs. For DELAY and PHASER effects, these are identical signals. For other effect selections, these have subtle differences. For stereo mixers, these are sent to the main left and right mix, and also summed to the monitor mix. For mono mixers, they are summed and sent to the main and monitor mixes.

Connectors

MIXER TO EFX BOARD

The details for the mixer to EFX board connector are shown on the previous page.

MIXER TO AMPLIFIER BOARD

AMPLIFIER BOARD CONNECTIONS

The power transformer secondary wires connect directly to the amplifier boards, using J14 for the 193 circuit board, and J10 for the 204 circuit board. The AC voltages are rectified and the resulting DC voltages supply the amplifier DC rails and the mixer circuit board.

Single spade connections on the amp boards are used to send the speaker-level outputs to the output board 224, and there is a ground connector to the mixer board.

OUTPUT BOARD

The amplifier channel outputs connect to J3 on the output board.

