ARPOININ[-2

SERVICE MANUAL

Copyright July 1978

ARP INSTRUMENTS, INC.
 45 Hartwell Avenue
 Lexington, MA 02173
 (617) 861-6000

Document Number 90026

THE INFORMATION CONTAINED HEREIN IS CONFIDENTIAL AND PROPRIETARY TO ARP INSTRUMENTS, INC. IT IS DISCLOSED TO YOU SOLELY FOR PURPOSES OF INSTRUCTION AS TO OPERATION OF THE EQUIPMENT AND MAINTENANCE AS APPROPRIATE. IT IS NOT TO BE USED BY YOU FOR ANY OTHER PURPOSE, NOR IS IT TO BE DISCLOSED TO OTHERS WITHOUT THE EXPRESS PERMISSION OF ARP INSTRUMENTS, INC.

CONTENTS

SECTION 1 INTRODUCTION 1
PRODUCT DESCRIPTION SPECIFICATIONS
SECTION 2 THEORY OF OPERATION 2
FUNCTION DESCRIPTIONS
SWPLIFIED BL OCK DIAGRAM
SECTION 3 CIRCUIT DESCRIPTIONS 2
UPPER VOICING BOARD
LOWER VOICING BOARD STRING CONTROL BOARD
SYNTHESIZER CONTROL BOARD
SYATHESIZER BOARD
PHASER BOARD
BASS VOICE CIRCUIT
POWER SUPPLY
GENERAL INFORMATION
SECTION 4 TRIM PROCEDURES 12
INTERCONNECTION DIAGRAM
\& TRIM POTLOCATIONS
SECTION 5 SCHEMATICS \& ASSEMBLIES 14
SECTION 6 PARTS LIST 32

1.1 Product Description

The ARP OMN:-2 offers the unique combination of polyphonic tone sources and the versatility of synthesizer sound modification. Separate string and eymthesizer sections allow orchestral and symphonic sounds simultansously. The tatal variability of the synthasizer section permits such sounde as brass, piano, and clavinat without single note limitations.

The string, bass and synthesizar sections have separate outputs lacated on the rear panel. ARP's nowfamous systems interface applies to this product as well. The OMNI-2 can accept extemal effects or output is awn signals to other ingtruments. The computer-grade switching mechanisms are fast and reliable.

1.2 Specifications

I. Contrals
A. String Section

1. Instrument Selection Switches
a. Violin (4')
b. Viola (8)
c. Cello (8^{\prime})
d. Base (96)
2. String Envelope Controls
a. Attack Time
b. Release Time
B. Synthasizer Section
3. Synthesizar Waveform Switches
b. 4^{\prime} and 8^{\prime}
4. Single Trigger Switch
5. Voltage Conerolled Filter
a. VCF Freq
b, Resonance
c. ADSR depth
d. LFO depth
e. Pedal \& Acc. depth
6. LFO Speed Slider
7. Synthesizer Woveforms
s. Sawtooth
b. Dynamic Pulse
8. ADSR
a. Atrack Time
b. Decay Time
c. Sustain Level
d. Release Time
C. Bass Voices
9. 8^{\prime} and 166^{\prime} imonophonic:
10. Staccato
D. General Controls
11. Master Volume
12. Bass Votume
13. String/Synthesizer Mix
14. Hallow Waveform Switch
15. Chorus Phaser Switch
II. Outputs
A. Main Outputs (switchabie, high or low)
16. High Loval XLRR 100 ohms, 1VPP D.C. coupled
17. Low Level $\mathrm{K}^{\prime \prime}$ phone, 720 ohms, 200 mVPP D.C. coupted
B. Synthasizer, Strings, Bass
18. High Levil $\mathbf{W}^{\prime \prime}$ phong, B00ohms D.C. coupled 2VPP

Con be tured simultaneously for discreat sterto offects.
C. Systams Interface

1. Upper Gzte Output: Tini D Jaek; $0 .+10 \mathrm{~V}$
2. Triggar Output: Tini O Jack; $0,+10 \mathrm{~V}$ pulsa, 2 microsec. duration
3. Lowar Gate Outpur: Tini D Jock; 0 . $+10 \mathrm{~V}$
4. VCF CV input: Tini D Jack: 10 V max. input
III. Miscellaneous
A. Keyboard
5. Four octave keyboard, split for bass voices at onil and a half octaves from low end
B. Pedals
6. Fittar control pedal for foot control of filtar brighthess
7. Volume control of all outputs texcept bess?
C. Sustain Switch
8. Foot Switch works lake sustain pedal on piano
D. Materials
9. Steel chassis
10. Leather endblocks
11. Glass-epoxy circuit boards
12. industrial-grade electranic components and controls
E. Weight: $391 / 2$ pounds

The OMNI-2's tong generator circuitry consists of mastar oscillator at 500 kHz ., which drives a large scale integrated circuit top octave divider. The top octave divider produces the highest twelve tones in tho instrument. Frequency dividers derive the remaining pitchos from the top octave divider, The squarewave outputs of each dividar are waveshaped to a sawtooth form the waveform enhancement alters the waveshapt to a differentiated tquarowave).

The tones from the wavaform penerator are fed to transistor gating arriys which routin the signal to the string section and the synthasizer section. The transistor gasing arrays are 'kewad' on by an RC circuis connected to each key. The release time of each key fhow long the note remains after a key release) is detarmined by the release capacitor on each gating input.

The outputs of all the gating arrays are summed and routed to the string section and the synthesizer section.

The String Section consists of three parallel phase shifters which modulate the sawtooth waveforms from the gating circuits. The phaser outputs are processed through a Voltage Controlled Amplifier to control the attack eharacteristics. Thee release is controlled by the release capacitor on each gating circuit).

The Synthesizer Section processes the gate outputs of the arrays through a Voltage Controlled Filter and Voltage Controlled Amplifier, both of which are contralled by an ADSA Envelope Generator. The synthasizer output can be routed through the titring section phasers when the Chorus Phaser Switch is selocted. The speed of the phasers is reduced when the Chorus Phaser is selected. The outputs of the
string section and the synthesizer section are summed together in the Mix Circuitry and routed to the output of the instrument. Separate outputs are provided for stereo effects.

The Bass Voice Section and the String Bass and Callo Vaices derive thair frequencles from the 8^{*} pitches that coms from the frequency dividers (befors the waveshaping circuit). These square wave tones will reprepent the firse 20 notes on the keyboard and are separately processed through i monophonic low note priority bass circuit. Once in 8^{\prime} pitch has been selected, it is divided again to provide a 16^{+}pitch.

The String Bass and Callo single note pitches ' B^{\prime} ' and $16^{\prime \prime}$ are procested through the phaser and are mixed with the String Voices at the String VCA.

The Bass Voice single note pitchgs (8' and 16 ') are processed through their own presert synthesizer and envelope section to provide fistinctive sound difterent than the String Bass Voig*e Furthermore, their preset dynamics can be sltered by the Staccato Bass Voice Switch. Its output can be taken directly at the Bass Output Jack; otherwise it is mixed at the Main Ouqput.

The amplitude of the String Bass Voices and the Bass Voices \{8' and 16\} are contralled by the Cass Voiume Slider.

The Synthesizer Section can be selected ivia single trigger switch) to triggered only on the first key depression. This will allow the strings to be played without retriggering the Synthesizer Envelopg Generator.

源

3.1 Upper Voicing Board

GENEAAL: The Uppor Voicing goard contains the Master Oscillator, Top Octave Divider I.C.. Frequency Dividers, Wave Shaping for tones C 7 through C4, Keving Circuits for keys 21 through 48 and six of the ten Gate Circuit I.C.'s. The strmaising Wave Shaping, Kaying Circuits and Gate I.C.'s are located on the Lower Voicing Board. (Note: There are two schematics for this board.

3.1.1 MASTER OSCILLATOR AND TOP OCTAVE DIVIDER

(Refer to Upper Voicing Schematic, sheat 1 of 2.)
11 and 01 produce 0 to -15 volt sine wava at approximately 500 kHz . The frequency of the oscillator can be waried by adjusting the corb of the coil fexternaily accessible]. Z1 buffers and squares the waveform from the Master Oscillator and suppligs it to the Top Dctave Divider, 22. Z2 is a LSI (Large Scale Integrated Circuich divider which praduces the

กขร35v

highest octave (square wavest of the instrument (C6-C7).

3.1.2 DIVIDER AND WAVE SHAPING CIRCUITS

theter to Upper Voicing Schematic, sheat 1 of 2, ,
The square wave outputs from $Z 2$ are supplied to the clock inputs of CD45208E divider chips (Z3-Z7) which produce square waves for each key. The square wave outputs of the CD4520BEt are buffared by invarters Z9-Z16.

TYPICAL WAVESHAPE CIRCUIT

The square wave from inverters $\mathbf{Z 9}-\mathbf{Z 1 3}$ and from $\mathrm{Z2}$ are differentiated by capacitors C17-C49 (values are selected for each frequensyl. CRT through CR47 clip the negative portion of the differentiated square wave resulting in sawtooth shaped waveforms. By altering the DC bid ($\mathrm{P} 5-7$, Waveform Control Bus) some of the negative portion of the differentiated waveform is permitted to pass through diodes CR1-41 when the Weveform Enhancement is selected resulting in a "hollow" type sound.

3.1.3 KEYING CIRCUITS

\{Refer to Upper Voicing Schematic, sheet 2 of 2.$\}$
Each key contact (P7-5, P7-4, P7.3, etc.) it connectad to a 22 uf alectrolytic capacitor through a 470 olm rosistor, The capacitor is normally charged to 0 voltt (The negative side of the capecitor is at 15 volts, 1 . Whan a key is depressed, the copacitor is discharged to 9 位 volts. The time the capacitor takes to recharge to 0 volts bats the rblease tima of bach note and can be varied by the raleasa slider (R31) on the String Control Board. The key yoitages produced for asch key tindicated by letter KV) are supplied to two gate circuits; one for 8', one for 4',

3.1.4 GATE CIRCUITS

(Refer to Uppar Voicing Schematic, sheat 2 of 2.)
There are a total of ten gate transistor arrays ITDA 4701 in the OMNT - 2 which gate signals from the
tone generator sections to the output section. Each Gate has ten transistors (on a common substrate) with common collectors and bases. The emitters serve as the inputs to the devices. Five of the arrays are used for 4^{\prime} pitches and five for B^{\prime} pitches. Therefore, one key controls two gate chips at a time (4' and 8^{\prime}).

TYPICAL KEYING \& GATING CIACUIT
The Upper Voicing Board contains three 4' gate arrays and three 8^{\prime} arrays; the remaining arrays are on the Lower Voicing Board. All of the srrays have the base pin (7) grounded. Each of the sawtooth waveforms are supplied to an emitter through a 100 Kohm resisto: ie.g. Tone G 4 is suppliad through rasistor pack $Z 30$ pins 5 and 6 to pir 12 of z31,). Kaying voltages (denated by KV) are supplied to the emitters also through $\$$ igOKohm resistors $\mathrm{ia} . \mathrm{g}$. KV211. As long ss the kaying voltage is at or near 0 volts, the transistor remains off. Whan kay is depressed, the keying voltege dropt to - $\uparrow 5$ volts, which turns on the transistor in the array and permits the signal to.pass to the collector of the srray and out to the mixing circuitry (e.g. from pin 12 of $Z 31$ to pin 14).

3.2 Lower Voicing Board

GENERAL: The Lower Voicing Board contains the Bass Low Note Priority circuitry, 4' and 8' Mixing circuitry, Gate Sensing circuitry, Suppransian Trigger circuitry, 8' and 16' Bass circuitry, Keying circuits for keys 1 through 20, Gate circuits for tones C2 through

G3, and Wayeshaping for tonet C2 through G3,

3.2.1 WAVE SHAPING, KEYING AND GATE CIRCUITS

(Rafer to Lower Voicing Schemstic, sheet 1 of 3.)

The Wave Shaping, Gating and Keying circuits on this board are a continuation of the sircuits on the Upper Voicing Eoard, See sections 3.1.2, 3.1.3 and 3.1.4 for detailed descriptions.

3.2.2 BASS LOW NOTE PRIORITY CIRCUIT

(Refar to Lowir Voicing Schemstic, shont 2 of 3.)

The 的 and 16' Bass section of the OMNI-2 is single note, low note priority. The Bass Section covars the lowest octave and a half of the keyboard (Keys 1 through 20). The release time of the Bass Section ls fixed, tha ralease control on the front panal has no control ower the Bass Section. Unilike the 4^{\prime} and 8^{\prime} polyphonic tonas, the Bass Priority Circuit receives and generates only square waves,

The function of the Bass Low Note Priority circuit is to route the square wave of the lowest note depressed (only) in the Bass section to the 8^{\prime} and 16^{\prime} Bass Wave Shaping circuits (through CR41-60) for processing. The Bass Wave Shaping circuits are monophonic; they may only eccept one waveform at a time.

Squars wave tones C2.G3 are routed from the Upper Voicing Board frequency dividers to one input of a three input nor gate for aach key (Z33-Z39). The outputs of these nor gates are inverted square waves only when the other two inputs are a logic 0 (e.g. Z336 pin 6 is a square wave only if pin 4 and pln 3 are at logic 0.).

The "enabla" input of the three input nor gates (e,g. 233B, pin 3) will always be a logic 0 (-15 volts) provided no keys are deprassed to the laft of the circuit under examination.

When a key is depressed, 18 volts from the bue rod discharges a fuf sustain copacitof through keying trunsistors ($\mathrm{Q} 1-\mathrm{Q} 20$). (E.g. K.ey 2, P1.12 discharges C42 through R7, 02 and CR63 to -15 volts on key depression.J When a key is released, the voltage on the capacitor is allowed to charge back to 0 voltis through \# 3.3Mohm resistor (e.g. R5). This keying voltage is routed to an input of the three input nor gates (e.g. Z33B, pin 4). Thus the keying voltage permits the square wave to the transmitted from the input of the three input nor gate to the output provided that (A) the keying voltaga is less than -7.5 volts and $\left\{\begin{array}{l}\text { \& } \\ \text { the enable inptut is a logic } 0 \text { (indicating }\end{array}\right.$
no lower keys are being played).
The kaving voltage is also processed through a COSMOS invertar (Z45-Z47) and a nor gata (Z33-Z47) to transmit sarially e logic 1 state to all keys highar than the one depressed.

The output of the three-input NOR (B) will be a square wave oniy when the Enable (A) input is a lagic 0 (.75 volts). Also nota that when this occurs, all audio signals to the right will be prevented from being pracessed-hence, law note priority.

NOTE: All logic gates in the Gass Low Note Priority Section are COSMOS fComplimentary Symmetry Metal Oxide Samiconductorl devices, For this particular application, they ang oparated between ground and 75 volts, Therefore, Elogic if is any voltage between ground and -7.5 voits, logic 0 is any voltage betwaen -7.5 voits and -1.5 voits.

The release time fobeay time ofter the keys ars relased) is fixed at abour one second, howevar, an additional charge path is prowidad through the 3.3 K restistor and the dioda to S 2 for those keys previously dupressed to thorten any residual release time laft on that note. Ot-020 arf off when no keys are depressed.

3.2.3 BASS KEYING VOLTAGE

(Rafar to Lower Voicing Schematic, ther 3 of 3.)

The T point of the Bass Koying Reference Generator supplies a voltage to the bass of $01-20$ of the Bass Low Note Priority Circuit which is at least three dioda drops higher than the keying voltage supplied to the Lower keyboard bus rod (P1-14). The diode drops are created using CR114, 030 and CR113.

This ingures that $01-20$ will be biased $O N$ regardless of the bus voltage which decraases as more keys are depressed.

3.2.4 GATE DETECTOR CIRCUITS

(Refer to Lower Voicing Echermatic, sheet 3 of 3.1
There are two bus rods In the OMNi-2, one for the lowest 20 keys, one for the upper 29 kays. Splitring the bus rod in this manner permits a bass anvalope (Bass AR) to be davelopad separataly from the higher koys and allows indepandent synthasizer control.

The voltage source for the upper bus rod ($\mathrm{F} 1-1$) is through R130 and CR107. When an upper kay is depressed, camparator Z52B switchen from minus 15 V to approximatoly 0 , which in turn passes through 24 to $\mathrm{J} 11-3$ via CR 102 of directly to pins 4, 11. For example, if the Eass Enable input at J27-E is HIGH (Boss Voice 8^{\prime} or 15^{+}has been selactert), the upper gate voltage is ford through Z4 via pins 4, 11; Z4 prevents the other path from CR 102. If the Bass Enable input is LOW, the path for the upper gata voltage is via CR102 to pins 2 and 9 af Z4. In this condition a lower gate valtage (0 volte when a lower key is depressed) will also appear at pins 2 and 9 as CR101 provides the lower gate voltage input. Since the upper gate voltage (logic 0 at $\sqrt{11-31}$ is the input to trigger the ADSR, when a Bass Voice Switch is selacted, the ADSR will not trigger when a lower key (first 20 keys) is depressed.

NOTE: The CA339E (Z52) is an open callector output comparator, Whan the inverting input $i \cdot 1$ is more nogative in voltage than the noninverting (+) input, the outout is open; the voitage is determined by external "pull up" resistor circults or netwarks. This devics in not a stendard op amp; it is a speciatized comparator ino feedback).

3.2.5 8^{\prime} and 16^{\prime} BASS WAVE SHAPINE

(Refer to Lower Voicing Schamatic, sheat 3 of 3.)
The single square wave from the Bass Low Note Priority Circuit (U2) is bufferad through 251A and gated through a "VCA" made up of CR105, R112 and C77. The Bass AR voltage (211.8) is 0 volts when no keys are depressed and drops to -15 wolts when a key is depressed. This voltage sets the bias of CR105 to clip the square wave on the output of Z51A. As the AR voltage drops from ground, the amplitude of tha square wave increases. C77 AC couples the square wave to on emitter follower (Q21) and the 8^{\prime} Bass Wave Shaping (R116, C78, F117, C79, Q22l. The base and emitter of Q21 are biased the same (+7 V). This means that only the differen-
tiated rising edge of the square wave will bias 021 on, thus clipping off the falling edge of the square wave. The sawtooth waveform on the emitter of Q 21 is altered and resonated by Q22 and used for the string bass and synthesizer bass signal. The 16 ' Bass Wave Shaping accepts the buffered e' squara wave from Z51A and divides the frequency in half (Z49). CR106, R119 and C8O are the "VCA" for the 18 " Bass circuit. Buffer and filtering are provided 勆 with the 8 ' Bass (O23 and 024).

3.2.6. WAVEFORM CONTROL

(fefor to Lower Voicing Schematic; shast 3 of 3.1
The Waveform Control seats the bias point of the clipping diodes In tha Wave Shaping circuits for aach key. When the output of Z 53 is 0 volts, sawtogth waveforms are produced. When the output of $\mathbf{Z 5 3}$ is +15 volts, the "hallow" sound is produced. J11-6 is ground when the Waveform Enhancement switch is off, +15 volts when the switch is on. CR 107 provides a little extra voltage to the output when the input is +15 volts since the op amp cannot supply more than about $+13,5$ volts by itself.

The Lower Bus Trigger Detgetor circuit and Lower Sus Gate Detector circuit are equiyalent to the Upper Bus circuitry. CR 112 is the lower bus yoltage source. R150 creates the voltage difference for the lower bus trigger on kay depression.

The Upper and Lower Buss Triggers (Z.5A, 252C) are combined on the base of Q27 and supplied via Q26 to the pulse drive circuit and sustain bus. The sustain bus is the common discharge path for the keying capacitors for each key. The trigger puilse rapidly discharges any keying capacitor not being playad to prevent notes from running together when the release slider is at maximum.

3.2.7 BASS ONE SHOT

The Bass One shat provides a single pulse on tha first Bass key depression. It is used to develop the Bass ADR. Whan s base note feselectad, a positiva going pulse is fed to Z51C-12, which in turn produces a positive going pulse on the output of 251 D .4 . The pulse width is determined by R185, R193, and C89,

3.2.8 4' AND B' SUM

(Refor to Lower Voicing Schamatic, bheat 3 of 3.)
The outputs of the five 4^{+}and 8^{\prime} gating transistor arrays (TDA470) are summed in the 4 ' and a' Sum circuits. Formant filtering is provided to voica the instrument.

The 4' Poly Sum ($\mathrm{N} 11-16$) and 8' * Poly Sum ($\mathrm{J} 11-2$)
are routed to the inpurts of the Str ing and Synthessizer sect ans of the OMNI 2

3.3 String Controf Board

GENERAL The String Control Board contans the String AR Enve ope Genarator AR Suppressiom，AR Squelich and Str．ng Vo ce Se ection circuits．The AR Suppressan forces the AR to release filly betwaen key depressions，yotlding the propsr string attack tumes．The AR Squech forces the relesse time of the AR to bo the seme of the 阳 sate t ma of all the key capacitors to be tracking the auclio evol from the String Voice Sa ection，

33.1 STRING VO CE SE\＆EGTION

（Refor to Strang Control Board Schematic．）

21 ：a COSMOS Quad Switch which selects the four中tch ranges． 4^{*} and 8^{*} polyphon c and ＇$^{\prime}$ amd 16^{\prime} bass．Z3A sums the four pitch ranges and routes them to the Phaser Board．Z2（puns 3， 4 and 5） parmits the Synthesizer section to be summed with the String signals and for processing through the Phaser Board，Pns t， 2 and 13 disate ethe String AR when no str ing vacieps are selected

3.32 STRING AR AND AR SUPRESSION

（Refer to Str ng Control Board Schemat ot

The String AR Envelope Generator produces a contro，voltage wh ch controls the gan of the String VCA on the Synthesizar Control Board C15 is the ntegrating capacitor and is normal y at 0 volts when mo keys are depressed When a kBy if depressed，the gate sigral on Z4A pin 6 thanges from +35 volts to D volts．Comparator 24A＇s output charges to -15 voits which charges C 15 down toward 15 wolts at a rate determ ned by the attack sidor．Whand a key is relaesed，the－15 wolts is allowed to discharge through R37 38 and 39.

When a key is depressed 03 momanker If turns on to n faty dscherge C16 to 0 voits if any vo toge remalns from prov ous key deprossion，

33.3 AR SOuELCH

（Pafer to String Control Boderd Schamat C．）

Z4B monitors the sudios gna from Z3A in the String Vorce Selection circuit C10 ntegrates the output of 248 and supples to to 24 C The output of 24 C is ow（ -15 V ）as long as an aud os gna s present wh ch reverse buases CR11 and prevents the AR from dis
charging faster than the decay of the atdio signal

334 ADSA BLANKING

The ADSR biank ng provides a puse to the ADSR circut on tha Synthes．zer Contral Board which praverts the ADSA from triggoring when the foot pedal is ro pased

Synthesizer Control Board

GENERAL＇The Synthssizer Control Board contaıns the Synthes zar Voice \＄e betion，Low Frequancy Oscilator，Synthesizer Voltage Controllad Amp if er， String Voltage Contro led Amplif er，final Output Mix and Bass AR Enveiope Gonerator

34．1 LOW FREQUENCY OSCILLATOR

（Refer to Synthesizer Control Board Schemat．c．I

The LFO produces a triang．a und a square wave output in a frequancy range from about +1 Hz ．to 20 Hz ． 248 and C11 are an integrator wh ch charges from current passing through M45．24A 5 a hystere－ tc switch whose output swrtches from -15 vo ts to $+t 5$ vo ts when the olifput of 248 reaches +5 volts This then reverses the direction of current through R45 and the rate control（R44）and thus the drec－ tion of integration at the output of $\mathbf{Z 4 B}$ ．When the output of Z4B reachas -5 volts，the output af Z4A switches back to -15 voits and the cycle reparts．

3.42 SYNTHESIZER VOLTAGE CONTROLـED AMPL FIER

（Pafer to Synthesizer Control Baard Schematic）

The Syrithesizer Va tage Contro led Amplif or atten wates mignd 5 from the output of the VCF．The gain of the VCA s determined by the amount of curremt suppl ed to the dfferential palr Z2A，B Tha ADSR output is connected to the contro input ip $\mathrm{I}_{\mathbf{3}}^{\mathbf{3}, \mathbf{Z} 2\}}$ via P12 pin 10．The control rejection trimmer（ $\mathrm{\beta} 14$ ） m rim zes the offect of control vo tape chances on the output of the VCA by ba ancirn the curren？ through 22A and Z2方

343 STRING VOLTAGE CONTAOLLED
（Refer to Synthes zer Contro，Board Schemat o l

The string Vo ratge Control ed Ampl fier sthe sarte eircuit as the Synthesizer VCA except that is con tral gd by the Strint AR Envelope Genarator nstead of the ADSR

34.4 VO_UME/MIX AMPLIFIER

(Refer to Synthesizer Controf Board Schemat e.)
The Master Volume Control (Z5A) is used to set the output leve of Strings, Synthesizer and Ma n Output. 25A. 1 prowidet s to 10 V controt votage, depend n g on the position of R22, Master Volume Control Slidar. The sourev of the negat ye control valtage is from $1+10 \mathrm{~V})$ yolzage div.der found on the Bast Board lat J15-4) which suppl as Z5A via R37, 100K resistor. The voltage d vider can be interrupted if the vo uma padal tommony called $\mathrm{F}_{\mathrm{I} \text { tar Foos }}$ Pedal) s connected The result is a varlable voltaydo source suppliod to Z5A, It whoud be noted that the Voume/M. \times control dows not affect the lewal of the Bass Voice Output

R23 (Mix Control artenuates the eval of the Strings or Synthas zar before it enters the Man Output Mixar (ste Bass Board schemat c)

3 4.5 SYNTHESIZER VOICE SE IECTION

,Refer to Synthesizer Control Board Schematic:
The pitch range push buttons, 4' and 8 ' Synthes zer route the addio through $Z 1$ to the VCF input on the Synthes zer Control Board* CR5 and CR6 disab a the audio output of the f rst 20 notes of the polyphonic tone gate (TOA470's) when the B^{x} and ${ }^{16}{ }^{\prime}$ Bass vo ce pitch ranges are se ected
'The g^{\prime} and 16 ' Bass voicgs are routed to the Bass VCF wis P15-2 and P $15-3$ respoctivery.

3.5 Synthesizer Board

GENERAL: The Svnthesizar Board conta ns the Vo tegs Contro led Filter, ADSA Envelope Genera* tor, ADSR Geting and Gate and Trigger Output Process ng circtu ts

35 I VOLTAGE COMTROL_ED F LTER
tReifgr to Synthas,zer Board Schromatic ।
The two pitch ranges, 4^{\prime} and 8^{\prime} Polyphoric are summed and volced on the audio nolt of the VCF (pin 1, M1) M1 is a 4075 Low Pass Voltage Controed FI tar. It has a cutoff of $24 \mathrm{~dB} / \mathrm{Octave}$ and has a manualy variabla 0 tresonance) The fiter accepts negative contro vo tages (-1 volts/octavel on p. -4 to cortrol the fler cutoff point. Z1B sums and inverts external veltages wh ch contro the VCF R22. the CVR (Control Vatage Reset) trimmer prevents control va tages from affecting the audio output (ip n 10) Tha output of the VCF is routed to the Synthesizer VCA va J12, pn 5

35.2 ADSR GATING

(Aefar to 5ynthesızer Board Schematic)
To "start" the ADSR Erve.ope Generator, the dutput of Z3A-3 must change from o voits to -15 vo ts (Logic 1 to Lagie 0). Two signals must be sern to the ADSR Gating to set up ths condition, the Upper Gate and Pulse Drive. The Upper Gate (u12-11) is 15 voits when no keys are dopressed and goes to ground (Logic OI whan a key is sellacted. It is cal ed the Lpper Gate becausa ,f the B^{\prime} or 担' Bass Voce is selectod, no changa willappaar on J 123 whan lower keys ($1-20$) are dopressed. This maans that for the abow mant onid eondit on, the tower kays will not initata the ADSA Whan $\mathbf{Z 4 8 - 4}$ goes to Lagic 0 , the RS 4 ip flop made up of $\mathbf{Z 4 C}$ and $\mathbf{Z 4 D}$ will be inite. ted-cesubing Z3A-3 to go to Log co $0 ; 15$ voltal Ths starts that ADSA cycig. Z3A-3 will remaln at Logic 0 bs long as a kay 's held

The Pulse Drive s used to nterrupt the logic levei of Z3A-wh ch will restart the ADSR The Pulse Drive cocurs avary tima arothar key is depressed fomiltiple triggeringl But if the Single/Mult,ple, nput ($\mathrm{J} 12-14\}$ $s+16$ vo ts, the Pu se Drive nout will have no effect on the cond toon of Z3A. Therefore, the ADSR will only be mitated on the first key depression.

3.5.3 ADSR

The ADSR Enve.ope Ginerator a rcu t prou.des a negat ve going DC voltage to control the VCF cutoff and the VCA.

ATIACK When the output of Z3A changes from h gh to low, -15 volts is appued through CR2 and R46 to the noninverting imput of fol ower Z 2 . During the attack mode, Q4 s off and R45 is d gconnected from ground $\mathbf{Z 2}$ drectly fo lows the vo tage on p.n 3 and applies $\mathbf{1 5}$ volts through CA6, R52 to charge integrating capaciter C13 down

DECAY AND SUSTA N: ZTA is a buffar amplifiar fol owing the va rage on capacitor C13. When the
 to turn off and R35 lowers the voltage on pin 13 of Z3D. Z3C and Z3D is a bisteble latch. When pin 13 fals be ow the thresho dof the nand gate tabout .75 volts) the output of Z3C changes from high to ow applying -15 velts from on 10 of $\mathbf{Z 3}$ through CR4, A3B and CR3 thus holding 02 oft. 04 now turns on and the voltage dulder consist ne of R45 and R46 astablishes the Susta n Level CRG show reverse biased and capac tor C13 d scharges through R51 and CRE to the level at $Z 2$ pan 3

RELEASE When the gate voltage is removed. Z3B goes cow wh ch turns on $\mathbf{Q 6}$. The rema n ng vo tage
on capacitor Cis dscharges through R53 F50 and Q6 to grownd The output of ZtA is appled to the nput of co lower Z2 through R59 therby preventing the sustan and decay cherge patha from affecting the reiaase time, 05 and 07 permit the ralease sicter setting on the tront panal to be overridden when the sustain footswitch ts deprosed Pulse Drive anput is disabled by ADSR Release Control pulse which pecturs whenever tho footswitch is released

3.6 PHASER BOARD

GENEAAC: The Fhaset Board conteins three tandital paralal Phase Sh fters exch modulated by Low Frequency Osci lators The Phasert are ch efly respons ble for the orchestral string effects of the OMNI +2 .
Z101A, Z104B, Z101B and Z102 form a low fre-
quency oscil ator (LFO) This crecuit differs from our standard LFO because $Z, 102$ (integrator) is driwen dirgct from Z 701 B and Z104B, instead of Z101A A 10VPP triangle waveform et Z102 is rounded to - 1 2PP sinewave by diodes, CP 101 and CR102 and fed to Z103A. Z103A is used to modulate the fre quency of Z106, High friquancy square wave asc llator

Two square ways ciock pu ses $\$ 180$ degrast out of phase) from Z106 are used to phase shift incoming audio signa.s ontering pin 2 of $Z 105$ (analog delay ine), with ourputf at pins 6 and $6, C 105$ adds onm po e of ow pass fliter ng to eliminate the residual hgh frequancy caock abpermposed on the putput. C110 AC couples the signs into the twa pole active low pesi filter wh ch further aiminates sny migh frequancy clock slanal. The outputs of the thred delay I he sectuons ars mixad and amplified by Z1B and associated resistors.
LFOGONTROL

3.7 BASS VOICE CIRCUIT

Th s circul conta ns a preset, Bass Vo'tage Contro led Flter, Envelope Ganerator, String and Synthesszer VCA, and the Ma n Output Mix Ampl fier

371 BASS VCF

The Gass Voltags Controled FItar, comprised of Z4A, CB, Z4B, and C7, form a two pore low pass fller'. The Elass Waveforms (8 ' and 16 ') are summed in on u $15 \cdot 2$ and $\mathrm{J} 15-3, \mathrm{Z} 4 \mathrm{~A}$ and B act as vo taga con. rrolled raststors, whase trinscondutancs 5 control ted by the voltage at the gates. The inttra corduction for the nitial cutoff frequency) is requlated by a cosed oop stabiluzit an $¢$ rewit compr sed of 23 and Z4C. Howevar. the dynamic operethon of the filter cutoff frequency is contra lad by the application of positive enva ope control voitage at the bass of R38 The Eass VCF output tivpicaly sbout 1 EVPP at Z日A.7) is fad to the marm output via J33. If the Bass enabe In $\{P 27-5$) is low the Bass VCF sigrial s shunted to ground va 25 B . It should be moted that f the Bass Jack (w33) is usted the Bass \& discommected From the Man Output,

3.72 BASS ADR

21 (CD4007) is used as a swatch for se ect ng
certain charge and discharge paths for Cl , the enve.ope storage capacitor For examp e, the One Shot (P27 \}? prouides a pos tive go no pu se for every bass kay depression, and is used to charge C1 via R11 \{10K resistor). After the one shot, the dis' charge of Ci is through R10 or R10 and R9 when the Staccato sw tch is se ected. If the Staccato switch is selected, the voltage on P27 3 wil be high and the ress t wil be faster envelope cecay on CT, The bass gate voltage \{P27-2\} wil return fram 0 to -15 volts on kay re ease d scharging the remaning voltage on C1 through R8 (47 K)

3.7 .3 STAING OUTPuT VCA

Audio signals entering $515 \cdot 14$ are from the String Sect on (ony), and orre processed through Z7C 27D and 2BE. The output level an Z.6B-7 5 con+ frolled by the Master Volume Voitage at J16 16 This Master Volume Votage can be controlled by e that the Man Vourna S! rier or the Voume Pedal

3.7.4 SYNTHES ZER OLTPUT VCA

Audico 5 gna 5 entering J15-5, from the Synthesizer Sect on (only), are processed through 27A, 27B, and 2BA. 27E Is sted to provide the coordinatas for the d rection of current fow. The output nevel on Z8A t is control ed by the Master Volume Voltage at

J15.16 Thes Master Volume Vo taga can be contro led by aither tha Main Volurne Sider or the Volume Peda

3.75 MAIN GUTPLT M X

Bass, Synthes zer, Bnd String outputs are coupled to Z6B and sent to the Ma'n sutput jacks-which are sw tehable from low level \{about 200MVPP at tack, to high eve (about 1VPP at ack)

3.8 Power Supply

381 +15 VOLT SLPPLY

27 contens a voltage reference which supples approximate,y +7 vo ts to pin 6 of $Z 1$. Th s voltage is connected through pin 5 to the moninverting nput of an op amp. The output of the op amp is connected to en emitter fol ower, arso ocated In Z1, which controls the pass trans stor (Q : 1 . Should the output of the power supply change, the vo tage at the uncton of R11 and $\mathrm{A}\{2$ will supply the inverting mput of the op amp in Z^{\top} with the vortage difference The op amp w If then suppdy a correct on voltage to the enter followee and pass transsstor (Q1) and brimg the power supply's vo tage to normal

38.2-T5 VOLT SUPPLY

The 15 volt supply derves to reguitation from the + th volt supp y through R14. Winen the output of the -15 voit supp. y is at the correct wo tage, the funct ton of R14 and R15 s 0 volts Z2 is reterenced to 0 yolts through R_{2} Should the output of the minus stipply increasa, the voltage on pin 2 of Z_{2} also ncreases, Z 2 than forces O 2 to supply more currant, thardby lowaring the output to 15 volts

38.3 SHORT CIRCU TPROTECTION

F7 and the trans.stor in $\mathbf{Z 1}$ somnected to pins 2 and 3 Im the +15 supply's clirrent to a maximum of 800 millamps, 03 and R5 mt the 15 supp y's current to a maximum of 1000 mm เมтря

39 General Information

- M339 COMPAAATOR

The LM339 contarns fout independent precson voltage comparatara. Wh then open col extor output the M339 is compat be with TT'L and CMOS in the OMN 2, D.n 12 of LMM39s are connected to 15 vorts. Thus the output states of the dev ce are apen fualtage determined by external circu try) or 15 voits

KEYGOARD CONTACT REPLACEMENT

Should t become necessary to rep ace a brokan koyboard contact, it is recommended that the new contact be soldersd to the old p ece instest of com. plate y ramoving the contact fipe ilustration).

ASSEMBLYTDISASSEMBLY

NOTE Support the back of the unt or use a piece of wire to hoid I up at showin

Power Supply Trim Procedure INOTE A. ways execute these trims first.)

Ref	TRIMMER	TR M PROCEDURE
$\begin{gathered} \mathrm{R}^{19} \\ 0 \end{gathered}$	+15 VO. TSET	1 Morntor the power supply's +15 vo toulput with a d gita voltmeter 2 Adjust A 浢 for axactiy +15 vo ts.
R20 6	-15 VOLT SET	1. Set RE $1+15$ volts) ; irst. 2 Put the dgita vo trmeter's ground ead on the power supp y's 15 vo t output and put the meter'g pus ead on the powar ground output. 3. Adjust R20 for exdetly +15 wo to (reversed polar ty).

Synthesizer Board Trim Procedure

Synthesizer Control Roard Trim Procedure

R14 SYNTH

vCACVF

1 Monitor the h gh level putpur of the OMN: 2 w th an osci. oscope
2 Set a I VOICE SE, ECTION switches OFF (out)
3 Put tha MlX s.ader fuily LEFT (synthes zer)
4. Put the MASTER VOLLME ful y RIGHT (maximum)
5. Set ADSR suters as tol ows. ATTACK, OOWN, DECAY, 3/4 $\mathfrak{f P}$. SUSTAIN DOWN, RELEASE, DOWN
6. Put al other siders at minimum,
7. Adjust R14 for mimum deflection of the orci loscope trace whio rapeatady depratsing keys in the highest octave

Phaser Board Trim Procedure

$\begin{gathered} A+20 \\ 6 \end{gathered}$	HFOCAL 1	1 Connect ground to tof 2 Mon tor TP5 (Z 1061 w th a frequancy countar 3. Adjust R 120 for a period of $13.3:(75 \mathrm{kHz} .1$
$\begin{gathered} F 220 \\ \$ 8 \end{gathered}$	HFOCAL 2	1. Connect ground to TPG 2 Mon tor TP10 \{Z2061 with a freqsency counter 3. Ad ust R220 for a pariod of $21.5 \mathrm{~s}\{46.5 \mathrm{kHz}\}$.
ค320 0	HFOCAL 3	2. Connect ground to TP14 2 Montor TP 14 (Z308) with a frequency counter 3. Ad ust R320 for a period of $122 \mathrm{~s}(82 \mathrm{kHz})$

 $\xrightarrow{4}$

会

$$
\left[z^{m a n}\right.
$$

वצษO日 10H NOS DNIEIS.

such

ALL TRANESISTAES AEF ENGPON.

$x \quad x=$ Kfy fat value Key down volye

(
240 V
SEMKO
GARP.
OMNI-2 MODEL 2470 WFRING DIAGRAM "POWER SUPPLY'" BOARO

UPPER VOICING BOARD

LOWER VOICING BOARD

CR114	1200101
CR1-113, 125	1200301
253	1400801
2.50	1402101
252	2405401
22, 9, 14, 19	1402801
251	1404301
249	2404402
248	\$404201
233-39	1404601
248.47	1405s01
240-14	1405101
Q1-26, 31	4302901
227, 30, 72	1303001
2, 灾, 29	1300401
221, 23, 25	140810!
222, 24, 28	$140600 \pm$
227.32	1408002
24, 10, 12, 20	1405901
23, 8, 13, 1a	1409102
21,5,11,19	1408902
26, 7, 16, 17	1406103
C83, B4	1100812
C1-20	1100613
c85	1101702
15-7, 11	2101302
P1, 2	2101301
117	2818101

IN34A
2N4146
LM301AN
LM1458N
LM339N
TDAg470
coscoluse
COAM13EE
coacolure
coacrisuag
comogbuas
cDsa718E
2N3eO4
2N3906
2N2207A
750.3 .470

730-a1-3.3K
750 -a1-22K
750-63-100K
760.3-10ak

750-43-150K
750-3-15ak
T3900 106 MO 55 AS
T39D226m02SAS
TAD250TJIO
15-511-10
14-511-10

DIGDE, SIGNAL
DIODE, GE
なR, PNP, HI SPD SW
1c, TOP OCTAVE DIVIDER
IE, DUAL BINARY UP COUNTEA
IG, HEX INV
IC, GATE 12×11 ORGAN

IC, RESNET, 14 PIN, 470 OHM
IC, RESNET, a PIN, J. 3 K
16, RESINET, 8 PIN, 2aK
IC, RESNET, 6 DIN, 100K
TC, RESNET, 14 PIN, 100 K
IC, RESNET, G PIN $+180 \mathrm{~K}, 150 \mathrm{~K}$
IC, RESNET, 14 PIN, 150K, 150 K

CAR, M1CA 1300PF, 100V, 3\%
GAP, MIGA BBRPF, 100V, 5\%
CAP, TANT Z2UF, ZSV, 20\%
COH, 220WH, 2Q\%
SOCKET, DUAL IN-LINE, 14 PIN GABLE, RIBEON, $15 \times 4^{\prime \prime}$

DIODE, GE
OIODE, SIGNAL
IC, OP AMFL
IC, OP AMFL, DUAL
IC, QUAD COMP
IC, GATE 12×11 ORGAN
IC, GATE 4×21 NOR
IC, DUAL D FF R/S
IC. GMOS PR + INV
IC, GATE 3×31 NOR
IC, HEX INV
IC, GATE 4×3 IOR
TSTA, NPN, GP
TSTA, PNR, GF
TSTA, PNP, GP
IC, RESNET, 14 FIN, 470 OHM
IC, RESNET, B PIN ${ }_{+} 3,3 \mathrm{~K}$
ic, RESNET, 8 PiN, 22 K
1C. RESNET, B PIN, 100K
IC, RESNET, 14 PIN $100 K$
IC, RESNET, 6 PIN, $150 K, 150 \mathrm{~K}$
IC, RESNET, 14 PIN, $250 \mathrm{~K}, 150 \mathrm{~K}$
CRP, TANT 10UF, $35 \mathrm{~V}, 20 \%$
GAP, TANT $22 \mathrm{UF}, 25 \mathrm{~V}, 20 \%$
GAD, ELECT $250 U F, 10 \mathrm{~V}, 30.10$
SOCKET, DUAL-IN-LINE, 16 मिN SOCKET, DUAL-INALINE, 14 PIN CABLEB AS\$Y

STRING SWITCH BOARD

FEFERENCE	ARP PART NUMBER	ARP／MFG NUMEER	description
Q1－4	1，302901	2 N 3904	TSTR，NMN，GP
Z1， 2	1404408	CO4013EE	IC，DUAL DFFR／S
51－4	1802903	DIGITAST．ST	SWITCH，PSHET，SPOT，ORANGE

STRING CONTROL BOARD

CRE－11	1200301
CR12， 13	1200201
CR14	1200101
G2	1302901
4， 1,3	1303001
21，2	1404501
28	1401201
24	1403401
R36	\＄700701
R32	5700708
© 1，11，12，15	1100512
c17， 16	\＄100601
113	2ち01302
や10	7\＄18102
119	E201803

1N4IA
1N4001
2N34A
2N3504
2N3906
CD4016EE
LM143EN
CA379E
8700701
\＄70070s
T390D106MA35A5
T39DD226M016A5
18－511－10

DIODE，SIONAL
RECTIFIER，50V，2A
DODE
TSTR，NPN，QP
TATR，ANP，G户
IC，GUAD BItAT SW
IG，OP AMPL DUAL
IC，GUAロ cOMP
POT，SLIDE，AUD 1M，1／3W，30\％
POT，SLIDE LIN $10 K_{1} 1 / 3 \mathrm{~W}, 30 \%$
CAP，TANT 10UF，3SV， 20%
CAP，TAMT 22UF，16V，20\％
SOCKET，DUAL－IN－LINE 16 PIN
CABLE，3 PIN，RED／ELK／5HLD
CONNECTOR， 6 PIN
$2 \mathrm{NB}_{3} 04$
2NS90．
CO4013EE
DIGITAST－ST
DIGITAST－ST

[^0]TSTR，NPN，GP
TSTR，听P，由口 IC，DUAL D PF R／S
SWITCH，PSHBT，SPOT，QRANGE SWITCH，PSMET，SPDT，WHITE

DIODE，SIGNAL
TSTR，NPN，GF
ic，TSTR ARAAY
IC，OP AMPL，DUAL
IC，QUAD BILAT BW
POT，SLIDE，AUO， $100 \mathrm{~K}, 1 / 3 W, 30 \%$
POT，SLIDE，LiN，100K，1／3W，30\％
GAP，TANT 3．3UF，35V， 30%
C\＆P，TANT 1ゆUF，3SV，20\％
CONNECTOR， 8 PIN
CABLE，FIBGON， $16 \times 15^{\circ}$
SOCKET，DUAL－IN＋ILINE，IG PIN
CABLE，RIBEON， $18 \times$ g＇$^{\prime \prime}$
CABLE，RIBEON， $16 \times 4^{\prime \prime}$
CABLEE，位PIN，12＇LO．

SYNTHESIZER CONTROL BOARD

CRE，6，23， 14
Q1
22
$23,4,15$
$Z 1$
$R 44$
$R 22,23,51$
$C 12$
$C 2,4$
121,22
$P 15$
$P 13$
$P 11$
$P 12$
114
1200301
1302901
1400501
1401101
1404501
1700702
5700703
1200611
1100612
2101803
2200806
2101302
2200805
2200808
7510102

PHASER BOARD

REFERENCE	ARPPART NUMEER	ARP／MFQ NUMEER	OESCRIPTION
CR1．2	1200201	1N400\％	RECTIFIER，EOV，IA
CR3，4，5，101， 102.	1200301	IN4148	DIOEE，इIGNAL
201，202，301， 302			
21，2，101，503，	1401101	LM1458N	1C，DP AMML，DUAL，
201，203，301， 303			
Z104， 204.304	1404\＄01	CD4016EE	16，GUAD GIInAT SW
2105，205，308	1408501	3AD－517	
2100，205， 306	1408502	c0404FAE	$1 \mathrm{IC}, \mathrm{PHASE-LOCKED} \mathrm{LOOP}^{\text {P }}$
R220，220，320	2000917	U201R234日	POT，ROT TRIM $250 K$ ， $4 W .30 \%$
C10＊，304	1101216	AOM－15－873」	CAP，MICA $270 \rho \mathrm{~F}, \mathrm{BOOV}, 5 \%$
c2ga	1101218	ADM－15－471J	CAF，M1CA 470PF， $800 \mathrm{~V}, 5 \%$
63，4，103，203，	1100612	T3FAD． 06 mosfas	CAP，TANT 10UF，3EV，20\％

SYNTHESIZER BOARD

CR2，3，4，5，4，${ }^{\text {c }}$	1200301
CRI，${ }^{\text {¢ }}$	1200201
chio	1200101
Q1	1308901
Q2，3，4，5，6，7， $\mathrm{B}^{\text {c }}$	1303001
22	1400801
21	1401101
23，4	1400501
R64	1000909
R22	1000901
R16	1000915
R7	8700704
R24，19，20，24， 45	5700703
RS0，51， 52	57007as
C13	1100612
C1，5， 10	1100612
1）．	2101302
P16	7518702
M1	7210501

BASS VOICE BOARD

CR1	1200302
Q1，2	2302901
21，4，5	1404201
23	1400801
22，${ }^{\text {b }}$ ，${ }^{\text {d }}$	1401101
27	1400501
C1	1100801
C10－1：	1100621
C18．2\％	1100811
J1	5104408
132	1204001
J32－97	1204001
118	2101302
51	1802401
P9	7519502
p19	＞302808
P27	752\％601

IN4148
2N3G0A
CD400\％U者E
LMoviAN
LM2458N
CA．30a5
T3908105K03SAS
T3800106M035AS
Т300C3コSK038A8
22－03－2085
1130
122A
16－511．10
01－4．41．0006
\qquad

IN4 14.9 1N4001
JN34A
2N3904
2N3904
LM3O1AN
LM1458N
CD4012UBE
U201R103日
U201R101日
U201R104日
5700704
5700703
5700701
T3906335KDasAS
T390DI05M035AS
16－511－10
－

QIDCE，SIDNAL
RECTIFIER， 80 V 1 A
DIODE
TSTR，NPN ${ }^{\text {GP }}$
TSTR，PNP，GP
IC，OP AMPL
IC，OP AMPL，DUAL
IC，GATE 4×21 NAND
POT，ROT TRIM 10K，＊＊W，30\％ PET，FOT TRIM 100 OHM，\％W，30\％ POT，RQT TRIM，100K，3w，30\％ POT，SLIDE，LIN，1K，1／3W，30\％ FOT，SLIDE，LIN，100K，1／3W，3a\％ POT，SLIDE，AUD， $1 \mathrm{M}, 1 / 3 \mathrm{~W}$, sO\％ CAP，TANT \＄．3UF，35V，10\％ CAP，TANT 10UF，35V，10\％ 5OCKET，DUAL－IN－LINE， 15 PIN CABLE ASSV， 8 PIN， $16^{\prime \prime}$ LG． PC BD，VCF 4075

DIODE，SIGNAL
TST＇R，NPN，OP
IC，CMOS PA＋INV．
IG，OPAMPL
IC，OF AMPLLIURL
IC，TSTR ARRAY
CAR，TANT 1UF，35V， 10%
CAP，TANT 10UF， $35 \mathrm{~V}, 20 \%$
CAP，TANT 3．JUF，3EV，10\％
CONN，A FIN WAFER
JACK，STEREO
JACK，MI－D， 2 CONO
SOCKET，DUAL－IN－LINE， 26 PIN
SWITCH，SLIDE，DPDT
CABLEE， 2 COND， 3 PIN
CAELE，POWER
CABLE， 6 PIN， $12^{\prime \prime}$ LG．

POWER SUPPLY

REFERENGE	ARP PART NUMBER	ARP/MFG NUMBER	DESCRIPTION
CR1, $2,3,4,5$	1200201	1N4001	MECT+50V11A
Q3	1303098	2N+3906	TSTR, PNP, GF
21	1401301	7*30¢	IG, VOLTAGE RECULATOA
22	2400801	LMSOLAN	1c, op AMPL
A7, ${ }^{\text {a }}$	1090111	EW-JO	
R19,20	2000010	V201R1046	
Ce	1100608	-0.001-0-20-9	CAP, TANT, 36F, 38V, 20\%
CB. 7	12601618	-0-010-a-2C-0	CAP, TANT, 10UF, $38 \mathrm{~V}_{4} \mathbf{2 0 \%}$
c3	1204702	TAOsSotaso	EAP, ELECT, 2HOUP, 50V + +50.10\%
¢1,2	2101301	TCW1 02V0sand R 7 P	CAP, ELEET, LCOOUF, 30V, 4 2H-10\%
Q1	1304301	Musideo	TSTR, NPN, PWR DARL
*	1304301	MJE1090	TETA, PNP, PWR DARL
T1	5704401		TRANEFORMER, POWER
F1	1700404	MOV-1/2	FUEE, PIGTAIL, LO-BLO 1/2A 250V

MISCELLLANEOUS

5704702
5704502
5204102
5204193
5204104
5204108
2103101
2101601
2104502
2106901
7500301
2400101
2303703
2300205
2303602
2300203
2307003
2306104
2306303
2200405
2200808
2200809
$5 \% 04002$
5204002

5704702
5704502
5204102
5204103
5204104
5204106
D3M
42A
EAC301
4.000.024.0
8000.010

14
2303703
2300205
2303502
2300203
2307003
2308104
2306303
5142-009
$5142-004$
$5132-024$
5204001
B204002

DIODE REWORK OREEN . 12
DIODE REWORK RED. 912
KMOB RED
KNOE YELLOW
KNOB GREEN
KNOQ WHITE
CONN RECP 3-PIN
JACK TINI
CONN RECP AC 3-PIN
CONN RECP 24OV SEMKO
POWER SWITCH ASSY
RU日BER FGOT
SCREW MACH HWH 6-32 $\times 5 / 16$
SCREW MACH PH CR $\mathbf{6}-32 \times 3 / 6$
SEREW MACH HWH ti-32 $\times 5 / 16$
SCREW MACH PH GR $6-32 \times 1 / 2$
HEX NUT 6K32
WASMER LOCK NO, 6
WASHER EXT TOOTH NO. 6
CABLE RIGBON 26 AWG 18 PIN 1 IN CABLE AIEBON 26 AWG 18 PIN 4 IN HABLE 盍BON 26 AWG 14 PIN 24 IN ENDRLOCK, LEFT
ENDDEOCK RIGHT

PARTS ORDERING

Telephone: 617/861-6000, Service Department
Replacement parts can be orderad in writing or by
phone. Contact tha ARP Service Department and use the ARP part number when ordering. A five dollar minimum is required unless the order is raceived with cash in advance. No collect calis will be accepted.

[^0]: 2N4148
 2 N 390 A
 CAJ086

 CD4D16日E
 5700702
 5700703
 T390C335K033A5
 T3900108M035AS
 09－42－3062
 5142－015
 $16.511-10$
 5142－099
 5142－004
 \qquad

