\&ARP。 AXE MODEL 2300 SERVICE MANUAL

Document Number 90003
(updated May, 1977)
(C) May, 1977

ARP INSTRUMENTS, INC.

Я ARP AXXE MODEL 2300 SERVICE MANUAL

TABLE OF CONTENTS

1. INTRODUCTION
1.1 Description
1.2 Specifications
1.3 Signal Flow
2. CIRCUIT DESCRIPTIONS
2.1 Noise Generator
2.2 LFO (Low Frequency Oscillator)
2.3 Gate Generator
2.4 KYBD. Current Source
2.5 CV Memory
2.6 ADSR Envelope Generator
2.7 VCA (Voltage Controlled Amplifier)
2.8 VCO (Voltage Controlled Oscillator)
2.9 VCF (Voltage Controlled Filter)

210 Basic Axxe 'Patch'
BOARD TRIMS \& ADJUSTMENTS
4. BOARD TEST POINTS
5. INTERFACING INFORMATION
5.1 Master/Slave Tuning Instructions
5.2 Systems Interfacing With Other ARP Synthesizers

6. AXXE DRAWINGS

6.1 Axxe Board Layout
6.2 Axxe Board Schematics
7. AXXE POWER SUPPLY INFORMATION
7.1 Power Supply Circuit Descriptions
7.2 Power Supply Schematic
7.3 Power Supply Board Layout
8. AXXE PARTS LIST
9. SERVICE REVISIONS

1.1 DESCRIPTION

The ARP Axxe is a completely variable synthesizer, ideal for live performance operation. The Axxe provides many of the features of more expensive synthesizers and can serve as the nucleus of a larger synthesizer system by interfacing with other ARP instruments.

The Axxe contains one Voltage Controlled Oscillator, one Voltage Controlled Filter, one Voltage Controlled Amplifier, a Low Frequency Oscillator, Keyboard Control Voltage Memory/Sample and Hold, Noise Gen erator, and ADSR Envelope Generator.

1.2 SPECIFICATIONS (subject to change without notice)

VOLTAGE CONTROLLED OSCILLATOR
Frequency Range: 16 Hz to 16 KH
Waveforms: Sawtooth, Square, Pulse, dynamic puise
Warm-up Drift: $1 / 30$ Semitone trom turn on
"Tune" Control Range: ± 1.5 semitones
Max. Vibrato Depth: ${ }^{ \pm} 1$ octave
Max. Trill Depth: +1.2 octaves
Max. ADSR Frequency Shift: +9 octaves
Pulse Width: 5% to 50%
Pulse Width Modulation: LFO, $\pm 25 \%$ ADSR, $+45 \%$
NOISE GENERATOR
Noise Spectrum Type: Pink, $\pm 3 \mathrm{~dB} 20 \mathrm{~Hz}$ to 20 KHz
VOLTAGE CONTROLLED FILTER
Frequency Range: 16 Hz to 16 KHz Maximum usable Q : approx. 30 Resonance: $1 / 2$ to self-oscillate
VC Response: approx. $1 \mathrm{~V} / \mathrm{oct}$ same as VCO Max. ADSR Sweep: 10 octaves
VOLTAGE CONTROLLED AMPLIFIER
Dynamic range: 80 dB
ADSR ENVELOPE GENERATOR
Attack Time: 5 ms to 10 seconds
Decay Time: 12 ms to 10 seconds
Sustain Level: 0 to 100% of peak
Release Time: 15 ms to 10 seconds
LFO
Waveforms: sine, square
Frequency Range: 0.2 Hz to 20 Hz
Max. pitch deviation in VCO: 2.5 octaves
Max. frequency deviation in VCF: 2.5 octaves

PITCH BEND CONTROL
Max. Deviation: Exactly \pm one octave, calibrated Dead zone: Approx. ± 10 degrees from dead center

TRANSPOSE SWITCH:

Positions: Down 2 octaves, normal, up 2 octaves

PORTAMENTO

Minimum speed: 1.5 seconds per octave
Maximum speed: . 01 ms per octave

interface jacks

Keyboard Control Voltage In/Out: 1 volt/oct Gate Out: Approx. +10 v .
Gate In; min.: 8 volts
Trig. Out: 10 volt pulse, 20 microseconds duration Trig. In: 8 voit pulse, 10 microseconds minimum. External Audio Input Sensitivity: 500 mv for full

AUDIO OUTPUTS
Maximum signal voltages: 2.5 volts P-P High level, 0.25 volts P.P Low leve

OPERATING POWER REQUIREMENTS
Line Voltage Range: 100 volts to 130 volts, or 200 volts to $250,50 \mathrm{~Hz}-60 \mathrm{~Hz}$ AC

PHYSICAL CHARACTERISTICS
Weight: 15ibs
Size: L. $231 / 2^{\prime \prime}$, W. $14 \frac{1}{2} z^{\prime \prime}$, W. $61 \%^{\prime \prime}$
Materials: Aluminum chassis, walnut end blocks,
G-10 glass/epoxy printed circuit board

1.3 SIGNAL FLOW

The Voltage Controlled Oscillator (VCO) produces continuous sawtooth and pulse wave outputs. The fre quency of the VCO can be modulated by the ADSR, LFO sine wave and square wave, and Sample and Hold The nominal pitch of the VCO is controlled by the Keyboard Control Voltage. Transpose and Pitch Bend controls, and the Tune knob. The output of the VCO and the Noise Generator are processed through the Voltage Controlled Filter (VCF) and Voltage Controlled Amplifier (VCA). The ADSR Envelope Generato can control the VCF and VCA. The Keyboard Control Voltage memory circuit doubles as a Sample and Hold.

2.1 NOISE GENERATOR

The noise generator circuit produces a 25 volt peak to peak pink noise signal which is supplied to th VCF audio input and the KYBD Memory circuit The noise is obtained by amplifying a reversed biased transistor junction (01) in avalanche breakdown. Q1 is a transistor selected for optimum avalanche chara teristics and therefore has a good noise producing capability. O 2 is a buffer and Z 2 amplifies and clip the noise signal. $Z 3$ filters the noise to provide pink noise to the VCF and memory.
2.2 LFO

The LFO produces a triangle and a square wave out put in a frequency range from about. 1 Hz to 25 Hz 24 A and $\mathrm{Cl1}$ are an integrator which charges from current passing through R16. $\mathrm{Z4B}$ is a hysteretic wolts whose output swicches from -75 volts to +15 volts wen 124 A reaches 5 volts. This hen reverses the direction of current through R1 and the rate control (R 18) and thus the direction of of Z4A 10 outpu of $Z 4 A$. Wen the output Z 24 A reaches -5 volts, the output of Z4B swinh back to 15 vits and the eycle repeats. An LFO reset oulse is supalid fir ADSR circit time a key is depressed. Q3 is turned on momentarily by the LFO reset pulse and discharges the integrating capacitor (C11) thus resetting the LFO output to zero.

2.3 GATE GENERATOR

Each gate contact on the keyboard is connected to 2.2K ohm resistor to ground. When a key is depressed, the Gate Generator produces three different gate signals:

SIGNAL:	KEY UP:	KEY DOWN:	TEST PCINT:
Gate bus	+15 volts	+10 volts	TP-3
CV Mem.	-15 volts	+15 volts	Sl-D, pin 3
GATE			
Gate Output	-15 volts	0 volts	$J 1-1$

The Gate bus and the Gate output signals are sup plied to the ADSR Envelope Generator. The CV Memory Gate signal updates the KYBD CV Memory circuit through S1-D. Q21 converts an external 10 volt gate from other synthesizers to a closure to ground signal which, at the base of Q 4 , looks like normal Gate contact closure.

2.4 KYBD CURRENT SOURCE

The Keyboard Current Source supplies a constan urrent through thirty-six 100 ohm resistors connecte in series. This resistor voltage divider string supplie pecific voltages for each key on the keyboard. The op end of the resistor string is connected to J1.5 and the low end to J1-6. The current source supplies three volt drop across the entire resistor chain. Thi provides a one volt per octave control voltage to the Keyboard Control Voltage Memory circuitry via the KYBD CV bus.

2.5 CV MEMORY

When the Sample and Hold switch ($\mathrm{S}-1$) is in the of down) position, the Keyboard Control Voltage Mem cy circuit samples the voltage from the CV bus on key depression. When the Sample and Hold switch is the on position (up) S1A connects the output of he noise generator (instead of the voltage from the V bus) to the input of the Keyboard Control Volt ge Memory circuit. The control voltage from the CV bus is then connected directly to the VCO contro input via STB. SID routes a trigger pulse from the FO (instead of keyboard gate) to trigger the memory circuit

The voltage or S1A pin 2 charges up the memory apacitor (C13) through 05. ©5 is turned on by the Gate generator or the LFO trigger pulse through CR4 66 and Z1A are an FET op amp follower with high input impedance to buffer the voitage on C 13 . The output of the Keyboard Control Voltage Memory解位 is supplied to the control inputs of the VCO and the VCF via J4-1 and J4-3.

The ADSR envelope generator circuit provides a negative going DC voltage to control the VCF cutoff and the VCA.

ATTACK: When a key is depressed, the gate voltage (TP3) rises from -15 volts to 0 volts and the pulse drive on $\mathrm{J} 1-1$ drops to ± 10 volts. $07, \mathrm{C} 15$, and $75 A$ prevent 25 B from changing state for about 10 milli seconds. The delay pulse on 25 A pin 3 is used for the LFO reset pulse through C10. When the output of $Z 5 B$ changes from high to low, -15 volts is applied through CR10 and R46 to the noninverting input of follower Z6. During the attack mode, Q10 is off, and R45 is disconnected from ground. Z6 directly follows the voltage on pin 3 and applies -15 volts throug CR12, R50 to charge integrating capacitor C18 down.

DECAY AND SUSTAIN: 27 is a buffer amplifier following the voltage on capacitor C18. The output of ADSR voltage approaches -13 volts, 08 begins to turn off and R39 lowers the voltage on pin 13 of $\mathrm{Z5D}, \mathrm{Z5C}$ and $\mathrm{Z5D}$ is a bistable latch. When pin 13 falls below the threshold of the nand gate (about 7.5 volts) the output of 756 changes from high to ow applying -15 volts from pin 10 of 25 through CR9, R42, and CR8 thus holding 08 off. Q 10 now urns on and the voltage divider consisting of R45 and R46 establishes the Sustain Level. CR12 is now reversed biased and capacitor C18 discharges through R49 and CR11 to the level at Z 6 pin 3.

RELEASE: When the gate voltage is removed, Q9 urns on which turns on Q11. The remaining voltage on capacitor C18 discharges throuch R55, R54 and 011 to ground The output of 77 is applied to the input of follower Z6 through R53 thereby preventing the sustain and decay charge paths from affecting the release time. $Z 8 \mathrm{E}, Z 8 \mathrm{D}$ and $Z 8 \mathrm{C}$ invert the output of the ADSR to control the VCO and VCF

27 VCA

The VCA attenuates signals from the output of the VCF. The gain of the VCA is determined by the mount of current supplied to the differential pair $Z 8 C, B$. The ADSR output is connected to the control input (pin 3, $28 B$) via the VCA 'ADSR' slider R170. R173 manually controls the VCA gain. The control rejection trimmer (R180) minimizes the effect of control voltage changes on the output of the VCA by balancing the current through $\mathrm{Z8A}$ and $\mathrm{Z8B}$. CR19, CR20 and R179 provide output protection to prevent external voltages from entering the AXXE circuits through the output jack.

This chart shows test points in the ADSR. Refer to the board schematic for the locations of these test points.

Use xio proie with oscilioscop

2.8 VCO

Control voltages from the keyboard, Initial Frequency and Fine Tune sliders, the Sample and Hold circuit, LFO square wave and sine wave, and the ADSR are summed on the base of Q12. Q12 and Q13 are a linear voltage to exponential current converter; for every volt applied to one of the control inputs of the VCO, 013 will conduct twice as much current. C22 is the integrating capacitor; it is initially charged to fifteen volts and discharges through R96 and O13 toward ground. 013 determines the discharge time of the capacitor and therefore the oscillator frequency. 015 buffers the voltage on C22 and supplies it to a comparator, Z9B and Z9A. Pin 2 of Z9A is fixed at about 7.5 volts. When the voltage on pin 4 of $Z 9 B$ decreases to below 7.5 volts, Z9A turns on 016 which supplies +15 volts to the gate of Q14. Q14 then charges capacitor C22 back to +15 volts to start the cycle over again.
R91, C21 and R92 supply current to Q 13 as the frequency of the oscillator is increased to prevent the oscillator from going flat, due to the recovery time of the circuit. 017 is an emitter follower which takes the sawtooth from pin 3 of $Z 9$ and supplies it to the oscillator output. The sawtooth waveform on the emitter of 017 is 7.5 volts peak to peak, and +7.5 volts offset.
2.9 VCF

Audio signals from the VCO, noise generator, and the external audio input are summed on the base of $Z 12 \mathrm{E}$. Z12E and Z12B are a differential amplifier. Four
series RC circuits comprised of capacitors C26, 27 28 and 29 and the emitter-base junction resistances of Z10C-D, Z10B-E, Z11C-D, and Z11B-E provide four pole low-pass filtering. Varying the amount of current through the pairs of transistors changes the resistive value of the emitter-base junction, thereby changing the cutoff frequency of the filter. Control voltages from the filter frequency sliders, calibrate trimmer. CV pedal keyboard CV, ADSR LFO triangle are 0 p 020 . 020 and 019 are Q19 are an - 0 lo lop the control input (020 base) the current through 019 will double. Q19 controls the current through the filter ladder thus controlling the filter cutoff. R145, the control rejection trimmer, balances the current through both halves of the filter ladder which mini mizes the effect of control voltages on the filter output.

018 and Z13A are a high impedance differentia amplifier which brings signals from the filter ladder up to about one volt peak to peak. R144, the resonance slider, provides a manually adjustable amount of feed back from the output of the filter to the inverting input of the filter (Z12B, Base). When enough of th output signal is supplied via the resonance slider to the inverting input, the VCF will begin to oscillate, pro ducing a sine wave.

> NOTE: This filter is used in older models only. See the Service Revision section of this manual for the current type.

BASIC AXXE ‘PATCH’

BOARD TRIMS AND ADJUSTMENTS SECTION 3		
REF. No.	trimmer	TRIM PROCEDURE
$\begin{aligned} & \mathrm{R} 76 \\ & 7 \end{aligned}$	vco calibrate	1. Monitor TP- 6 with a frequency counter. 2. Pin low ' C ' on the keyboard. 3. Put the Transpose and Pitch Bend controls in the 'normal' (mid) position. 4. Set the 'Tune' control on the front panel in the mid position. 5. Adjust trimmer R76 for a 130 Hz . sawtooth wave ($\pm 2 \mathrm{~Hz}$.).
$\begin{aligned} & \mathrm{R} 74 \\ & (2) \end{aligned}$	VCO V/OCT	1. Monitor TP-6 with a frequency counter or strobe tuner. 2. Pin low ' C ' on the keyboard. 3. Put the Transpose and Pitch Bend controls in the 'normal (mid) position. 4. Put the S / H slide switch in the down position and put all sliders in the minimum position. 5. Adjust the 'Tune' control on the front panel to exactly 130 Hz * or ' C ' on a strobe tuner. 6. Pin high ' C ' on the keyboard. 7. Adjust trimmer R74 for exactly 1040 Hz . or ' C ' three octaves higher than step 5 on the strobe tuner. 8. Repeat steps 1 through 7 until the frequency is correct on low ' C ' and high ' C '. *IF MORE ACCURACY IS DESIRED, TUNE TO 130.8127826 Hz
$\begin{aligned} & R 62 \\ & \end{aligned}$	TRANSPOSE CAL	1. Monitor TP-6 with a frequency counter or strobe tuner. 2. Pin low ' C ' on the keyboard. 3. Put the Transpose and Pitch Bend controls in the'normal' (mid) position. 4. Adjust the 'Tune' control on the front panel to exactly 130 Hz . 5. Put the Transpose control in the 'Up Two Octaves' position. 6. Adjust trimmer R62 for exactly 520 Hz . or ' C ' two octaves higher than step 4.
$\begin{aligned} & R 70 \\ & Q \end{aligned}$	PITCH BEND CAL	1. Monitor TP-6 with a frequency counter or strobe tuner. 2. Pin low 'C' on the keyboard. 3. Put the Transpose and Pitch Bend controls in the 'normal' (mid) position. 4. Adjust the 'Tune' control on the front panel to exactly 130 Hz . 5. Put the Pitch Bend control fully clockwise. 6. Adjust trimmer R70 for exactly 260 Hz . or ' C ' one octave higher than step 4.
$\begin{gathered} \mathrm{R} 114 \\ 0 \end{gathered}$	VCO PULSE WIDTH	1. Monitor TP-7 with an oscilloscope. 2. Put all sliders in fully down position. 3. Adjust the time base of the oscilloscope so that exactly one complete cycle is displayed. 4. Adjust trimmer R114 for exactly 50% pulse width (square).
$\begin{aligned} & \text { R180 } \end{aligned}$	VCA CONTROL REJECT	1. Monitor the Audio Output of the Axxe with an oscilloscope. 2. Put the LFO Frequency slider fully up. 3. Put the VCA ADSR slider fully up. 4. Put the KYBD Repeat switch in the Auto Repeat (down) position. 5. Put all other sliders fully down. 6. Adjust R180 for minimum signal amplitude.

REF. No.	trimmer	trim procedure
$\begin{gathered} \mathrm{R} 158 \\ 8 \end{gathered}$	FREO. CAL	1. Monitor TP-8 with an oscilloscope. Set the amplifier to $.5 \mathrm{~V} / \mathrm{div}$. and the time base to 10 msec ./div. 2. Raise the VCF Resonance slider to maximum and put all other sliders fully down. 3. Adjust trimmer R158 for 62.5 msec . sinewave.
$\begin{array}{r} \mathrm{R} 196 \\ 8 \end{array}$	CVFCVR REJ	1. Monitor TP-8 with an oscilloscope. 2. Put Filter and Resonance slider fully down. 3. Put LFO slider $3 / 4$ up. 4. Put ADSR filter control slider up full and turn on Auto Repeat. (All other sliders down.) 5. Adjust R196 for minimum amplitude.
$\begin{gathered} \mathrm{R} 165 \\ 8 \end{gathered}$	VCF V/OCT	1. Monitor TP-8 with a frequency counter or strobe tuner. 2. Put the VCF Resonance slider fully up. 3. Pin low ' C ' on the keyboard. 4. Raise the VCF keyboard CV slider. 5. Put the S / H switch in the down position. 6. Adjust the VCF Frequency slider on the front panel to exactly 130 Hz . or ${ }^{\text {a }} \mathrm{C}$ ' on the strobe tuner. 7. Pin high ' C ' on the keyboard. 8. Adjust trimmer R165 for a frequency of 1040 Hz . or ' C ' three octaves higher than step 6. 9. Repeat steps 1 through 8 until the frequency is correct on high ' C ' and low ' C '.
POWER SUPPLY TRIMS CAUTION: DO NOT ADJUST POWER SUPPLY UNIC		
REF. No.	trimmer	TRIM + ROCEOURE 5.1 SHOULD ADJUSTMENT BECOME NECESSARY
$\begin{aligned} & \mathrm{R} 5 \\ & 8 \end{aligned}$	+15 VOLT SET	1. Moriter the power supply's +15 volt output with a digital voltmeter. 2. Adjust R5 for exactly +15.00 volts.
$\begin{aligned} & \mathrm{R} 11 \\ & 0 \end{aligned}$	-15 VOLT SET	1. Set $\mathrm{R} 5(+15$ volts) first. 2. Put the digital voltmeter's ground lead on the power supply's - 15 volt output and put the meter's plus lead on the power supply's ground output. 3. Adjust R11 for exactly +15.00 volts.

SECTION 4 BOARD TEST POINTS			
TEST POINT	function	SET UP	specifications
TP-1	NOISE GENERATOR OUTPUT	-------	
TP-2	LFO SQUARE WAVE	1. Put LFO Frequency slider fully up.	

TEST POINT	function	SET UP	SPECIFICATIONS
TP-3	gate output	1. Depress any key.	
TP. 4	ADSR OUTPUT (NEGATIVE)	1. Put Attack, Decay, Sustain and Release sliders $1 / 2$ up.	
TP-5	ADSR OUTPUT (POSITIVE)	1. Put Attack, Decay, Sustain and Release sliders $1 / 4$ up.	
TP-6	vCO SAWTOOTH OUTPUT	1. Pin low ' C ' on the keyboard. 2. Put the S / H switch in the down (off) position. 3. Put all other sliders fully down. 4. Put the Transpose switch and Pitch Bend control in the normal (mid) position.	
TP-7	VCO SQUAREwave output	1. Pin low ' C ' on the keyboard. 2. Put the S / H switch in the down (off) position. 3. Put all other sliders fully down. 4. Put the Transpose switch and Pitch Bend control in the normal (mid) position.	
		5. Raise the VCO Pulse Width slider fully.	
TP-8	vCF OUTPUT	1. Put Audio Mixer VCO Sawtooth slider up fully. 2. Put VCF Frequency slider up fully. 3. Put all other sliders down fully.	
		4. Lower the VCF Frequency slider to $3 / 4 \mathrm{up}$. 5. Raise the VCF Resonance to $1 / 2$.	

9

SECTION 5 INTERFACING INFORMATION

5.1 MASTER/SLAVE TUNING INSTRUCTIONS

Select one Axxe as the master unit and put it to the left of the slave unit. Instructions in the left column refer to the 'master unit'; the left column refers to the 'slave'. Be sure to follow the sequence of operations for both units.

INSTRUCTIONS FOR 'MASTER' UNIT:
1. Connect High or Low output to amplifier

3. Connect a patch cord to the CV output jack and the CV input of the slave unit.
4. Pin low ' C ' on the keyboard.
5. Raise the VCO Square Wave slider
6. Put the VCF FREQ slider up fully.
7. Raise the VCA GAIN to a comfortable level.
8. Put the TRANSPOSE and PITCH BEND con-
trols in the normal (mid) position
9. Put the S / H switch and all other sliders in the off or normal position.
10. Using the 'TUNE' control on the front panel, tune
the master unit to unison with the slave unit.
11. Pin high ' C ' on the keyboard.
12. Pin low ' C ' and check that the two units are still tuned to unison (repeat steps 10 through 12 if not in tune).
13. Remove patch cord from CV output.
14. Pin high ' C ' on the keyboard
15. Pin low ' C ' on the keyboard.
16. Repeat steps 15 through 18 until master and slave units are in tune on low ' C ' and high ' C '.
17. Check section 3 (Board Trims) to verify calibration of pitch bend and transpose switch.
INSTRUCTIONS FOR 'SLAVE' UNIT
18. Connect High output to EXT AUD input of master unit.
19. Raise the VCO Square Wave slider
20. Put the VCF FREO slider up fully

7 Raise the VCA GAIN fully
8. Put the TRANSPOSE and PITCH BEND con-
trols in the normal (mid) position
9. Put the S / H switch and all other sliders in the off or normal position
12. Using VCO V/OCT trimmer (R74), tune the slave unit to unison with the master unit.
14. Remove patch cord from CV input
15. Piri high ' C ' on the kevboard.
16. Adjust the 'TUNE' control on the front panel so that slave and master are tuned to unison
17. Pin low ' C ' on the keyboard.
18. Adjust trimmer R5 (+15 V , power supply) until the master and slave are tuned to unison.
5.2 SYSTEMS INTERFACING WITH OTHER ARP SYNTHESIZERS

Axxe	SE-4	$\mathbf{2 6 0 0}$	2800	$\mathbf{2 9 5 0}$
Gate Output	-	Gate Jack	Gate Input	Gate Input
Trigger Output	-	Trigger Jack	Trigger Input	Trigger Input
CV Output	-	CV Output (disconnect KYBD)	CV Input (newer models Only)	CV Input
EXT AUD Input	Output I	L or R Output	High Output	High Output

WHEN THE AXXE IS TO BE USED AS A SLAVE (CONTROLLED) UNIT,
CONNECT:

Axxe	SE-4	$\mathbf{2 6 0 0}$					2950
Gate Input	Gate Output	Gate Jack	Gate Output	-			
Trigger Input	Trigger Output	Trigger Jack	Trigger Output	-			
CV Input	-	CV Output	CV output	-			

7.1 POWER SUPPLY CIRCUIT DESCRIPTIONS

7.1.1 VOLTAGE SOURCE

CRI-4 is a full wave bridge rectifier supplying about plus and minus 28.5 volts to the regulating circuitry Cl and C 5 filter out ripple on the supply lines.

7.1 .2 +15 VOLT SUPPLY

Zl contains a voltage reference which supplies about 7.4 volts to pin 6 of ZI . This fixed voltage is connected through pin 5 to the non-inverting input of an op amp. The output of the op amp is connected to an emitter follower, also located inside ZI , which controls the current amplifier. The power supply normally delivers +15 volts to the output; if the voltage should change, the voltage at the junction of R3 and R6 will also change. This point is connected to the inverting input of the op amp through pin 4 of ZI . If the voltage at this point should drop, the output of the op amp will rise turning on the emitter follower and the cur rent amplifier, thus increasing the output voltage, Similarly, if the voltage at the resistor junction hould increase, the voltage on the output of the op mp will decrease which limits the current through the current amplifier and lowers the output voltage. R5 and the +15 volt trimmer sets the voltage level on the inverting input of the op amp and thus sets the output voltage of the supply.
7.1.3 + 15 VOLT CURRENT LIMITING

When enough current flows out of the positive power supply to cause a .7 volt drop across R2, the transistor connected to pins 2 and 3 of ZI turns on, effectively shorting the base of the emitter follower to the output voltage of the +15 supply. Ol in turn supplies less current to the output.

7.1.4-15 VOLT SUPPLY

The 15 volt supply derives its regulation from the +15 volt supply through R8. When the output of the - 15 volt supply is at the correct voltage, the junction of R8 and R12 is zero volts. The base of O 2 is referenced to zero volts through R9. Should the output of the supply increase, the voltage on the base of 03 will also increase which begins to turn off O3. O2 conducts more current thus turning 04 on harder. Q4 drives the current amplifier 05 which will then con. duct more current thereby lowering the output to -15 volts.
7.1.5-15 VOLT CURRENT LIMITING

When enough current is drawn from the -15 volt supply to cause a .7 volt drop across RI6, Q6 turns on which applies - 28 volts to the base of O 4 thus shutting Q4 and 05 off.

\because

$-N \omega 0$

SECTION 8 AXXE PARTS LIST

2300 PARTS LIST

order parts by arp part number

reference	arp part number	ARP/MFG Number	description
CR1-23	1200301	IN4148	Diode, Silicon, Signat
Q9	1302901	2N3904	Transistor, Silicon, NPN
Q2,4,7,8,10,11,17,22,23	1303001	2N3906	Transistor, silicon, PNP
Q12,13	7500801	2300-029	Transistor Pair NPN/PNP
Q1	5600101	A8000-012	Transistor, Noise, Sel. 2 N5172
Q16	1302701	2N5910	Transistor, silicon, PNP
Q14,15	5600201	A2803-003-1	FET, Selected, 2 N5459(ORN)
Q5	5600202	A2803-003-2	FET, selected, 2N5459(YEL)
Q3	1302501	2N5461	FET, P Channel
Q6	1303901	IMF3958	FET, DUAL JFET
21,4,13	1401101	A2801-008/SL19988	DUAL OP AMP(LM1458) Sel .
22,3,6,7	1400801	A2801-009/SL19986	OP AMP(LM301AN) Sel.
28,9	1400501	CA3086	Transistor Array
$z 5$	1400601	A2803-002	Quad/2 input NAND GATE(CD4011AE)
R89	1000105	SA-21	THERMISTOR, 1.87K 3\%
R61	5701802	B2801-010-2	Rotary Pot., 100 KLin .
R75	5701803	B2801-010-3	Rotary Pot.,.100K Lin.
R45,107,144,157,160,161	5700703	B2801-006-3	Slide Pot., 100 K Lin.
R18,77, 78,79,94,105,106,	5700702	B2801-006-2	Slide Pot., 100K Aud.
119,120,121,159			
R26,49,50,54,170,173	5700701	B2801-006-1	Slide Pot., 1M Aud.
S2	1900601	SW423AKkb	Switch, Slide, DP3T
s1	1900701	SW442AKKB	Switch, Rocker, DP3T
53	1900801	02-481-0001	Switch, Rocker, DPDT

2300 POWER SUPPLY PARTS LIST

reference	ARP PART Number	ARP/MFG NUMEER	description
Q1,5	1303401/1303601	2N6179/or D4004	NPN Power Transistor
Q4,6	1302901	2N3904	Silicon Transistor, NPN
Q2,3	1303001	2N3906	Silicon Transistor, PNP
21	1401301	723	+15 Regulator i.c.
CR1-4	1200401	in4448	Rectifier Diode, $75 \mathrm{~V}, 200 \mathrm{MA}$.
c3,4	1100612	TAG-00-10/35-50/20	10uf, Tant. 35 V Capacitor
c1,c5	1101702	B41010-250/50	$250 u f$, Elect. 50V Capacitor
T1	5701201	C2804-008	Power Transformer
-	1700402	MDV-1/8	Slo-Blow Fuse, 1/8 AMP

