
Embedded Sound Synthesis

Victor LAZZARINI, Joseph TIMONEY and Shane BYRNE
Sound and Digital Music Technology Group

Maynooth University
Maynooth, Co.Kildare

Ireland,
{Victor.Lazzarini, Joseph.Timoney, Shane.Byrne.2011}@nuim.ie

Abstract

This article introduces the use of the Intel Galileo
development board as a platform for sound synthe-
sis and processing, in conjunction with the Csound
sound and music computing system. The board in-
cludes an Arduino-compatible electronics interface,
and runs an embedded systems version of the Linux
operating system. The paper describes the relevant
hardware and software environment. It introduces
a port of Csound, which includes custom frontends
that take some advantage of the board capabilities.
As a case study, a MIDI synthesizer is explored as
one of the many potential applications of the system.
Further possibilities of the technology for Ubiquitous
Music are also discussed, which use the various in-
terfacing facilities present on the Galileo.

Keywords

Embedded systems, sound synthesis and processing,
music programming, Ubiquitous Music

1 Introduction

The Intel Galileo board1 (fig.1) is an embed-
ded systems development board based on the
Quark System-on-Chip (SoC), which includes
an Arduino-like functionality (and compatibil-
ity with some existing extension shields and
software). The board can be used as a straight
replacement for the Arduino Uno boards, with
a customised Arduino Integrated Development
Environment (IDE) that allows programming of
applications (sketches) using the Wiring library.
The Galileo, however, runs under a Linux-based
operating system, and thus allows other modes
of application that are not restricted to Arduino
IDE sketches, and which can take more com-
plete advantage of the board capabilities.

In this article, we examine the use of
the Galileo board for sound synthesis and
processing, with the Csound[ffitch et al.,
2014][Boulanger, 2000] sound and music com-
puting system. We demonstrate the scalabil-

1http://arduino.cc/en/ArduinoCertified/
IntelGalileo

ity of Csound, which has been shown to run
on a great variety of platforms, from super-
computers2 to mobile[Lazzarini et al., 2012][Yi
and Lazzarini, 2012] and web[Lazzarini et al.,
2014], and now on embedded systems such as
the Galileo. The hardware and software combi-
nation discussed in this paper has the potential
of opening up a variety of new applications for
electronic music composers and performers.

As a case study, we have developed a com-
plete software image for the system, which al-
lows it to be booted up as an outboard MIDI
synthesizer. This paper is organised as follows:
we first describe the hardware and software en-
vironment that is available to Galileo develop-
ers. We then discuss the details of the port
of the Csound system, and its custom frontend
that takes advantage of the board’s Arduino-
like capabilities. This is followed by a report
on our case study, the MIDI synthesizer. Fi-
nally, we propose some further applications of
the technology.

2 Galileo hardware and software

Galileo boards have been produced under
two slightly different hardware configurations,
namely, original (GEN1, pictured in fig.1),
and a revised specification (GEN2, pictured
in fig.2)3. They generally run under custom,
specially-designed, Linux for embedded systems
images, created and supported by the Yocto
Project4. The board can be booted up from the
flash memory (containing a minimal/small linux
image), or from the SD card, which can contain
more complete operating system images.

2Csound was used as part of two class C projects
at the Irish Centre for High-Performance Computing
(ICHEC) exploring parallel processing for audio

3http://www.intel.ie/content/www/ie/en/
do-it-yourself/galileo-maker-quark-board.html

4https://www.yoctoproject.org



Figure 1: The Intel Galileo (GEN1) with ethernet and USB connections

2.1 Hardware specifications

The two share some basic attributes that in-
clude a Quark processor, which has the same
instruction set to the Pentium, or i586, CPU,
and contains a single core running at 400
MHz (also known as ‘Clanton’)5, 10/100Mbit
ethernet, PCI Express, USB 2.0 device and
host interfaces, and microSD card reader.
GEN1 boards have a 3.5 mm RS-232 connec-
tor, whereas GEN2 replaces this with a 6-pin
Transistor-Transistor Logic (TTL) Universal
Asynchronous Receiver-Transmitter (UART)
header that is compatible with standard adap-
tors.

The Galileo uses the standard Arduino pin
layout, which includes 20 General-Purpose In-
put/Output (GPIO) pins (6 multiplexed as ana-
log inputs), plus power and Serial Peripheral
Interface (SPI) headers. The hardware imple-
mentation of these is different in GEN1 and
GEN2. In the former, an external GPIO ex-
pander chip (Cypress CY8C9540A) is used to
control most of the pins in the shield, with only
two Quark GPIOs connected directly (accessi-
ble via a multiplexer switch). The latter has
12 Quark GPIOs fully accessible to the head-
ers, and uses a different GPIO expander chip
layout (3 NXP PCAL9535A), mostly to con-
trol multiplexing (leaving eight available for in-

5http://ark.intel.com/products/79084/
Intel-Quark-SoC-X1000-16K-Cache-400-MHz

put/output functions). The Quark GPIOs allow
faster switching performance, through a dedi-
cated software interface. Analog IOs are imple-
mented in GEN1 via an Analog Devices AD7298
ADC IC, providing 12 bits of resolution, and
in GEN2 via a Texas Instruments ADS108S102
IIO-ADC, which is 10-bit (scaled to a 12-bit
range for compatibility purposes). Pulse-width
modulation (PWM) is also implemented differ-
ently on the GEN2 board, providing higher res-
olution.

2.2 Software systems

The board is generally run under a specially-
built Linux OS image, although a Debian-based
system has also recently been tested, and Mi-
crosoft has also provided a cut-down version of
Windows 8 for it. We will discuss here the orig-
inal Linux software that has been designed for
the board. There are two types of Linux im-
ages that are used in the Galileo, based on dif-
ferent versions of the standard C library. The
smaller image, mostly meant to be run from
the limited space in the board flash memory,
is built with uClibc. This library was originally
designed for embedded Linux systems not us-
ing memory management units, but also runs
on standard Linux. The other type of image is
based on eglibc, which was designed for embed-
ded systems but is generally compatible with
the standard glibc. This library is more suit-



Figure 2: The Intel Galileo (GEN2) with ethernet, USB audio and a potentiometer connected to
analog input 1 (pin A1)

able for SD card-based installations with no size
constraints, as it is more fully-featured and pro-
vides better performance than uClibc. Software
built with the Arduino IDE normally depends
on uClibc, and therefore will not run on an
eglibc image (although the Arduino IDE can be
rebuilt from source to target this).

2.2.1 Development environment

Although it is possible to include all the devel-
opment tools and use the board itself to build
software, it is more advisable to set up a cross-
compiling toolchain on a host computer. This
is done by building an image and the toolchain
from the sources, through a Linux Board Sup-
port Package (BSP) provided by Intel for the
Clanton platform. The BSP is a collection of
scripts (shell scripts, python scripts, recipes,
etc) built with the resources provided by the
Yocto Project, that allows us to build full Linux-
based operating systems for specific embedded
platforms. It uses the bitbake tool to collect all
the information in the various scripts, download
from sources, patch, build, and install the oper-
ating system software. The Galileo Yocto BSP
can be used to build a fully-functional eglibc-
based Linux standard base distribution, and a
Software Developer Kit (SDK) containing a gc-
c/g++ toolchain. Most importantly for us, this
Linux image contains the alsa library, and with
it, we can access soundcards connected via the

USB or PCI Express interfaces.

3 Csound for the Galileo

A fully-functional port of Csound was built for
the Galileo board using the cross-compilation
environment described above. The only two ba-
sic dependencies for Csound are libsndfile (for
soundfile access) and the ALSA library (for re-
altime audio and MIDI). Although the image
built with the provided BSP contains both,
there are still a few issues to be resolved be-
fore we can build the system. Firstly, the cross-
compilation environment installation does not
appear to include the ALSA headers, so these
need to be copied manually from the sysroot in
the Yocto build to the installed toolchain sys-
root.

Secondly, the libsndfile originally provided
by the Yocto build is broken, as it depends on
large file offset support that is not provided
as standard by the system. So we have to
modify the bitbake build recipe (provided in
./poky/meta/recipes-multimedia/libsndfi
le/libsndfile1 1.0.25.bb) to configure
the build with -D FILE OFFSET BITS=64, and
rebuild the image and SDK. With this in place,
we can proceed to build Csound in the usual
manner, using the CMake tools.



3.1 Custom frontends

In order to access the basic Arduino-like func-
tionality of the Galileo, specific frontends were
developed: gcsound (GEN1) and gcsound2
(GEN2). This functionality can be divided
into two groups: access to analog inputs, and
access to the GPIO digital input and output.
Such connections to the pins on the board is
accomplished via the Linux Sysfs interface.
This provides access to GPIOs via a number of
files under /sys/class/gpio (for digital IO)
and /sys/bus/iio/devices/iio:device0/.
GPIOs need to be exported first by writing their
number to the /sys/class/gpio/export file,
and their direction (“in” or “out”) needs to be
written to /sys/class/gpioN/direction,
where N is the GPIO number. Then
its value (0,1) can be read/written to
/sys/class/gpioN/value. The analog
inputs can be accessed by reading the
/sys/bus/iio/devices/iio:device0/in vol
tageN raw file (values in the range 0 - 4095),
where N is the analog input number (0-5). The
interface expects text (ASCII) characters as
it was originally designed to work with echo
and cat. Note that Sysfs is a regular interface
for all GPIOs, and in order to take advantage
of the fast IO provided by the GPIOs directly
connected to Quark, a different interface
(through /dev/uio0 and ioctl() calls) is
required. This has not yet been implemented
in the two custom frontends.

3.2 Analog inputs

The analog inputs on the Galileo board are
marked A0-A6. These pins are reserved for
this purpose by the gcsound and gcsound2 pro-
grams, ie. they cannot be used for digital input
and output (although there is software support
for this function). These inputs are offered to
Csound orchestra in the software bus channels
named as “analogN” where N is the analog port
number. The application can then read these
channels as required (using chnget). Access to
the analog IO is present throughout the perfor-
mance, continuously, and is implemented asyn-
chronously (ie. non-blocking).

The signal is delivered as a floating-point
number normalised between 0 and 1 (corre-
sponding to a 0 - 5V input range). For instance,
to access a potentiometer connected to the A1
analog input (as shown in fig.2), we use

ksig chnget "analog1"

3.3 Digital input and output

The remaining 14 pins can be used for general-
purpose digital input or output. Access is
provided as requested, through blocking read-
ing/writing operations. This functionality is
implemented as new opcodes in the system:

ival gpin inum
kval gpin inum

gpout ival , inum
gpout kval , inum

where ival and kval are the GPIO values (0
or 1), and inum is the GPIO number.

3.4 Pins and signals

Depending on the board version (GEN1,
GEN2), digital signals at the various pins are
mapped to different GPIO numbers. Access to
some of these require the switching of one or
more multiplex controls (also identified by spe-
cific GPIO numbers). The mapping of pins to
GPIOs and multiplexers is shown below for the
two versions of the Galileo board.

3.4.1 GEN1 board GPIO mapping

Table 1 can be used as reference for the GEN1
board pins and GPIO numbers used. Pins 4
- 9 are directly connected, other pins will re-
quire a multiplexer selector to be set before use.
Most of the GPIO sources are provided through
the Cypress CY8C9540A I/O Expander; two
sources connected directly to the Quark SoC are
available through pins 2 & 3 (as indicated on
Table 1).

For the pins that require multiplexing, the
gpout opcode will need to be used to select the
correct source before accessing the pin from that
source. For instance to access the GPIO for pin
0 and set it to 1, we have to use

gpout 1, 40
gpout 1, 50

so that GPIO 40 accesses the multiplex se-
lector, selecting the source as GPIO 50, and we
then set this to 1.

3.4.2 GEN2 board GPIO mapping

GEN2 board has a significantly different map-
ping scheme, as it employs a different hardware
setup. Most of the 14 GPIO digital IO pins are
connected directly to the Quark SoC, and so
they are controlled in a slightly different way.
In/out direction needs to be switched on for
each pin by a separate GPIO setting. Most
pins are multiplexed, so they also need to be



Table 1: Pin to GPIO mapping, Galileo GEN1
pin mux selector, value source/function
0 40, 0 UART0 RXD (/dev/ttyS0)

40, 1 50 (GPIO)
1 41, 0 UART0 TXD (/dev/ttyS0)

41, 1 51 (GPIO)
2 31, 0 14 (Quark GPIO)

31, 1 32 (GPIO)
3 30, 0 15 (Quark GPIO)

30, 1 18 (GPIO)
4 - 28 (GPIO)
5 - 17 (GPIO)
6 - 24 (GPIO)
7 - 27 (GPIO)
8 - 26 (GPIO)
9 - 19 (GPIO)
10 42, 0 SPI1 CS (Quark)

42, 1 16 (GPIO)
11 43, 0 SPI1 MOSI (Quark)

43, 1 25 (GPIO)
12 54, 0 SPI MISO (Quark)

54, 1 38 (GPIO)
13 55, 0 SPI SCK (Quark)

55, 1 39 (GPIO)

switched on via another GPIO. In addition, the
board has pullup/pulldown 22k resistors con-
nected to the pins that can be switched on and
off, also through GPIOs. Table 2 shows the
mapping for each pin and their associated GPIO
numbers

The GPIOs controlling the direction of the
Quark GPIO pins are set as 0 = output, 1 =
input. Note that this is not necessary for the
two PCAL9535A GPIO (pins 7 & 8). The re-
sistor GPIO selectors are set as 0 = pulldown,
1 = pullup; if they are set to input, the resis-
tor is disconnected. These allow the voltage to
lower to the ground, or to rise to the operating
voltage (5V), when pins are disconnected.

Multiplex selection works as with GEN1, by
accessing and setting the relevant GPIO, and
if there are mulitplexers involved, both need to
be used. For example, to make the onboard led
(which is connected to pin 13) light up, we need
to set GPIO 46 to 0 to select the Quark GPIO,
then 30 to 0 (output direction), and finally set
7 to 1 (to turn it on). Using this, an instrument
that is equivalent to the Arduino blink sketch
can be written as:

instr blink

kcnt init 0
kLed init 0
gpout 46, 0
gpout 30, 0

if kcnt == 100 then
kLed = (kLed == 0 ? 1 : 0)
gpout kLed , 7
kcnt = 0

endif
kcnt += 1

endin

3.5 Other possibilities

Presently, the Csound frontends gcsound and
gcsound2 do not implement other Arduino-like
capabilities which are available in the system.
These include PWM output, access to SPIO
and Inter-Integrated Circuit (I2C) busses, fast
GPIO, and tty interfaces. It is envisaged that
some of these will be explored in the near fu-
ture for specific applications. For instance, we
plan to take advantage of SPIO connections to
provide integrated audio DAC/ADC capabili-
ties, either via custom or commercially-available
shields. Fast GPIO will be made available
alongside the regular Sysfs implementation, and



Table 2: Pin to GPIO mapping, Galileo GEN2
pin mux 1, value mux 2, value dir 22k res source/function
0 - - - - UART0 RXD (/dev/ttyS0)

- - 32 33 11 (Quark GPIO)
1 45, 1 - - - UART0 TXD (/dev/ttyS0)

45, 0 - 28 29 12 (Quark GPIO)
2 77, 1 - - - UART1 RXD (/dev/ttyS1)

77, 0 - 34 35 13 (Quark GPIO)
77, 0 - - 35 61 (PCAL9535A GPIO)

3 76, 1 - - - UART1 TXD (/dev/ttyS1)
76, 0 64, 0 16 17 14 (Quark GPIO)
76, 0 64, 0 - 17 62 (PCAL9535A GPIO)

4 - - 36 37 6 (Quark GPIO)
5 66, 0 - 18 19 0 (Quark GPIO)
6 68, 0 - 20 21 1 (Quark GPIO)
7 - - - 39 38 (PCAL9535A GPIO)
8 - - - 41 40 (PCAL9535A GPIO)
9 70 0 - 22 23 4 (Quark GPIO)
10 70, 0 - 26 27 10 (Quark GPIO)
11 44, 1 72, 0 - - SPI MOSI (spidev1.0)

44, 0 72, 0 24 25 5 (Quark GPIO)
12 - - - - SPI MISO (spidev1.0)

- - 42 43 15 (Quark GPIO)
13 46, 1 - - - SPI SCK (spidev1.0)

46, 0 - 30 31 5 (Quark GPIO)

host Galileo hub

MIDI controller

soundcard

USB-�ethernet-�
?

?

Figure 3: The Galileo Synthesizer layout

PWM will also be added to extend the output
capabilities of the Galileo Csound implementa-
tion.

4 Case study: MIDI synthesizer

As a case study to assess the potential of the
Galileo board for music-making, a fully-fledged
MIDI synthesizer was developed. This em-
ploys Csound as the sound engine, interfac-
ing with external USB audio and MIDI hard-

ware. A Csound image for the board was devel-
oped, using the principles outlined in the pre-
vious sections, and including a realtime pre-
emptive kernel. This image can be simply
copied into any microSD card compatible with
the board (sizes between 2 and 32GB). It will
then be ready to use. It contains the stan-
dard Csound command-line frontend csound,
the custom frontends gcsound and gcsound2,
the Csound library (plus some plugin opcodes),



and the basic MIDI-based orchestra (midisyn-
thesizer.csd).

These files are located in the /home/root di-
rectory. On boot up, the board will start a
Csound process and load midisynthesizer.csd.
This is set to use the default audio USB card
and a MIDI input device, and it contains
three instruments, accessible via MIDI program
change messages. The three instruments are

1. Supersaw synth: a simple design based on
five detuned sawtooth oscillators[Timoney
et al., 2014]. Modulation controls detun-
ing, CC 02 controls envelope attack, and
CC 03 controls envelope release.

2. Pluck string: a Karplus-Strong-
like[Karplus and Strong, 1983] instrument.
Modulation controls brightness, CC 02
controls envelope attack, and CC 03
controls envelope release.

3. Voice: a ModFM[Lazzarini and Timoney,
2010] formant synthesizer. Modulation
controls vowel types, CC 02 controls at-
tack, and CC 03 controls envelope release.

Programs are set circularly to these three in-
struments (PGM mod3), and the synthesizer
works in multimode, ie. it is possible to assign
different programs to different channels. Al-
though in this case study, we did not explore
the possibilities offered by the Arduino-like elec-
tronics interfaces, these can be easily incorpo-
rated in the synthesizer design.

4.1 Testing the synthesizer

There is only a single host USB port on the
board (there is also a client USB port, but this
is used to connect to it from a host computer),
so to use both an audio IO card and a MIDI con-
troller, a hub is required. We tested the Galileo
Synthesizer with a dynex USB hub, to which an
M-Audio Oxygen 25 keyboard, and Behringer
U-Control audio interface were connected. The
synthesizer is generally very responsive, with
low-latency audio output. Depending on the in-
strument, different polyphony limits apply. The
vocal synthesizer is monophonic, but both the
Supersaw and the Pluck string instruments al-
low up to six concomitant voices.

A video showing the synthesizer in action can
be seen in

http://youtu.be/ogYdJsKKxJk

4.2 Connecting to the board

The board is fully accessible via ssh, through
the use of a DHCP server (which can itself
be run in the host computer) (fig.3). This
can be used to debug, develop, and add new
instruments to the existing ones. In this case,
from the host terminal,

$ ssh root@<IP address>

In order to locate the IP address for the
board, you need to have access to the network
router, where you should see it listed alongside
the board MAC address. You can find the board
MACaddress on the top part of the ethernet
socket. Once logged in, vi is available for sim-
ple editing. Files can also be copied to and from
the board via scp. Host connection to the board
is not required for synthesizer operation, as the
board boots up into a Csound process directly.
However, all USB connections should be present
before booting the system.

5 Further applications

The technology described in this article has sig-
nificant potential for further exploitation, be-
yond the simple case study discussed above. In
particular, it has a direct application as a plat-
form for Ubiquitous Music research and prac-
tice[Keller et al., 2015].

5.1 Portable live-electronics platform

For composers who employ live-electronics rigs
regularly, having small, portable devices that
can be used to interact with other performers on
stage is very useful. With the Galileo+Csound
system, it is possible to design various concert
setups, with one or more boards, to deliver
sound synthesis, processing, and audio play-
back. Due to the small size of these devices,
they can be integrated in wearable components,
or into augmented mechanic-electronic instru-
ments.

5.2 Programmable effects units

The Galileo+Csound system can also be the
basis for general-purpose audio processing
“boxes”, as fully programmable effects units.
Because of the presence of a complete music
programming language, it is possible to go be-
yond the usual categories of effects, and include
more advanced signal processing algorithms, in-
cluding frequency-domain methods such as the
phase vocoder and sinusoidal modelling. Cus-
tom controls can be added via the electronics



interfacing capabilities offered by the board, as
well as the usual MIDI and Open Sound Control
(OSC).

5.3 Internet of Things sound devices

One of the original targets for the development
of Galileo is to meet the potential of the Inter-
net of Things (IoT) concept. Because of its net-
working capabilities (built-in ethernet, and easy
wifi implementation via a PCI card), the board
can be used as a remote sound device. It can run
small web servers, node.js, and similar services,
which can be linked up with the Csound sound
synthesis engine. In addition, Csound can work
as a networked sound server, which is capable
of accepting control directly via UDP messages,
and/or the OSC protocol.

5.4 Low-cost cluster computing for
audio

With the built-in ethernet, it is possible to de-
sign a low-cost cluster, with the use of a net-
work switch. The custom Linux OS image de-
scribed in the earlier sections of this article also
includes the OpenMPI library, which is an im-
plementation of the Message Passing Interface
(MPI), a standard technology for cluster net-
working. With this it is possible to construct a
Cluster-based Csound frontend, that takes ad-
vantage of parallel processing to implement a
high-performance audio engine. Such a setup
would most likely be low cost in comparison to
other comparable alternatives.

6 Conclusions

This paper reported on the implementation
of an audio processing system using the Intel
Galileo development board and Csound, run-
ning under a customised version of Linux for
embedded devices. After a detailed discussion
of the relevant hardware and software environ-
ment, we have explored the porting of Csound
and the development of customised frontends
to access the electronics interfacing capabilities
of the board. A case study based on a sim-
ple MIDI synthesizer was used to demonstrate
the platform as a viable sound and music pro-
gramming environment. The article concluded
with a number of possible application scenarios.
While we have concentrated on a specific em-
bedded platform, the ideas and principles dis-
cussed here can be applied elsewhere. In par-
ticular, we hope to develop similar systems for

the Intel Edison6 in the near future.

7 Acknowledgements

We would like to acknowledge the support of
Intel Ireland, who very kindly supplied our re-
search group with GEN1 and GEN2 Galileo de-
velopment boards.

References

Richard J. Boulanger, editor. 2000. The
Csound Book: Tutorials in Software Synthe-
sis and Sound Design. MIT Press, February.

John ffitch, Steven Yi, and Victor Lazzarini.
2014. Csound on GitHub. http://csound.
github.io.

Kevin Karplus and Alex Strong. 1983. Digital
Synthesis of Plucked String and Drum Tim-
bres. Computer Music Journal, 7(2):43–55.

Damian Keller, Victor Lazzarini, and
Marcelo Pimenta (eds.). 2015. Ubiquitous
Music. Springer Edition, New York.

Victor Lazzarini and Joseph Timoney. 2010.
Theory and practice of modified frequency
modulation synthesis. J. Audio Eng. Soc,
58(6):459–471.

Victor Lazzarini, Steven Yi, Joseph Timoney,
Damian Keller, and Marcelo Pimenta. 2012.
The Mobile Csound Platform. In Proceedings
of ICMC 2012.

Victor Lazzarini, Edward Costello, Steven Yi,
and John ffitch. 2014. Csound on the Web. In
Linux Audio Conference, pages 77–84, Karl-
sruhe, Germany, May.

Joseph Timoney, Victor Lazzarini, Jari
Kleimola, and Vesa Valimaki. 2014. Exam-
ining the Oscillator Waveform Animation Ef-
fect. In Proceedings of DAFx 2014.

Steven Yi and Victor Lazzarini. 2012. Csound
for Android. In Linux Audio Conference, vol-
ume 6.

6https://www-ssl.intel.com/content/www/us/en/
do-it-yourself/edison.html


