Audio-test accessory isolates and matches loads

Richard M Kurzrok, RMK Consultants, Queens Village, NY

Connecting a 600Ω audio circuit to a 50 or 75Ω circuit or test instrument requires an impedancematching circuit or, when isolation of the circuits is necessary, a transformer. Both approaches offer advantages and disadvantages. A conventional transformer can match impedances with low typical losses of 1.5 dB , provide dc isolation, and operate from either a balanced or an unbalanced, 600Ω primary circuit. A high-quality transformer's pass-
band can accommodate an audio-frequency range of 300 Hz to 15 kHz with minimal amplitude variation. However, transformers that can match 600 to 50 or 75Ω may not be readily available or may command a cost premium.

A minimum-loss, fixed-value im-pedance-matching circuit, or pad, provides frequency-invariant audio-impedance transformation and can comprise as few as two resistors. Although a pad can provide useful impedance

TABLE 1 INSERTION LOSS VERSUS FREQUENCY		
Frequency	Insertion loss (dB)	Insertion loss (dB)
(kHz)	600 to 50Ω	600 to 75Ω
0.1	11.7	8.7
0.3	10	7
0.5	9.5	6.7
1	9.2	6.5
2	9	6.3
5	8.9	6.1
10	8.8	6.1
20	8.8	6
50	8.9	6.1
100	9.5	6.7

COAXIAL CONNECTORS J_{1}, J_{2}, AND J_{3} ARE AMPHENOL PART NO. 31-10-RFX.
IF MECHANICAL COMPATIBILITY WITH 75Ω BNC SERIES CONNECTORS IS NECESSARY, REPLACE J_{3} WITH AN APPROPRIATE CONNECTOR.

Figure 1 A handful of passive components creates a handy test fixture for matching impedances in audio-test circuits.

DIs Inside

78 One oscillator drives multiple solid-state relays
80 Low-dropout linear regulators double as voltage-supervisor circuits

84 External components provide true shutdown for boost converter

- What are your design problems and solutions? Publish them here and receive $\$ 150$! Send your Design Ideas to edndesignideas@ reedbusiness.com.
matching, it introduces a significant insertion loss of 14.8 dB for a 600 -to75Ω transformation or 16.6 dB for a 600 -to- 50Ω transformation, either of which might impose an unacceptable loss of dynamic range.
Part of a suite of test accessories, this low-cost, switchable, dual-impedance transformation circuit comprises a single conventional transformer and two minimum-loss pads (Reference 1). A single inexpensive, conventional transformer steps down the 600Ω primary input impedance to an intermediate impedance level of 100Ω (Figure 1). Switch S_{1} selects a 100 to 50Ω or a 100 to 75Ω minimum-loss pad. Construction of the unit involves noncritical point-to-point wiring, although this design uses a Hammond 1590LB die-cast-aluminum box to provide shielding and a rugged enclosure to support three Amphenol (www.amphenolrf. com) RFX series BNC panel-mounted, insulated-frame input and output jacks. T_{1} is a Mouser Electronics (www.mouser.com) 42TM031 audio transformer, and the resistors are 0.5 W , metal-film units with $\pm 1 \%$ tolerances. With quantity discounts, the overall bill-of-materials cost is less than $\$ 20$.
To verify frequency response and

designideas

attenuation in a 600Ω test setup, connect two identical units back to back through their 50 or 75Ω terminals. You obtain the measured data (Table 1) for a single unit by halving the 600 -to600Ω transmission-loss measurements.

Calculated insertion loss for the 100 to 50Ω minimum-loss pad is 7.7 dB , and insertion loss for the 100 to 75Ω mini-mum-loss pad is 4.8 dB . Subtracting these values from the measured losses indicates that the transformer con-
tributes a midband loss of 1.3 to 1.5 dB . Insertion loss due to stray coupling from the selected output port to an unused output exceeds 40 dB . Combining a conventional transformer with two minimum-loss pads takes advantage of the best of both techniques.
The low-cost transformer contributes moderate insertion losses and provides dc isolation and good frequency response. In addition, the transformer's low-frequency roll-off
helps reduce $60-\mathrm{Hz}$ hum and low-frequency noise. The electrically isolated input jack allows connection of the transformer's input to balanced or grounded 600Ω sources.EDN

REFERENCE

IT Kurzrok, Richard M, "Simple LabBuilt Test Accessories for RF, IF,
Baseband, and Audio," High Frequency Electronics, May 2003, pg 60.

