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Stabilizing difference amplifiers for 
headphone applications

Introduction
The recent increase in popularity of high-fidelity 
headphones and lossless audio formats has caused 
many manufacturers of personal electronics to add 
high-quality audio outputs to their devices. As a 
result, 24-bit/192-kHz audio digital-to-analog 
converters (DACs), once reserved for home high-
fidelity systems, are now being incorporated into 
mobile devices such as cell phones, tablets, and 
portable music players. These DACs deliver 
extremely low-distortion signals, but are unable to 
drive headphones directly. To take full advantage of 
these high-performance parts, a well-designed head-
phone amplifier must also be added to the system.

Traditional headphone amplifier circuit
The DAC output is often a differential signal which 
must be converted to a single-ended signal by the 
headphone amplifier circuit. In Figure 1, a tradi-
tional difference amplifier consists of an operational 
amplifier (op amp) and four 
matched resistors that ampli-
fies the difference between the 
complementary DAC outputs. 
The amplifier also rejects signals 
common to both outputs, such 
as even-order distortion. The 
amplifier should not add 
unwanted noise or distortion to 
the signal, or change the 
 system’s overall frequency 
response. Perhaps, most 
importantly, the amplifier must 
be stable when headphones are 
connected to the output. As 
fundamental as this last point 
is, it is often overlooked in 
headphone amplifier design.

Headphone impedance 
characteristics
Headphones are not a simple 
resistive load, although their 
nominal impedance specifica-
tions (typically between 16 and 600 W) would seem to 
imply otherwise. Figure 2 shows the measured impedance 
of a 64-W (nominal) headphone from 10 Hz to 10 MHz 
(1 channel shown). The red curve gives the impedance 
magnitude and the blue curve is the phase angle. 

Two resonant peaks are clearly evident in the imped-
ance plot. The low-frequency resonance at 100 Hz is 
produced by the mechanical and electrical properties of 
the drivers in the headphones. The high-frequency reso-
nance is created from the interaction of the cable 
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Figure 1. A traditional difference amplifier converts 
differential output to a single-ended signal
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Figure 2. Measured impedance of 64-W headphones
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capacitance with the inductance of the 
cable and driver voice coil. From a stability 
perspective, the high-frequency resonance 
has the potential to cause the most prob-
lems. Above this resonant point, the head-
phone is a capacitive load, as is evident 
from negative phase angle. Capacitive 
loads introduce a pole into the open-loop 
gain curve of an amplifier, degrading the 
phase margin and potentially causing 
oscillation. 

The most common solution to this issue 
is to add a resistor (RISO in Figure 1) in 
series with the amplifier output to isolate 
the load capacitance from the feedback 
loop and preserve the phase margin. While 
this solution is effective at maintaining 
stability, it also degrades the system’s 
audio performance for several reasons. 
First, the output voltage of the amplifier 
circuit is no longer load-independent. 
Consider that the amplifier’s output imped-
ance forms a voltage divider with the load 
impedance. Because the load is not resis-
tive, as illustrated in Figure 2, the voltage 
at the headphones varies over frequency. 

Second, the current drawn by head-
phone drivers is not perfectly linear. This 
is partly because the impedance of the 
driver changes as a function of where the 
cone and voice coil assembly is in its range 
of motion. As the cone progresses through 
its range of motion, the impedance curve 
may change dramatically, thus distorting 
the current drawn by the driver. If the 
amplifier has a non-zero output imped-
ance, this distorted current will also distort 
the voltage signal at the amplifier output, 
potentially degrading audio quality[1]. A 
low-output impedance is crucial for 
 achieving high performance in headphone amplifier 
circuits.

Enhanced headphone amplifier circuit
There are some amplifier circuits that solve the problem of 
driving large capacitive loads while maintaining low output 
impedance by enclosing the isolation resistor inside the 
amplifier feedback loop and using a dual feedback topol-
ogy[2]. However, in the difference amplifier circuit, enclos-
ing the isolation resistor in the feedback loop degrades the 
circuit’s common-mode rejection ratio (CMRR), which is 
crucial for eliminating distortion from the DAC output 
signal. 

A solution to this problem is shown in Figure 3a.  
Figure 3b shows response curves for the open-loop gain 
(AOL) and the inverse feedback factor (1/β). In this topol-
ogy, resistor RX and capacitor CX introduce a pole-zero 

pair in the 1/β curve. By increasing the magnitude of 1/β 
at the frequency where it intersects the open-loop gain 
curve (fI), the system can achieve reasonable phase 
margin without increasing the output impedance at audio 
frequencies or degrading the CMRR. Furthermore, adding 
RX and CX to the circuit does not affect the circuit’s 
closed-loop transfer function.

For the circuit in Figure 3a to be stable, the intersection 
frequency (fI) must be less than the frequency of the 
second pole in the AOL curve (fP(AOL)), but greater than 
the pole in the 1/β curve (fP):

 
f f fP AOL I P( ) > >

 
(1)

On the other hand, to provide the best audio perfor-
mance possible, fZ and fP should be as far above the audio 
bandwidth as possible. Above the zero-frequency, the 
noise and distortion of the circuit will be increased by the 

Figure 3. Amplifier solution for large capacitive loads
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reduction in loop gain. As is often the case, the require-
ments for stability and high performance need to be 
balanced in the design process. 

To illustrate the design of this circuit, an OPA1612 was 
configured to drive the headphones used for Figure 2. 
Figure 4 shows the TINA-TI™ simulation schematic for 
the design process. For simplicity, the four resistors of the 
difference amplifier are matched (R1, R2, R3, R4 = R). 

Inductor LT is used to break the amplifier’s feedback 
loop. The circuit’s loop gain is measured by the voltage 
probe labeled AOLB. The feedback factor, β, is measured 
directly at the op amp inputs by differential voltage probe 
B. A differential voltage probe must be used because this 
technique incorporates both positive and negative feed-
back. The net feedback factor is the difference of the indi-
vidual negative and positive feedback factors[2]. The 
post-processor in TINA-TI can be used to generate addi-
tional curves from these voltage probes. For example, the 
open-loop gain curve is generated by dividing the loop 
gain by the feedback factor. The 1/β curve is produced by 
taking the inverse of the B probe. 

A 400-pF capacitor (CL) connected to the output repre-
sents the high-frequency impedance of the headphones. 
This value is determined by taking the impedance of the 
headphones (Figure 2) where the phase is most negative, 
which is a good representation of a worst-case capacitive 
loading from headphones. In simulation, a second pole in 
the AOL curve caused by this load capacitance can occur 
at 5.7 MHz where the AOL magnitude is approximately 
25 dB. In order to satisfy the criteria in Equation 1, the 
mag nitude of the inverse feedback factor at high frequencies  

Figure 4. TINA-TI™ simulation schematic used 
to determine loop stability

(|1/βHF|) must be greater than 25 dB. This is calculated 
using the equation:
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Using 1 kW as the value of all difference-amplifier resistors 
allows the value of RX to be calculated:
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A value of 118 W for RX ensures sufficient noise gain for 
stable operation. Next, CX was selected so that the pole 
frequency is well below 5.7 MHz. A conservative design 
rule is to place the pole frequency at one-tenth the inter-
section frequency, as long as the resulting zero is not near 
the audio bandwidth. In this example, placing the pole 
frequency at 570 kHz would position the zero near 57 kHz, 
a bit too low for high-performance audio systems. As a 
compromise, the pole was placed at one-fifth the intersec-
tion frequency:
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A value of 1.2 nF is very close to the calculated value for 
CX. The resulting zero frequency is:
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(5)

The 118.6-kHz zero frequency is sufficiently above the audio 
bandwidth to avoid degrading the circuit’s performance. 

An AC transfer characteristic simulation was performed 
and the results are shown in Figure 5. The open-loop gain 
and 1/β curves are shown in the magnitude plot (top). The 
1/β curve intersects the AOL curve at 5.4 MHz. At this 
point the phase of the loop gain (AOLB, bottom) shows 
47.35° of phase margin. Removing the RX and CX network 

would cause the 1/β curve to intersect the AOL curve 
below the second pole created by the capacitive loading. 
In this case, the phase at the intersection point becomes 
–52.37°, which indicates an unstable system. 

A difference amplifier circuit employing the previously 
calculated values of RX and CX was built and its measured 
performance was compared to a traditional difference 
amplifier using an isolation resistor of 47.5 W. The same 
64-W headphones (Figure 2) were used as the load for 
these tests. It is extremely important to test headphone 
amplifier circuits with actual headphones because simply 
using a resistor will not reveal the detrimental effects of 
the output impedance. 

Figure 5. Loop stability plots generated with TINA-TI™ model
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The closed-loop gain of the two circuits 
is shown in Figure 6. As mentioned previ-
ously, the series resistor used for stability 
forms a voltage divider with the headphone 
impedance. The result is that the gain of 
the traditional amplifier circuit varies by 
4.13 dB over the measured bandwidth. 
Conversely, the circuit employing the RX/
CX network has extremely low output 
impedance, and its gain is essentially inde-
pendent of the load impedance. The gain 
variation of the RX/CX circuit is 0.03 dB 
over the measurement bandwidth.

The effects of the series output resistor 
are also evident in the measured total 
harmonic distortion (THD) when driving 
the 64-W headphones. Figure 7 shows plots 
for the measured THD versus frequency for 
the two solutions with a 300-mVrms output 
level. Adding a series resistor drastically 
reduces the THD performance due to the 
non-linear current draw of the headphones. 
At low frequencies, where the cone excur-
sion of the headphone drivers is highest, 
the THD is over 55 dB worse for the tradi-
tional amplifier that employed a series 
output resistor.

Conclusion
Stabilizing headphone amplifiers is a 
unique challenge because of the difference 
amplifier circuit topology and the require-
ments for low output impedance, low 
distortion, low noise, and high CMRR. The 
enhanced amplifier solution presented 
allows for stable operation into capacitive 
loads without increasing the output imped-
ance at low frequencies or degrading the 
common-mode rejection. Using this tech-
nique, headphone amplifier circuits can be 
designed that are stable for typical head-
phone loads and provide exceptional audio 
performance. 
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Figure 6. Measured closed-loop gain of the two amplifiers
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Figure 7. Measured THD of the two solutions
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