ME
 Marchand Electronics Inc. Electronic Crossover Circuit Board Model XM9

Users Manual Assembly Manual

Marchand Electronics Inc. PO Box 18099 Rochester NY 14618
(c) 1990.... 2010 Marchand Electronics Incorporated

XM9 ELECTRONIC CROSSOVER NETWORK

Steep 24 dB/octave slope Outputs are always in phase Level controls on board Subwoofer summing option No turn on/off transients Low noise circuit design

Crossover frequency $20-5000 \mathrm{~Hz}$. Small 3.2" x 4.2" circuit board Optional off board level controls On board RCA in/out connectors
Fourth order constant voltage design
Double sided cicuit board

The XM9 electronic crossover network module is a fourth order constant voltage crossover design. The module provides both lowpass and high-pass outputs. The slope of both outputs is 24 $\mathrm{dB} /$ octave. Because of the fourth order design the high-pass and low-pass outputs of the crossover are always in phase with each other. The crossover network is implemented as a fourth order state variable filter. This filter provides both the high-pass and lowpass function simultaneously, guaranteeing a near perfect match of the high pass and low-pass responses.
One crossover network is needed for each channel of a biamplified system. A tri-amplified system needs two networks per channel, one to separate the high frequencies from the mid-low frequencies and another one to separate the low and mid frequencies. A quad system needs 3, and so on. The filter can also be used to drive a subwoofer, where the subwoofer is shared by the two channels of the stereo system.
The crossover frequency of the XM9 electronic crossover can easily be changed by changing the value of four resistors. These four resistors are mounted on an 8 pin DIP header plug for ease of change.
Individual level controls for the high and low pass outputs are provided with on board potentiometers. A damping control potentiometer on the circuit board allows for adjustment of the frequency response at the crossover frequency. A boost or cut of
up to 6 dB at the crossover frequency compensates for a dip or bump in the response at the crossover frequency found in some systems.
A time delay relay at the outputs of the XM9 eliminates the transients that can happen when the unit is turned on or off. Off board controls for the damping and the levels can also be used with the XM9.
The XM9 electronic crossover is built on a $3.2^{\prime \prime} \times 4.2^{\prime \prime}$ printed circuit board of high quality glass-epoxy material. One side of the double sided circuit board acts as a ground plane for the circuit. This contibutes to the very high signal quality of the XM9. A silk screen on the component side makes assembly very easy. The kit uses only high grade components: 1% metal film resistors, 1% matched polypropylene film capacitors for the filter capacitors, three dual FET input and one bipolar operational amplifier. Connectors for input, output and power make for easy assembly.
The XM9 is available as a bare board, with only the PC board and the assembly manual; as a kit, with all needed components, including a set of cable connectors; or completely assembled. The frequency module consists of an 8 pin DIP header and 4 1\% Metal film resistors. The optional level/damping control potentiometer and cable assembly can be used for mounting the level control on a cabinet front panel. One of these XM9-PT is required for each low-pass, high-pass and damping control.

INSTALLATION AND USE.

The typical application for the XM9 electronic cross-over filter is to separate the high and low frequency bands in a multy-way audio system. Figure 1 shows the application in a two-way amplifier setup. The signal from the pre-amp is connected to the input of the crossover. The high pass output from the cross-over is
connected to the input of the power amplfier driving the high frequency loudspeaker (tweeter), while the low pass output is connected to the amplifier driving the low frequency speaker (woofer).

SPECIFICATIONS:

Frequency response:
Crossover frequency:
Insertion gain:
Filterslope:
Harmonic distortion at 1 KHz :
Signal to Noise ratio:
Input impedance:
Output load capability:
Output impedance:
Maximum input voltage
Power supply requirement:

DC to $100 \mathrm{KHz},+/-0.2 \mathrm{~dB}$
$20 \mathrm{~Hz}-5 \mathrm{KHz}$
6 dB with level controls at maximum.
24 dB/Octave
less than 0.001\%
better than 110dB
25 KOhm
2 KOhm min.
50 Ohm typ
10 V peak-peak (4 V RMS)
dual regulated +15V and -15V @50 mA, typ

The controls and jumpers on the circuit board have the following function:

LEVEL CONTROLS:

There are two level control potentiometers on the circuit board, one for the low pass output and one for the high pass output. They
each have a range of off to +6 dB . At the center position the crossover network has unity gain (0 dB).

DAMPING CONTROL:

The damping control sets the frequency respose of the unit at the crossover point. The range of the damping control is from -8 dB to +6 dB , at the crossover point. This adjustment is usefull for matching the frequency response of the high and low loudspeakers at the crossover point. In the center position the frequency response is totally flat, meaning that the sum of the output voltage of the high pass and low pass channel is constant for all audio frequencies.

FREQUENCY CONTROL AND FREQUENCY MODULE:

The crossover fequency of the XM9 can be set by installing the apropriate frequency module. When using a subwoofer, with standard full range loudspeakers, the crossover frequency will normally be set at about $70-150 \mathrm{~Hz}$. When using the crossover
network in a typical biamping setup the crossover frequency is often set at $500-2000 \mathrm{~Hz}$. These frequencies depend on the loudpeakers used.

Fig 1. XM9 hookup.

Off board volume controls can be used to the high anw low pass outputs and damping control of the XM9. Best results are achieved when using 10 K potentiometers with linear taper. The potentiometers should be connected with the wiper at pin 2 (center pin) and the outside leads to pins 1 and 3 of the connector. See
table 1. The jumpers should be moved according to table 2. The low pass control is connected to P 1 , the high pass control to P 4 and the damping control to P3.

Table 2.		
Jumpers for external controls		
\| On	Off	Selected control
\| J1	J2	Low pass level control, External
\| J2	J1	Low pass level control, On board
J3	J4	Damping control, External
\| J4	J3	Damping control, On board
J5	J6	High pass level control, External
J6	J5	High pass level control, On board

Fig 10 shows some typical arrangements for 2-way, 3-way and 4way installations. For driving long lines a line driver buffer amplifier may be needed. The XM9 outputs can drive shielded cable lines of up to about fifty feet. The XM9 is implemented with a fourth order state variable filter,(see schematic diagram). The filter is implemented with the Bi-Fet op-amp's IC1 and IC2. The virtue of
this type of filter is that it provides simultaneous high-pass and low-pass functions at the two ends of the chain of four integrators. This means that only 4 precision capacitors are needed in order to implement both fourth order functions. Both high-pass and lowpass functions will be perfectly matched, because they are derived from the same network.

Fig 3. Example of subwoofer application.

COMMON SUBWOOFER

Two XM9 crossovers can be hooked up for driving a common subwoofer. In this case the low pass outputs of the two crossovers are summed together. Connector P5 is used for this purpose. The two crossovers are connected together with a cable
from P5 on one crossover to P5 on the other. Table 3 showd the wiring of the cable. Use a cable of not more than 30". Unshielded wire can be used. The summed output can be taken from the low pass output of either crossover board.
Table 3 .
Cable for common subwoofer
|
P5 board A

POWER SUPPLY

The XM9 needs a dual $+15 \mathrm{~V} /-15 \mathrm{~V}$ power supply for operation. The best choice for power supply is a regulated one. A typical power supply could be built as in fig 4 . This supply can deliver 1
amp. of current; this will be sufficient for powering several crossover networks. The Marchand PS10 power supply is of similar design. It is a good choice for powering the XM9.

Fig 4. Simple regulated power supply for XM9.

CROSS-OVER FREQUENCY.

The cross-over frequency of the XM9 is easily changed by replacing the frequency module. This 8 -pin dip header holds the 4 resistors R11-14 that determine the frequency of the cross-over
point. The four resistors should have a tolerance of 1\%, and be of equal value. The value of the resistors is given by:

$$
\mathrm{R}=\frac{1}{-----------,} \begin{aligned}
& \text { F=cross-over frequency in Hz } \\
& 6.283 \times \mathrm{F} \times \mathrm{C}
\end{aligned} \quad \begin{aligned}
& \text { R=resistance of R1..R4 in Ohm } \\
& \text { C=capacitance of C1..C4 in Farad. }
\end{aligned}
$$

For a typical value of $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4$ of 3300 pF , the value of R is given by

$$
R=-\frac{48.23}{F}, \begin{array}{ll}
\text { F=cross-over frequency in } K H z \\
R=r e s i s t a n c e ~ o f ~ R 1 . . R 4 ~ i n ~
\end{array} .
$$

For example, a resistor value of 100 K will give a cross-over frequency of 482.3 Hz . Fig 8 shows the relationship between cross-over frequency and R1 .. R4 for three different values of C1 .. C4. The value of R should not exceed 10 M and should not be less than 10K. This gives a range of 4.8 Hz to 4.8 KHz for the cross-over frequency with a value of C1-C4 of 3300 pF . Outside this range the value of $\mathrm{C} 1-\mathrm{C} 4$ should be adjusted. The minimum value of C1-C4 is 300 pF . There is no maximum allowed value.
The components used for R and C should be audio grade. Recommended are 1\% Metal Film for R1-R4 and 1% matched

Polypropylene film for C1-C4. Polypropylene film capacitors match Polypropylene in performance. Other types of film capacitors are less perfect, because they have much higher absorption coefficients. Never use electrolytic capacitors for C1C4!
On our website there is a handy calculator for finding the values of R1...R4.
See www.marchandelec.com/programs.html

Fig 8. Relationship of crossover frequency and R1..R4.

DESCRIPTION

The XM9 implements a fourth order constant voltage low-pas and high-pass filter. The filter has a fourth order transfer function. The sum of the high-pass and low-pass output signal of the filter is thus equal to the input signal. Also, the two output signals are always in phase. This means that the output soundwaves of the loudspeakers at the crossover frequency add up in phase.
In some cases the total sound pressure at the crossover frequency may show a dip, because the sum of the output power of the loudspeakers is not unity. The XM9 has an damping factor
modified square-butterworth order 4

Fig 9. XM9 High-pass, Low-pass, and sum functions, with correction.

The XM9 electronic crossover kit should include the parts listed below. Please check the contents of your kit to make sure no parts are missing. All parts are available separately (consult factory).

ASSEMBLY INSTRUCTIONS.

The assembly of the crossover filter is made very easy by the silk screen guide on the circuit board. The schematic diagram of the electronic crossover is shown in fig-1. All components should be installed on the side of the board that has the silk screen; this side
is called the component side. The parts are then soldered in place on the foil side of the board. All resistors are marked with color bands. It is sometimes hard to see the color code. Checking with a digital multimeter will help.


```
    Step 47 Install C9, 0.1 uF axial ceramic.
    Step 48- Install C10, 0.1 uF axial ceramic.
    Step 49 - Install C11, 0.1 uF axial ceramic.
    Step 50 Install C12, 0.1 uF axial ceramic.
    Step 51 - Install C13, 0.1 uF axial ceramic.
    Step 52 __ Install C14, 0.1 uF axial ceramic.
    Step 53 Install C17, 0.22 uF Stacked film capacitor.
    Step 54 - Install Q1, 2N5087 or MPSA92 PNP transistor. Please make sure the flat on the transistor
body matches the flat on the circuit board identification.
    Step 55 Install Q2, 2N2222 NPN transistor. As above. Note that the flat sides of the two
transistors will face each other.
    Step 56 __ Install M6. This is one of the 3 3-pin headers. It goes in the rectangular box marked
1J2.
    Step 57 __ Install M7. 3-pin headers. In the rectangular box marked 3J4.
    Step 58- Install M8. 3-pin headers. In the rectangular box marked 5J6.
    Step 59 __ Install P1. This is One of the 5 3-pin male connectors. It is oriented so that the key is
on top of the wide line of the identification box.
    Step 60 Install P2. 3-pin male connector. As above.
    Step 61 __ Install P3. 3-pin male connector. As above.
    Step 62 Install P4. 3-pin male connector. As above.
    Step 63- Install P5. 3-pin male connector. As above.
    Step 64 __ Install P6. 3-position terminal block.
    Step 65 __ Install P7. 3-position terminal block.
    Step 66- Install P8. 3-position terminal block.
    Step 67 __ Install RLY1, 24V DPDT relay.
    Step 68 - deleted
    Step 69 _ Assemble frequency module. This module has the 4 resistors R1..R4 that set the crossover
frequency. Use the four 1%, MF resistors (value depends on cross-over frequency chosen; typically
100K), in the separate plastic bag. Place them on the 8-pin DIP header, solder and trim leads. Insert
the module into the 8-pin DIP socket at position marked R1 R2 R3 R4.
    Step 70 Install IC1. Insert an 8-pin OPA2134 Dual Bi-Fet Op Amp integrated circuits into the
socket at position IC1. Be sure to insert with the pin 1 marking as indicated. The pin 1 side of the
IC is indicated with a dot near pin 1, a notch in the package near pin one or a band marking at that
side, or a combination of those. Make sure all 8 leads are properly inserted into the DIP socket.
    Step 71 Install IC2, OPA2134 Dual Bi-Fet OP Amp.
    Step 72 ___ Install IC3, OPA2134 Dual Bi-Fet OP Amp.
    Step 73 __ Install IC4, OPA2134 Dual Bi-Fet OP Amp.
    Step 74 __ Double check orientation of IC1,IC2,IC3,IC4,C5,C6. Operation of the circuit with these
components in the wrong orientation will result in destruction of the component.
```

This completes the assembly of the XM9 crossover network. Remaining in the kit is the female connector housing that for power connector P2 and the terminal pins that are used with this housing. The connector is assembled by soldering the terminal pins to the connection wires and then inserting each pin into the housing. The
connector pin number is indicated on the connector housing with a mark at pin 1. The circuit board silk screen for P2 shows a '-' sign at pin 1 and a '+' sign at pin 3. The remaining 3-pin female connector can be used when operating the XM9 in the common subwoofer mode.

MODIFICATIONS FOR BALANCED INPUT.

The XM9 can be operated with a balanced (differential) input. This is normally used with the XLR connectors. The circuit board needs to be modified by cutting the trace at point F (near the input
terminal block). The differential inputs are the terminals marked + and - at the 3-position terminal block marked INPUT. The ground is the third terminal (marked G)

MODIFICATIONS FOR FIRST, SECOND AND THIRD ORDER OPERATION

With some changes in component values the XM9 can be used as a first, second or third order filter. The changes are shown in table 5. In these modes the trimmer resistor R9 is unused and the vaiable damping is not functional any more. Some of the polypropylene filter capacitors are replaced with jumper wires. A jumper wire has to be installed and a trace has to be cut. The
locations for the jumpers and cuts are marked on the solder side of the circuit board. The cut has to be made at point A, near R5. Use insulated hookup wire to make a connection between point E (near R5) and point B,C or D (near C3, C2, C1). See table below. For the second and third order filter a standard Butterwoth slope was chosen; for most applications this will be a good choice.

Table					
1 lors					
\|	Changes for lower order filter applications.				
\| Component	Fourth order	First order	Second order	Third order	
\|	Constant V.		Butterworth	Butterworth	
R6	24.9K, 1\% MF	deleted	deleted	deleted	
R7	17.4K, 1\% MF	deleted	49.9K, 1\% MF	24.9K, 1\%MF	
R8	49.9K, 1\% MF	deleted	deleted	deleted	
R10	24.9K, 1\% MF	24.9K, 1\%MF	17.4K, 1\%MF	24.9K, 1\%MF	
R11	24.9K, 1\% MF	deleted	deleted	49.9K, 1\%MF	
R18	17.4K, 1\% MF	49.9K, 1\%MF	49.9K, 1\%MF	49.9K, 1\%MF	
R19	8.66K, 1\% MF	12.4K, 1\%MF	10.2K, 1\%MF	12.4K, 1\%MF	
\\| R26	5.23K, 1\% MF	24.9K, 1\%MF	16.5K, 1\%MF	12.4K, 1\%MF	
\| C2	3300 pF	Jumper wire	3300 pF	3300 pF	
\| C3	3300 pF	Jumper wire	Jumper wire	3300 pF	
\| C4	3300 pF	Jumper wire	Jumper wire	Jumper wire	
\| Jumper		D to E	C to E	B to E	
\| Cut		at E	at E	at E	

MODIFICATIONS FOR FOR HIGH INPUT IMPEDANCE

The standard imput impedance of the XM9 is 25 Kohm. A higher impedance can be achieved by replacing some resistors according to Table 6 below. The penalty for increasing the impedance is a decrease in signal to noise ratio. The added noise depends on the
op-amps used. For 100K impedance and OPA2134GP op-amps the noise will increase by about 2 dB .

I Table 6.			
Changes for high imput impedance.			
\| Component	Standard Value		
\|	25K impedance	100K impedance	
\\| R6	24.9K, 1\% MF	100K, 1\% MF	
\| R7	17.4K, 1\% MF	69.8K, 1\% MF	
\| R8	49.9K, 1\% MF	205K, 1\% MF	
\| R17	49.9K, 1\% MF	205K, 1\% MF	
\| R18	17.4K, 1\% MF	69.8K, 1\%MF	
\| R24	24.9K, 1\% MF	$100 \mathrm{~K}, 1 \% \mathrm{MF}$	
\| R25	24.9K, 1\% MF	100K, 1\%MF	
\| R26	5.23K, 1\% MF	20.5K, 1\%MF	

MODIFICATIONS FOR FOR BAFFLE STEP COMPENSATION

The baffle step effect causes a driver mounted in a cabinet to radiate more to the front of the speaker at higher frequencies. This results in a increase in frequency response at the higher frequencies. For a cabinet with a baffle size of 12 " the effect starts at a frequency of about 400 Hz . The total increase of intensity is 4-

6 dB at the higher frequencies. A baffle step compensation circuit can be installed on the XM9 circuit board. This circuit has the effect of reducing the high frequency response. The circuit can be installed on the high-pass output or on the low-pass output.

The table shows the values for Rb and Cb for 1000 Hz ($4.8^{\prime \prime}$ baffle). For a wider baffle the frequency is less. The frequency is given by $\mathrm{Fc}=4800 / \mathrm{Wb}$, where Wb is the width of the baffle. For frequency other than 1000 Hz the value of Cb is chosen as $\mathrm{Cb}=1000^{*} \mathrm{Cbt} / \mathrm{Fc}$, with Fc in Hz , Cbt is the Cb shown in the table.

In other words, choose $\mathrm{Cb}=\mathrm{Cbt}$ * $\mathrm{Wb} / 4.8$. Use nearest standard value available.
Usually a 4 dB correction is best.

Fig 10. Typical uses of XM9 crossover network.

Fig 11. Top view of crossover network.

Fig 12. Potentiometer cable assembly for level and damping control.

Marchand Electronics

Fig 13. Typical installation in cabinet.

