A FOURTH-ORDER STATE VARIABLE FILTER FOR
LINKWITZ-RILEY ACTIVE CROSSOVER DESIGNS

DENNIS A. BOHN

RANE CORPORATION
Mountlake Terrace, Washington

ABSTRACT

A new fourth-order state variable active filter is presented with
complete design equations. Sensitivity analysis is included for
the effects of component tolerances. An application design
example is given for a Linkwitz-Riley crossover network. Where
multiple crossover points are required, it is shown that the state
variable approach affords the most economical solution,
offering simultaneous adjustment of both the high and low
pass filters with minimum parts count.

INTRODUCTION

While much work has been done and published on 2nd-order state variable active fitters, little, if any,
has reached print on how to directly implement a 4th-order state variable filter. The most common
approach would be to cascade two 2nd-order circuits together. This obviously works, but if the
requirement exists for simultaneous 4th-order high pass and low pass outputs, then at least three 2nd-
order sections are required, and if the comer frequencies must be easily adjustable, then the circuit
becomes unnecessarily complex. 3

The following development yields a true 4th-order state variable active filter with simnultaneous high
pass and low pass outputs that is easily made adjustable. Equations are developed and a Linkwitz-
Riley (1) crossover design is Implemented as an application example.

GENERAL EQUATION s
The topology is a straightforward extenfion of the normal 2nd-order design (2). obtained by adding two
more integrators and feedback paths, and appears as Figure 1.

Wﬁrking the La Place domain, the transfer function, I(s). of each integrator is designated as
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Two equations can be immediately written for the summing junction cuments at the positive and
negative inputs of Z1. After manipulating and substitution of the identical integrator transfer functions
into these equations, they can be combined and solved to produce one general transfer equation
relating V), fo V; as follows: ’
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The general equation for a 2nd-order transfer function is
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where Q= -‘1;-

A 4th-order transfer function can always be reduced to the product of two 2nd-order functions;
therefore, a general 4th-order equation can be written by squaring (4) (and allowing for different a
terms) as follows:
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Equation (5) for two identical 2nd-order terms becomes
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Equating the coefficients of the denominator of equation (2) with either equations(5) or () produces
the following equalities

R2=R7 @
R4=R6 ®
and

Since equation (2) is a low pass filter, the gain expression, Ho . can be found by letting $=0 and
simplifying to

RA(2R3R5+R2R3 +R2R5)
Ho= R3RE(RAT2RT) (10)

The quality factor, Q. of the overall 4th-order expression is a function of the & of each of the 2nd-order
transfer functions and is found by equating coefficients with equation (5). It is
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For two identical 2nd-order terms, the coefficients of equation(6) are used, and equation(11) reduces
to

- 2R3RS(RA+2R1)
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(12)

At this point, it is necessary to know the desired 4th-order expression in order to proceed further. Once
known, the exact expressions for each resistor value can be solved by equating coefficients. As an
example of this procedure and to show a realworld application for Figure 1. the remainder of this
paper will deal with implementing a Linkwitz-Riley active crossover.

LINKWITZ-RILEY CROSSOVER

A Linkwitz-Riley crossover design consists of two identical Butterworth 2nd-order functions in cascade.
By lefting  wy =1, the normalized expression for each can be written as

2.7 s (13)
And the resuifant 4th-oraer response becomes
Fi2v2 $Sas?i2v7 s (14)
Adding that it is desired for HO=1, and equating coefficients, yields the following relationships:
R1=2V2 R4=2¥2 R6 (15)
R2=(4yZ -5)R3=4R5=R7 (16)

It is also useful to note that for the given conditions
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There is no unique solution for a problem with this many variables so at least one value may be
arbitrarily chosen. Probably the most useful is to let

R1=R2 18)
Resistor, R1, is selected for the desired input impedance, and all other values are calculated from it.
Figure 2 shows the circuit with each relationship indicated.

SENSITIVITIES

Using equations(10) and(12) and the Linkwitz-Riley resistor relationships, the sensitivitiesof Ho and Qto
variations from ideal resistor values can be calculated. The results become a useful guideline for
predicting non-ideal behavior. The numbers given have been rounded off to the nearest whole ratio
for convenience.

From equation (10). the sensitivities for the gain term, Hcr are
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And from equation (11), the sensitivities for the quality factor. Q. are
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From equation(19421). it is seen that gain variations will be most susceptible to erors in R1, R4 and RS
and least affected by resistor, R3. While, equation (22)424) show @ anomalities will be due mainly to
resistors, R2, RS, and R7.



ADJUSTABLE CORNER FREQUENCIES

Making the low pass and high pass comer flequencies adjustable can be done in several ways. The
simplest method is to make all of the integrator resistors variable. This can be done with asingle4-gang
potentiometer. While producing a minimum parts count circuit, there are several things that must be
carefully considered before committing the final design to a single potentiometer approach.

The first is cost, A quality, precision 4-gang potentiometer can be expensive. Since most applications
for potentiometers require only single or double sections, there is no large volume use of 4-ganged
units, which would help make availability better and cost lower.

The second area of concem is the absolute value of each section relative to each other. Most
potentiometers (even good ones) have a 10-20% tolerance on absolute value, so the difference
between each section can be as much as40%. This may necessitate a separate trim resistor for each
integrator.

The last potential triouble area with 4-ganged units is tracking. Tracking is the relative difference
between each section for any given angle of rotation. Tracking specifications from section to section
must be reasonably tight or amplitude errors will show up in the passband.

Another approach to the problem of corner frequency adjustability is o use fixed resistors selected by
FET switches. Such an arrangement appears as Figure 3. In Figure 3A, a 2-bit (as in digital, not price!)
binary switch is used fo control one-half of a CMOS 4052 dual 4-channel analog multiplexer, to select
one of four integrator resistors.

In Figure 3B, the concept is expanded to eight input resistors by using a 3-bit binary switch and a CMOS
4051 8-channel analog multiplexar.

The technique can be increased to 16 resistors by employing (2) 4051°s, an inverter controlling their
inhibit ports, and a 4-bit binary switch, as outlined in Figure 3C.

Severalimmediate advantages can be seen with the multiplexer approach. First is the accuracy and
matching of the four integrator resistors. By making the resistor values large compared to the “on”
resistance of the CMOS switches, the error introduced by Rgs (on) can be effectively eliminated. The
matching, using 1% resistors, is normally more than adequate, although the option remains of using
even tighter tolerance should the application require it.

Another benefit is the repeatability of settings. The binary switch does not have the ambiguity of trying
to position the potentiometer to the same place each time. But there is a disadvantage also. With the
switch approach, only those frequencies are possible; where, with the potentiometer, the user has
continuous choice of any frequency between its two extremes. Only the exact application can decide
this one.

The parts cost frade-off of the binary switch approach is surprising. It is actually lower than the 4-gang
potentiometer; but, here again there is a compromise. The parts count goes up drastically, so the
overall out-the-door cost may be higher. For a typical crossover design requiring 8 positions the parts
difference just for the switching option is about 40 to 1!

Along with the incease in the number of required parts, goes a decrease in overall reliability. The old

saying is still very true and must be evaluated carefully before committing to afinal design--"Two parts
are less reliable than one”.
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SUMMARY

A new topology has been presented for a 4th-order state-variable active filter with simultaneous high
pass gnd low pass pufpufs The general transfer function has been developed and reduced. Aspecific
application for a Linkwitz-Riley crossover design has been shown along with exact design equations.
And otgéscussion of the designs and tradeoffs of making the cormer frequencies variable was
presented.

It has k_)een shown that with the new4th-order state variable filter and equations presented, more cost-
effective dth-order low pass and high pass designs can be realized. It is no longer necessary to
cascade two 2nd-order state variable filters to obtain the high pass output and then add a third 2nd-
order circuit to get the low pass.

An example of a Linkwitz-Riley active crossover has been giventoshow the ease of use of the single 4th-
order approach. A discussion of the many trade-offs involved in making the corner frequencies
variable has been included for reference and further study. The single 4-gang potentiometer design
offers @ minimum parts-count solution with higher parts cost along with potential tracking and
repeatability errors, while the analog switch approach gives the best accuracy and repeatability with
the price of increased circuit complexity.
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Figure 3C. 16 Frequencies Using CMOS Switches



