THAT 1510, 1512

FEATURES

- Low Noise
 1 nV/Hz input noise (60dB gain)
 34 nV/Hz input noise (0dB gain) (1512)
- Low THD+N (full audio bandwidth)
 0.001% ≤ 40 dB gain
 0.005% @ 60 dB gain
- · Low Current · 6mA typ.
- Wide Bandwidth 7MHz @ G=100
- High Slew Rate 19 V/μs
- Wide Output Swing: ±13.3V on ±15V supplies
- Gain adjustable from 0 to >60 dB with one external resistor
- · Industry Standard Pinouts

APPLICATIONS

- · Differential Low Noise Preamplifiers
- · Differential Summing Amplifiers
- · Differential Variable Gain Amplifiers
- · Microphone Preamplifiers
- Moving-Coil Transducer Amplifiers
- Line Input Stages
- Audio
- Sonar
- Instrumentation

Description

The THAT 1510 and 1512 are high performance audio preamplifiers suitable for microphone preamp and bus summing applications. The ICs are available in a variety of packages and pin configurations, making them pin compatible with the Analog Devices SSM2019 and SSM2017 (discontinued), and the Texas Instruments INA217 and INA163

Gain for both parts is adjustable via one external resistor, making it possible to control gain over a wide range with a single-gang potentiometer. The 1510 gain equation is identical to that of the SSM 2019, reaching 6 dB gain with a 10 k Ω resistor. The 1512 reaches 0 dB gain with a 10 k Ω resistor. Because the 1512 exhibits

significantly lower noise at lower gain settings, it is recommended over the 1510 for new designs

Designed from the ground up in THAT's complementary dielectric isolation process and including laser-trimmed Si-Chrome thin film resistors, the THAT 1510 and 1512 improve on existing integrated microphone preamps by offering lower noise at low gains, wider bandwidth, higher slew rate, lower distortion, and lower supply current The parts feature internal ESD overload protection on all critical pins

In short, the THAT 1510 and 1512 provide superior performance in a popular format at an affordable price

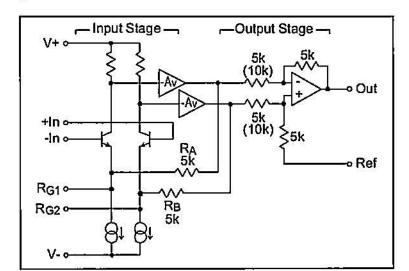


Figure 1 THAT 1510 / 1512 Equivalent Circuit Diagram (THAT 1512 values shown in parentheses)

Pin Name	DIP8 Pkg	SO8 Pkg	SO16 Pkg	SO14 Pkg		
RG1	1	1	2	3		
-ไก	2	2	4	4		
+ln	3	3	5	5		
V-	4	4	7	6		
Ref	5	5	10	10		
Out	6	6	11	9		
V+	7	7	13	11		
RG2	8	8	15	12		

Table 1 Pin Assignments

Part Type	DIP8 Pkg	SO8 Pkg	SO16 Pkg_	SO14 Pkg		
1510	1510P08 U	1510S08 U	1510W16-U	1510S14-U		
1512	1512P08-U	1512S08 U	Inquire	1512S14-U		

Table 2 Ordering Information

SPECIFICATIONS1

	Absolute Maxin		
Positive Supply Voltage (Vcc)	+20 V	Lead Temp (TLEAD) (Soldering 10 sec)	260 °C
Negative Supply Voltage (VEE)	-20 V	Operating Temperature Range (Top)	-40 to +85°C
Input Voltage (Versex)	Vcc + 0 5V, VEE - 0 5V	Storage Temperature Range (Tsr)	-40 to +125°C
Output Short-Circuit Duration (tsu)	Continuous	Junction Temperature (T ₄)	150°C

	Recommen					
Parameter	Symbol	Conditions	Min	Тур	Max	Units
Positive Supply Voltage	Vcc	Va. america	+5	0.00	+20	v
Negative Supply Voltage	VEE		-5		-20	٧

	Ele	ectrical Charac	teris	tic <u>s</u>	2				
Parameler	Symbol	Conditions	Min	1510 Typ	Max	Min	1512 Typ	Max	Unit
Supply Current	Icc, -lee	No signal $V_{CC} = -V_{EE} = 20V$		60	79 80	_	6 0	79 80	m/
Input Blas Current	l _e	No signal, Either Input connected to GND	 a	48	14	-	48	14	μ/
Input Offset Current	I _{B-OFF}	No signal	-1 4	-	+1 4	-14	_	+14	μ/
Offset Voltage Output Stage Output Offset Input Stage Input Offset Total Output Offset	Vas _{oo} Vas,	No Signal, V _{cu} =0 G=voltage gaın	-5 -250 -5-0 250	_ - 5 5	+5 +250 +0 25G	-5 -250 -5-0 250	=	+5 +250 5+0 25G	m/ h/ m/
Input Voltage Range Common Mode	Vincu	Common mode, all gains	-	± 13		_	± 13	-	h
Differential Mode	Non-merr	Unbalanced One input to GND, 0dB	-13 gain	-	+13	-13	-	+13	•
Differential Gain	Gart		0	1 1	70	-6	*-0	64	ď
Ref Input Voltage Range				±8	-	-	±8	\$ 5-0 1	19
Ref Input Impedance				10		_	15	-	kŞ
Ref Input Gain to Output			<u></u> n	0	_	1 <u></u>	0	_	di
Input Impedance	Z _{ilk} OIFF	Differential OdB gain 20dB gain 40dB gain 60dB gain Common mode all gains	Ξ	32 1 9 32 2 0 32 2 5 32 8 0	_	-	37 1 9 37 2 0 36 3 1 31 13) — ! — 9 —	MΩ p MΩ p MΩ p MΩ p

¹ All specifications are subject to change without notice
2 Unless otherwise noted, T_x=25°C V_x=+15V V_x= 15V
3 Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Those are stress ratings only the functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

	Electrical Characteristics (con't)2								_
Parameter	Symbol	Conditions	Min	1510 Typ	Max	Min	1512 Typ	Max	Unil
Common Mode Rejection	CMR	V _{CM} =± 10V, DC to 60 Hz		-41	75				10000
š.		0 dB gain	45	60		45	60	_	d
		20 dB gain	65	80	1	65	80	-	d
		40 dB gain	85	100		85	100	-	d
	<u></u>	60 dB gain	105	120	=	105	120	-	d
Power Supply Rejection	PSR Vcc	-VEE, ±5V to ±20V, DC to 6	0 Hz	192				233	
		0 dB gain	-	85	on s in	-	60	-	d
		20 dB gain	-	105		_	105	-	Ó
		40 dB gain		120	-	_	120		C
	-17-2	60 dB gain	13 40-	124		-	124	_	C
Total Harmonic Distortion	THD+N	$V_{out} = 7Vrms$, $R_k = 5 k\Omega$							
		f = 1kHz, BW = 20 kHz							
		0 dB gain	99	0 0005	200 20	45.00	0 001	14 .	-
		20 dB gain	:: 	0 0012	-07	-	0 004	3	
		40 dB gain	8	0 0016		-	0 005	-	30
		60 dB gain	Estate :	0 005	-8	-	0 008	_	
Equivalent Input Noise	e _{ncoun}	f = 1kHz,							
		0 dB gain	S	57	()	_	34	-	nV/VH
		20 dB gain	_	7		_	46	-	nV/√ŀ
		40 dB gain	2.	17	(c ales);	-	14	-	nV/√⊦
		60 dB gain	-	1	0-	-	1		nV/√⊦
Input Current Noise	l _n	60 dB gain	5 <u></u>	20	W	=	20	-	pA∕√ŀ
Noise Figure	NF	60 dB gain						0	
riolog rigulo	ASSET TO SERVICE TO SE	R _s = 150 Ω	-	16			16	_	d
		$R_s = 200 \Omega$		13	55	_	13	_	d
Slew Rate	SD.	D - 010			18				
Siew Rate	SR	$R_t = 2 k\Omega$ $C_t = 50 pF$	13	19		13	19		V/s
AND	h-restation			10	360	10	13	1 70 - 5 1	- VI
Bandwidth -3dB	BW _{-3c8}	$R_t = 2 k\Omega$, $C_t = 10 pF$							
		0 dB gain	-	15	-	-	11	_	MF
		20 dB galn		8	-	-	9	-	MH
		40 dB gain	0 0	7	10		7	-	MH
509		60 dB gain		3	-		16		MH
Output Gain Error	GER (OUT)	$f = 1kHz$, $R_k = 2 k\Omega$							
	50005500	Ro =Infinite, G=0 dB	-05	_	+05	<u></u>	-	-	d
		$R_G = 1.1 k\Omega$, $G=20 dB$	-05	_	+05		-	-	d
		$R_G = 101 \Omega$, G=40 dB	-05	_	+05	-	\rightarrow	-	c
		$R_0 = 10 \Omega$, G=60 dB	-05	_	+05	_	_	-	c
		$R_0 = 10 \text{ k}\Omega$, G=0 dB	-	—	-	-0 5	-	+0 5	d
		$R_G = 526 \ 3 \ \Omega, G=20 \ dB$		_	_	-0 5	_	+05	d
		$R_0 = 50.3 \Omega$, G=40 dB	_	-	_	-0 5	6 	+05	d
W:		$R_0 = 5 \Omega$, G=60 dB	-	_	_	-05	-	+0 5	c
Output Voltage Swing	Vo	R ₁ = 2 kΩ						143	535376575566
		ali gains	±13	±13 3	1 -	±13	±13 3	/ 1 1	YVXVANEARA
Output Short Circuit Current	Isc	R _L = 0 Ω	-	± 17			± 17	-	m
Minimum Resistive Load	R _{tmn}		2	220	9 <u>—19</u>	2	<u> </u>	<u>15—17</u> 7	k
Maximum Capacitive Load	C _{Lmex}		-	 0	300	 0	-	300	F
Gain Equation			A_{1}	=1+	$\frac{10 k\Omega}{R_G}$	A	= 0 5	$+\frac{5 k\Omega}{R_0}$	E

Applications

Gain Setting

A single external resistor ($R_{\rm G}$) between the $R_{\rm G1}$ and $R_{\rm G2}$ pins is all that is needed to set the gain of the THAT 1510/1512, according to the formulae

for the 1510
$$A_V = 1 + \frac{10k\Omega}{R_G}$$
 or for the 1512 $A_V = 0.5 + \frac{5k\Omega}{R_G}$ where

Av is the voltage gain of the part

Either part may reach unity gain, but the value of R_G required varies significantly between the two parts. For the 1510, gain is 0dB when R_G is infinite (open), this is the minimum gain for the 1510 At infinite R_G , the 1512 reaches -6dB gain, this is the minimum gain for the 1512 With R_G =10k Ω , the 1512 reaches 0dB gain

Overall gain accuracy depends on the tolerance of R_{o} and the accuracy of the internal thin-film resistors connected to pins R_{o_1} and R_{o_2} in the 1510/1512 (R_{A} & R_{B} in Figure 1) These internal resistors have a typical initial accuracy (at room temperature) of $\pm 0.5\%$, and are typically stable with temperature to within ± 100 ppm/°C. Gain will drift with temperature based on the mismatch between the temperature coefficient of the external R_{o} and that of the internal resistors R_{A} & R_{B} .

For variable-gain applications where gain accuracy is important, THAT recommends using discrete, switched resistors for R_α Where continuous control is required, or where gain accuracy is less

critical, a potentiometer may be used. In such applications, designers should take care in specifying the element construction to avoid excess noise. The potentiometer taper will set the circuit's characteristic of gain vs pot rotation. Typically, reverse log (reverse audio) taper elements offer the desired behavior in which gain increases with clockwise rotation (and lower values for R_G). See THAT Design Note 138 for a discussion of potentiometer taper and gain for the 1510 and 1512 compared to similar parts from other manufacturers.

Noise Performance

Both parts exhibit excellent voltage noise performance of ~1 nV/Hz at high gains With ~2 pA/Hz current noise, they are optimized for relatively low source impedance applications, such as dynamic microphones with typically a few hundred ohm output impedances But, because they have different internal gain structures, the 1510 has higher equivalent input noise at 0dB gain (~57 nV/Hz) than the 1512, which runs 4 5 dB lower at ~34 nV//Hz The unusual and superior topology of the THAT 1512 makes its noise performance comparable to some of the better discrete designs currently available

Inputs

Simple Configurations

As shown in Figure 2, the 1510/1512 includes protection diodes at all pins except V+ and V-

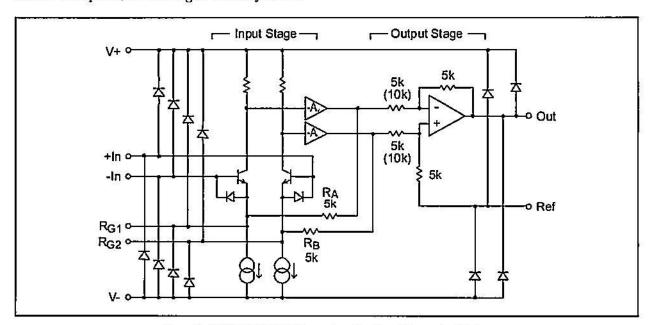


Figure 2 THAT 1510 / 1512 Equivalent Circuit with Protection Diodes

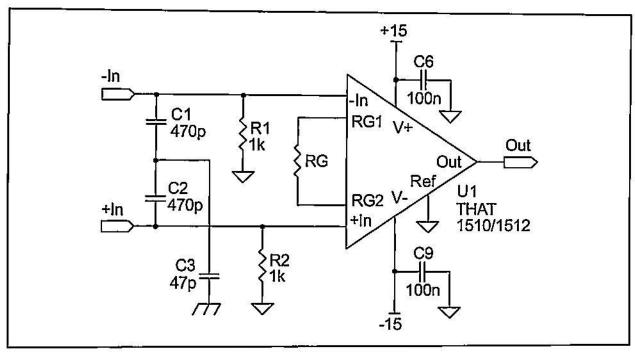


Figure 3 Basic 1510 / 1512 Circult

These diodes reduce the likelihood that accidental electrostatic discharge (ESD) or electrical over stress (EOS) will damage the ICs. Other diodes across the base-emitter junctions of the input transistors prevent excessive reverse biasing of these junctions (which would degrade the noise performance of the input devices)

Other than the protection diodes, the 1510/1512 input pins are connected only to the bases of their respective input devices. For proper operation, the bases must be provided a source of de bias that will maintain the inputs within the IC's input common-mode range. Figure 3 shows the simplest approach, de bias is supplied via R_1 and R_2 . At 1 k Ω each, they will minimize pickup of unwanted noise and interference, as well as generate relatively little noise due to input current noise in the 1510/1512. However, at high gains, their inherent voltage noise, plus the 1510/1512's input current noise drawn across these resistors, adds significantly to the noise at the 1510/1512's output.

Because Ro is de coupled in the circuit of Figure 3, the de level at the output of the 1510/1512 will vary with gain In most applications, the output should be ac-coupled to the next stage. For applications where Ro is variable (via a pot or switched

resistors) to allow gain adjustment. R_a should be ac-coupled as shown in Figure 4. By adding C_a in series with R_a, de gain is fixed (at unity for the 1510, and ½ for the 1512). This constrains the output de offset to just over +/-5 mV, and prevents it from varying with gain. With this low offset, ac coupling of the output is usually unnecessary

 C_0 must be large enough not to interfere with low-frequency response at the smallest values of R_0 . For 60 dB gain, R_0 =10 Ω (1510) or R_0 =5 Ω (1512) For a -3 dB point of approximately 5 Hz. C_0 =3,300 μF (1510), or C_0 =6,800 μF (1512). For other maximum gains or minimum frequencies, scale C_0 accordingly

Phantom Power

Phantom power is required for many condenser microphones. THAT recommends the circuit of Figure 5 when phantom power is included 4 R₅, R₄, and D₁ - D₆ are used to limit the current that flows through the 1510/1512 inputs when the circuit inputs (-in and +in) are shorted to ground while phantom power is turned on. This causes C₄ and/or C₅ to discharge through other circuit components, often generating transient currents of several amps R₅ and R₄ should be at least 10 Ω to limit destructive

Since publishing revision 4, we determined that the internal reverse-bias diodes between the pins *IntR₂₁ and -IntR₂₁ may be damaged by phantom power faults under contain conditions. Small-signal diodes (D₈ and D₉) avoid this problem by appearing in parallel with the internal diodes, diverting excess current around the 1510/1512

⁴ In revisions 0 and 1 of this data sheet, we recommended using Schottky diodes (1N5819 types) at D. - D, to protect the 1510/1512 inputs against overloads. Subsequently we discovered that the leakage of these diodes could cause problems with DC fluctuations (hence noise) at the 1510/1512 output. Upon further investigation we concluded that conventional rectifier diodes like the 1N4004 (the glass-passivated GP version) provide adequate protection and die not introduce unacceptable leakage Additionally 1N4004 diodes are much cheaper and more readily evaluable than the Schottky types

currents (Higher values further limit current flow. but introduce additional source impedance and noise.) D_1 through D_4 prevent the IC's inputs from significantly exceeding the supply rails D_5 and D_6 steer currents around the input stage in the 1510/1512, preventing damage

The series combination of C_4 and C_5 should be made large to minimize high-pass filtering of the signal based upon the sum of the values of R_1+R_2 As well, keeping their reactance low relative to the external microphone's source impedance will avoid increasing the effects of low-frequency current noise in the 1510/1512 input stage

Other manufacturers have recommended, and many pro audio products include, a zener diode arrangement connected to the bridge rectifier instead of the connection to V+ and V- as shown in Figure 5. THAT does not recommend this approach, because we find that R_1 and R_4 must be made much larger (e.g., $\geq 51~\Omega$) in order to limit peak currents enough to protect reasonably sized zener diodes (eg. 1/2 W). Such large series input resistors will limit the noise performance of the preamp. The ultimate floor is set by the impedance of the microphone, but any additional series resistance further degrades performance

For further insights into this subject, see the Audio Engineering Society preprints "The 48 Volt Phantom Menace," by Gary K Hebert and Frank W

Thomas, presented at the 110th AES Convention and "The 48 Volt Phantom Menace Returns", by Rosal-fonso Bortoni and Wayne Kirkwood presented at the 127th AES Convention

Impedance and Line Input Configurations

A higher common-mode input impedance is desirable (compared with that of Figures 3 and 4) when input coupling capacitors (C4 and C5) are used to block phantom power At low frequencies where the reactance of C4 and C5 become significant (compared to the common-mode input impedances). the two capacitors interact with the common-mode input impedance (seen looking to the right-side of both capacitors) to form voltage dividers for common-mode signals. Differences in the two capacitors' values leads to different voltage dividers, spoiling the low-frequency common-mode rejection of the stage Since C. and C. are generally large, electrolytic types, precise matching is difficult and expensive to achieve High common-mode input impedance reduces the matching requirement by decreasing the frequency at which the capacitive reactance becomes significant inversely with the common-mode input impedance

The "T-bias" circuit $(R_1, R_2, and R_7)$ shown in Figure 5 accommodates this objective. In this circuit, R_1 and R_2 are connected to a third resistor R_7 , boosting the low-frequency common mode input

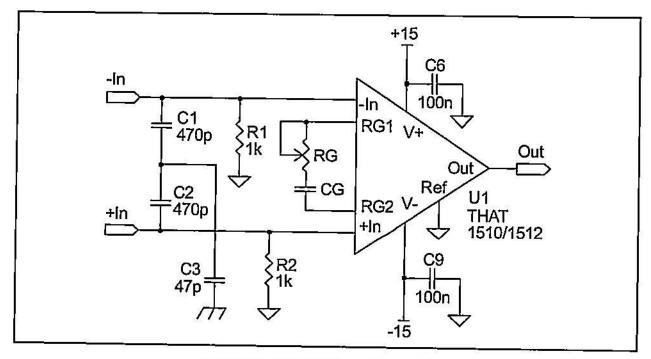


Figure 4 Basic 1510 / 1512 Circuit with Variable Gain

impedance (as "seen looking in" from the coupling capacitors) to the value of $R_1+(2^{\bullet}R_2)$ —approximately 45 k Ω with the values shown. The increased common mode impedance from T-bias improves LF common mode rejection by reducing capacitor matching requirements by more than a factor of ten over the simpler circuit wherein R_7 =0 Ω . The circuit works well with the values shown

Note also that the overall common-mode input impedance of the circuit is dominated by the phantom-power resistors (R_s and R_θ) For the circuit of Figure 5, this is approximately 5 9 k Ω per leg.

The 1510/1512 can be used as a line input receiver by adding attenuation to the preamplifier inputs and changing the circuit topology to allow switching of input, fixed attenuation, and gain adjustment. The optimum circuit depends on the specific requirements of the application. For more details and specific applications advice, please consult THAT's application notes, or our applications engineers at the address and telephone below or via email at apps_support@thatcorp.com

Reference Terminal

The "Ref" pin provides a reference for the output signal, and is normally connected to analog ground if necessary, the "Ref" pin can be used for offset correction or DC level shifting However, in order to prevent spoiling the excellent common-mode rejection of the 1510/1512, the source impedance driving the "Ref" pin should be under 1Ω

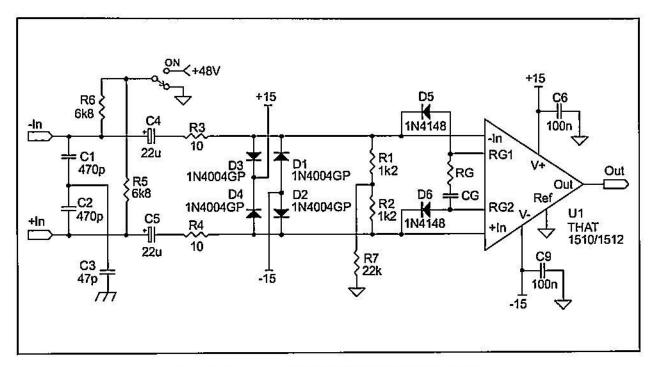


Figure 5 Recommended 1510 / 1512 Circuit with Phantom Power

Package Information

Both the THAT 1510 and 1512 are available in 8-pin SOIC, 8-pin DIP, and 14-pin SOIC packages The 1510 is also available in a 16-pin (widebody) SOIC package. Other version/package combinations will be considered based on customer demand. The package dimensions are shown in Figures 6, 7, 8, & 9, while pinouts are given in Table 1

All versions of the 1510 and 1512 are lead free and RoHS compliant. Material Declaration Data Sheets on the parts are available at our web site, www.thatcorp.com.or.upon.request.

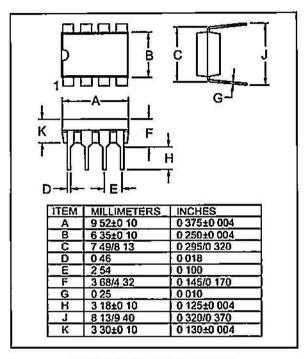


Figure 6 8-pin DIP package outline

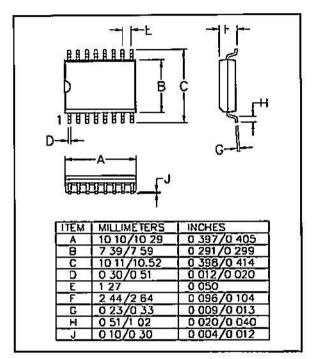


Figure 7 16-pin SO Wide package outline

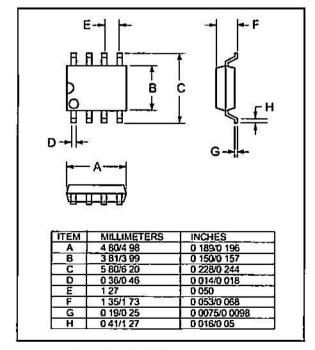


Figure 8 8-pin SOIC package outline

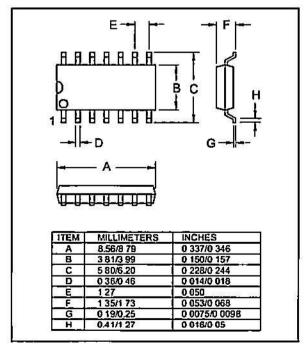


Figure 9 14-pin SOIC package outline