

Kattegat 8 9723 JP Groningen, The Netherlands +31 50 526 4993 sales@hypex.nl www.hypex.nl

SMPS180

Universa! Mains Input Audio SMPS

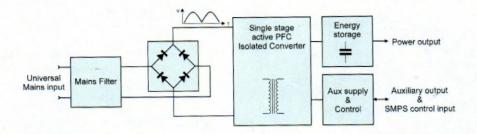
Highlights

- High efficiency
- Universal mains input voltage
- Near unity Power Factor
- Low EMI

Features

- Advanced over current protection
- Remote controlled operation
- Low weight: 400 gr.
- Compact: 135 x 83 x 49mm
- Adjustable output voltage

Applications


- Supply for single or multiple amplifiers of the UcD™ range
- Active loudspeakers

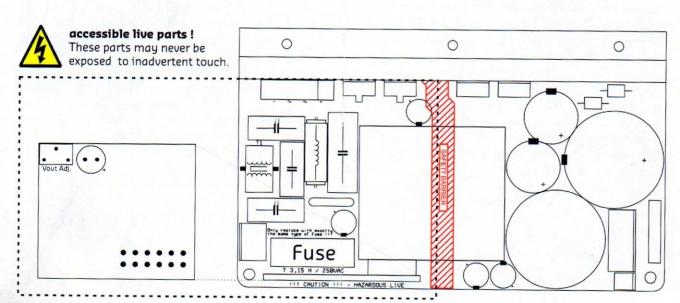
Description

The SMPS180 is a high efficiency Safety Class 2 switch mode power supply specifically designed for use with our range of UcD™ amplifier modules. Key features are high efficiency over the entire load range, universal input voltage range (85 – 264V, 50 - 60Hz), near unity Power Factor, low weight and very low radiated and conducted EMI. The SMPS180 also features an advanced overcurrent protection which in case of temporary overload simply reduces the output voltage, only when the overload condition remains for a longer time the supply will enter hiccup mode until the overload condition disappears. This feature in combination with the advanced feedback topology and large secondary bulk storage output caps leads to the capability of delivering high dynamic headroom power to the connected amplifier. The SMPS180 also includes an auxiliary isolated ±12V supply and a control circuit directly interfacing with our range of (OEM and standard) UcD™ amplifier modules. The supply is triggered for normal operation or latched off in case of critical fault via in built-in actuators. The SMPS180 is optimized from the first phase of design to final implementation to realize the low EMI signature required of the most demanding audio applications.

Principle of operation

Conventional Switch Mode Power Supplies so commonly unsuitable for audio purposes typically realize active Power Factor Correction and regulation with multiple stages while the bulk of stored energy is placed at the input, far from the load.

The Hypex SMPS180 achieves the above useful features in a single optimized power conversion stage, however more in line with non-switching unregulated supplies so popular in audio, in order to best satisfy sudden demanding load transients, converted energy is fully stored on the galvanically isolated secondary side bulk capacitors, closest to the load itself.


Safety precautions

The SMPS180 operates at mains voltage and carries hazardous voltages at accesible parts. These parts may never be exposed to inadvertent touch. Observe extreme care during installation and never touch any part of the unit while it is connected to the mains. Disconnect the unit from the mains and allow all capacitors to discharge for 5 minutes before handling it.

This product has no servicable parts other than the on-board fuse. Replace the fuse only with the same type and rating (T3,15H).

This is a Safety Class 2 device. It is very important to maintain a 10mm clearance with all possible conducting parts (housing etc.) and cables. All parts enclosed by the dotted line below carry hazardous voltages. This includes parts on the top and the bottom of the board as well as parts on the vertical board.

Absolute maximum ratings

Correct operation at these limits is not guaranteed. Operation beyond these limits may

result in irreversible damage

Item	Symbol	Rating	Unit	Notes	
Input voltage	V _{LINE}	264	Vac		
Air Temperature	T _{AMB}	50	°C	Power output is reduced	
Heat-sink temperature	T _{SINK}	95	°C		

Recommended Operating Conditions

Item	Symbol	Min	Тур	Max	Unit	Notes
Operating Line Input Voltage	V _B	85		264	Vac	
Full Power Operating Input Voltage	V _{B,FP}	100	19	264	Vac	

General Performance data

Item	Symbol	Min	Тур	Max	Unit	Notes
Output Voltage	V _{out}	2 x 35		2 x 45	Vdc	See Note 4
Output Current	I _{OUT}	1	3.4		Α	See Note 3
Regulated Output Voltage Aux	V _{OUT,AUX,REG}		2 x 12		Vdc	
Unregulated Output Voltage Aux	V _{OUT,AUX,UNREG}	2 x 14		2 x 18	Vdc	See Note 5
Output Current Aux	I _{OUT,AUX}		250m		Α	per rail
Output Power	P _R	300	-		W	See Note 1
Audio Output Power @ 20Hz into amplifier load	P _{RALF}	180	-		W	See Note 2
Efficiency	η		TBD		%	full power
Idle Losses	Po		2		W	
Standby Power	P _{standby}		TBD		W	
Switching frequency	F _{sw}		100		kHz	
Line regulation			TBD			%
Load regulation		6	TBD			%

Note 1: Output Power delivered to a resistive dummy load (generally the only specification supplied by other SMPS manufacturers).

Note 2: An audio amplifier actually draws twice the RMS power from the power supply. At high frequencies the secondary storage output caps are capable to provide this power. At very low frequencies however the SMPS is responsible for delivering this peak power to the amplifier.

Note 3: Both rails loaded. Maximum current per rail is 6.7A (one rail loaded).

Note 4: Adjustable by means of a potentiometer.

Note 5: This output voltage is proportional to main outputs Vcc and Vee respectively.

Output Power Performance data

The SMPS180 is designed for music reproduction and is therefore not able to deliver its maximum output power long-term. The RMS value of any common music signal generally doesn't exceed 1/8th of the maximum peak power. The SMPS180 is therefore perfectly capable of driving the connected amplifier in clipping continuously with a music signal without the need of additional external cooling.

Unless otherwise specified. T_a = 25°C. Connected amplifier: UcD1800EMV2, f = 1kHz. SMPS180 is horizontally mounted in free air without additional external cooling. The SMPS180 was preheated at $1/8P_g$ (23W @ 1kHz into 4 0hm amplifier load).

Item	Symbol	Conditions	Min	Тур	Max	Unit	Notes
Amplifier output power for 10 sec. until T _{MOSFET} = 100°C	P _o	Load = 4Ω 100Vac/60Hz 230Vac/50Hz		180 180		w	20 sec.
Amplifier output power for 1 min. until T _{MOSFET} = 100°C	P _o	Load = 4Ω 100Vac /60Hz 230Vac/50Hz		90 100		w	
Amplifier output power for 5 min. until T _{MOSFET} = 100°C	P _o	Load = 4Ω 100Vac/60Hz 230Vac/50Hz		70 80		w	
Continuous output power. T _{MOSFET} stabilized at 100°C	Po	Load = 4Ω 100Vac/60Hz 230Vac/50Hz		50		W	

Unless otherwise specified. T_a = 25°C. Connected amplifier: UcD1800EMV2, f = 1kHz. SMPS180 is horizontally mounted in free air mounted to 400cm² aluminium additional external cooling. The SMPS180 was preheated at $1/8P_R$ (23W @ 1kHz into 4 Ohm amplifier load).

Item	Symbol	Conditions	Min	Тур	Max	Unit	Notes
Amplifier output power for 10 sec. until Tmosfet = 100°C	P _o	Load = 4Ω 100Vac/60Hz 230Vac/50Hz		180 180		w	15 sec. 30 sec.
Amplifier output power for 1 min. until T _{MOSFET} = 100°C	P。	Load = 4Ω 100Vac/60Hz 230Vac/50Hz		110 150		w	
Amplifier output power for 5 min. until T _{MOSFET} = 100°C	P _o	Load = 4Ω 100Vac/60Hz 230Vac/50Hz		100 120		w	
Continuous output power. T _{MOSFET} stabilized at 100°C	P _o	Load = 4Ω 100Vac/60Hz 230Vac/50Hz		90 100		w	