

EXPERIMENTING WITH A

UNTIL a couple of years ago, experimenting with sound-effects circuitry was difficult, requiring a large breadboard to accommodate oscillators of various descriptions, modulators, noise sources, mixers, envelope generators, etc. Now, thanks to Texas Instruments' SN76477 complex sound generator, an integrated circuit that sells nationally for about $\$ 3.00$, sonic experimentation is

SOUND. EFFECTS GENERATOR

far more convenient. What makes the 76477 unique is that it contains all the active circuitry needed to generate just about any sound imaginable. A few resistors and capacitors and a power supply are the only external components required.

Inside the IC Package. By considering its complex circuit as a series of function

With a minimum of extra components and a single Texas Instrument SN76477 IC, you can create a host of different sounds
"blocks," it is relatively easy to understand and follow the 76477's operation. In Fig. 1, the IC's function blocks are reduced to simplest form, with basic sound-generating blocks in gray shading and supplemental control blocks in color. Typical waveforms available at various points in the system and what the final output before amplification might look like are also shown.

A more complete picture of all the function blocks contained in the IC's 28 pin package is shown in Fig. 2. Fabricated from bipolar analog and $\mathrm{I}^{2} \mathrm{~L}$ digital blocks, this IC contains all the active circuitry needed for a user to create an almost unlimited range of sounds.
a nominal $0.1-\mathrm{to}-30-\mathrm{Hz}$ range, contingent on the values of resistance (R) and capacitance (C) connected from pins 20 and 21 , respectively, to ground. Two outputs are available from this oscillator: a 50% duty-cycle square wave that is applied to the mixer and a triangular wave that can be routed to an external voltage-controlled oscillator (vco) via pin 16 or through the SLF's select logic block to modulate the internal vco.

Modulation of the internal vco covers a $10: 1$ range, with the lowest frequency determined by the R and C values connected between pins 18 and 17 to ground. This vco's output goes to the mixer and envelope-select circuits.
signal is present or absent, the system inhibit logic controls the output of the envelope generator and modulator. This signal also toggles the one-shot multivibrator that is used to generate the shortduration pulses used to simulate the sounds of gunshots, bells, and explosions. Time duration of the multivibrator's output signal is determined by the R and C values connected from pins 24 and 23 to ground. Maximum usable period is approximately 10 seconds.
The output from the one-shot multivibrator is passed through the envelopeselect circuit that determines envelope shape and is used to modulate the envelope generator and modulator.

Desired sounds are all user defined. You simply switch into and out of the IC's circuit resistor and capacitor values and set a few logic states to "tailor" the audio parameter you require. Sounds of gunshots, explosions, sirens, musical instruments, "phaser" guns, etc., can be simulated. You can even create sounds you never heard before.

An audio amplifier is built into the IC, but you can route its output to a highquality audio amplifier to obtain a louder, richer sound.

Chip Operation. The super-low-frequency (SLF) oscillator in the 76477 has

Output pulses from the noise clock, whose frequency is determined by the resistance values connected from pins 3 and 4 to ground, are used to control the noise generator. The output from the noise generator is passed through a variable-bandwidth noise filter, controlled by the R and C values from pins 5 and 6 to ground, to the mixer.

The mixer combines the three inputs (from the noise filter, the SLF's squarewave generator, and the vco) and, contingent on the dc states of its three selector inputs, at pins 25,26 , and 27 , determines type of mixer-output signal.

Depending on whether a 5 -volt control

Modulator attack and decay are controlled by the R and C values connected from pins 7, 8, and 10 to ground.

The final signal is applied to the audio amplifier, which develops a 2.5 -volt peak-to-peak maximum low-impedance output at pin 13. A feedback resistor can be connected between pins 12 and 13 to modify the amplifier's gain.

There are 23 variables under user control with the 76477 sound generator. Hence, you can be kept occupied for a considerable time exploring the effects that can be obtained with various combinations of controls.
(continued on next page)

Fun Circuits You Can Build

In this section, we present five fun circuits that typify some of the uses to which the SN76477 complex sound generator IC can be put. All are relatively simple and inexpensive to build, because the IC contains all the active circuitry needed.

Circuits A, B, and C can be used to add realistic sound effects to the animation in video games. The model railroader will find circuit D useful, while the electronic "organ" in circuit E should appeal to all, especially children. Finally, circuit F illustrates how an outboard transistor amplifier stage can be added to increase the power delivered to the speaker.

Practical Breadboard. Shown in Fig. 3 is the circuit of a practical experimenter's "breadboard." Although the circuit is really quite simple, to utilize the full capabilities of the 76477 sound generator, a rather large cabinet is required to accommodate all the switches and jacks shown.

You can use a small piece of perforated board on which to mount IC1 (a socket is recommended) and the Q1/ Q2 audio amplifier circuit. Alternatively,

Fig. 2. The block diagram of the internal operation of a
76477 complex sound generator IC shows how it contains a complete sound-effects lab in a 28-pin package.
you can design and fabricate a printedcircuit board. If you use perforated board, you can Wire Wrap or pencil wrap the components into the circuit.

Although the system will operate from a standard 9 -volt battery, you might opt for a small power supply that can deliver 7.5 to 9 volts instead, if only to free yourself from having to replace batteries periodically. Make sure, however, that the cabinet you select will accommodate all controls, jacks, and circuitry.

All 28 switches, 12 banana or tip jacks, and 8 potentiometers should be mounted on the front "control" panel and suitably identified with a dry-transfer lettering kit. To simplify experimenting, switches, jacks, and pots should be identified according to function as shown in Tables I through III. Table IV is an example of grouping according to

TABLE I-JACK IDENTIFICATION

J1 Input for external noise oscillator
J2 Input for external voltage-controlled oscillator
J3 Noise filter resistance measurement jack with R4
J4 Decay resistance measurement jack with R6
J5 Attack resistance measurement jack with R8
J6 Audio output
J7 External vco measurement jack with R15
J8 Vco control resistance measurement jack with R18
J9 Pitch control resistance measurement jack with R23
J 10 SLF oscillator control resistance measurement jack with R25
J 11 One-shot resistance measurement jack with R27
$J 12$ Common ground
function. Group arrangements can be outlined on the control panel with a heavily inked or painted line.

Once the various components are mounted on the front panel, refer to Fig. 3 and wire them into the circuit.

Use. Note in Fig. 3 that each IC pin that terminates in a potentiometer has both a switch and banana or tip jack in series with the pot. This permits you to use an ohmmeter to measure the resistance required for a given sound, arrived at experimentally. After obtaining the desired sound, you simply open the switch for the pot and use the ohmmeter to measure the resistance from the associated jack to ground. If you keep a log of the various resistances and capacitances required for particular sounds, they can be duplicated on demand.

Fig. 3. The circuit for a complete sound-effects generator uses 28 switches, 12 banana (or tip) jacks and eight potentiometers to allow a broad selection of controllable parameters.

PARTS LIST

B1-9-volt battery (see text)
C1-150-pF capacitor
C2-360-pF capacitor
C3- $0.001-\mu \mathrm{F}$ capacitor
C4,C5- $0.01-\mu \mathrm{F}$ capacitor
C6,C14,C19- $0.05-\mu \mathrm{F}$ capacitor
C7,C15,C20,C23- $0.1-\mu \mathrm{F}$ capacitor
C8,C16,C21,C24- $0.47-\mu \mathrm{F}$ capacitor
C9,C17.C25-1- $\mu \mathrm{F}$ capacitor
C10,C11,C22,C26- $10-\mu \mathrm{F}$, 15-volt electrolytic
C12-100-pF capacitor
C13.C18-500-pF capacitor
C27-50- $\mu \mathrm{F}, 15$-volt electrolytic
IC1-SN76477N complex sound generator (Radio Shack 276-1765 or similar) J1,J2-RCA phono jacks

J3 through J12-pin or banana jacks
Q1-2N3703 transistor
Q2-2N3704 transistor
The following are $1 / 2$-watt, 10% resistors unless otherwise noted:
R1- 3900 ohms
R2,R10,R14-47,000 ohms
R3,R5,R7,R17,R24,R26-2700 ohms
R4,R6,R8,R18,R25,R27-1-megohm
linear-taper potentiometer
R9 - 22,000 ohms
R11,R19-100,000 ohms
R12-220,000 ohms
R13-330,000 ohms
R15,R23-50,000-ohm linear-taper potentiometer
R16,R22-50,000 ohms
R20-1 megohm

R21-10 megohms
S1 through S4,S6,S7,S10,S12 through S19,S21,S23 through S25-Spst slide or toggle switch
S5,S20,S22-Single-pole, 5 -position nonshorting rotary switch
S8-Normally open, momentary-contact pushbutton switch
S9,S27-Single-pole, 5-position nonshorting rotary switch
S11,S26-Single-pole, 4-position nonshorting rotary switch
S28-Spdt slide or toggle switch
Misc.-Battery holder; 28 -pin DIP socket for ICI; dry-transfer lettering kit; suitable enclosure; control knobs and dial plates (7); etc.

Sound Effects (continued from page 42)
Since the circuit can generate a very wide variety of sounds, let us give an example of how you might go about "tailoring" a specific sound with the bread-

TABLE II-SWITCH IDENTIFICATION

S1 Power switch for 7.5 -to-9-volt dc supply
S2 Power switch for 5 -volt dc supply
S3 Output
S4 Feedback
S5 Amplitude resistance selector
S6 Attack resistance
S7 One-shot, constant when closed
S8 One-shot momentary
S9 Attack-decay timing capacitor selector
S10 Decay resistance
S11 Noise filter capacitor selector
S12 Noise filter resistance
S13 Noise oscillator resistor
S14 Envelope select 1: logic 0, logic
S15 Envelope select 2 : logic 0 , logic 1
S16 Mixer C: logic O, logic 1
S17 Mixer A: logic 0 , logic 1
S18 Mixer B: logic 0, logic 1
S19 One-shot resistance
S20 One-shot capacitor selector
S21 Voltage-controlled oscillator (vco): logic 0, logic 1
S22 SLF oscillator control capacitor selector
S23 SLF oscillator control resistance
S24 Pitch control resistance
S25 Vco control resistance
S26 Vco control resistance selector
S27 Vco control capacitor selector
S28 Internal/external vco selector

TABLE III-CONTROL

 IDENTIFICATIONR4 Noise filter control
R6 Decay control
R8 Attack control
R15 Vco control
R18 Vco control
R23 Pitch control
R25 SLF control
R27 One-shot multivibrator control

TABLE IV-CONTROL GROUPING

One-Shot J11,R27,S7,S8,S19,S20

$$
\text { Noise Filter J3,R4,S 11,S } 12
$$

VCO Control J7,J8,J9,R15,R18,R23,S21. S24,S25,S26,S27,S28
SLF Control J10,R25,S22,S23
Noise Clock S13
Mixer Select S16,S17,S18
Envelope J4,J5,R6,R8,S6,S9,S10, S14,S15
Amplitude S5
Audio Output J6,S3,S4
Power On /Off S1
+5 volts S 2
Ground J12
board. In this example, we will use the sound of a gunshot.

First, close feedback switch S3 and output switch $S 4$ to place the audio amplifier in the circuit. Then close +5 V switch $S 2$ to activate the +5 -volt line. Main POWER switch S1 can now be closed when you are ready to experiment with the controls.

Since a gunshot has fast attack and relatively brief decay times, close ATTACK and decar switches S6 and S10, respectively, to permit you to adjust attack and decay times via ATTACK and DECAY pots R8 and R6. As you experiment with various settings of these controls, close main POWER switch S1 and press and release ONE SHOT switch S8 to hear the gunshot sound for each combination of settings. Adjust R6 and R8 and press and release 58 until the sound obtained is "just right." (Calibrated index scales behind each potentiometer control knob will simplify recording of settings.)

If desired, required values of attack and decay time resistances can be measured and recorded by opening the ATTACK and DECAY switches and measuring with an ohmmeter between dECAY jack J4 and ground and between ATTACK jack J5 and ground. envelope select 1 and 2 switches S14 and S15 can also be preset for the required envelope.

To produce an explosion instead of a gunshot sound, close NOISE FILTER switch S12 and adjust NOISE FILTER control R4 for the desired effect.

In Conclusion. The sound-effects generator breadboard presented here can be used in either or both of two ways. For the designer, it is a "tool" that simplifies designing a circuit from scratch. One can "design" a circuit with the breadboard, measure resistances of the controls and read off capacitor and logic-state (+5 V or 0) settings from the panel, and assemble the circuit around a separate 76477 generator chip. The other way to use the breadboard is to simply experiment with control and switch setting combinations until you hear a sound you like. Used in this manner, you can record a whole series of sound effects that can be used with home movies and slide shows, for theatrical events, etc.

Whichever way you use the breadboard, it is a good idea to log parameter values for given sounds for future reference. Then, any time you want to reproduce a sound arrived at experimentally, you can, simply by setting the controls and switches as detailed in your log. \rangle

