# Construetion_ <br> D. Gowdama Chandran 

## Envelope Follower For Guitars and Organs

V(r) litule has been done in India regarding clecthome musical mitiuments while Indian musteal instuments fich hats been totally gnored. for amateut gutarnsts it in very dillicult to obtam electonic gadgets sutec they ate not made locally. Hence. at clectronic musial gadget is presented here for those who ate unable to buy such units because of their high cont or total non-atailabilus

I his unt produces a smatat cflect as a 'Wah-With' whel thamhat to now music conthustasts, hut it is automated. It is actually destgned lon ctectric guntars though it is cyually adaptable tor electrome organs. It is connected between the


Hig. I: Hlock diagram for an envelope follower.
guitar and power amplifier and gives the 'W'ah' eltect allomatically whenever you play the guitar Prolessonal grade quality carr be obsained tsom this unt.

## The circuit

It is clear from the block diagram in rig. 1 that it is a

[^0]watable band-pass filter whose passband is controlled by the conelope of the input audio signal itself. The complete circuit dragtant is showil in rig. 2.

Op-imp At is connected as a unity gain buffer amplifier. $R 1 . R 2$ and ( 1 are chosen to give the circuit a moderate


The author's prototype of the envelope follower.
mput impedance. The inverted audio signals obtained from Al are made to pass through a passive high-pass filter formed by C3 and R3.

Op-amp A2 is connected as a preamplifier with a gain of


Fig. 2: Circuit diagram for the envelope follower.

## PARTS LIS' ${ }^{\prime}$

Semiconductors:

| 1 Cl | - LM324 quad op-amp |
| :---: | :---: |
| TI | - BC107 npn transistor |
| 12 | - BFW10/BFW11 field effert transistor |
| D1, D2 | - IN4148 silicon switching dıode |
| D3 | - 5mm LED |
| Resistors [all \% watt. $\pm 5 \%$ carbon]: |  |
| R1, K 2 | -1(0)-kilohm |
| R3, R4 | - 10-kilohm |
| R5, R12 | - 1-megohm |
| R6 | - 22 kilohm |
| R7, R10 | - 33-kilohm |
| R8 | - 1-kilohm |
| R 9 | - 2.2-kilohm |
| R11 | - 680-kilohm |
| R13, R14 | - 5.6-kilohm |
| R15 | - 680 ohm |
| VR1 | - 10-kilohm, linear potentiometer |
| VR2 | - 100-kilohm, linear potentiometer |
|  |  |
| $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 4,$ |  |
| C9 | - $0.22 \mu \mathrm{~F}$ ceramic disc |
| C3 | - 0.04 H ceramic diac |
| C5 | - $2.2 \mu \mathrm{~F}, 16 \mathrm{~V}$ electrolytic |
| C6 | - $10 \mu \mathrm{~F}, 16 \mathrm{~V}$ electrolytic |
| C7, C8 | - $0.002 \mu \mathrm{~F}$ ceramic disc |
| C10 | - $100 \mu \mathrm{~F}, 16 \mathrm{~V}$ electrolytic |

## Miscellaneous:

Sl - Push-to-on DPDT switch

- PCB, battery holder, phono sockets, enclosure, screws, nuta, other hardwave etc.

100. The amplification is decided by resistors R5 and R4. Capacitor $\mathbf{C 4}$ is included to isolate the input of the preamp from regative potential.

The amplified signal is rectified by diode DI while capacitor C5 eliminates the AC components. This DC voltage
oblained is known as the envelope of the input signal.
Since the output of op-amp $\wedge 2$ will be at $1 / 2 \mathrm{~V}$ ( c at rest, the envelope signal will be swinging above thes level only, which is undesiable. Hence transistor I 1 semployed to lower this base level. Resstors R6 and R7 give bias lon the base of II while RX is used as collector load resistor. Resistor R9 has been cliosen to develop the required I)( tevel at emater of


Fig. 3: Wiring diagram for foot-operated DPDT switch.
TI.
Filter
Op-amp A3 forms the band-pass fiter. R1I is the feed back resistor while C 7 and C 8 are the components that decide the ' Q ' factor of the filter.

ig. 4: Pin configuration of IC LM324
Note that the input resistor R 12 is greater in value than the teedback resstor $\mathrm{R} \mid 1$ and is not connected to point ' $X$ ' in the erredt. On the conmary, it has been connected to the inverting input of A.3 and gives a brilliant tone "colour'.

C2 is the DC' blocking capacitor. Resistance offered between ponts ' $X$ ' and $1 / 2$ Vec decides the passband of the filter. Here field-effect transistor T 2 is utilised as a variable resistor connected between these two points.

Although the $\ddagger$ ET's drain and source terminals are interchangeable, they are connected to higher and lower impedance points respectively. The gate terminal is negatively biased through R10 and VR2.

Ihe envelope voltage from T'I's emitter is applied throagh 1)2 and VRI to the gate of the FET. This voltage charges (6


Fig. 5: Typical waveforms observed on a scope at various points in the circuit.


Fig. 6: Actual-size PCB pattern for the circuit.


Inside view of the author's prototype.
which shapes the envelope. D2 prevents C6 from discharging through R9 and hence the discharge is possible through VR2 and RIO only. 'The 'attack' and 'decay' of the envelope is adjustable by VRI and VR2 respectively.

At rest, the gate of T2 is negatively biased and hence a very high resistance is offered between the drain and source terminals of the FEI. When the envelope is present the resistance varies accordingly. It follows that the passband of the filter is made to sweep across the audio spectrum which gives a 'Wah' effect.

The output of $A 3$ is buffered by the voltage follower built around A4 and DC' blocking capacitor C9. Finally, $1 / 2 \mathrm{VCC}$ is developed by the potential divider comprising R13 and R14, and is smoothed by ClO .
The carcuit is powered by a $9 \mathrm{~V}, \mathrm{PP} 3$ battery. It may be powered by a battery eliminator, but a regulated power supply is preferable.


Fig. 7: Components layout for the PCB.

## Construction

Any op-amp may be used lor NI to N4. However, yuad op-amp I.M 324 N is recommended for its low cost and simplicity of the layout. The pinconliguratoon ol this 1 C is given in Fig. 4.

The promed corcuit board shown in lig. 6 makes the construction simple and casy. The assembled board may be housed in an elimunator box to save the labour for cuting, and bending sheet metal tor a special enclosure. A loot switch should be provided at the top of the box to permit eany switching 'in' and 'out' of the unit in the guitar-amplilier path.

An LED is provided to indicate whether the unt in switched 'in' or 'out' of the circuit. Note that the I.I' I.) should be mounted on the top lid ol the hox. VRI and VR2 should also be mounted on the top lid, without obstructmg visibilty of the IIED.

Phono sockets can be used for signal 'in' and "out' terminals. The power supply may be kept outside the boa in another case of a baticry climinator.

I'he assembled unit should give an excellent pertormance with a gutar. If an organ is connected to it, the componemts responsible lor 'attack' part ol the envelope should be modified. A resistor of 10 k 1047 k valte should be ineerted between I)2 and VRI, depending upon the signallevel ol the organ used.


[^0]:    M: Sowdama Chandran Matrexpertenced gutarist as ureltaban electronce fhol giv, though he's a coll engineering draughsman by professon

