
The
Band ·Made

MIDI

One does not normally think of older CP/M based systems as being capable of supporting
MIDI. However. if you want to get right into the grotty details you can get them singing.

Here are the details. for hackers only.

T his is not a full fledged construction
project article, but rather a hacker's
eye view of the hardware and soft

ware involved in coaxing your favourite
computer to speak MIDI. However, I have
included enough information here for some
one with some hardware experience to
build their own MIDI interface using as few
as three chips.

If the smell of solder makes you feel
faint, if you don't feel comfortable modifying
existing circuit designs, or if you just don't
want to hack furiously into the innards of
your prized computer, then I would advise

Computing Now! June 1986

by Shane Dunne

you to purchase a commercial MIDI inter
face rather than trying to build one.

About This MIDI Business
MIDI is two things. It's a hardware interface
specification and a method of encoding data
for that interface. These two aspects are
quite distinct, and may be separated. For
example, the Wersi company makes a series
of digital organs which communicate using
MIDI data, but over an RS-232 interface ...
that's the kind used with most computer ter
minals. A group of artists in Montreal are
now building a computerized multimedia

studio in which lights, video and laser pro
jectors will be connected to a computer by
MIDI interfaces. Naturally these will not
communicate using the regular MIDI music
codes. New codes will be designed for their
special needs.

Let's first look at the hardware specifica
tion. This is the part of MIDI that is most
clearly defined by the available specifica
tion documents.

MIDI uses a five milliamp current loop
to carry asynchronous serial data at 31 .25
kilobaud. Let's look at that one step at a
time.

59

Mmi is a serial interface. That's not
something that makes your breakfast for
you, but a connection in which data bits are
transmitted one at a time over a single pair
of wires. This is in contrast to parallel inter
faces such as the Centronics printer port,
which use as many wires as there are bits in
a byte, plus a few others to add zest, and
transmit an entire byte at a time. Of course
parallel transmission is generally faster, but
serial is used more often because it's
cheaper. Fewer wires mean cheaper cables,
cheaper connectors and less circuitry.

In general, there are two ways to repre
sent bits ... I mean binary ones and zeroes ...
on a wire. You can use two voltage levels or
you can use two current levels. The RS-232
interface, used with most termmals and
some printers, works with voltages. Most
computers also represent bits as voltages in
ternally. MIDI uses two current levels, five
milliamps of current flowing for a zero and
no current flowing for a one. The reasons
for doing this are somewhat involved, but
essentially it boils down to being cheaper
again.

Note that to send data in current form,
you need two wires per signal. This is
because a current can only flow in a closed
circuit. This means that there must be a con
tinuous conducting path out of the transmit
ter, through the receiver, back out and into
the transmitter again. Draw that on a piece
of paper and, hey presto, you'll see that
each current loop cable has to contain two
wires.

Here's where the fun begins. MIDI
cables contain five conductors. Two are us
ed for data transmission · as I've described
above. One is connected to ground at the
transmitter side to reduce noise pickup. The
remaining two are not used for anything.
The reasons for these extra wires aren't as
interesting as one would think they might
be. The MIDI designers wanted to use
cables that were already available, and
which had keyed connectors ... the kind you
can't force in backwards. The five pin DIN
cables normally used to connect tape decks
to stereos were a good choice. They're
available around the world, they're keyed,
and they're cheap, costing about five bucks
each at Raclio Shack.

There are two ways to transmit serial
data, these being synchronously and asyn
chronously. Synchronous transmission re
quires a separate clock signal along side the
data, and in general is complicated and ex
pensive. I think you've already guessed that
the MIDI designers chose the cheap, simple
asynchronous method.

Asynchronous transmission avoids the
need for a clock by adcling a start bit and a
stop bit to each character. The start bit is
always a zero, and an idle line is always held
in the one state, so the transition from one to
zero triggers the receiving hardware that a
byte is coming in. From there on, the

60

The Band Made MIDI

470 pf

The basic MIDI ciruitry.

receiver knows approximately when each
bit of the character will come in, given that
bits are sent at a fixed rate which is known in
advance.

MIDI moves data around at the rate of
3 1250 bits per second. A baud is one signal
change per second, and for serial interfaces
in which each signal change represents one
bit, the bit rate equals the baud rate. MIDI
falls into this category. Having to know
about this sort of thing helps communica
tions engineers command fat salaries, and
keeps the rest of us hopelessly confused.

Most MIDI devices have three ter
minals, marked MIDI in, MIDI out, and
MIDI through. MIDI in is for data coming in
to the device, MIDI out is for data being out
put by the device, and MIDI though outputs
a copy of the data coming in at MIDI in.

UART A Fool. Horatio

RXL

"flDl lnp•.1t
·'i..J.ta. t -..IQ.r"t

A MIDI interface for a computer consists of
two main sub-systems. The first is a serial
communications chip, which converts serial
data to parallel and vice versa, handling
gremlins like start and stop bits on the way.
The second is the analogue circuitry used to
represent serial bits in current loop form.

To get information into and out of a
microprocessor system, it is necessary to
use I/0 chips. These look to the
microprocessor like registers... places
where data can be read or written. For
asynchronous serial I/0 a chip called a
Universal Asynchronous Receiver/Trans
mitter, or UART, is used. When the pro
cessor writes a byte to the output register of
a UART, the chip clocks the bits of this byte
out onto the serial port. When a serial byte is

Computing Now! June 1986

•

•

received from the port, it is placed into the
UART's input register to be read by the
microporcessor when it is ready.

MIDI uses a very common format for
serial communication, this being eight bits
per character, one start bit, one stop bit,
and no parity with an idle line held at a logic
one level. This is exactly the same arrange
ment as is used by RS-232 terminal lines
and printer interfaces, so the same UART
chips can usually be used for both. The only
difficulty is finding a UART that can work at
thirty-one'kilobaud. The Zilog Z80-SIO will,
and so will the Motorola 6850, but the
venerable Intel 8251 will not. However Intel
does make a faster chip called the 8256
which will handle up to a million bits per se
cond.

You may be wondering where the
strange value 31250 comes from. Well,

RxrA 13 elk

TxrA ,_ill
RxlJA 12 RxD
TxDA 1S TxD
"Y"t:4 f--11

Rely-> 1-10
RTSA 1-17
CTSA 1---18

DTRA 1---16

DCDA ~l9

Connecting a ZSO-SIO to the MIDI circuitry.

most UARTs need a clock input whose fre
quency is sixteen times the data rate. Six
teen times 31250 is half a megahertz, which
is a frequency that should be easy to derive
in any microprocessor circuit.

I have a "big board" Z80 computer
from Digital Research Computers, which
uses a Z80-SIO chip for serial I/0. By sup
plying my own clock signal to this chip, I
was able to use it for the MIDI interface, and
hence only had to build the analogue part. If
your computer uses a serial chip capable of
operating at the right speed, and if you can
manage to supply it with the right clock fre
quency, you can probably do the same
thing.

If you can't use your computer's ex
isting UART chip, you will have to add one
to the system somehow. This is where I warn
all but the most seasoned hardware hackers
to stick to commercial hardware, as adding
a new peripheral chip to a computer is no
mean trick.

The schematic in this article shows the
circuit for my MIDI interface, which consists
of three parts. The clock generator uses a
two megahertz crystal and generates the
half megahertz signal used to clock both the
receiver and transmitter portions of the
UART. The output section buffers the outgo
ing data and converts it to current loop

Computing Now! June 1986

The Rand Made MIDI

Listing 1: Example of MIDI I/0 from Turbo Pascal on " ZSO systems.

{first
those

CONST

declare the port
for my system . }
cport 6;
dport = 4;

addresses for your UART . The following ones are

{UART control port address}
{ UART data port address}

{now declare the data structures for MIDI i/o}
VAR mqueue: ARRAY(0 .. 255] OF BYTE; {the MIDI input queue space}

icur,ocur: INTEGER; {input and output cursors for queue}
OKvec: INTEGER ABSOLUTE $FFOC; {interrupt vec tor for normal UART

input interrupt}
ERvec: I~TEGER ABSOLUTE $FFOE; {interrupt vector for abnormal UART

input interrupt (ie framing error) }
ErrStat: BYTE; {if a UART error occurs, the interrupt handling

procedure RxErr puts the UART status in here }
done: BOOLEAN; .{set ·1e when user types a character while

waiting for MIDI-input}

{of course you'll need a lot uc uther declarations for a complete
program . I'm only showing what's required for MIDI i/o}

{here is a procedure to handle abnormal interrupts fro~ the UART. We
use Turbo's INLI~E statement to enter machihe code directly in the
Pascal source file here. Unfortunately you have to hand-assembl e the
code to ge t it in hex form, which i s all INLINE will accept. Boweve r
you can look on the bright side and figure that this will make you
use machine code only where it's really needed. (Or you can just shout
and scream. That's what I did.)
Of course this code is highly machine-dependent. Here I'm showing you
what I use in my syste~, which has _a Z80-SIO for se rial i/o}

PROCEDU RE RxE rr;
BEGIN

I~LINE (
$F5/
$3E/ 1/
$D3/(cport/
$DB/(cport/
$32/ErrS tat/
$3E/$30/
$D3/ (cpor t/
$F1/
$FB/
$ED/$4D

END { RxErr} ;

{PUSH
{LD
{OUT
{IN
{LD
(LD
(OUT
{POP
(EI
{RETI

AF
A, l
(cport) ,A
A, (cport)
(ErrStat),,
A,30H
(cport) ,A
AF

free up the ' register}
prepare to read from }

SIO r ead- r egiste r ff 1 }
ge t RR1 (SIO s tatus) }
save for main program }
send ''er ror reset'' }

to the SIO }
res tore AF }
re-enable interrupts }
return fro'll interrupt :
resets Z80 i/o chips }

(here is the handler for normal input interrupts from the UART. 'gBin
this is the code which I use with my Z80-SIO, but it s hould actually
be quite similar for any sys tem, except for the port addresses. Read
this code carefully to see how it implements a ci rcular que ue buffer}

PROCEDURE Stash;
BEGIN

INLINE

END

$F5/
$E5/
$D5/
$21/mqueue/

$ED/$5B/icur/
$1C/
$ED/$53/icur/
$19/

$DB/<dport/
$77 I
$D1/
$ E1 I
$Fl/
$FBI
$ED/$4D

(Stash} ;

(PUSH
(PUSH
{PUSH
(LD

(LD
{INC
(LD
{ADD

(IN
(LD
{POP
{POP
[POP
(EI
{ RETI

AF
HL
DE
HL,mqueue

DE,(icur)
E
(icur),DE
HL,DE

A, (dport)
(HL) ,A
DE
HL
AF

free up
some
r egiste r s

HL w11'1 be a pointer
in to the queue

ge t icur value
increment modulo 256
store back in icur
use this·as an offset

to index into mque ue
ge t MIDI in byte to A
store it in the queue
res tore

the
registers

re-enable i nterrupts
return frum interrupt :
resets Z80 i/o chi ps }

[You will 'llso need some code to "install" these interrupt handle r s , snd
ge nerally prepare the system for MIDI i/o. This means setting up the
UART i n the correct mode,- and making s ure that the inte rrupt vectors
for UART interrupts point to the routines RxErr and Stash, as appropri'lte.

61

form. The input section uses an opto isolator
to transform incoming current loop data to
TIL compatible form for input to the receive
portion of the UART. Both the input and out
put sections also contain LEDs which light
whenever a zero bit is detected, thereby
allowing you to observe activity on the MIDI
line. The reason it lights for zero, not one, is
that idle MIDI hnes are held in the one state.
Thus the light stays off when the line is idle,
and flickers when data comes along.

I've also indicated how these circuits
would be connected to a 280-SIO and a
Motorola 6850. These are not complete cir
cuits, but are intended to show how the
analogue and UART sections fit together.
The exact connections will depend on your
specific system.

Note that the half megahertz clock
signal, identified as CLK in these figures, is a
fairly high frequency beast. Therefore it's
best to keep the clock wire as short as possi
ble to avoid generating radio frequency in
terference. Ideally, keep the clock circuit in
the same box as the UART, or run a shield
ed cable if this is not possible.

Programming With MIDI
Once you have a MIDI interface, home-built
or commercial, you will need to do some
programming to make it do things. MIDI
programming is a rich subject, one which is
beyond the scope of this article to do justice
to. However, I'll point out a few things
specific to this project here.

The trickiest thing about MIDI pro
gramming is speed. The 31250 bits per se
cond means one byte every three hundred
and twenty microseconds. This means that
your program has to be able to respond
mighty fast to avoid losing input bytes. If
you are only interested in MIDI output
however, that is, to use a synthesizer to play
pre-programmed tunes, blazing speed is not
strictly necessary.

There are some commercial MIDI inter
faces, notably the Roland MPU-401, which
contain their own microprocessors and han
dle all the nasty time critical details of MIDI
communications. This is cool, but with a little
careful programming you can get by quite
nicely without having to buy one of these
rather expensive gadgets. The following
discussion assumes that you will not be us
ing such an intelligent interface.

If you want your programs to receive
MIDI input, you will almost certainly not be
able to write them all in interpreted BASIC,
because interpreted programs are so slow.
Assembler is fine, because· you can predict
how many instructions will be executed bet
ween input bytes. Compiled languages like
Pascal, Fortran, and the like may be
suitable, but can bring on nightmares
because you cannot generally predict ex
ecution speed in this way.

The best way to handle MIDI input is to

62

The Band Made MIDI

This code is so system-dependent that it's not worth showing yo~ mine.
Instead I'll just outline the basic structure and ·highlights}

PROCEDURE Ini t ciiOI;
BEGIN

icur := 0; ocur := 0; {zero both queue cursors}

here you set up your UART for the correct mode. Turbo Pascal's
"PORT" input and output facilities are very useful for this.

.}
OKvec := Addr(Stash);

ERvec := Addr(RxErr);

{set the main UART input interrupt vecto r
to point to the Stash routine}

{set the UART error interrupt vector to
point to the RxErr routine}

here you will probably need to send a l ast command or t wo to your
UART to e nable its interrupts.

. }
END { Ini t:1IDI};

{The int~~face between your Pascal main program and the :1IDI i/o code
consists of just two routine s : Get:1IDI for input and Send:1IDI for o~tput}

{Ge tMI DI is a function which returns the next MIDI input byte from the
~1IDI input stream. If the re isn't a byte available, it waits for either
a MIDI byte t o a rrive, or for a key to be pressed on the console. If
a key i s presse d, it r e turns immediate ly (note: the value returned will
be garbage !), having se t the global variable "done" to TRUE . You don't
have to do it this way, but since many programs will spend a lot of
time waiting for MIDI input, it' s a good idea to build in some way of
interrupting this wait, i.e. to stop the program.}

FUNCfiON GetMIDI : INTEGER;
BEGIN

\lt!ILE (l eur = ocur) AND (~OT done) DO
done := KeyPressed; {wait for MIDI input or console key} .

IF NOr done .{if MIDI input}
T~EN BEGDI

IF ocur = 255
T:1EN ocur : = 0
ELSE ocur := ocur + 1;
Get:1IDI := mqueue[ocur]

END { Ge t'IIDI};

{increment output cursor mod 256}
{get next MIDI byte from queue}

(SendMIDI is a procedure which outputs its integer a r gument as a MIDI
byte to the :1IDI output stream. This version doe~ not make use of
a ny lower .l evel machine-language s upport routines, but just waits for
the UA~T trans~it section to become ready (if it is not already) and
then sends the byte to the UART directly. If you want to be able to
do a lot of processing during :1IDI i/o, you may want to have MIDI
output also interrupt-driven. In this case, SendMIDI would put the
next :1IDI byte into a queue, a nd a machine-language interrupt handler
(activated when the UART transmit buffer becomes emp ty) would take
bytes out of the queue and pass them to the UART . If you want to do
this, make sure your interrupt handler doesn t do anything wierd when
there isn't any pending :1IDI data.}

PROCEDURE Send'IIJI(dat : I~TEGER);
VAR status: I~fEGER ;

BEGn
REPEAf

statt•s := port[cport]
U:-lTIL :status AND 4) <> 0;

port[dport] : = dat
E~D { Send:1IDI};

5 'an example of MID I access in BASIC

{keep getti ng UART status}
{until bit 2 set, meaning output
buffer i s e mpty}

{pass 'IIDI data to output buffe r}

10 DIM RXERR%(8) reserve 18 bytes for RxErr routine
20 DIM STASH%(12) ' reserve 26 bytes for Stash routine
30 DIM MQUEUE%(127) ' rese rve 256 bytes for the queue buffer
40 ' make sure a ll your simple variables are initialized before
50 ' executing this code.
100 'load the RxErr routine

Computing Now! June 1986

set up your UART to generate an interrupt
every time it receives a character, and then
write a very fast interrupt handler in
assembler. This interrupt handler just takes
the byte from the UART and appends it to a
queue which is accessible from the main
program. The main program itself can then
be written in any language ... even BASIC.

A queue is a data structure which
allows data to be buffered in a first-in first
out discipline. That is, the first byte to be
placed in the queue by the interrupt handler
will be the first byte retrieved from the
queue by the main program. If bytes come
in faster than the main program can process
them, they are piled up in the queue, just
like people waiting in a line for a bank
teller ... and will be processed in proper se
quence when the main program eventually
does retrieve them.

Listing one shows how to write a queue
onented interrupt handler in Z80 machine
language and use it with a Turbo Pascal
main program. Listing two shows how to do
the same thing with a Microsoft BASIC pro
gram. These are not complete programs,
but just outline the essential code needed for
MIDI communications. The actual im
plementation will vary with different com
puters. This code is adapted from the code I
have used with my Z80 big board system.
Unless your machine is identical, you should
treat these programs only as a guide.

r have shown two different interrupt
handling routines, called Stash and RxErr.
This is because many UARTs will generate
one kind of interrupt when a character is
received normally, and another kind when
some kind of error is detected. The most
common .is a framing error, which happens
when the UART receives a start bit, then
clocks in eight data bits, then looks for the
stop bit. .. which is always a one ... and finds
the line in the zero state instead. If you
notice a lot of framing errors, it could be
because your UART isn't being clocked cor
rectly.

The approach to storing and using
machine code within BASIC, shown in
listing two, is a kluge. The Microsoft BASIC
interpreter provides various methods of us
ing machine language routines, but all of
them are messy. If you are using Microsoft's
BASIC Compiler you can write all the
machine language stuff in assembly code,
use M80 to assemble it, and then link it into
your compiled BASIC program using LBO.

Parting Words
MIDI has its complications, but need not be
as mysterious as it sometimes appears. It is
based on the very common technology of
asynchronous serial transmission, just like
the RS-232 interface used with terminals
and printers.

To those who want to brave the slings
and arrows and build MIDI interfaces from
scratch, I wish the best of luck.

Computing Now! June 1986

The Band Made MIDI

110 FOR ADR% = VARPTR(RXERR%(0)) TO (VARPT~(RXERR%(0)) + 17)
120 READ OAT%
130 POKE ADR%,DAT%
140 NEXT ADR%
150 DATA &HF5 'PUSH AF
160 DATA &H3E,1 'LD
170 DATA &HD3,6 'OUT
180 DATA &HDB,6 'IN
190 DATA &H32,0,0 'LD
200 DATA &H3E,&H30 'LD
210 DATA &HD3,6 'OUT
220 DATA &HF1 'POP
230 DATA &HFB 'EI
240 DATA &HED,&H40 'RETI

A, 1
(cport),A
A, (cport)
(ERRSTAT'%) ,A
A,30H
(cport),A
AF

;cport=6 is hard-coded here

;see lines 260,270 below

250 'fill in address of ERRSTAT% which can't be" put in a DATA statement
260 POKE VARPTR(RXERR%(0)) + 8, (VARPTR(ERRSTAT%) MOD 256) 'low byte
270 POKE VARPTR(RXERR%(0)) + 9, (VARPTR(ERRSTAT%) \ 256) 'high byte
300 'now load the code for the Stash routine
310 FOR ADR% = VARPTR(STASH%(0)) TO (VARPTR(STASH%(0)) + 25)
320 READ DAT%
330 POKE ADR%,DAT%
340 NEXT ADR%
350 DATA &HF5 'PUSH AF
360 DATA &HE5 'PUSH HL
370 DATA &H05 'PUSH
380 DATA &H21,0,0 'LD
390 DATA &HED,&H5B,O,O 'LD
400 DATA &H1 C • INC
410 DATA &HED,&H53,0,0 'LD
420 DATA &H19 • ADD
430 DATA &HDB,4 'IN
440 DATA &H77 'LD
450 DATA &HD1 'POP
460 DATA &HE1 • POP
470 DATA &HF1 'POP
480 DATA &HFB 'EI
490 DATA &HED,&H40 'RETI

DE
HL,MQUEUE%
DE, (I CUR%)
E
(ICUR%) ,DE
HL,DE
A, (dpor t)
(HL) ,A
DE
HL
AF

see lines 510,520 below
see lines 530,540 below

see lines 550,560 below

dport=4 is hard-coded here

500 'fill in address values not expressible in DATA statements
510 POKE VARPTR(STASH%(0)) + 4, (VARPTR(MQUEUE%(0)) MOD 256) 'low byte
520 POKE VARPTR(STASH%(0)) + 5, (VARPTR(MQUEUE%(0)) \ 256) 'high byte
530 POKE VARPTR(STASH%(0)) + 8, (VARPTR(ICUR%) MOD 256)
540 POKE VARPTR(STASH%(0)) + 9, (VARPTR(ICUR% \ 256)
550 POKE VARPTR(STASH%(0)) + 13, (VARPTR(ICUR%) MOD 256)
560 POKE VARPTR(STASH%(0)) + 14, (VARPTR(ICUR%) \ 256)
570 • we need some code to set up the hardware for MIDI i/o, in
580 ' particular to set up the UART for interrupt-based operation. As
590' before I can only give an outline of this initialization code.
600 'initialize MIUi i/o
510 ICUR% = 0 : OCUR% = 0
620 • Put code to set up UART for interrupt operation here. BASIC's
630 • I~ and OUT instructions will be useful here.
750 'write ·pointers to Stash and RxErr routines in interrupt vectors
755 • Note: the addresses FFOC, FFOD, etc. are the ones in my
756 • system. Yours will probably be different.
760 POKE &HFFOC,(VARPTR(STASH%(0)) ClOD 256) 'lo byte of Stash
770 POKE &HFFOD,(VARPTR(STASH%(0)) \ 256) 'hi byte of Stash
780 POKE &HFFOE,(VARPTR(RXERR%(0)) MOD 256) 'lo byte of RxErr
790 POKE &HFFOF,(VARPTR(RXERR%(0)) \ 256) 'hi byte of RxErr
800 • Enable UART interrupts, generally get set to go ...
810 'Here are the two interface subroutines. BASIC doesn't have
820 'decent parameter passing or return mechanisms, so I' 1n assu~ing

830 'the existence of variables MIDI.IN% (where the input coutine
840 'puts the next :11Dl input byte) and :-IIDI.OUT% (where the output
850 'routine looks for the next '!IDI output byte).
iOOO 'MIDI input subroutine (Get'!IDI)
1010 IN$ = INKEY$ 'get console keyboard status
1020 IF (n$ = "'") AND (ICUR% = OCUR%) THEN 510
1030 IF (I~$ <> "") THEN 5000 'go to "keyboard interrupt" code
1040 IF (OCUR% = 255) THEN OCUR% = 0 ELSE OCUR% = OCUR% + 1
1050 MIDI. IN% = PEEK(VARPTK(MQUEUE%(0)) + OCUR%)
1060 RETURN
2000 'MIDI output subroutine (SendMIDI)
2001 ' note: the constant port addresses and AND mask are the ones
2002 • I use in my system. Yours will probably be different.
2010 WAIT 6,4 a concise way to express a wait loop in BASIC
2020 OUT 4,MIDI.OUT%
2030 RETURN

CN!

65

