A position sensing midi drum interface

Andrew Baxter
64 Blades Street
Lancaster, LA1 1SQ
andy @ganglion.me

Abstract

This paper describes my attempts at making a
cheap, playable, midi drum interface which is
capable of detecting not only the time and velocity
of a strike, but also its location on the playing
surface, so that the sound can be modulated
accordingly. The design I settled on uses an
aluminium sheet as the playing surface, with piezo
sensors in each corner to detect the position and
velocity of each strike. I also discuss the
electronics (arduino based), the driver software,
and the synths I have written which use this
interface.

Keywords

Drum interface, MIDI, Position sensitive,
Supercollider, DIY

1 Introduction

Midi drum interfaces are now a widely available
piece of consumer electronics. However, in most
cases they are only capable of reproducing a small
range of the sounds you can make using a real
drum. A significant weakness of these interfaces is
that they do not give any indication of where on
the playing surface you have struck them, so they
are limited to playing a single sample or
synthesised sound across the whole surface.

In this paper, I will describe my attempts at
making a cheap, playable, midi drum interface
which is capable of feeding information on where
you have struck it to a synthesiser, which can
modulate the sound accordingly, in two
dimensions. There already a few devices coming
out at the high end of the market which have
similar abilities; however my aim here (apart from
having a bit of fun myself building it), was to
produce a design which is simple and cheap

Lllustration : The pad from above

enough for any competent hobbyist to build, using
widely available components.

2 Research

Before settling on the current design, I tried out
a couple of other ideas for how to make such a
drum pad.

My original idea was to use a sheet of
conductive rubber as the playing surface, with a
voltage put across it alternating between the north-
south and east-west axes, so that a strike at a given
point would correspond to a particular voltage
pair. The simplest form of this idea would require
the sticks to have wires on them, so is not really
practical, but I discovered that there is a form of
conductive rubber which lowers its conductivity
sharply under pressure. This gave me the idea of
making a sandwich with the voltage gradient sheet
on the top, then a layer of pressure sensitive
rubber, then an aluminium sheet electrode under
both. Strikes to the top surface would, I hoped,
produce small regions of lowered conductivity in
the middle sheet, transferring the voltage at that
point from the top sheet to the bottom electrode.

I constructed a prototype of this design, and
managed to get it to sense position to a degree, but

decided in the end that the results weren't
consistent enough to be worth carrying on with
this idea. Also, this design was fairly expensive
(due to the cost of the pressure sensitive sheet),
and lacked a reliable way of sensing the velocity of
a strike.

The next idea, which I owe to Alaric Best, was
to suspend a metal sheet in some kind of frame
with vibration sensors around the edge, and detect
the time of flight of pressure waves from the strike
point to each sensor, and use this to triangulate the
position of the strike.

I built a prototype of this using piezoelectric
sensors, but was unable to get the sensors to detect
pressure waves at anywhere near high enough time
resolution.

However, during the testing, I noticed that the
strength (rather than the timing) of the signal from
the piezo sensors varied according to how close
the strike was to each sensor (with one sensor in
each corner of the sheet). In other words, on the
time scale I was able to sense at, the piezos were
simply detecting the transferred pressure of the
strike at each mounting point. This gave me the
idea for the current design.

3 Design and construction

The current physical design of the pad is as
follows (see also illustrations 2 and 3):

Hllustration 2: Corner view of the pad, showing
rubber buffers and bolts. You can also just see the edge
of the piezo sensor on the lower buffer.

* The playing surface is a square sheet of
aluminium.

* This is suspended between foam rubber
buffers in a wooden frame. The buffers

- . k-
Hlustration 3: The pad connected to the driver
circuit and a laptop

support the sheet above and below at
each corner.

* The two halves of the frame are held
together by bolts near each corner.

* Holes drilled in the sheet allow the bolts
to pass through the sheet without
touching it, so that it can move freely
with respect to the frame.

* Under each corner of the sheet is a
piezo-electric sensor, mounted above the
lower buffer, in such a way that all the
pressure from that corner of the sheet is
transferred through the sensor. The
distribution of strike pressure between
these sensors indicates the position of
the strike.

* Coax cables are used to bring the signals
from the sensors out to a circuit board,
where they are detected by an Arduino
microcontroller board and fed back to a
computer through usb bus.

* The whole thing rests on a soft foam
rubber pad to reduce the effect of
vibrations.

Full instructions on how to build one of these
pads are available on the web.'

4 Electronics

The electronics for the pad are pretty
straightforward - I used an arduino
microcontroller board to detect the voltage pulses
from the piezos; the only additional electronics
was a simple voltage source to provide a false

Ihttp://www.instructables.com/id/A-position-
sensitive-midi-drum-pad/

http://www.instructables.com/id/A-position-sensitive-midi-drum-pad/
http://www.instructables.com/id/A-position-sensitive-midi-drum-pad/

ground at half the arduino's 5v analogue input
range. This allows the board to detect negative
going as well as positive going pulses from the
piezos. The voltage range from the piezos matches
the arduino's analogue input range well enough
that no additional amplification or attenuation is
needed in practice.

The schematic for the circuit is shown in
illustration 4.

Lllustration 4: Schematic for the pad's input circuit.

5 Driver software

The driver software for the pad is in two parts —
a small firmware program on the arduino, which
feeds basic strike data back to a laptop through its
usb cable, and a longer program on the laptop
which calculates the position and velocity of each
strike from this, and sends this information to a
software MIDI channel. All the software is
available on the web’.

51 Arduinofirmware

The arduino firmware works as follows:

* On startup, the four analogue inputs are
read and the base readings stored.

* The four analogue inputs are then read
every 100 us. The base reading for each
input is subtracted to give the signal
level.

» If the signal level on any input exceeds a
trigger level, then the program starts a
measurement cycle.

The measurement cycle goes like this:

2http://ganglion.me/synpad/software/

» The signal levels on each input are read
every 100us for a set number of readings
(currently 10).

* At each reading, the absolute value of
the signal level on each input is added to
a sum for that input.

* At the end of the measurement cycle, the
summed values for each sensor are sent
as a comma separated text string back to
the laptop for further processing.

There is then a delay (currently 30 ms) to
prevent re-triggering on the same strike, after
which the program starts waiting for the next
strike.

52 Midi mapper

The raw data from the arduino is then
interpreted by a python program on the laptop (the
midi mapper).

There are two phases to using this program.
First, it needs to be calibrated with a set of strikes
at 13 known positions on the pad (which are
marked on the playing surface, as you can see in
Illustration 1). The raw sensor values and known
x-y position for each strike are recorded in an
array.

def mapCurve(p,sl,s2,s3,s4):

p is an array of 7
coefficients; sl..4 are the raw
sensor readings

k2,k3,k4,11,12,13,14=p #
give names to the coefficients.

the k coefficients allow
for different sensitivities of
the sensors.

fl=s1l # first k coefficient
is always 1

f2=52*k2

f3=53*k3

f4=s4*Kk4

the 1 coefficients allow
for irregularities in the
physical construction of the pad

x=(11*f1+12*f2+13*f3+14*f4)/
(fl+f2+f3+F4)

return x # the mapped
coordinate (either x or y)

Text 1: Python code for the position mapping
equation

http://ganglion.me/synpad/software/

Once the last calibration reading has been taken,
these readings are used to fit a simple equation
which is based on a rough physical model of the
pressures transferred through the sheet. The code
which implements this equation is shown in the
frame "Text 1' above. This is done separately for
the x and y coordinates, producing two sets of
coefficients which can be used to turn incoming
strike data into x-y coordinates. The algorithm
used to fit the data is the least squares function
from the 'scipy' python library>.

In the second phase, the coefficients from the
calibration are used with the equation to determine
x-y coordinates for live strike data. These are then
sent as a stream of midi events on a software midi
channel to a synthesiser. The way the coordinates
are encoded into a midi stream is as follows:

* first, 'set controller' events are sent on
controllers 70 and 71, corresponding to
the x and y coordinates.

* then, a 'note on' event is sent, with the
velocity proportional to the sum of all
the raw sensor values, and the note
number equal to the x coordinate.

This information can then be used by a
synthesiser to create a sound which varies
according to the x, y and velocity coordinates of
the strike.

6 Sound synthesis

In principle, the midi stream for the pad could be
fed into any drum-like soft-synth that is capable of
modulating the sound according to midi controller
values. (By drum-like I mean that the synth should
not require a note off event to end each strike
sound.)

However, in practice 1 decided to use the
Supercollider audio synthesis language* to
construct the synths for the drum. Other similar
environments, such as csound or pure data, could
have been used, but supercollider seemed to offer
the greatest level of control and flexibility, and
suits my way of thinking as a programmer. (Once |
had got my head round its syntactic quirks!)

The supercollider code I have written is
available on the web”. It is in two parts — the first

Shttp://www.scipy.org/
4http://supercollider.sourceforge.net/
Shttp://ganglion.me/synpad/software/

SynthDef.new("MidiDrum", { |

vel=100, x=64, y=64,out=0|

// synth drum with pink
noise, comb delay line and low
pass filter.

var rg=10**((y-40) / 41);

var env,amp;

var noteMin=55; // 200Hz

var noteMax=128;//66;

var note=(x*(noteMax-
noteMin)/127)+noteMin;

var baseFreq=100;

amp=16*((vel-96)/3) .dbamp;

env=EnvGen.kr(Env.perc(0.01,0.5,
1),1,doneAction:2);

Out.ar(out,amp*env*Pan2.ar(LPF.a
r(CombC.ar(PinkNoise.ar(0.1),1,1
/baseFreq, rq),note.midicps),
0));

}).store;

Text 2: A sample synthdef for the drum (written in
suprcollider)

(drummidi.sc) listens for midi events on a channel
and uses them to trigger a synthdef with the right x
and y parameters. The second part (synpad.sc) is a
set of synthdefs which have been written for this
interface. This code is still in a pretty crude state,
which works well enough for experimenting with
different sounds, but wouldn't really be suitable for
a live performance situation.

One of the synthdefs I wrote is reproduced in
frame "Text 2'. It takes 3 variable parameters — the
velocity and x-y coordinates — and converts these
into a percussive sound whose timbre varies across
the pad.

7 Resaults

In this section I will write about how the drum
performs in practice, starting with the physical
construction, then looking at the interface's
playability, accuracy and ease of use, and finally
discussing the synths I wrote to play it through®

6A video of the pad in use is avalable on the web. See
http://ganglion.me/synpad/ for alink to this.

http://ganglion.me/synpad/
http://ganglion.me/synpad/software/
http://supercollider.sourceforge.net/
http://www.scipy.org/

7.1 Physical construction

Actually building the pad was fairly easy. All
you need to make one are a few cheap materials,
some very basic carpentry and metalwork skills
(cutting and drilling wood and aluminium sheet),
and some simple tools. Mounting the piezos and
soldering the contacts to them was a bit awkward,
but no more than that.

Similarly, the electronics construction skills you
need are pretty minimal, as the arduino board is
doing most of the work.

7.2 Playability

The pad is fairly easy to play, with either fingers
or felt headed timpani sticks. The biggest problem
is the height of the frame above the board, which
can make it a bit awkward to reach the edge of the
playing surface.

7.3 Accuracy

The accuracy of strike detection is good enough
to get some reasonable results. The pad senses
velocity pretty well, although there is a lower
cutoff which makes it hard to play very soft notes.
The consistency of the position sensing is not bad
—if you hit the pad repeatedly in the same spot, the
position stays constant with velocity to about 5%.
There is a degree of distortion in the mapping
between pad positions and detected coordinates,
but this error is not so much of a problem in
practice, as you can adapt your playing to
compensate.

Drift from the calibrated mapping during
playing is small enough not to be a problem in
practice. The pad would probably need
recalibration at the start of a performance though,
especially if it had been handled roughly during
transportation.

In the time domain, the triggering delay
(latency) imposed by the arduino firmware is about
Imsec. I have not tried to measure the latency of
the midimapper program, but in practice the
latency of the combined system (firmware plus
midi mapper plus synths plus sound card latency)
is good enough that the strike sounds appear
immediate to my ear.

7.4 Thesynths

Writing modulateable synths which sound good
has proved to be the most difficult part of this

project. The first thing I tried was to play a sample
of a snare drum through a resonant low pass filter,
with the x-coordinate controlling the filter cutoff,
and the y-coordinate controlling the resonance.
This produces some interesting effects, and is fun
to play with. The drawback is that it is hard to
make strongly rhythmic patterns with it: because
the filter is resonant and the cutoff varies quite
rapidly across the pad surface, it's hard to hit close
enough to the same point to repeat a given sound
consistently — the sounds appear to the ear like a
series of separate tones rather than variations of a
single sound.

My next idea was to make something that was
based on a more consistent base tone, with the
strike coordinates modulating its timbre. This is
the synthdef reproduced in frame 'Text 2' above. It
is based on pink noise filtered through a comb
delay line and then a non-resonant low pass filter.
One coordinate controls the resonance of the delay
line (the comb frequency is fixed), and the other
controls the cutoff frequency of the low pass filter.
This produces a nice synthy sound, with the timbre
varying from noisy to ringing in one dimension,
and from muted to bright in the other. This is the
synth I used for the online demo video of the
drum’.

Some other things I tried:

* working through the percussion section
of the 'Synth Secrets' articles from
Sound On Sound magazine®. I managed
to make some half decent percussion
sounds like this (though cymbals are
tricky). The difficult part was more in
working out a meaningful way of
modulating the sound across the pad.
Because these synths have many
variables, any of which could be used as
modulation parameters, it's hard to
decide what combination of variables to
vary to get a nice result.

* Feeding audio samples into an FFT and
operating on them in frequency space in
various ways. [was hoping that this

’See http://ganglion.me/synpad/ for a link to the
video.

8See
http://www.soundonsound.com/sos/al | synthsecrets.htm

http://www.soundonsound.com/sos/allsynthsecrets.htm
http://ganglion.me/synpad/

would produce a series of modulateable
effects which could be applied to any
base sample, making for a rich palette of
sounds. However the results were a bit
disappointing, probably due more to my
lack of experience with supercollider
and audio synthesis in general than
anything else.
Overall, I think the basic concept of modulating
a synthesised sound across the playing surface is
good, and I've enjoyed writing and playing with
some simple synths. At the same time, I've also
come to realise that to there's a lot more to writing
synths from the ground up than I had originally
thought, and producing a range of effects good
enough for live performance could involve a fair
amount more work.

8 Similar work

In this section, I mention a few projects /
products which are working in a similar space.

8.1 KorgKaossPad®

This is superficially similar to the pad I have
made, in that it has a square playing surface which
you can use to control sounds in 2 dimensions.
However its function is quite different — it doesn't
have a velocity sensing function and its role is as
an effects processor for sounds generated
elsewhere, rather than an instrument in its own
right. It sells for around 300 USD.

8.2 Mandala Drum from Synesthesia Corp°

This has a circular pad with 128 position sensing
rings arranged concentrically on it. It can only
modulate the sound in one dimension rather than
two, but the design appears to be much more
polished and playable than mine. It is also sold
with a library of sound effects tailored for the
drum, some of which emulate the sound of a real
snare drum. They sell for about 350 US dollars.

Shttp://en.wikipedia.org/wiki/Kaoss Pad
Lonhttp://synesthesiacorp.com/about.html

8.3 Randall Joness MSc thesis on 'Intimate
Control for Physical Modelling
Synthesis

This uses a 2D matrix of copper conductors
arranged perpendicularly on either side of a rubber
sheet. Each north-south conductor carries a signal
oscillating at a different frequency, and the east-
west conductors pick up these signals by
capacitative connection, to an extent which varies
according to where pressure has been applied to
the rubber sheet. The signals are generated and
received by a standard multi-channel audio
interface, and interpreted in software on a

computer.
This project is probably the closest to mine in its
intent — it's a midi drum surface with two

dimensional position and velocity sensing. It has
also been designed in a way that most people could
build one themselves. As far as playability goes it
looks to be way ahead of mine — it is multitouch,
can detect continuous pressure changes as well as
instantaneous strikes, and the profile of the frame
around the head is lower, which should make it
more comfortable to play. It is also self-
calibrating, so doesn't need to be set up again
every time you play.

Its main drawback is complexity and the
associated cost. There is a lot of signal processing
going on to produce the admittedly impressive
result. The fact that it depends on a separate sound
card also makes it fairly expensive compared to
my project.

9 Improvementsand futuredirections

Here I discuss ideas for where I might take this
project in the future.

If I was to stick with the current basic design,
there are a few simple improvements I could try, to
make it more playable and responsive. For
example, instead of a single wooden frame, the
aluminium sheet could be held in place by metal
discs bolted to the base board at each corner. This
would make it easier to reach the pad surface when
playing.

There might also be small improvements
possible in the firmware and the midimapper, to

http://2uptech.com/intimate _control/ Video here:
http://vimeo.com/2433260

http://vimeo.com/2433260
http://2uptech.com/intimate_control/
http://synesthesiacorp.com/about.html
http://en.wikipedia.org/wiki/Kaoss_Pad

improve the consistency and accuracy of the
position sensing.

However, since having looked at Randall Jones's
design, I'm thinking that this is much closer to the
direction things ought to be going. So, in the future
I would be more interested in developing
something which offers a similar degree of
responsiveness and playability, either by adapting
his design to make it simpler and cheaper to build,
or using some other technique.

I also have a few ideas about developing the
associated software to make it more powerful and
easier to set up and use. For example, it wouldn't
be hard to build a graphical interface which would
let you swap between different synths, rather than
having to evaluate supercollider code to do this, as
at present.

One idea I would like to have a go at is to make
some synths with several variable parameters, then
find a way of assigning parameter-sets (presets) to
different points on the pad's surface. It should then
be possible to use some kind of mapping algorithm
to smoothly vary the parameters of the synth
across the pad's surface in such a way that at each
preset-point, the result sounds like the preset you
have assigned to that point, and in between points
the sound smoothly morphs from one preset to
another.

10 Conclusion

In conclusion, I think that the basic concept of
creating a 2 dimensional playing surface for synth
percussion sounds is sound, and has a lot of
potential. I have been fairly successful in
achieving my aim of making such a surface using
cheap, simple components. However, this
particular design has a number of flaws, such its
lack of multi-touch and continuous pressure
sensing abilities, the need for calibration, and a
degree of physical awkwardness in playing it, due
to the height of the mounting frame.

I am planning to continue developing the idea,
and may put some more work into refining this
design, but in the long run something like Randall
Jones's design looks like a better way forward for
this kind of interface.

On the software side, the hardest part is
producing good synth sound effects for the pad.
Because this kind of interface is quite new, it is
necessary to write new synths for it from the

ground up rather than using existing ones. There is
also a lot of room for improvement in the
supporting software more generally, and I am
planning to put some more work into this in the
future.

11 Acknowledgements

Thanks go to Alaric Best and Dave Leack of
Veraz Ltd. for their thoughts on and
encouragement with the project. Also to the
writers of the Supercollider audio synthesis
language, without which the task of writing a synth
for the drum would have been ten times harder.

References

[1] R. Jones. 2008. Intimate Control for Physical
Modelling Synthesis. MSc Thesis, University of
Victoria.

	1 Introduction
	2 Research
	3 Design and construction
	4 Electronics
	5 Driver software
	5.1 Arduino firmware
	5.2 Midi mapper

	6 Sound synthesis
	7 Results
	7.1 Physical construction
	7.2 Playability
	7.3 Accuracy
	7.4 The synths

	8 Similar work
	8.1 Korg Kaoss Pad9
	8.2 Mandala Drum from Synesthesia Corp10
	8.3 Randall Jones's MSc thesis on 'Intimate Control for Physical Modelling Synthesis'11

	9 Improvements and future directions
	10 Conclusion
	11 Acknowledgements

