W. Stride A dynamic function (touch sensitivity) greatly increases the flexibility of expression available to the player of a music synthesizer. This circuit achieves the dynamic function by measuring the change over time of the keyboard switches, and hence the velocity of the key depressed. The circuit is basically composed of three parts; firstly an RC time-constant network ($R_1 \, C_1$) controlled by the keyboard switches, a buffer amplifier and monostable ($Q_1 \, IC_3$) and a sample / hold circuit (IC_1 , $C_2 \, IC_2$). Normally C₁ is kept charged up to +7 volts through the 'chain' of closed keyboard switches. When a key is depressed, the 'chain' is broken and C₁ discharges through R₁. As the key is further depressed, contact is made with the trigger busbar, TR₁ is turned on, and the monostable triggered. The monostable gives out a 1 millisecond pulse, which causes the analog switch (IC₁) to close allowing C_2 to charge up to the voltage on C_1 at that time. After this, the voltage is stored on C₂, the output being buffered by IC₂. Since the input impedance of IC is $\sim 1.5 \times 10^{12}$ ohms the delay time of C₂ is very long. An output is available from the emitter of TRQ1 to trigger envelope shapers etc. To make sure the response is the same all over the keyboard, the distance between the gold wires on all the contact assemblies should be made the same.