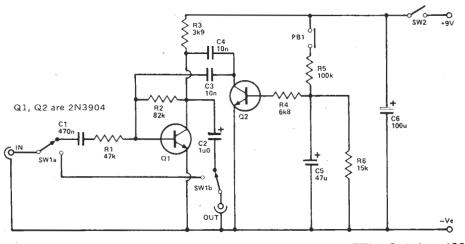
DESIGNER CIRCUITS

Waa-Waa Unit


An unusual feature of this circuit is that the Waa-Waa efect is obtained by operating a foot-switch, rather than the more usual method of operating a potentiometer via a pedal mechanism. This method is slightly less versatile than a proper Waa-Waa pedal, but is far simpler for the home constructor to build since it avoids the need for any pedal mechanics.

The basic Waa-Waa circuit uses a quite conventional arrangement based on common emitter amplifier, Q1. Frequency selective negative feeback is provided by C3, 4. These provide little feedback at a certain frequency. A peak in the response of the amplifier is produced at this frequency, as the lack of feedback enables virtually the full voltage gain of Q1 to be realised. The actual frequency at which the peak is produced can be controlled by means of a resistance between the junction of C3.4 and the negative supply rail. With a high resistance here the peak is produced at a high frequency. By varying the control resistance the peak can be swept up and down the audio frequency spectrum, producing the familiar Waa-Waa effect.

The control resistance is formed by the collector to emitter impedance of Q2. Under quiescent conditions Q2 is switched off and the peak is at such a low frequency that it is effectively non-existent. If PB1 is operated, C5 charges up via R5 and, as the voltage across C5 increases, Q2 is biased harder into conduction by the base current it receives through R4. This causes the peak to be swept up through the audio band until C5 becomes fully charged. If PB1 is then released C5 gradually discharges through R4, Q2 and R6, causing the bias on Q2 to decrease and the peak to be swept down the audio spectrum. Thus the required effect is produced by closing and opening PB1. The Waa-Waa frequency is partially controlled by the fre-

quency at which PB1 is operated, but C5 restricts the range of frequencies that can be obtained in practice. However, the value of C5 can be altered to suit individual requirements, or several switched components of different values could be used.

SW1 enables the Waa-Waa circuit to be quickly and easily bypassed. R1 is needed to reduce the gain of the unit which would otherwise be excessive. Current consumption is about 2 mA.

