Digital Electronics
for Musicians

Build Intuitive Electronic and
Electroacoustic Music Interfaces

. Alexandros Drymonitis

\ s .
APTess®

Digital Electronics
for Musicians

Alexandros Drymonitis

ApPress’

Digital Electronics for Musicians
Copyright © 2015 by Alexandros Drymonitis

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1584-5
ISBN-13 (electronic): 978-1-4842-1583-8

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Michelle Lowman

Technical Reviewer: Johan Eriksson

Editorial Board: Steve Anglin, Pramila Balan, Louise Corrigan, James T. DeWolf, Jonathan Gennick,
Robert Hutchinson, Celestin Suresh John, Michelle Lowman, James Markham, Susan McDermott,
Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers

Copy Editor: Kimberly Burton

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).

SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales-eBook Licensing web page at waw.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com/9781484215845. For detailed information about how to locate your book’s source
code, go to www.apress.com/source-code/. Readers can also access source code at SpringerLink in the
Supplementary Material section for each chapter.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com/9781484215845
http://www.apress.com/source-code/

Contents at a Glance

About the AUthor ... ———————— XV
About the Technical ReVIEWETcussnsssassnsnsnsns Xvii
Acknowledgments........cccccuuiissssmmnnmmmmmmssssssssssssmnmmessssssssssssnssensssssssssnnnnnnnsnssssssnnnnnnns Xix
INtroducCtionccuiieermssannmsssnnmsssnnmsssnnsssannsssannnsssnnsssannnsssnnssssnnssssnnssssnnnsssnnnsssnnnnssnnnss Xxi
Chapter 1: Introduction to Pure Data...........ccccmmmmmmnnninnnnnssssssmnnnnsnssssssssssssessssnes 1
Chapter 2: Introduction to Arduino.........ccccrnissenmmmnsssssnnmssssssssmssssssssesssssnssssssssnnns 51
Chapter 3: Embedded Computers and Going Wirelesscccussseensssssssssssssssannnns 97
Chapter 4: Getting Started with Musical Applicationscccuseemmnisssnnnmnsssnnnns 141
Chapter 5: A Simple Synthesizer Using a MIDI Keyboard and Arduino 177
Chapter 6: An Interactive BOW........ccccseemmmmnsssemmmnnssssnmmssssssnmsssssssssssssssnsssssssnns 233
Chapter 7: An Interactive Drum Setl........ccccvnrmmmnnnsennmmmmsssnnmsssssmssssssn—ms 267
Chapter 8: A DIY Thereminccuceseesssmmmmmmmmssssssssssmsssssssssssssssssssssssssssnssssssssssssnns 317
Chapter 9: Making @ LOOPEccccummrmsssnnnmmssssnsnssssssssnssssssssnssssssnsssssssnnnnsssssnnnnss 363
Chapter 10: A Patch-Bay Matrix SynthesSizercccivnnsmmnnnnssssnnnnnssssnssssssnnns 417
INdeX.ciiiiiirii e ——————————————=—— 481

iii

Contents

About the AULNOFcceiiiiieemmmmisssnnmssssn s annn e s annn e e nnnn s XV
About the Technical REVIEWETcuussesssssanssssanssssansssssnsssssnsssssnsssssnsssssnsssssnnssssnnssss xvii
AcknowIedgmEeNtS.......cceerrmssssssssssnmmmmsssssssssssssssssssssssssssssnnnsssssssssssssnnnnnnssssssssssnnnnnns Xix
INtroducCtionccccmmissnnnnmmssssnnnmsssssnnnnsssssnnnnsssssnnnnnsssnnnnnnssssnnnnnssssnnnnnsssnnnnnnsssnnnnnnnssn XXi
Chapter 1: Introduction to Pure Data..........ccccccmmninemmmmnnnssnmmmnssssnmnssssnmmsssssns 1
Pd BasiCS: HOW [t WOIKS.......cccurerrerrensessessensessesssssesssssessesssnnes 2
OUP FirSt PAtCR.......eceeeeeee e r e 3
The Control DOMAIN ... e e s e e e e b e e p e e 6

L o T [0 (T (o T O RORSR 7

5 T O 8

0] 1) 1T 1 OO RSRRSR 10
(6T 1 5 (-] SRS 10
GUIS .ottt R e A AR e R e e R e Re e e Re e aean 11
Pd Patches Behave LiKe TEXt FileS........ccoouveririineicsncsisse e sn e sssessssesnsssnnens 12
Making OSCillators in Pd..........cccvorircenirsrser e 13
Making a Triangle Wave OSCIllator ..o s 14
Making @ SaWto0oth OSCIllATON ..o s 15
Making @ Square Wave OSCIllator.............ococoeerrencnineecsess e 16
USING TADIES IN P ... sa s saesaesa s sn e a e sa e sa e sn s sn s sn e n s 17
Subpatches and ADSEraClions..........cccccvveercrernc e 20
Control Domain vs. Signal DOMAIN..........ccceeerereresere e sss e s snssnssssseas 24
AUiO INPULIN P ...t se e se e s s s s sn e s sn e saesn e sanennesanennenns 26

vi

CONTENTS

Basic Electronic Music TEChNIQUESccccecrverrerrerirer s 27
AdAItIVE SYNTNESISceeeeccererceirer e nnnnns 27
RiNG MOUUIALION........c.ceeeeceie e e e enp s 28
AMPIItUdE MOAUIBHION........ceeeereeeee et nennns 29
Frequency MOTUIALION ..o p s 30
ENVEIOPES ..ot R e e e e R e 31
DElay LiNES iN P ...t se s ne s 34
REVEID ...ttt R e AR e R e e e R e 38
T OO STSTP 39

Making Wireless CONNECLIONSccvcerverrersersersessessesses s s s s sessessas e e sessessassassssssssnes 42
AUdio and MIDI SETHNGSveceeeererererrererrerserereseseresersssessssessesessessssessssessssessssessssssssssssessssessssersesssssnssaes 46

Additional TROUGRLS........coeeeeecccecere e sresr e sresr e resn e sn e nennennnnns 49

0] o (1 o o PSPPSR 50

Chapter 2: Introduction to Arduing..........cccccumssemmmssensmssnsmssssmsssssssssssssnsssssnssnsns 51

Arduino JUMP STAr ... a e 51

g 30 I 52

The BIINK SKEICHcceiicircri s 33

Digital INPUL.......coeeeeeeerrer e a e s n s 39
Defining Variables in ArQUINO.........cc.ouececrerrecrieecs s 60
Further Explanation 0f the COTE ... 60
Classes in Arduino and the Serial ComMUNICALION...........cccocrerenenencninenenenere s 61
FURTNEr EXPIANALION ..ot e e e p s 61
Building Circuits 0n @ BreadbOard............coeeeeererensenenesnesesesssesesesssssssesssssssessssssssssssssssssssssssssssssssssaes 61

Pull-up vs. Pull-dOWN RESISIOrSccccveeverierririeereree e rssessessssssesssssesssesssssssssssssssssesaesns 64

Both Digital Input and QUEPUL ..o 66

ANQIOG INPUL ... sn e sn e nnennn e 69

Analog Input and QUPUL........c.ooerececer e sn e nnenens 7

Reading More Than One Pin, Arrays, and the for Loopccccvererrssrcessssessessessessenneas 74
EXPIAining the fOr LOOP.......ccoiiirere sttt n e s st sn s s s a e se s snnnens 74
USING Arrays in AFQUINOcoeeciieiencriressese e se s e s s s s b st se s s e s a e e ne e nenesnnsnnnnns 75

CONTENTS

Analog and Digital INPUL ..o 77
Communicating With Pd ... 81
Sending Data from Pd t0 Arduinogcceeeeeesrsssesss s sns s 91
00] o [T 0 o PSPPSR RRRN 95
Chapter 3: Embedded Computers and Going Wirelessccccsrrrmsssssssnsssnssssssssnns 97
Before YOU BEgiNcccevierriiicnincse st s snnne s 97
PartS LIStccoeiiisiriit i 98
Why Use Embedded COMPULEIS?cccvcreeriercerrer s se e e s e s s s snnnns 98
Which Embedded COMPUIEI? ..ottt s e e e e sa s s s e e e sa e sa e e s sassa e sa e sn e saesannae s 99
Getting Started With the Pi..........ccoeoicerniresrcrererr s 100
GEtting YOUr COMPUEBI'S IP.....o.eeeee ettt 101
Logging in the Pi from 0S X @nd LINUXceceeeerrrrencrirneesesesesesesesssssesessssssesessssssssessssssssesssssssssnns 102
Logging in from WINAOWSoueeeeeerreecrissescsessse e sesss s ssssssssesssssssssssssssssssssssssssasnns 102
CONFIGUIE e Pl 106
Navigating Through the LinuX SYSTEMccccvvrrerrrnnsenserserses s e e e e e sessesenns 107
Editing TEXt FIlES iN LINUX ...vcoveceeeereerererereresersssersesessssessesessessssessssessssesssssssessssessssesssssssssassesassesssnenes 109
INSEANlING SOMWAIE ... sr e r e sn e sn e snenrenen 110
TS e LT T N oo OO 110
LAUNCRING PU........eeee et p e e e e p e p e s 111
Setting up External LIDraries in Pd ... sse e ssssessssessessssens 112
INSTAIING AFQUINO....c.veecctccee e e e e p e e e e e e p e e 114
Let’s Talk ADOUL VEISIONScocvrereririsisisisisisisisisisisis s sssenes 115
Exchanging Files Between Your Computer and the Pi...........cccoovevennicnnsenenessesennennes 116
Transfer Files from 0S X and Linux to the Pi, and Vice Versa..........ccccocvvvrvrnvnncnenencevensenessessenennns 116
Transfer Files from Windows to the Pi and Vice Versa............ccoovrnnnnnnnnssessesesesesesesesesesesenens 117
Changing the IP 0f the Pi......ccceeeececercerrrr s sae e e 119
Setting @ STatic IP 0N LINUX.......ccoverererecreesereseresesessssessesessesessesessessssessssesssssssessssessssesssssssssassssassens 120
Setting @ STAtiC IP 0N 0S X.....coevererrerecree s st res s s rsesesae e s e sasaesas e saesessesesaesassesassesaesesassesseanaens 121
Setting @ Static IP 0N WINUOWS.......ccccereererererererereressssereesessesessessssessssessssessesssssssssesssessssssssssssssassens 122
Log in t0 the Pi WithoUt @ ROULETcovveverereereree st rese s reesessesessesessesas e sassesassessssessesassesassenes 123

vii

CONTENTS

Shutting DOWN the Pi........cccoeeeiiierincrerse s sesssssssnsnens 124
GOING WIFBIESS....veruereereereereersersessersessessessesaessesaessssaesassassassassassassaesassaesassassaesasssssassasnnnns 126
BIUEOOth VS. XBEE.....cciiiiiiiiiiii s 126
Using a Bluetooth Module With ArdUINOcoceeereerrererererereercrre e rerese s e ssesessesesassessesassessssenes 128
Using the XBee With ArdUing ... 131
0] 3T 1o 138
Chapter 4: Getting Started with Musical Applicationsccusemrrnissennnnnssannns 141
0 I 141
Phase Modulation INterface...........ccoevreennrennennsesr e 141
How Phase Modulation WOTKS ..o 142
MaKing the Pd PAIC...........ccoeireeese et e 143
Arduino Code for Phase Modulation PatCh ... 146
Circuit for Arduing COOE.........c.coererereerereerereeese e 149
A Simple Drum Maching INtErface........ccccvvereerieeririeerser e ssee e ssse e ssse e ssaessessassns 150
50T o [T T T TN 2 I o2 1 (1 151
Arduino Code for Drum Maching PatChcvvinnnnssss s 162
Drum Machine and Phase Modulation Combinationccevnmnsennnnsnnssennnns 166
AFAUIND COUE ... 166
Arduing GIFCUIL......cocviriririrircririsisisis s 169
Pd Patch for Drum Machine-Phase Modulation Interface..........c.coovvnninnnninnnnnnnsssses 170
00] T [T [0 o TSR 176
Chapter 5: A Simple Synthesizer Using a MIDI Keyboard and Arduino 177
o L Gl I PSSR 178
WHAL IS MIDI? ...t sn s sn s srenr s ne s nn s nner s 178
Pd and MIDI ..ot sn s n s nr s n s sn e nr s nn s n e nn s nn s nnennnn 179
HOW [NOTEINT WOTKS ...ttt s e e s s p e e 180
Using a Different Tuning and an Amplitude Envelope with [notein].........cccovvinivnicncccnccnscccnnenn 181
Polyphony With MIDEIN Pd........corencr s sn e ns s e sn e sa s sae s 183

viii

CONTENTS

MIDI Control MeSSAQES iN PU........ccceeerererereriere s seseesesesesessssessesessesesssssssessssessssessssssssssssesassesssnenes 186
Pitch Bend MeSSages iN P ..o sse e s sss s s ssesssssssssssssssssssasssssssssssssses 188
Program Change MIDI MeSSaQges iN Pd...........couvnmninnnssssssssssesssssssssssssssssssesssssssens 190
Arduing Code........coiruienmriiiiriei s 191
EXPIaining the COe.........cvnninniiiiiis s 194
o0 I o 1 (] 1 OSSPSR 196
The arduino_Stuff SUDPALCHeeeeeee e 197
The create_envelope and generic_data SUDPAICNEScccovvererernerenirne e 198
The [poly_Synth~] ADSTFACLIONceeeererrreesirerse e sa s e n e nnnnns 200
The [pd $0-voice_creation_loop] SUDPALCH..........ccccururerererereresectrerere s assseseessnees 201
How Dollar Signs WOIK iN Pcccvieenernnesesssrsssessssssssesesssssesessssssssessssssssssssssssssssssssssssssssssssasnns 203
The [Synth_v0oiCe~] ADSTIACTHION........cccceeerrrecrerr s p e nn s 203
The filter~ SUDPALCH.........cccereriecrrr e e esp e nnnr s 210
Done with Patching, TIMe 10 TES.......cvccceincrerrrresesrrre e 211
Arduino Receiving MIDI Messages from the MIDI Keyboardc.cccccvvvrcrceererienne, 213
Arduino Circuit AdGItIONS ... 213
Arduing Code AdGItiONS ... —————— 215
Pd Patch Receiving MIDI Data from ArdUiNO.........ccoveverinennrn e ssssessss s ssssesssssssssssss s 217
Running the Pd patch on Raspbherry Pi.........ccocvcrcrcrcs s 219
Launching Pd on Boot with the Raspbian Jessie IMage...........ccccerrriencnernencsensese e 220
Launching Pd on Boot with the Raspbian Wheezy Image or with Another Embedded Computer
RUNNING DEDIAN JESSIE ...t e s e 221
Shutting Down the Pi (or Any Embedded Computer)
While RUNNING HEAAIESSccoveeeeerereeceseseccresis s 223
A Small Caveat for the Raspbian and Debian Wheezy Imagesccccorreverrnesesenenesescseseeeseneneas 224
Using an External Sound Card With the Pi............oeeeeee e 225
Editing the Pd Patch When Pd is RUNning on BOOtccovuiiiennencecreneesesesee e 227
Enclosing the Pi in the Keyboard............ccouceeeieenicicsnscsssesessse s ssssennas 228
Choosing the Perforated BO@rd............cccceererreienerrsrsssesessssesesessssssesessssssssessssssssssssssssssssssssssssssssssssssnns 228

ix

CONTENTS

Reducing the Wires of Your Circuit Board............cccuovenriernnmsesnsesessssesessessesessesesesnes 229
Choosing the Right Power Supply and Getting Access to the Power Pins..........cccccvevrevrccnenccrenenn 230
AcCESSING The MIDI PINScoveuieeeeirirecsereseesesesss s se s se s sessssssssesssssssssssssssssssns 230
Bringing the Power Input and Audio Output out of the ENCIOSUIEcccovrureecnerencrerereneeeseeeeeens 232

CONCIUSION.....ceieicccii e 232

Chapter 6: An Interactive BOW........ccccuseemmmnisssesnmnnsssssnmmssssssnmsssssssssssssssssssssssnnns 233

PartS LISt ..o 233

Writing Custom FUNCLIONSccocevcrcerirer s 234
A Function of the Data TYPe VOIdcceeeierninnrne e sss s sessesss e ssssessesesnes 236
Actual Code for the ProjECL..........ccoe i r e a s s p e 237
The Test Circuit of the ACCEIErOMEter...........cocvvrnnnnn s —————— 240
The TeSt Pd PatCh ... sssaes 242

Building the Pd PatCh ..o 243
How to Use the Graph-0n-Parent FEALUIEceceeceerereccrirreeserese e 243
Setting the Properties of the GOP GUIS...........coeeererereresirneescresee e sessssens 245
What We Have Achieved So Far in this Project’s Pd Patch ... 245
Using the Canvas to Create Visual FEedbhack...........ccocvvreeererereicnerinnesesirse s 246
Building the Audio Processing Part of the PatCh ... 248
The FiniShed PatCh ... 255

Additions to the Arduing SKetCh..........ccccevvmmnns s 258

Finalizing the CiFCUIL...........coceeeeeeece s sr e sr e snesn e sn e snesn e sn s snesnennennns 260
Using Bluetooth and a Voltage Divider Instead of the XBee.........cccccevvrernicrnvcnnsnccnssenesesessnens 264

00] T [T [0 o TSR 266

Chapter 7: An Interactive Drum Set.........coorrmmmmmiinnnnnssssnn . 267

o L Gl I PSSR 267

Other ThiNgS WE'll NEEdcoeeuereererereereesee e see e ssssaessssasssssssssssassasssssassassasssssasssssnnns 268

First Approach to Detecting Drum HitS........ccoccvcrcrcrsncs s snnens 268
First Version of the CirCUItc.covrnnininnnninissss s 269

Read the Drum HitS iN Pd ..o ssssssssssssss s ssssssssssssssssssssnssssssnssanssnens 270

CONTENTS

Getting the Maximum Value in ArdUINOD.........cecceerererererererereresserse s sesseresesassessesessssessssassesassessssenes 271
Getting the Maximum ValUE iN Pd..........covevrierererrrirsrere s ssssersssessesessesessesssessssesssssssssassesassessssenes 277
Having Some Fun Before We Finalize...........cccvcveervercercscs s ses e 280
Working Further with the Circuit and Arduing COUEcorrerererreicrireeereree e 282
Adding Switches and LEDs to the Circuit and COdecoereecrerrercrernecrerese e 282
Building the Final Pd PatChccoeoieeicresrcsc e 289
Building the Audio File ADSIraCtion...........covvceeerrinesenrrcsese e enes 289
Building the Abstraction to Receive Input from the Arduino............cocoeoeeeeenenerencnenencseeereeeereeeeee 301
Sending the Threshold and Debounce Values to the Arduinoccoecrevrerrcerncersrere e sererenaens 302
THE MAIN PALCN.......coceeec e 302
Finalizing the Arduing COE..........ceverrerrerrerserserserses s s sesses e se s e sns e s snssnssassnssassasnnnns 308
Making the CirCuit ENCIOSUIEc.coeieeecececeectecsecse e sse s s e s s s sns s snenns 311
CONCIUSION.....cuieiccccirr e 315
Chapter 8: A DIY Thereminccccceeemmmmmmsssssssssssssnsssssssssssssssssssssssssssssnsnnnssssssssns 317
T I 317
Using a Proximity Sensor with the Arduingcccoceercveenicrec s 318
Refreshing Our Memory on SEralWILEccccveeererrerererereree e sse s e erae e sse e saesessesassesassenes 319
ProXimity SENSOr CIrCUIL......ccecereerererererereresseree e s ssssesseresessssessesessesessesassesassessesessssssasassesassesssnenes 319
Pd Patch That Reads the Proximity SEnsSor Data.........ccccvcevvvererrereneresereresseres s sessesessessesenes 320
Smoothing out the SENSOr VAIUES...........cccveeererererircrs e sese e se s saesessesessesassesassesassessssasssnasaens 321
Using Two Proximity Sensors and Four Potentiometers..........ccccoeeeeecececscessessennnnns 326
The Arduineg COGE ... 327
THE CIFCUIL ... e 329
The Pd PAICh.......ce 330
Building the Oscillators for the THEremin...........ccoovceeerceresnsessse s 331
Creating Band-Limited WaVefOrms.........c.couvvererinesesesnsesesssssesesssssssesssssssssssssssssssssssssssssssssssssnes 331
Reading the Stored Band-Limited Waveforms...........cocvverernnnnenesssssssesssssssessssssssssessssssssesssssssssnens 335

xi

CONTENTS

Finalizing the INterface...........coccoverinirenscre e 339
Adding Push Buttons to the Arduino Code to Control the Waveforms of the Oscillators..................... 339
MaKINg the CIrCUILcoveveeceereccir e e 343
PULEING [t Al TOGETNE ...t 345

Enclosing the Project with an Embedded Computer.........ccccvvvvrvrvrvrsnsenses s 354
Adding a Push Button for Switching off the Embedded Computer.........ccocvcvevverrerercerenreresrereenenens 356
Reading the Extra Push BUHtON iN Pd..........ccoeerevrer et sesse e seses e ssesesaesessesessesassesassenes 358
Writing the Script to Shut the Embedded Computer DOWNccccveveriererreressereerereesessesesessssessesenas 360
Loading the Pd PatCh 0N BOOL...........cccoerirerirerercre e sse e ssesas e ssesesassessssesaesassesssnenes 360

0] 3T 1o 362

Chapter 9: MaKing @ LOOPEYccccccerrrssssnmnmsssssssnssssssnssssssssssnssssssnnsssssssnnssssssnnnnss 363

a0 I 363

What IS @ LOOPEI?.......ceeeerererer sttt sn s s n e e 364

Recording Our First SOUNAS iN Pdccocvvrininrererserser s ses e e sas e sesnens 364
Playing Back the ReCOrded SOUNG...........cccevurrereerereerererrerererersssersesessesesssssssessssessssesssssssssessesassesseneres 365
Changing the Direction of the PlaybhackK...........ccceererrrrrcerrie s se e sessesaeenes 370

Making Recordings of Arbitrary Lengths.........cccocverircrcscssssesses e e 372
Retrieving the Length of the ReCOrding.........ccovcrvcircncrnsc e 374

L0412 (o 111 0] o o TSR 376
Getting Rid OF ClIPPINGccoceereeecrerereseerirrs e s e e sn e 376
Getting the Start Position of the OVerdubbing ..o 377
Knowing When to Stop OVerdubbingccccecernencninneesesesee s sesessssssssesessssssesssssssssnns 378

Synchronizing End of Recording with Beginning of Playback...........ccccecvvvvrvrcercnnnen. 380

Start Building the Interface ... 381
Writing the Arduing COTE.........corcrerererr e s r e s s r s e p e e nenrenas 381
Building the Circuit on @ Breadboard...........cccovvreriecncrnersrcrerese e sss e sse s 392

Working Further on the Pd PatCh ... 393
The Recording MOTUIE..........cccov e e 393
THE PRASE MOTUIEceeeeieecee e 394
The Playback MOTUIEcccourureeirirecrirereeeress e nn s 396

xii

CONTENTS

The OVerdub MOQUIE.........cciei s 396
The Overdub PoSition MOUIE............cocociiriniiiis s s 397
The Arduing MOTUIE..........ovrrnisiiii 399
The Table COPYING MOUUIEc.ecereerererererereresserse e sse e ssessssessesessssassesassesassesasssssessssesassesassesssnsnaes 400
PULting I AL TOGEINEN ... e r e a e r e e s 403
Making Some Final IMprovements...........cccvercrcrsssesss s snssneens 406
Modifying the Arduing COUE.........cccoreiieererrecri e 406
Modifying the Pd PAICH.........cooeceee e 409
Enclosing the Circuit in @ BOX........ccooveereeenseresssessssesessssessssessssssessssssssssssesssssssesssssnnes 414
CONCIUSION.....cceecc it 416
Chapter 10: A Patch-Bay Matrix Synthesizercccounnmmmmmmnnnnnmnnnnsssssnnnnnemmn. 417
PartS LIStcceiicsiriniinss s 417
What We Want to Achieve in this Chapter..........ccccvrrvrirsssscs e 418
Extending the Arduino Analog Pins.........cccvvrvrnniennersesses s sesses e e e ssssesenns 419
HOW @ MUIIPIEXEE WOTKScoverieccerrsreceresssesesssss s sesssssese s sssssessssssssesssssssssssssssssssssssssssnssssssssasnes 421
Writing Code to Control @ MURIPIEXEcceeeeereeecrrrrse e se s se s snssns 422
Wiring 16 Potentiometers 10 the MUIIPIEXETccceeerireeserrrrescrerse s sessns 426
Reading the 16 Potentiometers in Pd............cccceirencnnnccsesrsesess s sssssssenns 427
Extending the Arduino Digital Pins ... 428
Using the INPut SNift REJISTE.......ccvveerererererrerre st res e sre e sse e sse e s ae e sas e sae e saesassesasnenes 428
Using the Output Shift REGISIETccceverrerrer e ra e sa e e e 434
Combining the Input and Output Shift REGISIErSccccevrcerrrerrrerr e 439
Making a Patch-Bay MatriX...........cccverircersnsnsesses s se s e s snnnns 441
Implementing a Patch-Bay Matrix with the Arduing............ccoreeeeerneessneerr s 441
Making the Pd Patch That Reads the COnnections.............ccooreoernriccncnnneseses e 445
Making the Patch-Bay MatriX CirCUIL...........ceoeeeririeeeee e 447
Start Building the Audio Part of the Pd Patch..........ccccooeerireercceecreeescceeesceeeens 449
A Signal MaLFiX iN P ..o s s se s sesssss s e sssssssssssnsans 449
Building the Modules for the SYNthESIZErccoveeerrncrererreesere e 451

xiii

CONTENTS

The FINAI PALCN.........coeeerceter e 466
The arduino_stuff SUDPALCN ... —————— 467
The Final Arduing COdE ..o 471
Using Binary NUMbers for MasKinNg.........ccccverererereererererseressessssessesessesessessssesssessesessessssssassesassessenenes 475
The check_connections FUNCHON ... 475
The Main [00P FUNCHONccceeverere s rerereseseseree e sessesasserassessesessssessesassessssesassessssassesassesasnesasenaes 475
Controlling the LEDs with the Switches of the Shift RegiSters.........ccevvrerrrerrrererererrerereresereesenns 476
The Final CirCUIt ..o 476
MaKing an ENCIOSUNE.........c.coerereeceerie e s s sse s saesaesne s s e sassaesassaesaesassnssnennennns 477
Shutting down the Embedded COMPULET..........cooerrriirerrccr e se e 478
CONCIUSION.....ceieicccii e 479
INA@X . iiiiiissnnnnnnnnnnnnsssssssnnnnnnnnnnesssssssnnnnnnnnsssssssssssnnnnnnnnssssssssnnnnnnnnnnssssssssnnnnnnnnnnsssssnnn 481

xiv

About the Author

Alexandros Drymonitis is a musician from Athens, Greece. He studied

at the Conservatory of Amsterdam, where he got his first exposure to
music technology. Ever since, he has been creating electronic music using
open source software and hardware such as Pure Data and Arduino, as
well as giving workshops on electronic music programming and digital
synthesizer building. He is also very keen on community building, and is a
founding member of the Patching Circle Athens group, a group of users of
visual programming languages.

XV

About the Technical Reviewer

Johan Eriksson is a composer and electronic musician from the north of
Sweden. He has a first class degree in composition from the Birmingham
Conservatoire in the UK and has had his work commissioned and
performed across the UK and Sweden. Johan has been releasing records as
“Monolog X” frequently since 2007. Modular synthesis is very dear to him,
especially the Pure Data language. In early 2015, he released XODULAR,
which is a virtual modular synthesizer environment in Pure Data that was
given a very warm welcome by the Pure Data community and introduced
new people to the language.

xvii

Acknowledgments

The communities of Pure Data and Arduino have been of great assistance prior and during the writing of this
book. Also, I would like to thank Michelle Lowman from Apress for asking me to write this book, as well as
Miller Puckette for creating Pure Data.

It wouldn’t have been possible to reach a point where I would be able to write a book on these subjects
without the long support of my parents, and I wouldn’t have been able to write this book without the support
and patience of my lovely wife.

Xix

Introduction

This book aims at giving insight on a few of the most widely used tools in the fields of creative coding and
DIY digital electronic musical interfaces. It is a result of personal exploration in these fields and an attempt
to gather information about the combination of the very popular prototyping platform, the Arduino, with the
also very popular visual programming language for multimedia, Pure Data (a.k.a. Pd).

The main focus of the book is interactivity with the physical world, and how to make this musical. It is
split among several projects where each project brings a fresh idea on how to combine musical instruments
with computers, whereas the use of programming builds up gradually. Also, this book uses only open source
software and hardware, because of the great advantages one can have from an open source community, but
also in order to bring the cost of every project to its minimum.

At the time of writing (December 2015) Pd is at a turning point. Being split in two major version up to
now, Pd-vanilla and Pd-extended, the latter version is used throughout the book, since it includes various
external packages, some of which are constantly used in this book. Pd-extended is not maintained any
longer, which leaves Pd-vanilla as the only actively maintained major Pd flavor. This version (which is the
original version maintained by the maker of Pd itself, Miller Puckette) consists of the very core of Pd, lacking
the external packages Pd-extended has. A new plug-in has been introduced though in vanilla which will be
part of the next release, Pd-0.47, to be released during December (but maybe a bit later). This is the deken
plug-in which simplifies the addition of certain external packages to a great extent.

I strongly suggest the reader uses Pd-vanilla once the 0.47 version is published and to install a few
external packages using this plug-in. You can download it from Miller Puckette’s personal website. If you do
so, you'll need to go to the Help menu and choose Find externals. In the window that will open, search for
the following packages: comport, zexy, ggee and iemmatrix. If you do use Pd-vanilla, the following changes
should be applied to all projects of this book. All Pd objects (actually abstractions, but what this is has not
been explained yet) that end with the word “extended” should be replaced by the same object without this
word. For example, “serial_print_extended” should be replaced by “serial_print” All “arraysize” objects
should be replaced by “array size” (there’s a white space between the two words). The “import” object is
not used at all. In chapter three you'll read how you can configure Pd to find these external packages under
Linux, but the process is very similar for the other operating systems. All this will make sense as you read
through the book.

Another issue at the time of writing is that the comport object used in Pd to communicate with the
Arduino seems to malfunction in Windows 10. Hopefully this bug will be fixed shortly. If not, I suggest you
sign up for Pd’s mailing list or forum (their websites are mentioned in chapter 1) and search their archives
for solutions, or even ask people there. Audio issues have also been reported under OS X El Capitain, but
that applies to other audio software too. In general, a brand new version of an operating system is very likely
to have various issues, so be aware if your preference is to upgrade as soon as an OS update is released.

If you want to contact me for any reason regarding this book, drop me a line at
alexdrymonitis@gmail.com.

Now you can start your journey in the world of creative coding and DIY electronics.

xxi

mailto:alexdrymonitis@gmail.com

CHAPTER 1

Introduction to Pure Data

Pure Data, a.k.a. Pd, is a visual programming language and environment for audio and visuals. It is open
source and it was made by Miller Puckette during the 1990s. Visual programming means that instead of
writing code (a series of keywords and symbols that have a specific meaning in a programming language),
you use a graphical interface to create programs, where in most cases, a “box” represents a certain function,
and you connect these “boxes” with lines, which represent patch cords on analog audio devices. This kind of
programming is also called data flow programming because of the way the parts of a program are connected,
which indicates how its data flows from one part of the program to another.

Visual programming can have various advantages compared to textual programming. One advantage
is that a visual programming language can be very flexible and quick for prototyping, where in many
textual programming cases, you need to write a good amount of lines of code before you can achieve even
something simple. Another advantage is that you can say that visual programming is more intuitive than
textual programming. When non-programmers confront visual code, it’s very likely that they will get a
better idea as to what this code does than when confronting textual code. On the other hand, there are also
disadvantages and limitations imposed by visual programming. These are technical and concern things like
DSP chains, recursion, and others, but we won’t bother with these issues in this book, as we’ll never reach
these limits. Nevertheless, Pd is a very powerful and flexible programming language used by professionals
and hobbyists alike around the world.

Throughout this book, we’ll use Pd for all of our audio and sequencing programming, always in
combination with the Arduino. The Arduino is a prototyping platform used for physical computing
(among other things), which enables us to connect the physical world with the world of computers. A
thorough introduction to Arduino is given in Chapter 2. This chapter is an introduction to Pd, where we’ll
go through its basics, its philosophy, as well as some general electronic music techniques. If you are already
using Pd and know its basics, you can skip this chapter and go straight to the next one. Still, if you're using
Pd but have a fuzzy understanding on some of its concepts, you might want to read this chapter. Mind that
the introduction to Pd made in this chapter is centralized around the chapters that follow, and even though
some generic concepts will be covered, it is focused on the techniques that will be used in this book’s
projects.

In order to follow this chapter and the rest of this book, you'll need to install Pd on your computer.
Luckily, Pd runs on all three major operating systems: OS X, Linux, and Windows. You can download it for
free from its web site at https://puredata. info/. You will find two version of Pd: vanilla and extended.
Pd-vanilla (simply Pure Data) is the “vanilla” version of Pd, as its nickname states. It’s the version made and
maintained by Miller Puckette, and it consists of the core of Pd. Most of the things we’ll be doing in this book
can be made with vanilla, but Pd-extended adds some missing features to Pd that we will sometimes use.
For example, the communication between Pd and Arduino is achieved with Pd-extended and not vanilla.
Of course, you can add these features to vanilla, but it’s beyond the scope of this book to explain how to do
this, so we’ll be using Pd-extended in all of our projects. Find the version for your OS and install it on your
computer before you go on reading.

http://dx.doi.org/10.1007/978-1-4842-1583-8_2
https://puredata.info/

CHAPTER 1 © INTRODUCTION TO PURE DATA

By the end of this chapter, you'll be able to
¢ understand how a Pd program works
e create small and simple programs in Pd
e find help in the Pd environment
e create oscillators in Pd
e make use of existing abstractions in Pd and create your own

e realize standard electronic music techniques in Pd

Pd Basics: How It Works

Pd consists of several elements that work together to create programs. The most basic elements are the
object and the message. An object is a function that receives input and gives output. Figure 1-1 shows
the osc~ Pd object.

LEn] L]
0SC~ 440

—

Figure 1-1. A Pd object

This specific object is a sine wave oscillator with a 440-hertz (Hz) frequency. There’s no need to
understand what this object does; we’ll go through that in a bit. There are a few things we need to note.
First of all, there is specific text inside the object box, in this case “osc~ 440", “osc” stands for oscillator, and
the ~ (called the tilde) means that this object is a signal object. In Pd, there are two types of objects: signal
and control. A signal object is a function that deals with signals (a digital form of an electric signal). A signal
object will run its function for as long as the audio is on (the audio is also called the DSP, which stands for
digital signal processing, or the DAC, digital-to-analog converter). A control object is independent of audio
and runs its function only when it is told to. We'll get a better picture of the difference between the two as
we go. The last part of the text, “440’, is called an argument. This is the data that a function receives, and
we provide it as an argument when we want to initialize an object with it. It is not necessary to provide an
argument; when there’s no argument in an object, the object is initialized with the value(s) of zero (0).

The second main element in Pd is the message, which is shown in Figure 1-2.

én.essage

Figure 1-2. A Pd message

It is a little bit different from the object, because on its right side, it is indented, and it looks a bit like a
flag. The message delivers data. There’s no function here, only the data we write in the message (sometimes
referred to as a message box). One thing the object and the message have in common is the inlets and the
outlets. These are the little rectangles on the top and the bottom, respectively, of the object and the message.
All messages have the same form, no matter what we type in them. They all have one inlet to receive data
and one outlet to provide the data typed in them. The objects differ, in the sense that each object has as
many inlets as it needs to receive data for its function, and as many outlets as it needs to give the output(s)

CHAPTER 1 © INTRODUCTION TO PURE DATA

of the function. With the osc~ object, we can see that it has two inlets and one outlet. The left inlet and the
outlet are different than the right inlet. Their rectangle is filled, whereas the right inlet has its rectangle blank,
like the message does. The filled inlets/outlets are signal inlets/outlets and the blank ones are control inlets/
outlets. Their differences are the same as the signal and control objects. Note that a signal object can have
control inlets/outlets, but a control object cannot have signal inlets/outlets.

Objects and messages in Pd are connected with lines, which we also simply call connections. A message
connected to the osc~ object is shown in Figure 1-3.

440
= e

280”

Figure 1-3. A message connected to an object

A connection comes out the outlet of the message and goes to the inlet of the object. This way we
connect parts of our programs in Pd.

Our First Patch

Now let’s try to make the little program (programs in Pd are called patches, which is what I will call them
from now on). Launch Pd like you launch any other application. When you launch it, you get a window that
has some comments in it. Don’t bother with it; it is just some information for some features it includes. This
is the Pd window, also called the Pd console, and you can see it in Figure 1-6. It is very important to always
have this window open and visible, because we get important information there, like various messages
printed from objects, error messages, and so forth.

Go to File » New to create a new window. You will get another window that is totally empty
(don’t make it full-screen because you won'’t be able to see the Pd console any more). Note that the mouse
cursor is a little hand instead of an arrow. This means that you are in Edit Mode, so you can edit your patch.
In this window, we will put our objects and messages. In this window’s menu, go to Put » Object (in OS
X there’s a “global” menu for the application; it’s not on every window). This will create a small dotted
rectangle that follows the mouse. If you click once, it will stop following the mouse. Inside the rectangle,
there’s a blinking cursor. This means that you can type in there. For this patch, you will type osc~.

After you type this, click anywhere in the window, outside the object, and you’ll see your first Pd object,
which should look like the one shown in Figure 1-1. (Note the shortcut for creating objects; it’s Ctrl+1 for
Linux and Windows, and Cmd+1 for OS X. We'll be using the shortcut for creating objects for now on).

Now go to Put » Message (the second choice in the menu, with the Ctrl/Cmd+2 shortcut). This will create
amessage. Place it somewhere in the patch, preferably above the object. Once you've already placed a
message or an object in a patch, to move it, you need to select it by dragging. You can tell that is has been
selected because its frame and text is blue, as shown in Figure 1-4.

messagei

Figure 1-4. A selected message

CHAPTER 1 " INTRODUCTION TO PURE DATA

If you click straight into the message or object, it will become editable, and it will be blue like in
Figure 1-4, but there will also be a blue rectangle inside it, like in Figure 1-5. When an object or message
looks like the one in Figure 1-5, you cannot move it around but only edit it.

Figure 1-5. An editable message

18 O O Pd-extended

ouT

GEM: Graphics Environment for Multimedia
GEM: ver: 0.93.3

GEM: compiled: Nov 10 2011

GEM: maintained by IOhannes m zmoelnig
GEM: Authors : Mark Danks (original version)

GEM: Chris Clepper
GEM: Cyrille Henry
GEM: IOhannes m zmoelnig

GEM: with help by Guenter Geiger, Daniel Heckenberg, James Tittle, Hans-Christoph Steiner, et al.
GEM: found a bug? miss a feature? please report it:

GEM: homepage http://gem.iem.at/
GEM: bug-tracker http://sourceforge.net/projects/pd-gem/
GEM: mailing-list http://lists.puredata.info/listinfo/gem-dev/

GEM: compiled for SIMD architecture: SSE2 MMX
GEM: using SSE2 optimization

Tel: | | Log: | 2 -

Figure 1-6. The Pd console

Type 440 and click outside it. To connect the message to the object, hover the mouse above the outlet
of the message (on its lower side). The cursor should change from a hand to a circle and the outlet should
become blue (on Linux, the cursor changes from a hand to an arrow, with a small circular symbol next to it).
Click and drag. You will see a line coming out the outlet of the message. When holding the mouse click
down, if you hover over the left inlet of the object, the cursor will again become a circle and the inlet will
become blue. Let go of the mouse click, and the line will stay between the message and the object. You have
now made your first connection.

What we have until now is a patch, but it doesn’t really do anything. We need to put at least one more
object for it to work. Again, put an object in your patch (preferably with the shortcut instead of using the
menu) and place it below the [osc~] object (using square brackets indicates a Pd object when Pd patches

4

CHAPTER 1 © INTRODUCTION TO PURE DATA

are explained in text). This time, type dac~. This object has two inlets and no outlets. This is actually your
computers’ left and right speakers. Connect the outlet of [osc~] to both inlets of [dac~], the same way you
connected the message to [osc~]. Your patch should look like the one in Figure 1-7.

440
" o

OSC~

)

dac~

Figure 1-7. A simple Pd patch

You might notice that the connections that come out from [osc~] are thicker than the one coming
out from the message. These are signal connections, whereas the thin one is a control connection. The
difference is the same as with signal/control objects.

Now we have a fully functional patch. In order to make it work, we need to take another two steps. First,
we need to get out of Edit Mode. Go to the Edit menu and you'll see Edit Mode; it is ticked, which means that
you are in this mode. If you click it, the cursor will turn from a little hand to an arrow. This means that you
are no longer in Edit Mode and cannot edit the patch, but you can interact with it. If you go to the Edit menu
again, you'll see that Edit Mode is not ticked anymore. From now on, we'll use the shortcut for Edit Mode,
which is Ctrl/Cmd+E. The last thing you need to do to activate the patch is to turn on the DSP. Go to
Media » DSP On (Ctrl+/or Cmd+/). On the Pd console, there is a DSP tick box. To turn on the DSP, select
the tick box; DSP becomes green, as shown in Figure 1-8. When the DSP is on, all signal objects are activated.
Make sure to put your computer’s volume at a low level before you turn the DSP on, as it might sound
rather loud.

~ DSP
Figure 1-8. DSP on indication on Pd’s console

Even though you turned on the DSP, you still hear nothing. Hover the mouse over the message (you'll
see the cursor arrow change direction, which means that you can interact with the element you hover your
mouse over) and click. Voila! You have your first functional Pd patch! This is a very simple program that plays
a sine wave at a 440 Hz frequency.

Before getting overly excited, it’s good practice to save your first patch. Before you do that, you might
want to turn the DSP off by going to Media » DSP Off (Ctrl/Cmd+.) Now the DSP tick box should be unticked.
Saving a patch is done the same way that you save a text file. Go to File » Save As... (Shift+Ctrl/Cmd+S) and
a dialog window will open. Here you can set a name for your patch (that could be my_first_patch) and a place

CHAPTER 1 © INTRODUCTION TO PURE DATA

to save it. If you haven’t done so yet, create a folder somewhere in your computer (a good place is Documents/
pd_patches, for example, definitely not the Program Files folder) and click Save. It’s good practice to avoid
using spaces both in Pd patch names and folders used by Pd, as it’s pretty difficult to handle them. It’s better
to use an underscore (_) instead. Also, notice the file extension created by Pd, which is . pd (not too much of a
surprise...). These are the files that Pd reads.

Now that we've saved our first patch, let’s work on it a bit more. Go back to Edit Mode (Ctrl/Cmd+E) to
edit your patch. The cursor should again turn to a little hand. Now we’ll replace the message with another
element of Pd, the number atom. First, we’ll need to delete the message. To do this, drag your mouse and
select it, the same way you select it to move it around. Hit Backspace and the message (along with its
connections) will disappear. Go to Put » Number (Ctrl/Cmd+3) and the number atom will be added to your
patch, which is shown in Figure 1-9.

4

Figure 1-9. A number atom

Connect its outlet to the left inlet of [osc~] (it actually replaces the message) and get out of Edit
Mode. Turn the DSP on and again you'll hear the same tone as before. This is because [0osc~] has saved
the last value it received in its inlet, which was 440. Click the number atom and type a number (preferably
something different than 440) and hit Return (a.k.a. Enter). You have now provided a new frequency to
[osc~] and the pitch of the tone you hear has changed to that. Another thing you can do with number atoms
is drag their values. Click the number and drag your mouse. Dragging upward will increase the values and
dragging downward will decrease them. You should hear the result instantly. When done playing, turn off
the DSP and save this patch with a different name from the previous one.

The Control Domain

Our next step will be dealing with the control domain. As mentioned, the control objects are independent of
the DSP and run their functions only when they are instructed to do so, regardless of the DSP being on or off.
Let’s create a simple patch in the control domain. Let’s open a new window and put an object in it. Inside the
object type +. This is a simple addition object. It has two inlets and one outlet, because it adds two numbers
and gives the result of the addition. Now put three number atoms and connect two of them to each inlet of [+]
and the outlet of [+] to the inlet of the third number. Make sure that your patch is like the one in Figure 1-10.

2 @
Z:r"p
I
8

Figure 1-10. A control domain patch

o]

CHAPTER 1 © INTRODUCTION TO PURE DATA

Go out of the Edit Mode (from now on we'll refer to this action as “lock your patch”) and click the top-right
number. Type a number and hit Return. Doing this gives no output. Providing a value to the top-left number,
will give the result of the addition of the two values, which is displayed on the bottom number atom. What
we see here are the so-called cold and hot inlets in action. In Pd, all control objects have cold and hot inlets.
No matter how many inlets they have (unless they have only one), all of them but the far left are cold. This
means that providing input to these inlets will not give any output, but will only store the data in the object.
The far left inlet of all control objects is hot, which means that providing input to that inlet will both store the
data and give output. This is a very important rule in Pd, as its philosophy is a right-to-left execution order.

It might take a while to get used to this, and not bearing it in mind might give strange results sometimes; but
as soon as you get the grasp of it, you'll see that it is a very reasonable approach to visual programming.

Execution Order

Before moving on to some other very important aspects of Pd, I should talk a bit more about the order of
execution, since you saw a small example earlier. In a new patch, put a number atom and put an object
below it. Type * inside the object. This is a multiplication object, which works in a way similar way to the
addition object you saw. Connect the number to both inlets of [*], but first connect it to the left inlet of [*]
and then to the right one. Put another number and connect the outlet of [*] to the inlet of the new number.
You should have the patch shown in Figure 1-11.

loH *?Ica[l

Figure 1-11. A fan out connection

Asyou can imagine, this patch gives the square of a given number by multiplying it to itself. Lock your
patch and type the number 2 in the number atom. What you would expect to receive is 4, right? But instead,
you got 0. Now type 3. Again, you would expect to get 9, but you got 6. Now type 4. Instead of 16, you got 12.

Even though I said that Pd executes everything from right to left, another rule is that execution will
follow the order of connection. That means that if you connect the top number atom to the left inlet of [*]
first, and then to the right one, whatever value you provide through the number atom will first go to the left
inlet of [*] and then to the right. But I've already mentioned that all left inlets in all control objects are hot,
and all the rest are cold. So what happens here is that when we gave the number 2 to [*], it went first to the
left inlet and we immediately received output. That output was the number provided in the left inlet, and
whatever other value was stored in [*]. But we hadn’t yet stored any value, so [*] contained 0,' and gave the
multiplication 2 * 0 = 0. Immediately after this happened, the number 2 went to the right inlet of [*] and was
stored, but gave no output, as the right inlet is cold. The next time we gave input to [*], we sent the number 3.

'In contradiction to many programming languages, Pd has 0 when no argument is provided, instead of NULL.

CHAPTER 1 © INTRODUCTION TO PURE DATA

Again, we got the same behavior. [*] first gave the multiplication of 3 by the number already stored, which
was 2 from the previous input, so we got 3 * 2 = 6; and then the number 3 was stored in [*] without giving
output. The same thing happened with as many numbers we provided [*] with.

If we had connected the number atom to the right inlet of [*] first and then to the left one, things would
have worked as expected. But connecting one element to many can be confusing and lead to bugs, which
can be very hard to trace. In order to avoid that, we must force the execution order in an explicit way. To
achieve this, we use an object called trigger. Disconnect the top number atom from [*] and put a new object
between them. In it, type t £f. “t” is an abbreviation for trigger and “f” is an abbreviation for float. A float in
programming is a decimal number, and in Pd, all numbers are considered decimals, even if they are integers.
[t ff] has one inlet (which is hot) and two outlets. Connect the top number atom to the inlet of [t f f] and the
outlets of [t ff] to the corresponding inlets of [*]. You should have a patch like the one shown in Figure 1-12.

-+

f
ﬁF

loH *H~HeD

Figure 1-12. Using [trigger] instead of fan out

[t ff] follows Pd’s right-to-left execution order, no matter which of its inlets gets connected first. Now
whichever number you type in the top number atom, you should get its square in the lower number. This
technique is much safer than the previous one and it is much easier for someone to read and understand. By
far, it’s preferred over connecting one outlet to many inlets without using trigger, a technique called fan out.

Bang!

It’s time to talk about another very important aspect of Pd, the “bang” The bang is a form of execution order.
In simple terms, it means “do it!” Imagine it as pressing a button on a machine that does something—the
elevator, for example. When you press the one and only button to call the elevator, the elevator will come to
your floor. In Pd language, this button press is called a bang. In order to understand this thoroughly, we’ll
build a simple patch that counts up, starting from zero. Open a new window and put two objects. In one of
them, type f, and in the other + 1 (always use a space between object name and argument). “f” stands for
float, as in the case of [trigger], and [+ 1] is the same as [+ | we have already used, only this time it has an
argument, so we don’t need to provide a value in its right inlet. Whatever value comes in its left inlet will be
added to 1 and we’ll get the result from its outlet. Connect these two objects in the way shown in Figure 1-13.

CHAPTER 1 © INTRODUCTION TO PURE DATA

f +1'.=

Figure 1-13. A simple counter mechanism

Take good care of the connections. [f] connects to the left inlet of [+ 1], but [+ 1] connects to the right
inlet of [f]. If you connect [+ 1] to the left inlet of [f], then you'll have connected each object to the hot inlet
of the other. In this case, as soon as you try to do anything with this, you'll get what is called a stack overflow,
as this will cause an infinite loop, since there will be no mechanism to stop it.

Above these two objects put a message and type bang in it. Connect its outlet to the inlet left of [f].
Lastly, put a number atom below the two objects and connect the outlet of [f] to it. You should have the
patch in Figure 1-14.

Tj'ang

a v -
f + 1

4

=
Figure 1-14. A simple Pd counter

Note that, even though in the previous section I mentioned the importance of using [trigger], here we're
connecting [f] to two objects (one object and one number atom) without using [trigger]. This specific kind of
patch is one of the very rare cases where execution order doesn’t really matter, so we can omit using [trigger].
Still, in most cases it is really not a good idea not to use it.

What we have now created is a very simple counter that counts up from zero (it starts from zero because
we haven’t provided any argument to [f], and as already stated, no argument defaults to zero). [f] will go to
[+ 1], which will give 0 + 1 = 1. This result will go to the right inlet of [f], meaning that the value will only be
stored and we'll get no output. The value that comes out of [f] will also go to the number atom, where it will
be displayed. The next time [f] will throw its value, it will be 1, which will go to [+ 1], which will give 1 + 1 =2,
which will be stored in [f], and 1 will be displayed in the number atom, and so on.

For [f] to output its value, it must receive some kind of trigger. This is where the “bang” comes in. Lock
your patch and click the message. The first time you'll see nothing because [f | will output zero, but the
number atom displays zero by default. Hit the message again and you'll see the value 1 in the number atom.
The next time you hit the “bang” message, you'll see 2, and so on.

This is how we create a simple counter, which a very valuable tool in programming—for example,
when building a sequencer, which we'll do in Chapter 4. We've also seen bang in action, a very important
aspect of Pd.

http://dx.doi.org/10.1007/978-1-4842-1583-8_4

CHAPTER 1 © INTRODUCTION TO PURE DATA

Comments

In programming, one common element between different languages is the comment. A comment is just
this, a comment. It’s there to provide information about some features of a program or a part of it. Pd is no
different when it comes to comments. In a new patch, go to Put » Comment (Ctrl/Cmd+5) and the word
“comment” will appear, following your mouse. As with all other elements, click so that it stops following the
mouse. By clicking, you'll also see a blue rectangle around the comment. This means that you can edit it.
Go ahead and type anything you want. Figure 1-15 shows a Pd comment.

this i1s just a comment, it does nothing else than display
the text typed in it.

Figure 1-15. A Pd comment

From the early stages in programming learning up to professional programming, it is typical to see
comments, which are extremely helpful. Comments help others understand your programs more easily, but
also help you to understand your own programs when you come back to them some time after you've made
them. With comments, we covered the most basic and useful elements of Pd.

Getting Help

Pd is a programming language that is very well documented. Even though it’s open source, and nobody

gets paid for creating it, maintaining it, developing it, or documenting it, it still has a great amount of
documentation. When we say documentation, we don’t really mean tutorials in its usual sense, but help
files, which themselves are some kind of short tutorials. Every element, like the object, the message, and so
forth in Pd has a help file, which we call a help patch. To get to it, all you need to do is right-click the element.
You get a menu with three choices: Properties, Open, and Help. The first two are very likely to be grayed out,
so you can'’t choose them, but Help is always available. Clicking it will open a new patch, which is the help
patch of the element you chose. All elements but the object have one help patch, as they do something very
specific (the message, for example, delivers a message, and that’s all it does). But the object is a different case,
as there are many of them in Pd. So, depending on the object you choose (which is defined by the text in it),
you'll get the help patch for that specific object. For example, [osc~] has a different help patch than [dac~].

In a patch, put an object ([osc~] for instance), a message (no need to type anything in it), a number
atom, and a comment (also no need to type anything), and right-click each of them and open their help
patches. In there, there’s text (actually comments) describing what the element does, and providing
examples and other information. Don’t bother to read everything for now, you're just checking it to get the
hang of finding and using help patches. You need to know that you can copy and use parts or the whole
patch into your own patch. Go ahead and play a bit with the examples provided, and if you want, click the
Usage Guide link on the bottom left. This will open a help patch for help patches, describing how a help
patch is structured to get a better understanding of them. Mind that objects starting with pd (for example,
[pd Related_objects]) are clickable and doing so (in a locked patch) will open a window. This is called a
subpatch, which we’ll cover further on.

Lastly, right-clicking a blank part of a patch, will open the same menu, but this time Properties is
selectable. You won't select it now, but instead click Help. This will open a help patch with all the vanilla
objects (you might get some red messages in Pd’s console, called error messages, but it’s not a problem). If
you want, you can go through these, but don’t bother too much, as it might become a bit overwhelming. By
using Pd more and more, you get to know the available objects or how and where to look for what one needs.

10

CHAPTER 1 © INTRODUCTION TO PURE DATA

GUIs

The next step is the GUI. GUI stands for graphical user interface. In computers, GUIs are very common.
Actually, Pd itself runs as GUI and your computer system too (most likely). All the windows you open from
various programs are considered GUIs. This approach is usually much preferred over its counterpart, the
CLI (command-line interface), where the user sees only text and interacts with it in a terminal window, for
example.

Even though Pd itself runs as GUI (since it is visual and not textual) there are some elements of it that
are considered to be its GUIs (the elements covered so far, but the number atom are not GUIs). If you click
the Put menu, the second group of elements contains GUIs: the Bang, the Toggle, the Number2, and so forth.
The ones we'll use most are the bang, the toggle, the sliders, and the radios, which you can see in Figure 1-16.

Q <~ this is a Bang
[] < this is a Toggle

<~ this is a Vslider (Vertical Slider)

[| == this is an Hslider (Horizontal Slider)

<~ this is a VYradio (Vertical Radio)

M JTTTTTJ] = this is an Hradio (Horizontal Radio)

Figure 1-16. The bang, the toggle, the sliders, and the radios

Open a new patch and put a bang from the Put menu (Shift+Ctrl/Cmd+B). This is the graphical
representation of the [bang] (a Pd message in textual form starts with an opening square bracket and ends
with an opening parenthesis, imitating the way it looks in Pd). The Bang is clickable and it outputs a bang.
Right-click it and open its help patch (here the Properties are not grayed out and are selectable, but we won’t
delve into this for now). On the top-right of the help patch, there’s an object [x_all_guis....]. Clickitand a
new window will open with all the GUIs in Pd. From there you can right-click each and check its help patch
to see what it does. Focus on the GUISs that we’ll typically use, which I've already mentioned. Let’s talk a bit
about these.

11

CHAPTER 1 © INTRODUCTION TO PURE DATA

We've already covered the Bang, so let’s now talk about the Toggle. The Toggle functions like a toggle
switch; it’s either on or off. It's a square, and when you click it (in a locked patch), an X appears in it. That’s when
it'’s on. When there’s no X in it, it’s off. By “on” and “off” here, I mean 1 and 0. What the Toggle actually does is
output a 1 and a 0 alternately when clicking it, and we can tell what it outputs by the X that appears in it.

The Slider (Vslider stands for vertical slider and Hslider for horizontal slider) is a GUI imitating the
slider in hardware; for example, in a mixing desk. Clicking and dragging the small line in it outputs values
from 0 to 127 by default, following the range of MIDI; but this can be changed in its properties. You can get
these values from its outlet.

The Radio (again Vradio and Hradio stand for vertical and horizontal) works a bit like a menu with
choices (like the one that appears when you right-click a Pd element). Only instead of text, it consists of little
white squares next to each other, and clicking them outputs a number starting from 0 (clicking the top of the
Vradio will output 0, clicking the one below will output 1, and so forth). The Hradio counts from left to right.
You can tell which one is currently clicked by a black square inside it. It doesn’t really sound like a menu, but
remember that Pd is a programming language, meaning that we need to program anything we want it to do.
This way, provided a very simple GUI that outputs incrementing values, we can use it to create something
more complex out of it. We'll see it in action in the interface building projects in this book. We've now
covered the GUIs that we will use and we can move on.

Pd Patches Behave Like Text Files

When we edit a Pd patch, we can use features that are common between text editing programs. This means
that we can choose a certain part of the patch (by clicking and dragging in Edit Mode), copy it, cut it,
duplicate it, paste it somewhere else in the patch, or in another patch. If you click the Edit menu, you'll see
all the available options.

The ones we’'ll mostly use in this book are Copy (Ctrl/Cmd+C), Paste (Ctrl/Cmd+V), Cut (Ctrl/Cmd+X),
and Duplicate (Ctrl/Cmd+D). Actually, a Pd patch is text itself. If you open any patch in a text editing
program, you'll see its textual form. The first patch we created in this chapter, with the [440] message and
[osc~] and [dac~], looks like what’s shown in Figure 1-17.

#N canvas 384 273 450 300 10;
#X msg 161 69 440;

#X obj 161 91 osc~;

#X obj 161 113 dac~;

#X connect 0 0 1 0;

#X connect 1 0 2 0;

#X connect 1 0 2 1;

Figure 1-17. A Pd patch in its textual form

Even though this is pretty simple, you don’t really need to understand it thoroughly, as we’re not
going to edit patches in their textual form in the course of this book. Still, it’s good to know what a Pd patch
really is.

12

CHAPTER 1 © INTRODUCTION TO PURE DATA

Making Oscillators in Pd

Now that we've covered the real basics of Pd, and you know how to create patches, let’s look at some
sound generators that we will use in later chapters. First, I need to explain what an oscillator is. In analog
electronics, it is a mechanism that creates certain patterns in an electrical current, which is fed to the
sound system, causing the woofers of the speakers to vibrate in that pattern, thus creating sound. In digital
electronics, this mechanism consists of very simple (or sometimes more complex) math operations (here
we're talking about multiplication, addition, subtraction, and division, nothing else) that create a stream
of numbers that is fed to the sound card of a computer, turning this number stream to an electrical current.
From that point on, up to the point the electrical current reaches the sound system’s speakers, everything
is the same between analog and digital electronics. The patterns that the oscillators create are called
waveforms, because sound is perceived in auditory waves.

There are four standard waveforms in electronic music, which we will create in this section. These are
the sine wave, the triangle, the sawtooth, and the square wave. They are called like this because of the shapes
they create, which you can see in Figure 1-18.

Figure 1-18. The four standard oscillator waveforms: the sine wave, the triangle, the sawtooth, and the
square wave

Some other audio programming environments have classes for all these waveforms, but Pd has an
object only for the first one, the sine wave. Some consider this to be a bad thing, but others consider it to be
good. Not having these oscillators available means that you need to build them yourself, and this way you
learn how they really function, which is very important when dealing with electronic music. The object for
the sine wave oscillator is [osc~], which you've already seen, so we're not going to talk about it here.

Before moving on to the next waveform, we need to talk about the range of digital audio. Audio in
digital electronics is expressed with values from -1 to 1 (remember, a digital signal is a stream of numbers
representing the amplitude of an electric signal). In the waveforms in Figure 1-18, -1 is expressed by the
lowest point in the vertical axis, and 1 by the highest (waveforms are represented in time, which lies at the
horizontal axis). Paralleling this range to the movement of the speaker’s woofer, -1 is the woofer all the way
in, 1 is the woofer all the way out, and 0 is the woofer in the middle position (this is also the position when
it’s receiving no signal). Figure 1-19 represents these positions of the woofer by looking at it from above.

woofer all the way out = 1

woofer's middle position = 0
.

woofer all the way in = -1

Figure 1-19. The speaker's woofer's positions and their corresponding digital values

13

CHAPTER 1 © INTRODUCTION TO PURE DATA

Making a Triangle Wave Oscillator

Now to the next wave form, which is the triangle. We will create this with simple objects. The driving force
for every oscillator (and other things we’ll build along the way) is the [phasor~]. [phasor~] is a rising ramp
that looks like the sawtooth wave form, only it outputs values from 0 to 1. To create a triangle out of this, we
need a copy of [phasor~]; but instead of rising, we need it to be falling from 1 to 0. To achieve this, we must
multiply [phasor~]’s output by -1 and add 1. This is very simple math if you think about it. If you multiply
[phasor~]’s initial value, which is 0, by -1, you'll get 0, and if you add 1 you'll get 1. If you multiply [phasor~]’s
last value, which is 1, by -1, you’ll get -1, and if you add 1, you'll get 0. All the values in between will form the
ramp from 1 to 0. Mind, though, that we are now in the signal domain and all the objects we’ll use are signal
objects. So for multiplying, we’ll use [*~ | and for adding we'll use [+~ | .

Once we have the two opposite ramps, we’ll send them both to [min~]. This object takes two signals and
outputs the minimum value of the two. The two ramps we have intersect at the value 0.5 during their period
(a period in a wave form is one time its complete shape, like the preceding wave form images). For the first
half of the period, the rising [phasor~] is always less than the falling one (the rising one starts from 0 and the
falling from 1), so [min~] will output this. For the second half of the period, the falling [phasor~] will be less
than the rising one, so [min~] will output that. What [min~] actually gives us is a triangle that starts from 0,
goes up to 0.5, and comes back to 0. Figure 1-20 illustrates how this is actually achieved.

falling ramp

[min~]'s output

Figure 1-20. Getting a triangle out of two opposite ramps

AsI've already mentioned, the range of oscillators is from -1 to 1. This is 2 in total. So, multiplying
the output of [min~] by 4, will give us a triangle that goes from 0 to 2. Subtracting 1, will bring it to the
desired range. These last two actions—the multiplication and the subtraction—are called scaling and offset,
respectively. So, our triangle oscillator patch should look the patch in Figure 1-21.

14

CHAPTER 1 © INTRODUCTION TO PURE DATA

hasor~

|

+ 1

I HxH=
e e s
-

By S T

Figure 1-21. The triangle oscillator Pd patch

Connect a number atom to [phasor~] to give it a frequency (lock your patch before trying to type a
number into the number atom) and place a [dac~] and connect [-~ 1] to it. Turn on the DSP and listen to this
wave form. Compare its sound to the sound of [osc~]. The triangle wave form is brighter than the sound of
the sine wave, which is because it has more harmonics than the sine wave. Actually, the sine wave has no
harmonics at all, and even though it is everywhere in nature, you can only reproduce it with such means, as
you can't really isolate it in nature.

Note that execution order doesn’t apply to the signal domain, because signal objects calculate their
samples in blocks, and they have received their signals from all their inlets before they go on and calculate
the next audio block.

Making a Sawtooth Oscillator

The next waveform we’ll build is the sawtooth. This one is very easy, since we'll use [phasor-~], which is itself
a sawtooth that goes from 0 to 1, instead of -1 to 1. All we need to do here is correct its range, meaning apply
scaling and offset. Since [phasor~] has a value span of 1, and oscillators have a value span of 2, we have to
multiply its output by 2; so now we get a ramp from 0 to 2. Subtracting 1 gives us a ramp from -1 to 1, which
is what we essentially want. The patch is illustrated in Figure 1-22.

15

CHAPTER 1 © INTRODUCTION TO PURE DATA
_ =
Eh QAsor~

| = |

Ko 2

I =

— 451
=
Figure 1-22. The sawtooth oscillator Pd patch

Supply [phasor~] with a frequency and connect [-~ 1] to [dac~] to hear it. Compared to the two previous
oscillators, this one has even more harmonics, which you can tell by its brightness; its sound is pretty harsh.

Making a Square Wave Oscillator

Finally, let’s build the last wave form, the square wave. This oscillator is alternating between -1 and

1, without any values in between. Again, we’ll use [phasor~] to build it. Now we’ll send [phasor-~] to a
comparison object, [<~], which compares if a signal has a smaller value than another one, or a value
smaller than its argument (if one is provided). If the value is smaller, [<~] will output 1, else it will output 0.
Connecting [phasor~] to [<~ 0.5] (don’t forget the space between the object name and the argument), will
give 1 for the first half of [phasor~]’s period, and 0 for the other half, because [phasor~] goes from 0 to 1,
linearly. Multiplying this by 2 and subtracting one will give an alternating 1 and -1, which is what the square
wave oscillator is.

This oscillator has one more control feature, which is how much of its period it will output a 1, and how
much it will output a 0 (for example, it can output a 1 for 75% of its period and a 0 for the rest 25%, or vice
versa, or any such combination). This is called the duty cycle, which is easy to make in Pd. All you need to do
is control [<~] with a value that ranges from 0 to 1 (actually from something over 0, like 0.01, to something
less than 1, like 0.99). If you connect a number atom to the right inlet of [<~ 0.5] you'll override the argument
with whatever number you provide (mind that the right inlet of [<~ 0.5] is a control inlet, and that is because
you have provided an argument. If you create the object without an argument, both its inlets will be signal
inlets). Your patch should look Figure 1-23.

16

CHAPTER 1 © INTRODUCTION TO PURE DATA

Ehasorf E’
=._=
<~ 8.5

: —
2

b
e
—~ 1

Figure 1-23. The square wave oscillator Pd patch

Try some different values by typing into the number atom (in a locked patch), always staying
between 0.01 and 0.99. You can also hold down the Shift key and click and drag the number atom. This way,
it will scroll its values with two decimal places.

Mind that it is possible to create the same oscillator with [>~ | instead of [<~]; the only difference is that
it will first output -1 and then 1, but that’s a difference that is not recognizable by the human ear. Comparing
this oscillator to the others, we see that this one also has a lot of harmonics, as its sound is very bright.

We have now created the four basic oscillators of electronic music. Their raw continuous sound might
not be very musical or inspiring, but the way we’ll use them in some of this book’s projects will be quite
different and will provide more musical results.

Using Tables in Pd

The next feature we're going to look at is tables. You'll learn how to use them in Pd. You learned about
tables in school math; a table stores values based on an index. In Pd, this is either called a table, and you
can create it with [table], or array, which we can put from the Put menu. Open a new window and go to
Put » Array (there’s no shortcut for this one). A properties window will open, where you can set its name,
its size, whether you want to save it contents, the way to draw its contents, and whether to put the array in
anew or in the last graph. From these options, you'll only deal with the first three. For now, you can keep
the default name, which is arrayl. You'll also keep the size for now, which is 100, but you’ll untick the Save
contents field, because we don’t care to save whatever you'll store in it.

Click OK and you'll see a graph in your patch. If you move it, you'll also see its name projected on top of
it, looking like the one shown in Figure 1-24.

17

CHAPTER 1 © INTRODUCTION TO PURE DATA

arrayl

Figure 1-24. A Pd array

Inside the array’s window, there’s a straight line, right in the middle, spanning from left to right. These
are the values stored in the array, all of which are 0 for now. The values in an array are graphed in the Y axis
and the indexes in the X axis. Indexes start counting from 0 and go from left to right. In our case, the last
index is 99, as we have an array of size 100 and the first index is 0.

There are a few ways to store values in an array. The simplest one is to draw values by hand. Lock you
patch and hover the mouse over the line in the middle of the array. Click and drag (both up and down, as
well as right and left) and you'll see that the line follows the mouse. This way is not very useful because you
generally want to store certain patterns in arrays that are actually impossible to draw by hand.

Another way to store values is by using [tabwrite], where “tab” stands for table. This object has two
inlets and no outlet. The right inlet sets the index and the left sets the value. It also takes an argument, which
is the name of the array to write to. Put a [tabwrite array1] to your patch and connect a number atom to
each inlet. Lock your patch and store a value to an index; for example, store 0.75 to index 55 (indexes are
always integers). Mind to first provide the index to the right inlet, and then the value—again, the right to left
execution order and hot and cold inlets apply. You should immediately see the dot at the 55" place jump
to the value 0.75 (a bit lower than the upper part of the frame). To double-check it, put a [tabread arrayl1],
which reads values from an array. This one has one inlet and one outlet. In the inlet. you provide an index
and it spits the value at that index out its outlet. Give it the value 55 and it should give 0.75.

All of this isn’t likely very intuitive and the point might seem a bit hidden. Let’s look at another way to
use arrays. Right-click Array and click Properties. Now you get two windows, but we only care about the first
one. Change the size of the array to 2048, click OK, and close both of these windows (whatever values we’ve
already stored will shrink to the right, as there are now in the very first indexes). Copy one of the oscillator
patches (the triangle, for example) built in the previous section, but instead of [dac~] at the bottom, put
[tabwrite~ array1] (mind the tilde that makes it different from [tabwrite array1]). Connect a number atom
to [phasor~] and a bang (Shift+Ctrl/Cmd+B) to [tabwrite~ array1] (this object has one inlet only and it takes
both signals and bangs). Figure 1-25 shows what your patch should look like.

18

CHAPTER 1 © INTRODUCTION TO PURE DATA

hc:sn:'r:f=I
Koo 1| arrayl
s e
f~ 1
min~
; s
*~ 4
 —
-~ 1

tabwrite~ arrayl

Figure 1-25. The triangle oscillator connected to [tabwrite~] in order to be stored in an Array

Provide a frequency via the number atom (don'’t forget to lock you patch), turn the DSP on and click the
Bang ([tabwrite~] will store any signal connected to its inlet, whenever it receives a bang). You should see the
wave form of the oscillator stored in the Array, similar to Figure 1-26.

arrayl

Figure 1-26. The triangle oscillator wave form stored in an array

You can display all four oscillators we’ve already made to see their shape in action.

Another very useful feature of tables in Pd is that we can upload existing audio files to them. Create the
patch in Figure 1-27. [tabplay~] is designed to play audio stored in a table. Clicking the top bang will open a
dialog window, where you can navigate to a folder where you have an audio file (a .wav or .aiff file, no .mp3)
Once you select an audio file (not a very long one, up to 5 minutes, more or less; usually tables have files that

19

CHAPTER 1 © INTRODUCTION TO PURE DATA

are a few seconds), click Open and you'll see the wave form of your audio file appear in the array (the longer
the file, the longer it will take for the array to display it). Here we don’t need to mind about the size of the
array, because it will automatically get resized according to the length of the audio file. Turn the DSP on and
click the lower bang, and you'll hear the audio file you just inserted. This is the simplest way of playing back
audio files, but also the one with the least features. In later chapters, you'll see other ways to reproduce audio
files that give more freedom to manipulate them.

ﬁbng <~ click to upload audio file

e
£Penpanel arrayl
read -resize $1 arrayl

gpundfiler

bang <~ click to play audio file
tabp lay~ arrayl

;. e

dac~

Figure 1-27. An audio file playback patch

So you can see that tables can be very useful as, apart from other data, you can also store and play back
audio. We'll use arrays to store and manipulate sound in some of this book’s projects.

Subpatches and Abstractions

Since you've done a little bit of patching, we can now talk about tidying up our patches. As your patches
grow more and more complex, you'll see that having all objects, messages, number atoms, and so forth,
visible in your patch will be more and more difficult. It will also be difficult to keep track of what each part of
your patch does. This is where the subpatch comes in. A subpatch is an object that contains a patch. Open
anew window and put an object. Inside the object type pd percentage. (We’'ll make a subpatch that gives a
percentage value, although the name of the subpatch could be anything. Naming it “percentage” makes it
clear as to what the subpatch does.) A new window will open, titled “percentage” This window is a Pd patch,

20

CHAPTER 1 © INTRODUCTION TO PURE DATA

more or less as you already know it. The only difference between this and a normal Pd patch is that the
subpatch cannot be saved independently from the patch that contains it, which is called the parent patch.
A subpatch is part of its parent patch, and will be saved only if you save the parent patch.

Using subpatches is very useful for tidying up our patches, and helps us create programs in a
self-explanatory way. We can put any Pd element in a subpatch, but in order to have access to it, we need to
use [inlet] and [outlet]. In the “percentage” subpatch, put an object and type inlet. If you look at the parent
patch, [pd percentage] now has one inlet. If you put more [inlet]’s in the subpatch, you’ll see them in the
parent patch object. The same goes for the [outlet]. The order of their appearance in the parent patch follows
the order of their placement inside the subpatch, meaning that the far left [inlet] in “percentage” is the far
left inlet in [pd percentage] in the parent patch. Let’s see the subpatch in action. Inside the subpatch put the
objects, as shown in Figure 1-28.

inlet give percentage inlet 9ive value
Z:— =
*

L =
/ 168

'

out let

Figure 1-28. Contents of the “percentage” subpatch

This subpatch calculates a given percentage of a given value, where the percentage goes into the left
inlet and the value into the right one. Lock it and close it.

In the parent patch, you should have a [pd percentage] with two inlets and one outlet. The left inlet
of [pd percentage] corresponds to the left inlet of Figure 1-28. Connect a number atom to each inlet and to the
outlet. Provide a value to get its percentage to the right inlet, for example, 220 (remember that the left inlet of [*]
is hot, so we need to provide input to the right one first) and the percentage, to the left inlet. Figure 1-29
shows the subpatch in action, where we ask for 40% of 220, and we get 88.

40 220
& &
Ed percentage

88

Figure 1-29. The “percentage” subpatch

This specific subpatch is quite simple, but we have already enclosed two objects in one. The more
complex a function within a patch becomes, the more space we save by placing it in a subpatch, and the
more readable our patch is, since we can give a name to the subpatch that corresponds to its function. This
way we can even avoid writing comments, as our patch is self-explanatory.

21

CHAPTER 1 © INTRODUCTION TO PURE DATA

Abstractions are somewhat different than subpatches. They are also Pd patches used as objects, but
instead of creating them inside a parent patch (and saving them only through their parent patch), we create
them independently of any other patch. Abstractions are essentially pieces of code that we very often use,
so instead of making that specific piece of code over and over again, we create it once, and use it as is. Take
a simple example—a hertz-to-milliseconds converter. This is a very simple patch to create; it is shown in
Figure 1-30.

inlet

" - -
swap 1000

T
s

out let

Figure 1-30. Contents of the “Hz2ms” abstraction

In this patch, we provide a value to [swap 1000]. What [swap 1000] does is get a value in its left inlet and
output it out its right inlet, and output 1000 out its left inlet; in three words: swaps its values. Check its help
patch for more information.

Pd’s objects will receive either hertz or milliseconds as time units, so it’s very helpful to have an object
that converts from one to the other. But Pd doesn’t have such an object, and creating this patch (no matter
how simple it is) every time you need to make this conversion would be rather painful. What you can do
is create this patch once and save it to a place where Pd will look at. This is done in a few ways. One way is
to save your abstraction in the same folder with the patch where you'll use that abstraction. This way, the
abstraction will be more project -specific rather than generic. The one in Figure 1-30 is a very generic one.
What we'll do is create a folder called abstractions, inside the pd_patches folder, and set that folder to Pd’s
search path. To do this, go to Edit » Preferences (on OS X, go to Pd-extended » Preferences). You'll get a
window where you can set a search path for Pd. This is shown in Figure 1-31.

22

CHAPTER 1 * INTRODUCTION TO PURE DATA

¥ Use standard extensions
I Verbose

startup flags: |

Reset to Defauls | cancel | apply| ok

Figure 1-31. Pd's Preferences window

Click New... and a dialog window will open. Navigate to the newly created abstractions folder and
click Choose. In Pd’s Preferences, click Apply. You won't see anything happening, but the search path has
been stored. Then click OK and the window will close. Now save the patch to the abstractions folder with
the name Hz2ms, which stands for “hertz to milliseconds.”

For Pd to be able to use the newly set search path, you must quit it and restart it. Once you restart Pd,
open a new window, put an object, and type Hz2ms. If all goes well, you'll see an object with that name.

If instead of an object you get a red dotted rectangle and a message in Pd’s console, like the one shown
in Figure 1-32, check the search path in Pd’s Preferences, or make sure that you typed the name of the
abstraction correctly.

23

CHAPTER 1 © INTRODUCTION TO PURE DATA

Pd-extended

File Edit Put Find Media Window Help I

" - DsP

Hz2ms
... couldn't create

14

Figure 1-32. An error message in Pd’s console

In a locked patch, clicking the abstraction opens the actual patch, like with subpatches. What is different
from the subpatch is that the abstraction is ready to use whenever you launch Pd, and you don’t need to
create it anew every time. Abstractions have more advantages, concerning arguments, name clashes, and
others, but we’re not going into too much detail now.

Both the subpatch and the abstraction have their own purposes, and you can’t say that one is generally
superior to the other. In different occasions, you might need to use one of the two. Also mind that both
can be used in the signal domain by using [inlet~] and [outlet~]. Throughout this book, we’ll use both
abstractions and subpatches.

Control Domain vs. Signal Domain

You've already learned that the signal domain runs for as long as the DSP is on, while the control domain
will run only when it is told to (with a bang, for example). One thing you've also seen is a combination of
the two. In the square wave oscillator patch that you made, you connected a number atom to the right
inlet of [<~]. You also connected number atoms to [phasor~] to control its frequency, but that is not really
affected by the difference between the two domains. Usually when you combine the two domains, you get
annoying clicks when you give input from the control domain to the signal domain.

In the case of the square wave oscillator, these clicks are not really audible, because the square wave
form is itself very “clicky.” Let’s take another example, one where you control the amplitude of a sine wave.
Controlling the amplitude of a signal in digital electronics is simple multiplication with values between
Oand 1.

Since a digital signal is a stream of numbers, when you multiply these numbers by 0, you'll get a constant
0 (remember the woofer’s positions; this would be silence). Multiplying the number stream by 1 will give
you the number stream intact, hence the signal in its full amplitude. All the values in between will give
corresponding results. Go ahead and build the simple patch, as shown in Figure 1-33.

24

CHAPTER 1 © INTRODUCTION TO PURE DATA

Escfv 44'B=

7 127
e

dac~

Figure 1-33. Controlling the amplitude of an oscillator

You're dividing the output of the Hslider by 127 to get a range from 0 to 1 (sliders have a default range
from 0 to 127). Turn the DSP on and use the slider (in a locked patch). The more you move it to the right, the
louder you'll hear the sine wave. Pay close attention to these amplitude changes; the faster you move the
slider, the more clicks you hear. This is due to the clash between the control and the signal domain. In detail,
[*~] refreshes its values in every new DSP cycle (as all signal objects do), which is done in blocks of
64 samples (no need to really grasp this detail though) Therefore, if you change the slider values quickly,

[*~] will make sudden jumps from the previous value to the current, which is heard as a click.

To remedy this, you must make the value changes smoother. There’s a very useful object in Pd for this:
[line-~]. [line~] takes two values: the destination output value and an amount of time in milliseconds. [line~]
will make a linear ramp in the signal rate, from its current value to the destination value, and this ramp will
last as many milliseconds as you provide with the second value. Change the patch in Figure 1-33 to the patch
in Figure 1-34.

'3§c~ 4453
e

1100 9 100

line~

I

b 2

I\

dac~

Figure 1-34. Using [line~] to avoid clicks

25

CHAPTER 1 © INTRODUCTION TO PURE DATA

Lock your patch, turn the DSP on, and click the two messages alternately. You should hear the sound
of the sine wave come in and go out without any clicks at all. This is because [line~] makes a ramp from 0 to 1
in 100 milliseconds, and the other way around. This ramp smooths the changes and gets rid of the
annoying clicks.

But what if you want to have a variable amplitude? You can combine the slider in Figure 1-33 with [line~],
as shown in Figure 1-35.

Escfv 448=

L

/ 127
h
$1 100

line~

LI
N

dac~

Figure 1-35. Combining the Hslider with [line~]

$1 in the message means the first value that comes in its inlet. Here we provide one value only, so $1
will take the value of the slider. 100 is still the amount of milliseconds for the ramp of [line~]. Now, no matter
how quickly you move the slider, there are no clicks at all. This is the way to combine the two domains—
something that happens very often in Pd.

Audio Input in Pd

Apart from sound generators, in Pd we can also use audio input, from a microphone for example. We can use
that input in many different ways. We can store it, like we did with the oscillator wave forms, and play it back
in various ways, we can write it in delay lines and use that to play a delayed copy in various ways, we can
apply pitch shifting, and many more. For now, we'll talk about how to receive that input, and we’re going to
play it straight away from the speakers.

The object that receives input from the computer’s sound card is [adc~], which stands for analog-to-
digital converter, which is the opposite of [dac~]. In a new window, put an object and type adc~. You'll get an
object with no inlets and two outlets. The two outlets are the two input channels on your computer’s sound
card. But the default input in Pd is the built-in microphone, which has only one channel. So we can give an
argument to [adc~], which is the channel we want to use; in this case, it’s 1. So click the object to make it
editable, and type adc~ 1 (make sure that you put a space between the name of the object and its argument).
Now the object has one outlet. Put a [dac~] and connect [adc~ 1] to both inlets of [dac~]. If you turn the DSP

26

CHAPTER 1 © INTRODUCTION TO PURE DATA

on and your speakers are quite high, you'll get feedback, meaning that the audio that goes out the speakers
will immediately go back in through the microphone, creating a loop, and it will most likely create a high
and rather loud tone. To avoid that, you can use headphones for this patch. Now if you talk close to your
computer’s built-in microphone, you'll hear your voice through the headphones. Maybe the output is a bit
delayed; that is because digital audio takes some time to make its calculations before it outputs sound. In the
following sections, we'll talk about a way to reduce that delay.

Basic Electronic Music Techniques

Now let’s cover some basic electronic music techniques with Pd. We've already created the four basic
oscillators, but now we're going to create some more interesting sounds by using them.

Additive Synthesis

The first technique we're going to look at is called additive synthesis, because we use many oscillators (usually
sine waves) added together to create more interesting timbres. Figure 1-36 shows an additive synthesis Pd patch.

=1'|.=:|9
tffffff

LN

f:f: =a = = =

0SC~ O0SC~ OSC” OSCH OSC” OSC""

~ 1| ¥~ 0.,5| Pk~ 0.333| k~ 0.25| *~ 0.2 ¥~ 0,16666

X~ 0.16666

dac~

Figure 1-36. Additive synthesis Pd patch

27

CHAPTER 1 © INTRODUCTION TO PURE DATA

In additive synthesis, if we want to create a harmonic sound, we provide a base frequency, and we
multiply it by the order of each oscillator. For the first oscillator, we multiply it by 1, for the second by 2, and
so forth. Something else we do in the patch shown in Figure 1-36 is set the amplitude of each oscillator to
the reciprocal of its order, so the first oscillator will have full amplitude, the second will have one half of its
amplitude, the third will have one-third, and so forth. Note that multiplying requires less CPU than dividing, so
instead of dividing, we multiply each oscillator’s output by the reciprocal of its order. Mind the multiplication
at the bottom of the patch. When we output more than one signal as they are being added, therefore we must
scale them to make sure that their sum won'’t go over 1 or below -1. To achieve this, we multiply the total
output by the reciprocal of the number of signals we send to the speakers; here it’s 1 + 6 = 0.16666.

The more oscillators we use, the more it will sound like a triangle oscillator, because this is the
algorithm the triangle wave form uses. Still, you need many sine wave oscillators to make them sound like a
triangle. With additive synthesis, we can create more textures by providing frequencies to each oscillator that
are not integer multiples of the base frequency. This will create non-harmonic sounds, but you might find
very interesting textures this way.

Another aspect to experiment with is the amplitude of each oscillator. By changing these, the timbre
of the sound changes drastically. Try some random values between 0 and 1 for each oscillator to hear the
result. The way to create additive synthesis shown here is not the most effective one; usually, we prefer to
use abstractions, as they reduce patching to a great extent. Still, it shows how additive synthesis works rather
clearly. We'll see how to utilize abstractions for additive synthesis in one of this book’s projects.

Ring Modulation

Using a lot of oscillators might give nice results, but it requires a lot of CPU, plus it can be cumbersome to
create some textures. There are techniques that use only a few oscillators (two at least) and can give very
interesting sounds. We'll look into the most basic ones and we’ll start with the ring modulation (RM). This
is a quite simple technique; it is the multiplication of two signals. We’ll use sine waves for all the techniques
in this section, but you can experiment with any wave form we’ve already built. Make the patch shown in
Figure 1-37.

dac~

Figure 1-37. A ring modulation patch

28

CHAPTER 1 © INTRODUCTION TO PURE DATA

Lock your patch, turn the DSP on, and start dragging your mouse in the number atoms, or use sliders
instead. (Although you might want to multiply their output to a range other than 127; multiply them by 3,
for example.) You'll start hearing two tones, which are the addition and the subtraction of the two provided
frequencies. For example, if you type 300 in one number atom and 5 in the other, you'll hear the frequencies
305 and 295. Sometimes the subtraction of the two frequencies result in a very low frequency (if, for
example, you provide 305 and 300, you'll get 605 and 5), which are not audible by the human ear. Keep on
dragging your mouse upward till you start hearing two tones. Experiment a bit till you find some interesting
results. You can also combine RM with the additive synthesis patch in Figure 1-36, where one of the two
oscillators in Figure 1-37 will be replaced by the additive synthesis patch.

Amplitude Modulation

The next technique is the amplitude modulation (AM). It is very similar to the ring modulation. Again we
multiply two signals, but we use one signal to modulate the amplitude of the other. As we've already seen,
to modulate the amplitude of a signal, we need to multiply it with values between 0 and 1. But oscillators
give values from -1 to 1. To bring one of the oscillators to the desired range, we need to apply some scaling
and offset. First of all, we need to shrink the oscillator’s range to its half. We do this by multiplying it by 0.5
(remember that multiplication in computers require less CPU than division, so instead of dividing by 2, we
prefer to multiply by 0.5). Multiplying by 0.5 will make the oscillator go from -0.5 to 0.5. If we add 0.5 (this is
the offset), it will go from 0 to 1.

So, the patch in Figure 1-37 changes slightly and becomes the patch in the Figure 1-38.

a
-
0

Ho Hol

sce oscw <- this is the modulator
*~ 8.5
+~ a. 5

*~

dac~

Figure 1-38. An amplitude modulation patch

Give a high enough frequency to the left oscillator (depending on your speakers; if you use laptop
speakers, you should give at least 200) and a very low one (like 1) to the right oscillator, which is the
modulator. You should hear the tone of the left oscillator come in and out smoothly. The higher you bring
the modulator’s frequency, the faster these changes will happen. If you bring it too high (above 20), you'll
start getting similar results to the ring modulation. This is because humans can hear frequencies as low as 20
hertz. Using lower frequencies are not immediately audible, but they can effectively change the amplitude of
another audio generator. In this case, the oscillator is called an LFO (low-frequency oscillator). If we provide
a frequency higher than that, then it enters the audible range and we start hearing it immediately (and it’s no
longer an LFO).

29

CHAPTER 1 © INTRODUCTION TO PURE DATA

Frequency Modulation

Next in line is the frequency modulation (FM). Here we use one oscillator, called the modulator, to modulate
the frequency of another oscillator. The patch to do this is shown in Figure 1-39.

carrier
E’ index
[—] [—]
modu lator 2
2 - =
T $1 100
= =
0sSC~ e
E — line
] ——

o

QSC~

dac~

Figure 1-39. A Frequency modulation patch

Figure 1-39 includes some comments describing the role of each element. The carrier is the frequency
of the oscillator that we actually hear, which is called the carrier oscillator. The modulator is the frequency of
the oscillator that modulates the frequency of the carrier oscillator. The index is the amount of modulation
the modulator will apply to the carrier. What actually happens is that the frequency of the carrier oscillator
goes up and down, from the carrier frequency + the index, to carrier frequency - the index. If you think
about it, an oscillator outputs values from -1 to 1. Whatever number we multiply this with will give us
the multiplier and its negative. If, for example, we multiply the modulator by 2, it will go from -2 to 2; if
we multiply it by 5, it will go from -5 to 5. This resulting output goes into the right inlet of [+~], where it is
added to the carrier frequency, which is steady, and the output of [+~] goes into the frequency inlet of the
carrier oscillator. The frequency of the modulator sets how fast these carrier frequency changes will happen.
Figure 1-40 illustrates this.

30

CHAPTER 1 © INTRODUCTION TO PURE DATA

. . modulator
carrier + index [7 7 Fa
carrier ‘ ; :
carrier - index N/ x4

time

Figure 1-40. FM illustration

If the horizontal axis of the graph is 1 second, the carrier frequency is 300, and the index is 50, the carrier
oscillator’s frequency will go from 350 to 250 about three times a second (as many as the peaks in the graph)
in a sine fashion. If the modulator frequency is quite low, what we hear is a vibrato-like sound (especially if we
keep the index low as well). The higher the frequency of the modulator, the less we can tell that the frequency
of the carrier oscillator is actually oscillating, and what we start to perceive is more tones around the carrier
frequency. The higher the index, the broader the spectrum of the resulting sound becomes.

This technique is very common in electronic music, as you can create complex and interesting textures
using only two oscillators. Experiment with all three values and try to find sounds that are interesting to you.

Envelopes

The last technique is the envelope, which we will use for amplitude. The previous four techniques dealt with
timbres by using oscillators in various ways. One thing that none of these techniques included was some
sort of amplitude evolution. Although AM did modulate the amplitude of an oscillator, that modulation

had almost no variation, but a steady oscillating fading in and out. Some musicians tend to treat sound in

a different way, where sounds evolve both in frequency and amplitude, with crescendo, decrescendo, and
similar characteristics. An amplitude envelope is the evolution of the amplitude in time. By applying it to an
oscillator (or to any of the preceding techniques), we can control its amplitude to a great extent, from simple
to very complex ways.

Pd has vanilla objects that can create envelopes, but it can be rather cumbersome and not very intuitive,
especially if someone is not very familiar with programming and Pd itself. For this reason, we’'ll use an
external object that is part of Pd-extended. This object is called envgen (for envelope generator) and it is
part of the “ggee” library. A library is a set of external objects. It is very important to know which library
each external that we use belongs to. To create this object, we need to specify its library, and that is done in
a few ways. For now, we'll use the simplest one, which is to type the name of the library first, then a forward
slash, and then the name of the object. In this case, put an object in a new window and type ggee/envgen.
Figure 1-41 shows what you should get by typing this.

31

CHAPTER 1 © INTRODUCTION TO PURE DATA

Figure 1-41. The “envgen” external object from the “ggee” library

This object is actually a GUI, as you might have already guessed. It is designed to work with [line~],
where it sends sequential lists to it. The envelope we’ll design is called the ADSR, which stands for Attack-
Decay-Sustain-Release. It is the most common amplitude envelope that is used in many synthesizers,
commercial or not. The ADSR is a simple imitation of the behavior of the sound of (plucked) acoustic
instruments. The Attach part of it goes to full amplitude in a short time. The Decay part goes down to a lower
amplitude, where it stays for a while, and this is the Sustain. Lastly, the Release goes down to zero amplitude
in a short time. An ADSR envelope is shown in Figure 1-42.

Figure 1-42. An ADSR envelope with [ggee/envgen]

To create this, lock you patch and hover your mouse over the peak of the graph in [envgen], where you
see a small circle. Drag this to the left a bit. To create more breakpoints (that’s what the points where the lines
break are called), click anywhere inside the GUI To move an existing point, click it and drag it, like you did
with the first point. To delete a point, click it and hit Backspace.

The rising part of the envelope in Figure 1-42 is the Attack; the first falling part is the Decay; the
horizontal line is the Sustain’ and the last falling part is the Release. Make the patch shown in Figure 1-43.
The “duration 2000” message sets the duration of the envelope in milliseconds. The bang activates it. Turn
the DSP on, lock your patch, click the “duration” message, and then click the bang message. You should hear

32

CHAPTER 1 © INTRODUCTION TO PURE DATA

the sine wave fade in and out in the fashion of the graph of the envelope, which should last two seconds in
total. Go ahead and try different envelopes. Also try them in combination with the other techniques in this

section.

gbng

duration 2000

= = = L =
0sSc~ 440 Line~
*

dac~

Figure 1-43. An ADSR envelope in action

An envelope can be used in any control parameter of a sound, like the frequency, the index in FM, and

so forth.
Figure 1-44 shows a patch where the modulator frequency, the index, and the amplitude of FM
synthesis are being controlled by an [envgen] each. Mind the [trigger], where instead of f, we type b, which

stands for “bang.” In this patch, [trigger]| sends the bang it receives from left to right.

33

CHAPTER 1 © INTRODUCTION TO PURE DATA

‘bang
Tobb durat ion 2060

L v
line~

*~ 18

r o \
+~ 108

| —

0SC~

+~ 188

line~

¥~ 500

- .
ik line~

|

N

dac~
Figure 1-44. FM with envelopes controlling the modulator frequency, the index, and the amplitude

It is not very important to use here, but it’s good practice to get used to it. With the “duration” message
on the other hand, it is even less important where it will go first, as this message causes no execution at all.
As with the patch in Figure 1-43, lock your patch, click the “duration” message, turn on the DSP, and click the
“bang” message. Experiment with different envelopes and durations.

Note that setting minimum and maximum values for [envgen] can be achieved with arguments. But for
now, we don’t give any arguments and use the object as is, where it defaults to the range 0-1. Check the help
patch to get more information about its use.

We have now covered five basic techniques of electronic music, which we will see later on as build
musical interfaces. We've seen these techniques in their simplest form. In the following chapters, we will
make more efficient, but also a bit more complex, use of them.

Delay Lines in Pd

A delay line is different than the delay mentioned earlier. A delay line delays sound intentionally. Actually,
using delay in many music styles is a much celebrated effect, which has been around for a long time. Pd has
built-in objects for that: [delwrite~], [delread~], and [vd~]. [delwrite~] is a bit like [tabwrite~]; it takes two
arguments though. The first argument is the name of the delay line (like tables, delay lines need to have
names so that we are able to access them), and the second is its length in milliseconds. In the previous patch
with [adc~ 1] and [dac~], disconnect [adc~] from [dac~] and connect it to [delwrite~ my_delay 1000]. This is
a delay line called “my_delay” and it will store 1 second of audio. Apart from its similarity with [tabwrite~],

34

CHAPTER 1 © INTRODUCTION TO PURE DATA

[delwrite~] will write on the delay line continuously, as long as the DSP is on. It doesn’t take a bang, and you
can’t control the beginning and ending of writing to the delay line.

[delread~] will read audio from a delay line. It also takes two arguments: the first is the name of the
delay line and the second the delay time in milliseconds. Put a [delread~ my_delay 500] in your patch
and connect it to [dac~]. Figure 1-45 shows what your patch should look like. In this patch, [delwrite~]
takes audio from the built-in microphone of your computer and writes 1 second to the delay line, called
“my_delay” When that second is over, it goes back to the beginning of the delay line and overwrites whatever
was stored there; it does this for as long as the DSP is on. [delread~] reads from that delay line (because its
first argument is the same with the first argument of [delwrite~]), but delays its reading by half a second,
which is the second argument. If the second argument of [delread~] exceeds the second argument of its
corresponding [delwrite~], the delay time is automatically clipped to the length of the delay line (in this case,
1000 milliseconds). If you turn on the DSP and talk into the microphone, you'll hear your voice delayed by
half a second.

adc~ 1

L

delwrite~ my_delay 10060

'ge Iread~ my_delay 500

I\

dac~

Figure 1-45. Simple delay line patch

This might not be a very interesting use of delay, so let’s enhance it a bit. One feature of delay lines is
feedback. What was not desired in the previous section, where we introduced [adc~], is desired when it
comes to delay. If we send the audio read by [delread~] back to its corresponding [delwrite~], along with the
audio that comes in from the built-in microphone, all audio stored in the delay line will be stored again, but
delayed by 500 milliseconds. If we simply connect these two objects, we won’t have any control over it, and
the delay line will keep on writing its own audio back to itself along with the audio that comes in through the
computer’s microphone. To be able to control the feedback, we need to send the output of [delread~] to a [*~ |,
which will control its level, and then to [delwrite~]. Figure 1-46 shows a feedback delay patch.

35

CHAPTER 1 © INTRODUCTION TO PURE DATA

= feedback control
adc~ 1 I

S
$1 20

line~

ite~ my_delay 1000

my_de lay 5608

dac~

Figure 1-46. Feedback delay line patch

As I've already mentioned, the default range of Hslider is from 0 to 127. But multiplying the delayed
sound by such a great number will greatly amplify it and distort it, which might not be so pleasant to your
ears . What we did in a previous example with a slider was to divide its output by 127, so we get a range from
0 to 1. Another way to do that is to use its properties. Right-click it and select Properties. A window like the
one shown in Figure 1-48 will show up. Go to the field named output-rage: and set the value in the right:
field to 1. Click Apply and OK, or simply hit Return. This way, you can have any desired range. It might be
advisable to place a comment next to a slider that has its range changed. When a slider is controlling the
amplitude of a signal that’s coming out through the speakers, it’s rather obvious that its range is from 0 to 1.
Mind that we send the output of the slider to the message [$1 20] and then to [line~]. This is to avoid clicks,
as I mentioned in the “Control Domain vs. Signal Domain” section of this chapter. Turn on the DSP and start
playing with the slider as you talk into the microphone.

[delread~] has one control inlet, which sets the delay time (it will override the second argument). Using
itin real time will create clicks as we combine the control and the signal domain without using [line~] (it’s
not possible to use [line~] here, as the inlet itself is a control inlet). If we want to be able to change the delay
time on the fly, we must use another delay object: [vd~]. “vd” stands for variable delay. Change [delread~]
in your patch with [vd~ my_delay]. [vd~] takes one argument only, which is the name of the delay line. You
can'’t set the delay time with an argument, but only with input in its inlet. Make your patch look like the one
shown in Figure 1-47.

36

feedback control

‘ade~ 1
C

ite~ my_delay 1608 ?1 20
—_
line~

Ko

o ™~
] =

Figure 1-47. Delay patch using [vd~ | instead of [delread~]

|hsl| Properties

———dimensions(pix)(pix):———
width: 128 height: (15

———output-range:
1

left: 0 right:
Steady on click |

lin | Noinit |
Messages
Send symbol: |
Receive symbol: |

Label

|

X offset -2
DejaVu Sans Mono| Size: (10

Y offset -8

Colors
« Background ¢ Front ¢ Label

Compose color I [0=| |=0hest label

= e

Cancel ‘

Apply | oK

Figure 1-48. Slider’s properties window

CHAPTER 1

INTRODUCTION TO PURE DATA

37

CHAPTER 1 © INTRODUCTION TO PURE DATA

Now you can play with both the feedback amount and the delay time. Again, if you're not using
headphones, be careful with the physical feedback that might occur. Mind that we're using [line~] with [vd~]
too, in order to avoid clicks.

Before closing this section, let’s make a final enhancement to our delay patch. Let’s use an oscillator to
control the delay time of [vd~ | to see how sound generators can act as controllers. Our patch remains more
or less the same, only the input to [vd~ | changes. Figure 1-49 shows this.

- feedback control
adc~ 1 |

ite~ my_delay 1000 %’1 26
o =

[ine~

b 29

dac~

Figure 1-49. Using an oscillator to control the delay time of [vd~ |

Since oscillators output values from -1 to 1, we apply scaling and offset to get values from 100 to 500
(think of simple math to understand how this is achieved). Give a very low frequency to [osc~], like 0.1 in
order not to get changes in the delay time that are too fast. Turn on the DSP and play with. You'll hear the
delayed audio being repeated faster and faster, and then slower and slower. Also, the faster the repetitions
get, the higher their pitch becomes, and vice versa. Try different oscillators with it to see how it sounds.

Reverb

Reverb is another celebrated effect in lots of music styles. It simulates the depth given to sound in large
rooms. In Pd-extended, there is a vanilla abstraction for reverb called “rev3~". Another option is the
“freeverb~" external, which is also included in Pd-extended. A nice way to test both of these reverbs is to
combine them with the audio file playback patch, shown in the “Using Tables in Pd” section in this chapter.
Check their help patches to see how to use them, and place them (one at a time) between [tabplay~] and
[dac~] (use the arguments of [rev3~] help patch before trying your own values). Better try a rather dry audio
file to hear the full effect of the reverb. We won’t go into more detail about how to make the patch, as by now
you should have gained some fluency in making simple patches.

38

CHAPTER 1 © INTRODUCTION TO PURE DATA

Filters

Pd-extended has a variety of raw filters and a few user-friendly ones. The raw filers are [rpole~], [rzero~],
[rzero_rev~], [cpole~], [czero~], [czero_rev~], and [biquad~]. These are quite tough to handle because they
require quite some knowledge on filter theory. Just for the information, “rpole” stands for real pole, and
“cpole” stands for complex pole. You don’t really need to worry about understanding all of this, as a few user-
friendly filters are included as well. These are [lop~], [bp~], [hip~], and [vcf~], where “lop” stands for low
pass, “bp” stands for band pass, “hip” stands for high pass, and “vcf” stands for voltage controlled filter.

[lop~] and [hip~] have one signal and one control inlet. The control inlet takes a frequency value
(which can also be set as an argument), which is called the cutoff frequency. It is called “cutoff” because they
will let all frequencies below or above that pass. The low pass will let the frequencies below the cutoff pass,
and the high pass will let the frequencies above it, hence their names. The left inlet, which is the signal inlet,
takes the signal to be filtered.

[bp~] and [vcf~] are somewhat different. They both have three inlets, the second of which receives the
center frequency. It is called like that because they both let a band around that frequency pass (hence “band
pass”). The right-most inlet takes the so-called Q, which is the width of the band of the frequencies that pass.
Both of these values can be set as arguments in the case of [bp~]. [vcf~] takes one argument only, which is
the Q. The difference between [bp~] and [vcf~] is that the latter can have its center frequency controlled by a
signal (an oscillator for example); whereas [bp~] takes a signal only in its far-left inlet, which is the signal to
be filtered, like with [lop~] and [hip~], and both the center frequency and the Q inlets are control inlets.

[biquad~] is not considered a raw filter, but it’s still difficult to handle. It takes a list of five parameters,
and can more or less take the form of any kind of filter (low pass, shelving filters, and others). You need to
know how to calculate the five coefficients to design the desired filter. Since it is not very user-friendly, we
won't be using it in this book.

An obvious way to use these filters is to filter out some high, low, or middle frequencies of a sound.
Again, you can test them with a sound file, like you did with the reverb. Another way to use these filters is
with oscillators to shape their wave forms. Figures 1-50 and 1-51 show a square wave and a triangle wave
oscillator, respectively, passed through a low pass and a band pass filter, respectively. If you want to build
these two patches, go to the properties of each array. Give each the appropriate name (“unfiltered” and
“filtered”) and change their size to 512. Don’t have both patches open at the same time, as you will have each
array twice, using the same name, and that will create a clash and warning messages in Pd’s console. [metro]
is an object that outputs bangs in time intervals provided via its argument (or its right inlet) in milliseconds.
Check the help patch for more information.

39

CHAPTER 1 " INTRODUCTION TO PURE DATA

tabwrite~ filtered

metro 103’

unfiltered

filtered

Figure 1-50. A square wave oscillator passed through a low pass filter

tabwrite~ filtered

metro 108

unfiltered

filtered

Figure 1-51. A triangle wave oscillator passed through a band pass filter

40

CHAPTER 1 © INTRODUCTION TO PURE DATA

You can see how the shape of the oscillator changes drastically when filtered. This might be desirable
for the immediate audio result, but also for using them as controllers in various techniques, like FM. Go
back to the “Basic Electronic Music Techniques in Pd” section and try the patches shown there, with filtered
oscillators. You'll see that the variety of sounds you can create will expand greatly.

Before we close this section, let’s show [vcf~] in action and its advantage of being able to control its
center frequency with signals. Build the patch shown in Figure 1-52. The [pd triangle~] subpatch contents
are shown in Figure 1-53, although by now you should be able to tell without being shown.

unfiltered
150
o o
1L
hasor~ = é -
— 168.15 tff
<~ 8.5 |
Ey puwesl
: = W
-1 :
= filtered
metro 166
™, N
tabwrite~ filtered "-.___ I i "-._‘
A TE & %
;" ; '-; ¥ \

Figure 1-52. [vcf~]in action

41

CHAPTER 1 © INTRODUCTION TO PURE DATA

inlet~

 —

hasor~

|

L -
L T

min~

L =

X~ 4
e
—~ 1
L

out let~

Figure 1-53. Contents of [pd triangle~] from Figure 1-52

The result of this specific patch is definitely for hearing as well, and not only for graphing its output.
What happens is that the center frequency of the filter is being controlled by a triangle oscillator. In Figure 1-52,
the values output from the [pd triangle] subpatch, go from 0 to 600, in a triangle fashion. The frequency of
the triangle is a little bit above two-thirds of the frequency of the filtered square wave oscillator. This small
difference creates a slowly evolving shift in the timbre. Put a [dac~] in your patch and listen to the result.

Try different values for both oscillators. As you can imagine, this is a kind of modulation, which could be
included in the modulation patches in the “Basic Electronic Music Techniques in Pd” section.

Making Wireless Connections

We've covered most of the basics of Pd, so now we can talk about more generic things. Here we’ll talk about
how to connect objects, messages, numbers, and so forth, wirelessly. Visual programming can be very
intuitive, because of graphing the data flow in a program, but the more complex a patch becomes, the more
difficult it is to read. Figure 1-54 shows a patch that’s pretty messy.

42

CHAPTER 1 © INTRODUCTION TO PURE DATA

pd coordinates] trigger connection

total length —/fufrep outlet
r obj2
Z Llb
thbbb :
/ gt let should output current coords
dutlet $hould output previous coords

pd lists2
ist prepend set
list trim

105 115 32 111 162|116 101 110 32 99 97 108 168 101 100

‘list length

I
el after laost letter
= init coords

1 count letters

stretch box after 3rd letter
r reset

2]

ig
if letters = 3, bang length

ud rect-length

= ‘pack f f f
fepur 0] %ﬁ store length
‘addz $1([r reset
b =

trajfslate 1 -9.18 0.0 B

tba set string

ustify left center
string

y textsize

13

textad

Figure 1-54. A rather messy patch

Thankfully, Pd provides a way to connect things without the connection cords, and this makes things
alot cleaner. In the control domain, we can connect things wirelessly using [send] and [receive],
abbreviated [s | and [r]. These objects take one argument, which is the name to send to and to receive from.

A [send my_send] will be heard by a [receive my_send], as shown in Figure 1-55.

43

CHAPTER 1 " INTRODUCTION TO PURE DATA

TB receive my_send
send my_send A8

Figure 1-55. A wireless connection

You can have as many [send]s and [receive]s with the same name as you want. Mind that whenever we
use these objects, we'll use their abbreviated aliases, [s] and [r].

In the signal domain, things are a bit different. There are the [send~] and [receive~] objects (also
abbreviated [s~] and [r~]), but you can have only one [s~] with many [r~]s. If you want to send many signals
to one destination (the [dac~] for example), you need to use the [throw~]/[catch~] pair, where you can have
many [throw~]s with the same name, sending signals to one [catch~] with that name. Figures 1-56 and 1-57
show the [s~]/[r~] and [throw~]/[catch~] pairs, respectively.

220

E = =

0sC~ E?tro 168

s~ signal s graph

?—« signal ?~ signal
r graph r graph

tabwrite~ arrayl

arrayl

Figure 1-56. A [s~]/[r~] pair

44

tabwrite~ array2

arrayz

220
"
OS8SC~

throw~ signal

catch~ signal

metro 195'

tabwrite~ arrayl

arraya, -~

CHAPTER 1

112
e

0SC~

throw~ signal

Figure 1-57. A [throw~]/[catch~] pair

INTRODUCTION TO PURE DATA

As mentioned in the additive synthesis patch, signals sent to one destination are being added. You can
see that in Figure 1-56, where the graph of the signals exceeds the limits of -1 and 1 (the frame of the graph).
When using [throw~]/[catch~] pairs to send sound, make sure that you scale the sum of signals sent to
[catch~] to keep them within limits. If the audio signal limits are exceeded, they will be clipped before they

reach the sound card. So the graph shown in Figure 1-57 will actually look like the one in Figure 1-58, and
the resulting sound will be distorted.

45

CHAPTER 1 © INTRODUCTION TO PURE DATA

arrayl

[y ¥ . v ‘ ¢

Figure 1-58. A clipped audio signal

Before we close this section, I'll note that you must be careful when using wireless connections,
as a patch can become difficult to read because the connections are not immediately visible. Wireless
connections are there to facilitate us when a patch becomes too dense or when it is very difficult to use
wired connections for other reasons. Most of the time, they are much less than the wired ones. A good
balance between wired and wireless connections is an optimal goal. But ultimately, this depends on the
programming style of each person.

Another thing to note is that when using one [send] with many [receive]s in the control domain, there
is no way to force the execution order, as the order the [receive]s were created doesn’t have the same effect
as the order of the connections we make (data will go to the first connection made, but not necessarily to
the first [receive] created). Be very careful when using this pair this way. There is an external object that
remedies this situation, [iemguts/oreceive] (iemguts is the name of the library that the external belongs to).

Audio and MIDI Settings

Until now, we have used the default settings for audio, but we haven’t dealt with MIDI at all. The audio
settings let you configure various settings, like the sample rate, the delay (not the same thing as the delay

we saw previously), and the block size. They also let you choose an external sound card and set the number
of channels both for input and output. In general, when you make music with a computer, it is advisable

to have an external sound card. This is for better performance, for more noise-free audio, for having more
than two channels for input and output, and so forth. A discussion on sound cards is beyond the scope of
this book, so I'll presume you already have a sound card and take it from there. If you don’t have one, it’s not
really a problem, but read this section because it is helpful for other things concerning your audio settings.

To change the audio settings in Pd, go to Media » Audio Settings.... The Audio Settings window
will open. There are a few things you can change in this window. The first one is the “Sample rate,” which
defaults to 44100. We'll leave that as is for now, but if you want to play back audio files that have been
recorded in a different sample rate, then you should set that rate here. The next field is the Delay, which
defaults to 20 milliseconds in OS X and Linux, and to 100 on Windows. This is a delay set to give time to the
computer to do its audio calculations. If you have too much latency with your audio input (for example, the
patch with [adc~ 1]), try a smaller number. You should probably set the smallest number that doesn’t distort
the sound.

To test your latency, go to Help » Pd Help Browser and a window will open. In that window, go to
Pure Data » 7.stuff » tools, and double-click latency.pd. A patch will open with instructions on how to
use it. This patch calculates the latency created by Pd and reports interruptions and errors (if your system
doesn’t have enough time to do its calculations). The next field is Block size, which defaults to 64. This is the

46

CHAPTER 1 © INTRODUCTION TO PURE DATA

number of samples in each block that the signal objects receive and output. We won'’t really need a different
block size in this book. Note, though, that the smaller the block size, the faster the audio, but the higher the
CPU. We'll also leave the Use callbacks tick box unticked.

All this leads us to the Input device 1: field. If you have no sound card plugged in your computer, Pd will
choose the built-in microphone, as shown in Figure 1-59. If you plug in a sound card, you'll need to restart
Pd, as it’s not going to see the sound card if it is already launched. If your sound card is not chosen by Pd
automatically, click the (0)Built-in Microph menu and a pop-up menu will appear, where you can choose
your sound card (make sure you have the necessary drivers for your sound card, if there are any. You must
install them and make any configurations necessary before trying to use it with Pd).

0 0O Audio Settings

Sample rate: ||44100 Delay (msec): '20 | Block size: | 64 : Use callbacks
[21 Input device 1:| (0)Built-in Microph | Channels: |2
4 Output device 1:| (0)Built-in Output | Channels: |2

Cancel Apply OK

Figure 1-59. The Audio Settings window in Pd

The field below Input device 1: is the Qutput device 1:, which sets the output sound card. You can have
one sound card for input and another for output, if, for example, you want to use the built-in microphone
and use your external sound card’s output.

The Channels fields set the number of channels for the input and the output. If you want to set up a
quadraphonic system, this is where you'll set the number of channels. In all the projects of this book, we’ll
use a stereo setup, so we're not going to change these fields. When you make the setting you want, click
Apply and then OK. It will take a few seconds, and the Audio Settings window will close. Your settings are
now ready and you can use your sound card with Pd.

To set your MIDI devices, go to Media » MIDI Settings... and the MIDI Settings window will open, as
shown in Figure 1-60.

() () MIDI Settings

Input device 1: | none
Output device 1: | none

Use multiple devices

Cancel Apply OK

Figure 1-60. The MIDI Settings window in Pd

47

CHAPTER 1 © INTRODUCTION TO PURE DATA

As with the audio settings, you need to plug in your MIDI devices before you launch Pd, otherwise it
won't be able to see them. In the MIDI Settings window, you can choose your input and output devices. We'll
barely use any MID], only in Chapter 5, where we’ll build a MIDI keyboard synthesizer, but we're covering
this part in this chapter since you're getting introduced to Pd. Usually, we use only input devices, like MIDI
controllers, keyboards, and so forth, but you might also want to control a MIDI device from Pd (actually, Pd’s
predecessor, Max, was initially made—by Miller Puckette as well— to control a hardware MIDI synthesizer).

In the MIDI Settings window, again you have two fields, Input device 1: and Output device 1:, like in
the Audio Settings. This is where you choose your device. If you have more than one device, first click the
Use multiple devices button and you'll be able to choose more than one device both for input and output.
When you select your devices, click Apply and then OK for your settings to be activated.

MIDI Settings on Linux

Setting your MIDI devices on Linux is a bit different. Launch Pd from the terminal with the -alsamidi flag,
like this:

/usr/bin/pd-extended -alsamidi &

Open Pd’s MIDI Settings from Media » MIDI Settings... and make sure there is at least one port for the
input. If you're using more than one MIDI device, you should set the number of ports appropriately. Click
Apply and OK. Then in a new patch, put [notein] if you're using a MIDI keyboard, or [ctlin] if you're using a
controller with potentiometers. Open its help patch and see if you get input from your device. If you don’t get
input, go back to the terminal and type:

aconnect -lio

This will print the available MIDI devices and software currently plugged in and running on your
computer. In my computer I got the following:

cliento: 'System' [type=kernel]
0'Timer '
1'Announce

client14: 'MidiThrough' [type=kernel]
0'MidiThroughPort-o0'
ConnectingTo:128:0
Connected From: 128:1

client 20: "nanoKEY' [type=kernel]
0 'nanoKEY MIDI 1 '
Connecting To: 128:0
Connected From: 128:1

client 128: 'Pure Data' [type=user]
0 'Pure Data Midi-In 1'
Connected From: 14:0, 20:0
1 'Pure Data Midi-Out 1'
Connecting To: 14:0, 20:0

What I get is that I have a Korg nanoKEY sending to port 0, and Pd receiving in port 0 (it sends to port 1).
The following example connects the nanoKEY to Pd:

aconnect nanoKEY:0 'Pure Data':0
Pd’s name is two words, so you need to place it without quotes.

48

http://dx.doi.org/10.1007/978-1-4842-1583-8_5

CHAPTER 1 © INTRODUCTION TO PURE DATA

A Bit More on MIDI

Since we're talking about MID], let’s talk a bit about how to receive input from various MIDI devices. Data
from MIDI keyboards can be fetched with [notein]. If you provide no argument to it, it will have three outlets
and no inlets. The outlets from left to right are the MIDI note number, the velocity, and the MIDI channel
number. If you know the channel, you can set it via an argument, and [notein] will have only two outlets, for
the first two. We'll see this object in more detail in Chapter 5.

Controllers with sliders and potentiometers send Control Change messages, which can be retrieved
with [ctlin], which stands for control in. Open its help patch and use your already set controller to see the
input it gives. Again this object has three outlets and no inlets, and the outlets give the controller value, the
controller number, and the channel number. The last two can be set via arguments. Check the help patch for
more information. Also, click the [pd Related_objects] subpatch to see all the MIDI objects available in Pd.

Additional Thoughts

Before we move on to the next chapter, I'd like to give a few tips concerning Pd programming. First of all,
make sure that you save your patches in an organized way. Some people prefer to save files depending on the
project; others prefer to have a tree structure of the files in a single program or programming environment.
You might prefer a different way. The more you deal with Pd, the more files you'll save on your computer.
Whether you are a hobbyist or you want to make things with Pd professionally, it’s best that you find a way to
organize your patches that suits you well.

Make sure that your patches are clean. Placing objects here and there will most likely create a chaotic
patch. Try to have your objects aligned as much as you can. Make use of subpatches, and whenever
applicable, abstractions. Try to make your patches self-explanatory (by giving describing names to
subpatches, for example), and wherever this is not possible, use comments to describe what happens in
that specific part of the patch. Even if you know what each object does in a patch, if there are not enough
comments (or no comments at all), it might still be very difficult to understand what happened. This applies
to your own patches too; when you come back to them after some time (even a couple of weeks can be
enough, to make things confusing).

Use [trigger] whenever necessary. This means that wherever one piece of data goes to more than one
destination, and the order matters, always use [trigger|. Not using it will very likely create bugs that are very
hard to trace. Also, it makes the understanding of a patch very difficult, or even impossible. We haven’t seen
all features of this object yet, as apart from forcing the order of execution, it also converts data types (it can
convert a float to a bang, for example), so in the chapters that follow, you'll see that it is a very important and
helpful object.

Try to build simple things and to make them more complicated as you go. Trying to create something
complex and beyond your skills will cause confusion and disappointment. With programming, you can
create amazing things, but it takes time to handle a programming language. Take one step at a time, and try
to take joy even with very simple programs that you build. As already mentioned, learning Pd is a matter of
personal practice, and if you practice it frequently, you'll find yourself building rather complex programs
before you expected.

I should mention that at the time of writing (August 2015), Pd-extended is not being maintained.
Pd-vanilla, on the other hand, is being actively maintained by Miller Puckette, with new features added and
new versions released frequently.

Pd’s community is very active too, with lots of developers running and sharing their own projects. There
has been a discussion among the community as to what route should be taken to either revive or replace
Pd-extended. The prevailing idea for now seems to be one that centralizes external objects in a repository
that you can pull from and add to your Pd-vanilla. Since Pd is open source, this kind of issue is likely to
arise sometimes. But with an active community like the one around Pd, there’s no fear that all issues will be
solved. Still, the current version of Pd-extended is fully functional and can be used at both an amateur and

49

http://dx.doi.org/10.1007/978-1-4842-1583-8_5

CHAPTER 1 © INTRODUCTION TO PURE DATA

a professional level. If you keep using Pd, it’ good to stay up-to-date as to how it is going to be maintained in
the future. You can place yourself on Pd’s mailing list, which you can find on its web site, or you can sign up
on the Pd forum at http://forum.pdpatchrepo.info/.

Conclusion

This concludes the first chapter and the introduction to Pd, a very flexible and powerful programming
environment. In this chapter, you have been introduced to Pd, its philosophy, some of its features,
capabilities, but also to some basic techniques of electronic music in general. Learning how to use Pd is a
matter of personal practice, though.

Later on in this book, we're going to build more complex patches to make musical programs. What this
book will try to provide is basic knowledge on the tools used, but also ways to research when you want to
realize a personal project. The musical projects built here are limited, so they cannot meet every musician’s
needs. What they can do is give inspiration and insight to musicians so that they can realize original projects
of their own. The main focus in this book is to combine the physical world with that of the computer to make
musical interfaces. The basics of this communication will be covered to such an extent, that you will be able
to use these tools in many different ways, much more than the ones shown here.

Next are the Arduino basics, where you will be introduced to its language and some simple circuits, and
to the communication features between Arduino and Pd.

50

http://forum.pdpatchrepo.info/

CHAPTER 2

Introduction to Arduino

In this chapter, we’ll be introduced to the Arduino prototyping platform. As with the previous chapter, if
you're already using Arduino, and you're programming it yourself, feel free to skip this chapter. Mind you,
that apart from the Arduino language itself, we’ll also focus on its serial communication capabilities, in
combination with Pd. This means that we'll be using both ways of serial communication (Serial.println()
and Serial.write()), and we'll analyze the way they work, their differences, as well as their advantages and
disadvantages compared to one another.

By the end of this chapter, you'll be able to

e Write simple programs for the Arduino for your physical modeling projects
e Uselooping mechanisms to facilitate your coding

¢ Understand the way serial communication is achieved, and which way to choose
when

e Use the Arduino in combination with Pd and take advantage of each platforms
capabilities

Arduino Jump Start

The Arduino board is a microcontroller that takes input from the physical world, using various sensors, and
uses it in computer programs. It can be used as a stand-alone application, but also in combination with a
computer to realize things that are more complex. The communication between the physical world and the
computer goes also the other way round. The Arduino can give input to the physical world, by using LEDs,
lights, motors, solenoids, and so forth. The Arduino is also a programming environment and a programming
language. The language is built on C++, but has a great set of its own functions. The third element

that comprises the Arduino in its entirety is its community. It has a large community of users, makers,
developers, enthusiasts, that share work and projects between them. It is very similar to the Pd community,
as they are both open source and widely used.

In contrast to Pd, Arduino is a textual programming language, but a very intuitive one. It also runs on all
three major operating systems, like Pd, and its software is for free. Being open source, its hardware is open as
well. All the schematics and circuit designs are open for anyone to use. So, if you have the facilities, you can
build one yourself. That is a difficult task though, and you are encouraged to buy an original Arduino from
your local reseller, or from their web site.

What makes the Arduino so special is not that it’s a microcontroller that uses sensors, or that it can
communicate with a computer to give input from or to the physical world, but the fact that it has been
packaged with its software in such a way that it makes physical computing (the communication between
the computer and the physical world) much easier than ever before. Microcontrollers are said to be a very
difficult field in programming, but the Arduino is very simple to program. Also, the way it is build, facilitates

51

CHAPTER 2 * INTRODUCTION TO ARDUINO

prototyping to a great extent, where you can plug in a few sensors and start using them in a matter of a few
minutes. The Arduino has actually revolutionized the way we use microcontrollers and the contributed in
the expansion of the maker communities worldwide.

To follow this chapter and the rest of this book, you'll need to buy an Arduino board, and download the
software. Go to its web site at www.arduino.cc, get the Arduino IDE (Integrated Development Environment,
the Arduino software), and find your local distributor. At the time of writing (August 2015), there are issues
within the Arduino team. This means that if you buy an Arduino outside the United States, it will be called
Genuino. The name is the only thing that changes, the rest remain the same. This change applies for a few
boards, the UNO, the MICRO, and the MEGA. The NANO and the PRO MINI, shouldn’t be affected. These
issue should actually be solved with the appearance of the Genuino. Still, we’ll refer to it as Arduino, and
we’ll mean both boards, since they are essentially the same.

With Arduino, it is advisable to get the UNO, as it is designed for prototyping. In this chapter, this is the
Arduino we’ll use. In the chapters that follow, we’ll use other types of Arduino, like the NANO and the PRO
MINI, as they are much smaller, so not so good for prototyping, but perfect for being embedded in a project.
Their cost is rather low, maybe the NANO is a little bit more expensive, so it shouldn’t be very difficult to get
one of each. Don’t bother to buy them all yet, if you want to build a project in this book that requires another
type that you don’t have, then go get one.

Along with the Arduino, we’ll be using some peripherals, like LEDs, switches, potentiometers, and
so forth. Each project will needs its own peripherals, so you should probably get them as you go. In this
chapter, we'll use peripherals for prototyping, so instead of potentiometers, we'll use trimmers (these are
breadboard-friendly potentiometers). These prototyping peripherals will be helpful for many more projects,
as when building an electronics project, we first prototype and them start building.

At this point, I should mention that there is a rather easy way to use the Arduino, if you're already using
Pd. That is the Firmata library, which lets you program the Arduino through Pd (or other programming
environments). Since we'll be using some built-in functions of the Arduino language, using Firmata here
won't really help, so we’re not going to use it at all. Instead, we're going to write our own small programs and
restrict the Arduino to the few simple things we need to use. This way we’'ll get a better understanding of its
language, the serial communication, and how it is combined with Pd.

Parts List

In this section, we’ll review the parts you'll need to build all the projects of this chapter. Table 2-1 shows
what each project will use. In addition to that, you'll need some jumper wire (make sure that you get a few),
a breadboard (a half size will probably do, but a full size won’t be bad, as it will prove useful for future
projects too), and of course, an Arduino Uno and a USB cable.

Table 2-1. Parts List

Project LEDs Push buttons Potentiometers Resistors

1 1 0 0 0
2 0 1 0 1 x 10KQ
3 1 1 0 1 x220Q2
4 0 0 1x 10KQ 0
5 1 0 1x 10KQ 1 x 220Q2
6 0 0 3x10KQ 0
7 0 3 3x 10KQ 0
8 3 0 0 3 x220Q

Qa1
\S)

http://www.arduino.cc/

CHAPTER 2 * INTRODUCTION TO ARDUINO

Make sure that the push buttons you get are breadboard-friendly (also called tactile switches), as well
as the potentiometers (these one are also called frimmers). The resistors are counted in ohms, so a 10KQ
resistor is 10 kiloohms, and a 220Q is a 220-ohm resistor.

The Blink Sketch

Before we start looking at Arduino code, make sure you have yourself an Arduino, preferably the UNO, so
you can realize all the programs in this chapter. Figure 2-1 shows an Arduino UNO. The chip in the middle of
the board is the actual microcontroller, an Atmel ATMEGA 328. We can also see a USB socket that we’ll use to
connect it to our computer. There’s also a power JACK socket on the same side with the USB, but since we’ll
use the Arduino always in combination with a computer, we won’t need that, as it will be powered through
the USB. On the sides, we can see a few sockets with some indications on them. These are the pins to which
we'll be attaching sensors, LEDs, and so forth. There are both analog and digital pins, for the corresponding
sensors. On each project, there will be a diagram of the circuit, so it will be easy to follow.

Figure 2-1. Arduino UNO

When learning programming, usually the first task is to print “Hello, World!” to a monitor. In Pd, the first
thing we did was to output a sine tone at 440 Hz (that is the usual case when learning audio programming).
When learning how to program the Arduino, we usually make an LED blink. In electronics, making LEDs
blink is the very basis. It is said that, if you can make an LED light up, you can do anything. So what we’ll do
first in this chapter is to make an LED blink. The Arduino IDE has a sketch (this is how we refer to Arduino
code) that does exactly that.

Go ahead and launch the Arduino IDE. What you'll get at the beginning is a new sketch window, like
the one in Figure 2-2. In contrast to Pd, this window is not totally empty. First of all, at the very top, it writes
“sketch_aug07a | Arduino 1.6.5" This is a default sketch name given by the IDE. “aug” stands for August
(all this is written in August), “08” stands for the eighth of the month, and “a” stands for the first sketch of
the day. If you reach the limit of the Latin alphabet, you'll get a window saying, “You've reached the limit for
auto naming of new sketches of the day. How about going for a walk instead?” and it won't let you create a
new sketch. Just restart the application and it will work again. I'm pretty sure that you won’t reach that limit
unintentionally (I kept on creating new windows till I got to the end, just to see what happens). The second
part of the top line is the version of the IDE you're using.

53

CHAPTER 2 * INTRODUCTION TO ARDUINO

ann sketch_aug08a | Arduino 1.6.5

01

'/ put your setup code here, to run once:

Arduino Uno on fdevicu usbmodemdll

Figure 2-2. A new sketch window

On the very bottom of the window, on the left side you can see the line in your sketch where the cursor
currently is. On the right side, you see the selected Arduino board and its serial port (can’t really remember
if there was any serial port when I first installed the IDE and opened a new window without having set a port
yet). In the case in Figure 2-1, it's an Arduino Uno, on port /dev/cu.usbmodem411 (this is on OS X). Later on,
we'll talk about all this in more detail.

In the window, we see a little bit of code. The first line reads void setup() {.This is a built-in function
that runs once as soon as the Arduino is powered. We won’t bother with the word void for now. setup
is the name of the function. When we program in C++, we can create our own functions, and we have to
give them a name. Think of it a bit like an abstraction in Pd. The parenthesis are obligatory when writing a
function. They are there in case the function takes arguments, and even if it takes no arguments, you must
still include them. After the parenthesis, there is an opening curly bracket. When we define a function, its
code is included in curly brackets, and we can see the closing bracket in line 4. Whatever is written inside
these brackets is the code of the function, which will be executed when we call that function (for the setup
function, as soon as the Arduino is powered). By “define,” I mean to write the code of the function. Both
setup and loop are not defined by default, but are there for us to define them any way we want.

Line 2 has a comment. This is like the comments in Pd, they are there to give us information, and they
don’t affect the program at all. The compiler (the compiler is the program that turns code into an executable
program) will ignore all comments when it will compile the code. This is a single line comment and it must
start with two forward slashes. The comment reads "put your setup code here, to run once:".This
actually tells us what really happens with this function, it runs only once, when the Arduino boots.

54

CHAPTER 2 * INTRODUCTION TO ARDUINO

In line 7, we read void loop() {.This is another built-in function of the Arduino language and
runs immediately after the setup function, over and over again, hence its name loop. Again we have the
parenthesis, since it’s a function, and the curly brackets, because it hasn’t been defined yet. Inside it, we read
the comment, "put your main code here, to run repeatedly:".This is where we'll be writing most of
our code, and this will run for as long as the Arduino is powered.

The different colors for various keywords of functions and others, are there to facilitate the reading and
writing of code. Most of IDEs have color highlighting for this reason. In the Arduino language, the blueish
color of void is the color for data types (like integer, float, byte, etc.; you'll see them later on). The color of
setup and loop is the color for these two functions and all control structures (if, for, while, and others).

All comments are grey and all defined functions (not setup and loop) are orange. We'll see all this as we read
further on.

Now go to File » Examples » 01.Basics, and click Blink. This should open a new window with the
code in Listing 2-1 in it.

Listing 2-1. The Blink Sketch: the Equivalent to the “Hello World!” Program in Most Programming
Languages

1. /*

2. Blink

3. Turns on an LED on for one second, then off for one second, repeatedly.
4.

5. Most Arduinos have an on-board LED you can control. On the Uno and

6. Leonardo, it is attached to digital pin 13. If you're unsure what

7. pin the on-board LED is connected to on your Arduino model, check

8. the documentation at http://www.arduino.cc

9.

10. This example code is in the public domain.

11.

12. modified 8 May 2014

13. by Scott Fitzgerald

14. */

15.

16.

17. // the setup function runs once when you press reset or power the board
18. void setup() {

19. // initialize digital pin 13 as an output.

20. pinMode(13, OUTPUT);

21, }

22.

23. // the loop function runs over and over again forever

24. void loop() {

25. digitalWrite(13, HIGH); // turn the LED on (HICH is the voltage level)
26. delay(1000); // wait for a second

27. digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
28. delay(1000); // wait for a second

29. }

This is the first Arduino sketch we’ll upload to our board. To get a grasp of how things work with
the Arduino, we'll go through its code in detail, step by step. The code here has all lines numbered for
convenience, but the Arduino IDE doesn’t show these line numbers, only the number of the line where the
cursor is, at the bottom of the window. The first fourteen lines of code are a multiline comment. To make a
multiline comment in Arduino, start it with a forward slash and an asterisk, and end it with an asterisk and

55

http://www.arduino.cc/

CHAPTER 2 * INTRODUCTION TO ARDUINO

a forward slash. Whatever you write in between will be ignored by the compiler. This specific comment tells
us what this sketch does, gives some information about the integrated LED on the Arduino and some other
meta-data.

After the multiline comment, we have a single line comment giving information about when the setup
function runs, and then we have the actual setup function. In line 19, we have a comment: "initialize
digital pin 13 as an output”.Indeed, line 20 does exactly that. Since we’ll use an LED and we will be
turning it on and off, the pin we’ll use for this is a digital pin, because it has two possible states only, on or
off (same as 1 or 0). Also, this pin will output voltage to the LED, so it must be an output pin. Digital pins
can be either input or output, whereas analog pins are only input. This line also shows how intuitive the
Arduino language is. The function to set a pin either as input or output—in other words, to set the mode
of the pin—is called pinMode, and you can tell that it’s a function by the parenthesis after its name. This
function is part of the core of the Arduino language and has already been defined. That’s why it has no curly
brackets, like setup and loop, and you can’t write code in it, but only use it as is. This is the first predefined
function we encounter and we can see that it is color highlighted in orange, as mentioned earlier. pinMode
takes two arguments, the pin to set the mode to, and the mode to set to that pin. The pin we’ll use is pin 13,
because that’s the pin Arduino Uno has an integrated LED on. For the second argument, we use a keyword
of the Arduino language, OUTPUT. This keyword (the language is case sensitive, so output won’t work) tells
pinMode to set the specified pin as an output. Mind the semicolon (;) at the end of the line. pinMode is a
predefined function, so we must put a semicolon whenever we call it. All executable lines of code in C++ end
with a semicolon. This tells the compiler that this is the end of the line and that this line must be executed.
Functions that are being defined (like the setup and 1loop) don'’t take a semicolon, but all code written inside
them does.

Our setup function consists of one line of code only (plus a single line comment). Line 21 closes the
brackets of the setup function and we move on to the loop function. Notice how all code within setup is
indented. The same happens with loop too. All functions and control structures have their code indented,
for readability. You'll see that it is a very helpful feature. In the Arduino IDE, when you open a curly bracket
and hit enter, the code automatically gets indented.

In our loop function, we can see four lines of code, where we call two functions, two times each. Both
these functions are predefined, like pinMode. The first one, on line 25 is the digitalWrite function. As its
name states, this function writes a value to a digital pin. Like pinMode, this one also takes two arguments,
the pin to write a value to, and the value to write to that pin. In this case, we want to turn the LED on pin 13
on. Again, we provide the number 13 for the pin number. On can be indicated by the keyword HIGH. HIGH
stands for high voltage. Sending voltage to that pin, will turn the LED on. Mind the semicolon after the
function call.

We can see that after the semicolon there is a single line comment. The comments we've seen so far start
at the beginning of the line, but single line comments can start at any point of a line. The compiler will compile
the line up to the point of the two forward slashes, after which point it will ignore everything. This comment
tells us what this line of code does, which is to "turn the LED on (HIGH is the voltage level)".

The next line reads delay(1000);. delay is another built-in, predefined function. What it does is
delay the rest of the program by a specified amount of time, which we set via its argument (delay takes one
argument only), in milliseconds. This line of code will delay the rest of the program for 1000 milliseconds, or
for 1 second. After we call that function, we put a semicolon to let the compiler know we’re done with that
line, and then there is a comment saying that we’llwait for a second.

After delay, we call digitallWrite again, but this time we set the pin LOW, meaning we drop the voltage low,
so the LED will turn off. The comment after the semicolon explains that as well. Lastly, we delay our program for
another second by calling delay(1000); as we did before. And this concludes our first Arduino sketch. In line 29,
we put the closing bracket for the loop function (no semicolon here as we are defining the function).

What you might have noticed is that in textual programming the code is being executed line by line,
the same way we read it. In visual programming, we can see the data flow by the connections between the
objects, in textual programming the data flow is being defined by the position of each line of code. Since I
have explained the Blink sketch, let’s upload the code to our Arduino board, to see it in action. Plug in your
Arduino and go to Tools » Board: and you’ll get the menu shown in Figure 2-3.

56

CHAPTER 2 * INTRODUCTION TO ARDUINO

Boards Manager...
Arduino Yun

v Arduino Uno
Arduino Duemilanove or Diecimila
Arduino Nano
Arduino Mega or Mega 2560
Arduino Mega ADK
Arduino Leonardo
Arduino Micro
Arduino Esplora
Arduino Mini
Arduino Ethernet
Arduino Fio
Arduino BT
LilyPad Arduino USB
LilyPad Arduino
Arduino Pro or Pro Mini
Arduino NG or older
Arduino Robot Control
Arduino Robot Motor
Arduino Cemma

Figure 2-3. The Boards menu on the Arduino IDE

You can see that there are many different boards supported by the IDE. If the Uno is not already
selected, go ahead and click it (if you're using another board, click that). The menu will close, but the board
will have been selected. Once you've done that, you must select your port. Go to Tools » Port and a menu
with all available ports will open. The Arduino port should have an indication like the one in Figure 2-4. On
OS X the port is /dev/cu.usbmodemx,’ on Linux it’s /dev/ttyACMx, and on Windows it's COMx, where x is a
number. Select your port (again, the menu will close, but the port will have been selected) and you're ready
to upload the sketch to your board. On the top of the sketch window, there are a few icons, as shown in
Figure 2-5. The icon with the arrow inside it is the Upload button. Click it and the IDE should start uploading
the sketch to the board. Before it uploads the code to the board, it will first compile it, and on the bottom
of the sketch window, you'll see the compilation process progress, shown in Figure 2-6. When the code has
been compiled, the IDE will start uploading it to the board, and now you'll see the upload progress, shown in
Figure 2-7.

'On OS X there’s a /dev/tty.usbmodemx and a /dev/cu.usbmodemx. It used to be the tty. but the latest IDE hides
it. Selecting the cu. one is exactly the same.

57

CHAPTER 2 " INTRODUCTION TO ARDUINO

v /dev/cu.usbmodem411 (Arduino Uno)

Figure 2-4. Indication of the Arduino Uno port

Figure 2-5. Verify, Upload, and other choices on the Arduino sketch window

Figure 2-6. Compilation process progress on the IDE window

Figure 2-7. Upload progress on the IDE window

When the uploading has finished, on the bottom of the window you’ll read: “Done uploading.” On your
Arduino board, you should see an LED blinking, turning on for one second, and off for another second,
repeatedly. Congratulations! You've uploaded your first Arduino sketch!

Before we move on and start writing our own code, let’s use an external LED with this sketch. Usually
when we use LEDs, we also need to use resistors, because the voltage supplied by the Arduino is too
much for an LED, and most likely it will be burned, if there’s no resistor. Pin 13 on the Arduino Uno has
an integrated resistor, so to make this sketch work with an external LED, there’s no real circuit you need to
build yourself. An LED has two legs, one long and one short. The long one takes voltage, while the short one
connects to ground. By ground in electronic circuits, like the ones we’'ll build with the Arduino, we usually
mean zero volts. Even though there’s no connection with the real ground (the earth), we still call this ground.
Figure 2-8 shows how you should connect the LED to your Arduino.

CHAPTER 2 * INTRODUCTION TO ARDUINO

ANALOS IN

fritzing
Figure 2-8. LED connected to digital pin 13 and Ground

It is very convenient that there is a ground pin next to digital pin 13, so we can insert the LED straight
into the pin sockets (these are called headers, and that’s how we’ll refer to them from now on). Once you
plug your LED into the Arduino, you should see it blinking along with the integrated LED that is already
blinking. Now let’s write our own code to the Arduino!

Digital Input

From this point on we'll start needing some components to build the circuit of each project. The parts for
this project are shown in Table 2-2.

Table 2-2. Project 2 Parts List

Part Quantity
Push buttons 1
Resistors 1 x 10KQ

Since you saw how we give digital output, now we’'ll receive some digital input. To do this we’ll need
a switch that we can read from the Arduino (actually, we'll use a momentary switch, essentially a push
button). We'll connect the switch to a digital pin, which we’ll configure as an input pin, and we’ll read
whatever the switch gives in the Arduino serial monitor. Open a new sketch window using the same shortcut
you opened a new window in Pd with: Ctrl/Cmd+N. Listing 2-2 shows the code you should write in the new
window.

59

CHAPTER 2 * INTRODUCTION TO ARDUINO

Listing 2-2. Receiving Digital Input in the Arduino

1. // set a global variable for the pin of the switch
2. int switch_pin = 2;

3.

4. void setup() {

5. // initialize the switch pin as input

6. pinMode(switch_pin, INPUT);

7.

8. // start the serial communication so we can see the readings in our computer
9. Serial.begin(9600);

10. }

11.

12. void loop() {

13. // store the state of the switch to a variable
14. int switch_state = digitalRead(switch_pin);

15.

16. // print the variable to the Serial Monitor

17. Serial.println(switch_state);

18.

19. // short delay so that we don't receive massive data
20. delay(250);

21, }

Defining Variables in Arduino

Line 1 says thatwe’ll "set a global variable for the pin of the switch", and we do exactly that on line 2.
This line sets a variable of type int, called switch pin, and assigns the value 2 to it. An int in the Arduino
language is an integer (a value with no decimal point), that is two bytes long (it can hold values from -32,768
up to 32,767). In Pd, we didn’t deal with different data types because all numbers are actually floats. In
Arduino (and C/C++ programming), we must always define the type of the data whenever we create a new
variable. Sometimes we might need an integer, other time we might need a float, also we might need two
bytes, or four, or one. Therefore, we must always define the data type. The syntax of line 2 is the one we use
when we create a new variable, which is: data type, identifier, value assignment. The last part (where we
assign a value to the variable) is not mandatory, but the first two are. In this specific sketch, using a variable
is not really necessary, as with the Blink sketch, but it’s good practice to use it, so we can get the hang of

it. Also, this variable is called global because it is defined outside any function, at the top of the sketch,
therefore is accessible by any function (note that this variable is called by both setup and loop). If it were
defined inside one of the two functions, then the other function wouldn’t have access to it, and it would be
called a local variable. We'll see more of these as we write more code.

Further Explanation of the Code

Now that I've explained the first two lines of code, which are not specific to this sketch only, let’s move
further. Note that we use digital pin 2, and not 0 (pins start counting from 0), because digital pins 0 and 1 are
used for receiving and transferring data, so we start using pins from 2 onward.

In line 4, we define our setup function. Like with the Blink sketch, we call the pinMode function to set
the mode of the pin we’ll use. This time, since we'll be receiving input from the Arduino, we set the pin
as INPUT. With the sketch we’ll also need to have serial communication, so the setup function goes on to
set that as well. Line 8 contains the comment "start the serial communication so we can see the
readings in our computer" and line 9 calls the begin function of the Serial class.

60

CHAPTER 2 * INTRODUCTION TO ARDUINO

Classes in Arduino and the Serial Communication

We can tell that Serial is a class, because there is a dot between it and its function that we call, begin. The
class name is also in bold letters (not on OS X), which declares that this is a class. A class in C++ is a set

of functions and data that comprise a user-defined data type. They are there to make things easier when
coding, as they are actually a package of methods that we often use. It is different than an abstraction,
because the abstraction is a single function, we write once and use lots of times, whereas a class packs
many functions together, along with its own data. It’s not really necessary to grasp what a class is in C++, the
details provided are there just to give some information. To come back to our code, line 9 begins the serial
communication between the Arduino and the computer at the rate of 9600 bits per second, which is set via
the argument of begin. The communication is called serial, because the bits come in the communication
line is series, one at a time.

Further Explanation

Line 10 has the closing curly bracket of the setup function, which is there by default, when you open a new
window in the Arduino IDE. Curly brackets are necessary for function definitions and control structures,
which we will see later on. Forgetting to include one will create an error message at the bottom of the sketch
window and the code will fail to compile. Luckily, when you put an opening curly bracket in the Arduino
IDE, and hit return, it automatically inserts the corresponding closing bracket, so it’s almost impossible to
forget it and cause an error.

In line 12, we start our loop function. Line 14 creates a new variable of type int, called switch_state,
and assigns to it the value returned by the digitalRead function. digitalRead is the counterpart of the
digitalWrite function, and as its name states, it reads the value of a digital pin. This function takes one
argument only, which is the pin to read from. Compare line 14 to line 2. They are very similar, only in the
case of line 2, we assign a fixed value to our variable, whereas in the case of line 14 we assign a different
value every time, the one read and returned by the digitalRead function. The argument we provide to
digitalRead is the variable that holds the number of the pin we’ll attach the switch to, defined in line 2.
Using variables with names that make sense, make our code self-explanatory and easier to read. Line 14
should be fairly easy to understand without explanations.

Line 17 calls the println function of the Serial class. Like with the begin function, we must include the
class name and place a dot between it and the name of the function, like this:

Serial.println(switch state);

This function prints whatever is provided inside its parenthesis, to the serial port. In this case, it prints
the value stored in the switch_state variable. For this sketch, we’ll use the serial monitor of the Arduino IDE
to see what the Arduino prints. Later on, we'll start receiving data in Pd, which is our goal.

Finally, in line 20 we delay our program by 250 milliseconds, so that we don’t get massive amounts of
data in the serial monitor. This delay is only for this reason, when we’ll use Arduino with Pd, we won’t be
using these delays.

Building Circuits on a Breadboard

Before we check the circuit for this sketch, I'll explain what a breadboard is and how it works. A breadboard
is a board that facilitates testing circuits a lot. It has small holes where jumper wires fit, and these holes are
connected in a certain way to help connect the wires to other parts, like resistors, push buttons, LEDs, and
so forth. Figure 2-9 shows the wiring of a small breadboard. On the top and the bottom, there is a blue and a
red line. The black wire that goes along the blue line shows that all holes along the wire are connected with
each other. So if you plug in a wire at one end of this line, and another wire at the other end, these wires will

61

CHAPTER 2 * INTRODUCTION TO ARDUINO

be connected. The same goes for the red wire along the red line, and this applies to both top and bottom.
The green and yellow wires show how the holes are connected in the inside part of the breadboard. Up until
the notch in the middle of the board, the lines are connected vertically, as we see the board in Figure 2-9.
Building the circuit of this sketch will help you understand how the breadboard works.

L L B B e S L B B S L B B B D B B e S B R L B B
* 9 0 9 9PN YN YYD
LA B B B S B B B B B B B B B O
® ® & & & 9 0 0 B " 9 0 P B WS E B e WYY YD
® & @& & & @ 0 & ° " 9 0 P ° W PO B W e YD
()& & & & & & ¢ & ¢ & & & & & & & ¢ & ¢ 8 ¢ 08 ¢ 0 ¢ 0 0 0 l
* 9 @ & & 9 9 0 ° 9 9 0 O ° W W0 " e e YYD :
® 0 @ & 9 9 9 0 B P 0 P e W E e YYD i
H

* & & & & 9 9 0 0 P 0 B E 8P E BT YYD :
U ® & & & & & & 9 & 9 & % % % 0 0 9 0 " P N T PO N DN i

fritzing
Figure 2-9. Breadboard wiring

The circuit is shown in Figure 2-10.

62

CHAPTER 2 * INTRODUCTION TO ARDUINO

L R D B I R B R B B R B B B R R R B O
® 8 e e e E RS e eSS e e e e
® % 9§ 8 S B S F S E e eeEEEYE e S
LI B B O O O B B O B I O R I O A
* e LJ L AL B B R R B R R R B B R R B
0.0...-.0.0 L B L . L AL B B
LR B I LI O I O O O T B O B O T I O O O O
* e L B B
.I.U..'.UU.U.UC.U.U..U... LR AN IR
Il.IIIFI‘II.IIII...II.I.I LI O
L '..l-. L L . L4 L
EENED v ¢ ° L L L . " e " e ..

fritzing
Figure 2-10. Digital input circuit

The push button of the circuit has two pairs of two connected legs. The legs on the left side are
connected between them, and the legs on the right side too. The two sides are not connected until we press
the button. One of the two leg pairs connects to 5V (this means five volts), and the other leg pair connects
to one leg of the 10kQ resistor (it doesn’t matter which one), and the other leg of the resistor connects
to ground (anywhere along the bottom blue line). The resistor applies some resistance to an electrical
current. The amount of resistance it applies is expressed in ohms. If we don’t use a resistor in our circuit,
as soon as we press the switch, we'll actually connect 5V to ground, creating a short circuit. The same leg
pair of the button that connects to the resistor also connects to the digital pin 2 of the Arduino (it’s the pin
we've set as input and the one we're reading in the Arduino code). We could have connected the resistor
straight to the ground pin of the Arduino (GND pin), and the right leg pair of the button straight to the 5V
pin, but providing voltage and ground to the board is good practice for later projects where we’ll have more
components requiring voltage and ground. Also, traditionally, we use black wire for ground and red for 5V.

63

CHAPTER 2 * INTRODUCTION TO ARDUINO

Go ahead and upload the sketch to your board. The IDE will prompt you to save it. When you install
the Arduino IDE, it automatically creates a folder called Arduino to the Documents folder (on Linux the
directory is called Sketchbook and should be in your home directory). If this folder doesn’t exist, go ahead
and create it. Save the sketch with the name Digital input. Checkifit’s saved. You'll see a folder with the
name Digital input in your Arduino folder, and in there the file Digital input.ino. The .ino extension is
for files read by the Arduino IDE. Once you upload the code to your board, open the serial monitor. To open
it, click the rightmost icon on top of the window, shown in Figure 2-5. Figure 2-11 shows the readings of the
switch being printed onto the serial monitor. Make sure that the menu on the bottom left of the window
reads “9600 baud”. This is the baud rate we’ve set to the Serial communication with Serial.begin(9600);
(baud rate is the rate of bits per second, that’s how we'll refer to it from now on). Also, make sure that the
menu next to it reads “Newline” (I'll explain what this is further on). These two are necessary for the Arduino
to print to the monitor properly, since we've set them in the code. Now you should see a number every 250
milliseconds, which should be a 0 when you don’t press the switch, and a 1 when you press it.

eno /dev/cu.usbmodem411 (Arduino Uno)
| Send

CEEEEEEEEEEEE R I T T

™ Autoscroll Newline & 9600 baud A

Figure 2-11. Arduino’s serial monitor

Pull-up vs. Pull-down Resistors

There’s one last thing I need to explain before we move on to the next sketch. The resistor used in this

circuit is called a pull-down resistor, because it connects the switch to ground. If instead we reverse the
connections, so the resistor connects to 5V (any hole along the red line), and the right leg pair of the push
button connects to ground (any hole along the blue line), the resistor will be a pull-up resistor. This will
create a reversal in the readings of the switch, meaning that the Arduino will print a 1 when you don’t press
the switch, and a 0 when you press. This is a bit counter intuitive, but it is said that pull-up resistors are more

64

CHAPTER 2 * INTRODUCTION TO ARDUINO

stable in a circuit, than pull-down. Apart from that, all pins in the Arduino have internal pull-up resistors,
which are disabled. To enable a pull-up resistor in a pin, we must call the pinMode function. Open a new
sketch window and copy the previous code to it (if you change the code in the previous sketch and upload it,
the IDE will automatically save it). In the new sketch change line 6 to this:

pinMode(switch_pin, INPUT_PULLUP);

Also, change your circuit to the one in Figure 2-12. Using Arduino’s internal pull-up resistors reduced
the circuit we need to build a bit. This will come in handy when we’ll start building circuits on a perforated
board, as it will reduce the amount of soldering to a great extent. These resistors are 20k<, but they're still
good for us to use with switches. Don’t confuse them with the internal resistor on pin 13, which we used
with the Blink sketch. That resistor connects pin 13 of the processor to the header where we attached the
LED, whereas the pull-up resistors connect the pins of the processor to 5V. We first built the circuit with an
external resistor, to clarify how the actual circuit works, because if we used the internal one straight away,
you probably wouldn’t understand the circuit the same way.

L B D B B R B B B R B R R R B O
® 8 e e e E RS eSS e e e
® 8 9§ 9§ 8 P S F S S SRS eSS e
L R B O O O B B T B I R I T OB
* e LJ L AL B B B B R B B R B R B B R R
0.0...-.0-0 L B L . L AL L
L B I LR I B I O O T I O B O T B O O I O
* e e L R B
L B B R B B R I R B R B R B B L B B
II.III.I‘I.IIII...II...I LI

L ...‘. L B L L4 L4 L

EEENED ¢ ¢ ° e v e L O L] LA

fritzing
Figure 2-12. Digital input with internal pull-up resistor enabled

65

CHAPTER 2 * INTRODUCTION TO ARDUINO

Both Digital Input and Output

A logical next step would be to combine the two sketches we’ve already analyzed. What we’ll do is use the
switch both for visualizing it in the Arduino serial monitor, but also to control an LED. Table 2-3 shows
the parts needed to realize this project.

Table 2-3. Project 3 Parts List

Part Quantity
Push buttons 1
LEDs 1
Resistors 1 x 220Q2

This time we’ll use another pin for the LED, that doesn’t have an internal resistor like pin 13 (unlike the
pull-up resistors, only pin 13 has an internal resistor that can be used with an LED). Here we'll also see why it
is good practice to store readings in variables, as we’ll use the reading of the digital pin 2, both for projecting
in to the serial monitor, but also for controlling the LED. Listing 2-3 shows the code you should write.

Listing 2-3. Digital Input and Output Sketch

1. // set a global variable for the pin of the switch

2. int switch_pin = 2;

3. // set a global variable for the pin of the LED

4. int led_pin = 8;

5.

6. void setup() {

7. // initialize the switch pin as input with the internal pull-up resistor
8. pinMode(switch_pin, INPUT PULLUP);

9. // initialize the LED pin as output

10. pinMode(led pin, OUTPUT);

11.

12. // start the serial communication so we can see the readings in our computer
13. Serial.begin(9600);

14. }

15.

16. void loop() {

17. // store the state of the switch to a variable

18. int switch_state = digitalRead(switch_pin);

19.

20. // write the reading of the switch to the LED

21. digitalWrite(led pin, switch_state);

22.

23. // print the variable to the Serial Monitor

24. Serial.println(switch_state);

25.

26. // short delay so that we don't receive massive data
27. delay(250);

28. }

66

CHAPTER 2 * INTRODUCTION TO ARDUINO

This code is very similar to the code in Listing 2-2. What’s new is line 4, where we set a global variable
for the pin of the LED, which is 8. In the setup function, we call the pinMode function for both pins, but we
set the switch_pinas INPUT_PULLUP, and the led_pin as OUTPUT. Then in line 21, we use the value stored in
the switch_state variable, to control the LED, by calling the digitalWrite function like this:

digitalWrite(led pin, switch_state);

In line 24, we print the value of switch_state to the serial monitor. Instead of creating a variable for the
switch readings, we could have called the digitalRead function twice. So line 21 could read:

digitalWrite(led pin, digitalRead(switch pin));
And line 24 could read:
Serial.println(digitalRead(switch_pin));

And line 18 could have been avoided altogether. We could have even avoided to create the switch_pin
variable, and write the number 2 in its place instead. This whole approach is problematic for the following
reasons. The Arduino takes some time to read a pin (especially the analog pins), and calling a function
that reads a pin more than once is not very efficient. Calling that function once and storing its reading to a
variable, and then calling that variable instead, is much faster, efficient, and easier to read and understand.
Also, avoiding a variable for the pin number of the switch can cause some problems, if for some reason we
decide to change that pin. If you use a variable, you'll have to change one line of code only, the variable
declaration. If you're not using a variable, you'll have to change that pin number in any line of code where
you use it. Figure 2-13 shows the circuit for this sketch.

67

CHAPTER 2 " INTRODUCTION TO ARDUINO

L B B B L B B A B B B B B B B B
LI I B T T S T O A LI O O B O O A T B A
LI O B T B B O O LA B B B L B B L I
EEEEEE R RS L I I B B A
LR I T T T S T O O A DI T T I I . e
" e 8 8 e e e OOIIIIIOIIHII.
* " e e -m-...... - L
LI A S B A LI O LI O . .o
LI I B T I A] " e e e LI - ..
* % " 8 " e s e LI B LR ., LA

Arduino”

fritzing
Figure 2-13. Digital input and output circuit

We could have use digital pin 13 for the LED, which has an internal resistor, but we prefer to use an
external resistor, so you can see how a circuit using LEDs actually works. Build the circuit and upload your
code. Don't save it yet when the IDE prompts you, just click Cancel and the code will be uploaded without
being saved. Open the serial monitor too. Now whenever you press the switch the LED should go off, and
whenever you release it, it should go on. But wait a minute, this should be the other way round, right? This
inversion happens because of the pull-up resistor we have enabled in the switch pin. The LED should be
aligned with the readings you see in the serial monitor. Whenever you press the switch, you should see 0s in
the monitor, and the LED going off, and whenever you release it, you should see 1s and the LED going on.
We can very easily reverse this whole process by adding a single character to our code. Go back to your code
and change line 18 to this:

int switch state = !digitalRead(switch pin);

68

CHAPTER 2 * INTRODUCTION TO ARDUINO

All we did was add an exclamation mark just before digitalRead. The exclamation mark in C/C++ when
used before a value (digitalRead returns a value, so we should treat calling it like writing a value) means
“the reverse of” Adding the exclamation mark to this line, should reverse the readings of the digital pin 2, so
now whenever you press the switch you should see the LED going on, and 1s in the serial monitor, and the
other way round. There should be a tiny bit of lag to the reaction of the LED, which is because of line 27:

delay(250);

This is used to avoid receiving massive amounts of data. We won'’t be using that when we build musical
interfaces.

Analog Input

The next thing that we’ll look at is getting input from the analog pins of the Arduino. Table 2-4 shows the
parts for this sketch.

Table 2-4. Project 4 Parts List

Part Quantity

Potentiometers 1 x 10KQ

There are many sensors you can use with the analog pins, like proximity sensors, vibration sensors,
accelerometers, and many more. For now, we'll just use a potentiometer, to see how to use the analog pins of
the Arduino. Listing 2-4 shows the code.

Listing 2-4. Analog Input Sketch

1 int analog_pin = 0;

2

3 void setup() {

4. // begin the serial communication

5. Serial.begin(9600);

6

7

8 void loop() {

9. // store value of potentiometer to a variable
10. int pot val = analogRead(analog pin);
11.

12. // print it to the Serial Monitor

13. Serial.println(pot_val);

14.

15. // short delay to avoid massive data
16. delay(250);

17. }

This code is also very similar to the code in Listing 2-2. In line 1, we define a variable for the analog pin
number. If you look at your board, you'll see that the analog pins start from A0, up to A5. We can omit the
letter A, which stands for analog, but if you like, you can include it and write this line like this:

int analog_pin = Ao;

69

CHAPTER 2 " INTRODUCTION TO ARDUINO

In the setup function, we're not calling pinMode anymore, because as already stated, the analog pins are
input only, so we don’t need to set their mode. We're just starting the serial communication with a
9600 baud rate. In the loop function, we create a variable to hold the value read by the potentiometer, but this
time we call the analogRead function. This function is very similar to its digital counterpart, digitalRead. It
takes one argument, which is the analog pin to read from, and returns the value read from that pin. In line 13,
we print that value to the serial monitor, the same way we did before. Finally, we use the delay function, in
order not to get a massive amount of data. Figure 2-14 shows the circuit for this code.

L I B
L I
. e 0 00
e 8 80

L I
o« e 0 00

. e e 00
L
L
L I I
LI
—imm A & ¢ ¥ &
°
-.
-
e
LI I

L B L B B L B L B
LR B O I O O T A LR A B O I B
LR S I A O R A LR A A O S I A
L I B B B B B L B B B B B
L B B L L B B L I B L N L B R B
" s e L .oolt LR L
NN v e e L . e . L LR .

fritzing
Figure 2-14. Analog input circuit

The potentiometer is actually a variable resistor. That’s why the ohms are mentioned in the components
of this circuit. It has three legs, where one of the side ones connects to ground, the other side leg connects
to 5V, and the middle leg (called the wiper) connects to the analog pin of the Arduino. As you spin the
potentiometer, the resistance it applies to the circuit varies. It doesn’t really matter which of the side legs
will go to ground and which to 5V, only the increasing/decreasing of the resistance will change direction.
If you connect the left leg to ground and the right to 5V, then the resistance will drop as you spin the
potentiometer clockwise, and the values you'll receive will increment. If you connect the legs the other way
round, this process will be reversed. Most of the time, we want to have incrementing values as we spin the
potentiometer clockwise, so you might want to connect its legs as shown in Figure 2-14.

70

CHAPTER 2 * INTRODUCTION TO ARDUINO

Upload the sketch to your board and when prompted, save it as Analog_input. Open the serial monitor
of the IDE and you should see something like the Figure 2-15. As you spin the potentiometer clockwise you
should see the values increase (or decrease, depending on the way you built the circuit) and vice versa.

The minimum value you get is 0 and the maximum is 1023. This is because the Arduino Uno has 10-bit
resolution analog pins. This means that it can express the voltage it receives with 10 bits. In the decimal
numeral system, this is expressed as 2 to the 10nth power, which is 1024. Since the number 0 is in that
range, what we get is a range from 0 to 1023, which is in total 1024 values. In general, in a number stream
that represents a signal, when starting from 0, the maximum value is always (2/bit-depth) - 1 (the A symbol
raises 2 to the power of the bit-depth).

eno Jdev/cu.usbmodem411 (Arduino Uno)
Send
697
697
697
696
696
697
697
697
697
697
697
697
697
697
697
697
816
877
920
958
988
1823
1823
1823
961
914
859
847
848
885
799
789
™ Autoscroll Newline s 9600 baud :

Figure 2-15. Receiving analog values in the serial monitor

Analog Input and Output

As with the digital pins, we'll now look at both input and output with the analog pins. Table 2-5 shows the
components needed for this sketch.

Table 2-5. Project 5 Parts List

Part Quantity
Potentiometers 1 x 10KQ
LEDs 1

Res 1 x220Q

71

CHAPTER 2 * INTRODUCTION TO ARDUINO

The name of this section might sound a bit strange, as I've already mentioned that the analog pins of
the Arduino are input only. By “analog output” I don’t really mean analog, but digital. Six of the digital pins
of the Arduino have PWM capabilities. PWM stands for pulse-width modulation. This is similar to the duty
cycle of the square wave oscillator we made in Pd. PWM essentially controls the amount of time a digital pin
will be HIGH and LOW, during one period of a specified frequency. Quoting from the Arduino web site,
“The frequency of the PWM signal on most pins is approximately 490 Hz. On the Uno and similar boards,
pins 5 and 6 have a frequency of approximately 980 Hz.” To make this a bit clearer, most PWM pins run at
a 490 Hz frequency. When we control the width of the pulse, we control the percentage of the HIGH and
LOW states of one period of this frequency, which lasts 1/490 seconds (hertz is a time unit of repetitions per
second). During this small amount of time, we control how much of this time the pin will be HIGH, and how
much it will be LOW.

PWM can fake a dimming effect when we use LEDs with it. For example, if the PWM pin is 100% HIGH
and 0% LOW, then we see the LED being fully lit. If the pin is 50% HIGH and 50% LOW, then we see the LED
halflit, and it the pin is 25% HIGH and 75% LOW, we see the LED dimly lit. For this sketch, we’re going to use
a potentiometer to control a PWM, where we'll attach an LED. Listing 2-5 shows the code.

Listing 2-5. Analog Input and Output Sketch

1 int pot_pin = 0;

2 int led pin = 9;

3

4. void setup() {

5. pinMode(led pin, OUTPUT);

6 }

7

8 void loop() {

9. int pot val = analogRead(pot pin);

10.

11. // map the readings of the potentiometer to the range of PWM
12. pot_val = map(pot val, 0, 1023, 0, 255);
13.

14. // write the mapped value to the PWM pin of the LED
15. analoghrite(led_pin, pot_val);
6. }

You may have noticed that the more code we write, the less comments we use. Comments are always
helpful, but as we start to learn the language, we use self-explanatory code that makes comments in certain
cases unnecessary. For example, we don’t use any comments in the first two lines, and by now you should
understand what these two lines of code do. Notice that in the setup function, we don’t start the serial
communication, as we don’t care to see the values of the potentiometer, since the LED will provide the
necessary visual feedback (the brighter the LED, the greater the potentiometer value). We only call the
pinMode function to set the mode of the LED pin.

In our loop function, we first store the potentiometer value to a variable, and then we call a new
function, map. This function maps a specified range of values to another range. It takes five arguments, which
are the variable that holds the range we want to map, the lowest value of the range we want to map, the
highest value of the range we want to map, the lowest value of the desired range, and the highest value of the
desired range. Notice that we're mapping the pot_val variable, but we’re saving the value returned by map to
the same variable, since we write:

pot_val = map(pot_val, 0, 1023, 0, 255);

72

CHAPTER 2 * INTRODUCTION TO ARDUINO

This is legal and works as expected. What we see in this line of code is that we want to store to the
pot_val variable, the value it holds, mapped from a range from 0 to 1023, to a range from 0 to 255. If the
potentiometer has a value of 511, then this line will store the value 127 to the pot_val variable. This mapping
is necessary because PWM in Arduino has an 8-bit resolution. Remember that a number stream starting
from 0, will go up to (2Abit-depth) -1. 2 to the 8™ power, yields 256, minus 1 yields 255.

The last line of the loop function calls the analogWrite function, which is very similar to its digital
counterpart, digitallWrite. It takes two arguments, the pin to write a value to, and the value to write to that
pin. Here we write to the led_pin the pot_val value. The mapped example of the previous paragraph
(511 mapped to 127), will give approximately 50% (127 is almost half of 255), so the LED will look halflit.

Figure 2-16 shows the circuit. As you spin the potentiometer, you should see the LED dimming in and
out, looking like a real analog output.

LR A LI T S R O O " e e
L A A LI T T O I O O " e 0w
"o 0 8 0w LI O T B O O A * e 0 0.
L B B L B B B B B B B . e
. e L B B B L B B B L B
® e 8 e e LT O I I O A . e 0w
" e - * " e e L B L B
L AL B B L * " e e L L B
L B L A * " " 8 e L B
LI A LI LR O B B A " e 0
1
LA L L B LR ' . e L
JEEEENEES ¢ ¢ ¢ @ LR L . e L

.
e«

Arduino”

fritzing

Figure 2-16. Analog input and output circuit

73

CHAPTER 2 * INTRODUCTION TO ARDUINO

Reading More Than One Pin, Arrays, and the for Loop

We have covered quite a lot of the Arduino language and ways to use it both with analog and digital input
and output. Now let’s see how we can read more than one pin, in an efficient way. Table 2-6 shows the
necessary components for this sketch.

Table 2-6. Project 6 Parts List

Part Quantity

Potentiometers 3

This part may be a little bit tricky, so you might need to go through it more than once. Say that we want
to use three potentiometers and print them all to the serial monitor. You could write the following code:

int pot_pini = 0;
int pot_pin2 = 1;
int pot_pin3 = 2;

void setup() {
Serial.begin(9600);

void loop() {
int pot_vall = analogRead(pot pini1);
int pot_val2 = analogRead(pot pin2);
int pot_val3 = analogRead(pot_pin3);

Serial.println(pot_val1);
Serial.println(pot val2);
Serial.println(pot val3);

But this way of writing code is really not efficient, as the more pins we add, the more we have to
duplicate code, plus we can'’t really group the values we want to read. This is where the for loop comes
in handy.

Explaining the for Loop

The for loop has the following syntax:
for(int i = 0; i < some_value; i++)

After this declaration, we insert curly brackets, and inside the brackets we write the code we want to
have executed within the loop, much like we do when we define a function (the setup of 1loop function, only
the curly brackets for these functions are there by default). What this loop does is create the variable i and
assign it the value 0. Then it goes to the second field, which is a condition. If this condition is met (in this
example, if i is less than some_value), the code inside the loop’s curly brackets will be executed, and the loop
will go to the last field, i++, which is a shortcut for incrementing i by 1. After that, the condition is tested
again, and if it’s true, again the loop’s code will be executed. And this runs over and over, until i is not less
than some_value anymore.

74

CHAPTER 2 * INTRODUCTION TO ARDUINO

Using Arrays in Arduino

Before we apply the for loop to code that we’ll write, I need to explain the array in the Arduino language.
This is much like the array in Pd, only there’s no graph of the table. An array can be of any data type
(except void) and its declaration has the following syntax:

int pots[3];

This will create an array of three ints, called pots. We can access the elements of the array by means of
indexing, much like we did in Pd. So, to write a value to the first element of pots, we must do the following:

pots[0] = some_value;
Applying these two features to our code, we can now write the code in Listing 2-6.

Listing 2-6. Using the for Loop and Arrays

1. // create an array to store the values of the potentiometers
2. int pots[3];

3.

4. void setup() {

5. Serial.begin(9600);

6.

7.

8. void loop() {

9. for(int 1 = 0; i < 3; i++){
10. pots[i] = analogRead(i);
11. }

12.

13. Serial.print("Pot values: ");
14. Serial.print(pots[0]);

15. Serial.print(" ");

16. Serial.print(pots[1]);

17. Serial.print(" ");

18. Serial.println(pots[2]);
19.

20. delay(500);

21, }

What happens in line 9 is that the for loop will run for as long as i is less than 3, which will happen three
times (mind, not less than or equal to three, but only less than 3), as many as the potentiometers we’re using.
Note that we use the variable i both for indexing the pots array, but also as the argument to the analogRead
function. All this is legal, since i will take the values 0, 1, and 2 sequentially, which are the indexes of the
pots array, and the analog pins we want to read. We could have use a for loop for printing the values too,
but that would make things a bit more complicated, so we’ll leave it for later. One important thing here is
that i is a local variable to the for loop, and as soon as the loop is finished, i won’t exist anymore, until the
next the loop will run. The advantage of this is that a local variable is faster to access, and frees the memory it
allocates when it is destroyed (when the function defined inside it exits).

Line 13 calls the print function of the Serial class. Its difference to the println function of the same
class is that it will print whatever is inside its parenthesis, but anything printed afterward will be printed to
the same line. println causes the serial monitor to go one line below after it prints, like hitting the Return

75

CHAPTER 2 " INTRODUCTION TO ARDUINO

key on your keyboard (1n stands for newline). We print white spaces in between the values to get a clearer
print on the monitor. Running this sketch and opening the serial monitor, you should get something like

what'’s shown in Figure 2-17.

8006 /dev/cu.usbmodem411 (Arduino Uno)

| [send |

Pot values: 474 580 487
Pot values: 556 580 613
Pot values: 622 510 614
Pot values: 622 178 614
Pot values: 325 264 615
Pot values: 379 627 615
Pot values: 556 €628 615
Pot values: 549 628 615
Pot values: 551 629 615
Pot values: 552 629 615
Pot values: 553 628 615
Pot values: 552 €28 615
Pot values: 552 €28 615
Pot values: 553 628 481
Pot values: 726 628 481
Pot values: 499 993 481
Pot values: 211 664 481
Pot values: 574 664 401
Pot values: 581 €63 3@9
Pot values: 437 663 309
Pot values: 428 633 309
Pot values: 421 570 310
Pot values: 480 570 310
Pot values: 480 578 191
Pot values: 480 377 192
Pot values: 542 378 203
Pot values: 628 377 334
Pot values: 645 471 334
Pot values: 378 484 334
Pot values: 461 484 203
Pot values: 455 483 163
Pot values: 489 483 164

™ Autoscroll | Newline 3]

| 9600 baud

.
v |

Figure 2-17. Reading three potentiometers

Although it is probably rather obvious, Figure 2-18 shows the circuit for this sketch.

76

CHAPTER 2 * INTRODUCTION TO ARDUINO

. " e L L B B R
- " e e L B B B
L B B L L B B B
L B B L B B
L B B L L B B B
L B L L B
. " 8 e e L B B
L B B L L B B B
L B B L B B
LU * e e e e
——r e LA LR
LR B LA B L B B B

fritzing

Figure 2-18. Three potentiometer circuit

Analog and Digital Input

Now that we've seen the for loop in action, let’s write some code that utilizes both potentiometers and push
buttons. Table 2-7 shows the necessary components.

Table 2-7. Project 7 Parts List

Part Quantity
Potentiometers 3
Push buttons 3

This time we’ll make our code even more efficient, by applying the loop to the printing functions as
well. We'll keep the three potentiometers we used in the previous example, and we're going to add three
push buttons to our circuit and code.

77

CHAPTER 2 * INTRODUCTION TO ARDUINO

Listing 2-7 shows the code. There are a few new things in this code, so I'll explain them in detail. Line 2
defines the size of the array that will hold the analog pin values (the array name changed to analog_values
to be more generic, and not only potentiometer oriented). Array sizes need to be constant, so when defining
its size we must use the const keyword. const makes a variable read-only, which means that we cannot
modify it anywhere else in our program. If you omit to use the const keyword when defining the size of an
array via a variable, the Arduino IDE will throw an error and won’t compile the code.

Listing 2-7. Analog and Digital Input

1. // analog values array size, must be constant
2. const int num_of analog pins = 3;

3. // digital values array size, must be constant
4. const int num_of digital pins = 3;

5.

6. // create an array to store the values of the analog values
7. int analog values[num of analog pins];

8. // create an array to store the values of the digital values
9. int digital values[num of digital pins];

10.

11. void setup() {

12. for(int i = 0; 1 < num_of_digital pins; i++){
13. pinMode((i + 2), INPUT_PULLUP);

14.

15. Serial.begin(9600);

16. }

17.

18. void loop() {

19. for(int i = 0; i < num_of analog pins; i++){
20. analog values[i] = analogRead(i);

21. }

22.

23. for(int i = 0; 1 < num_of_digital pins; i++){
24. digital values[i] = !digitalRead(i + 2);
25. }

26.

27. Serial.print("Analog values: ");

28. for(int i = 0; i < num_of analog pins; i++){
29. Serial.print(analog values[i]);

30. Serial.print(" ");

31. }

32.

33. Serial.print("Digital values: ");

34. for(int i = 0; i < (num_of digital pins - 1); i++){
35. Serial.print(digital_values[i]);

36. Serial.print(" ");

37.

38. Serial.println(digital values[num of digital pins - 1]);
39.

40. delay(500);

41. }

78

CHAPTER 2 * INTRODUCTION TO ARDUINO

Line 4 defines the size of the array that will hold the values of the digital pins, the same way line 2 did for
the analog ones. We could have initialized both arrays by writing their size as a number inside their square
brackets, but we need these two values in more places in our code, so it’s more efficient to initialize the
arrays this way. Lines 7 and 9 initialize the two arrays using the preceding two constant values.

In the setup function we use the for loop to set the mode of the digital pins. This way we only need to
write the for loop header (the header of the loop is this (int 1 = 0; i < num_of digital pins; i++)),
and one line of code to set the mode of all pins we’re using. In this case, without using the loop, we would
write three lines of code, since we use three digital pins, and now we have written two lines, which is not so
much less. Imagine if we used all 12 available digital pins. Then we would have saved quite some coding.

In general we prefer to use the for loop in many cases of repetition. As stated earlier, we use the num_of _
digital pins constantin the condition test of the for loop. This should make it clear why we prefer to
initialize arrays with constants, rather than hard-code their size in their declaration square brackets.

Another thing to mention is that when we define a control structure, like the for loop, if the code of the
loop is only one line (like our case, where the code is only pinMode((i + 2), INPUT_PULLUP);), we can omit
the curly brackets; we can even write that line on the same line with the control structure’s header. So lines 12
to 14 can also be written like this:

for(int i = 0; i < num_of_digital pins; i++) pinMode((i + 2), INPUT_PULLUP);

This syntax is perfectly legal. Before we move on to the rest of the code, notice that we add 2 to the
i variable inside the pinMode function. This is because i has been initialized to 0 (so we can combine it with the
num_of digital pins constant, and the for loop can run three times), but we use digital pins from 2 onward.
We can see here that a variable of this type is a numeric value and we can apply math operations to it.

In line 19 we run a for loop to read and store the values from the analog pins. Again, we could have
omitted the curly brackets. In line 23, we run another for loop to read and store the values from the digital
pins we’re using. Again we’re adding 2 to the i variable, as we need to initialize it to 0, so the loop can run
properly, combined with the num_of_digital pins constant.

In line 27, we print an indication that the following values are from the analog pins. The text inside the
quotation marks is called a string. A string is essentially an array of characters, used to display text. After we
print the string, we use a for loop to print the values of the analog pins. This time we cannot omit the
curly brackets, because the code of the loop is two lines. The first line prints the value that is stored in the
analog_values array (which we access via the index held in the i variable), and the second line prints a
white space, so that the values are separated and easy to read.

Line 33 prints an indication that the following values are from the digital pins, and below that, we run
another for loop to print the digital pin values. This time we run the loop for as many times as the number
of digital pins we’re using, minus one. This is because we want to print the last value using the println
function, so that the values printed in the next loop, will be printed one line below. If we had used only
print, then all text and values would be printed in one line, like in Figure 2-19.

e 0o /dev/cu.usbmodem411 (Arduino Uno)

| Send

910 1022 Digital values: @ @ @Analog values: 87 991 1022 Digital values: @ @ @Analog values: 87 898 1022 Digital values: @ @ @

Figure 2-19. Printing all data in a single line

79

CHAPTER 2 " INTRODUCTION TO ARDUINO

Using println for the last value makes things a lot clearer, as one line will contain each value only once.
Figure 2-20 shows the serial monitor using println for the last value. Also, the index we use to access the
last digital pin is num_of_digital pins - 1, because num_of digital pins is 3, but array indexes start
counting from 0, so the last index is 2, and not 3.

800 /dev/cu.usbmodem411 (Arduino Uno)
il | | send |

Analog values: 87 722 1022 Digital values: @ @ @
Analog values: 199 894 1023 Digital values:
Analog values: 523 967 1023 Digital values:
Analog values: 443 935 1022 Digital values:
Analog values: 177 982 1023 Digital values:
Analog values: 177 982 1023 Digital values:
Analog values: 178 99@ 1022 Digital values:
Analog values: 177 959 938 Digital values: @ @ @
Analog values: 177 978 10@@ Digital values: @ @ @
Analog values: 177 952 1006 Digital values: @ @ @
Analog values: 177 997 929 Digital values: @ @ @
Analog values: 177 963 1023 Digital values: @ @ @
Analog values: 177 972 1023 Digital values: @ @ @
Analog values: 177 984 536 Digital values: @ @ @
Analog values: 177 996 512 Digital values: © @ @
Analog values: 176 1084 513 Digital values: @ @ @
Analog values: 177 1006 512 Digital values: @ @ @

RN
[-N--N--N--N.-N.-]
LN

Analog values: 177 891 513 Digital values: @ @ @
Analog values: 177 917 513 Digital values: 2 @ @
Analog values: 177 916 513 Digitol values: @ 1 @
Analog values: 177 916 513 Digital values: @ @ @
Analog values: 177 926 513 Digital values: @ @ @
Analog values: 176 926 512 Digital values: © @ @
Analog values: 177 932 511 Digital values: 10 @
Analog values: 177 94@ 511 Digital values: 10 @
Analog values: 177 955 512 Digital values: 10 @
Analog values: 177 96 513 Digital values: 10 @
Analog values: 177 8§11 511 Digital values: @ @ @
Analog values: 177 8§10 512 Digital values: @ @ @
Analog values: 177 811 511 Digital values: @ @ @
Analog values: 177 812 511 Digital values: © @ @
Analog values: 177 811 511 Digital values: ® @ @
Analog values:
[gl Autoscroll Newline v | | 9600 baud =

Figure 2-20. Using println for the last value

The circuit for this code combines the circuit of the previous code, with the circuit of the push button, in
the “Digital Input” section of this book; it is shown in Figure 2-21.

80

CHAPTER 2 * INTRODUCTION TO ARDUINO

o“’o .

CRCEC

fritzing

Figure 2-21. Circuit for analog and digital input

Communicating with Pd

Since we've covered some basic concepts of Arduino programming, we can now combine it with Pd. As
you can imagine, this is possible with the serial communication capabilities of the Arduino. On the Pure
Data side, we use [comport], an external object for serial communication. The Serial class of the Arduino
language has three functions to send data to the serial line: print, println, and write. We've already seen
the first two with the Arduino IDE’s serial monitor, but I must explain their differences and how and when to
use which of the two when we combine it with Pd.

I've already explained the difference between print and println, which is that println adds the
newline character at the end, causing the serial monitor to go one line lower. So, for a while we’ll talk about
these two functions as if they were one, and we’'ll call them simply print. Before I explain this function,
let’s talk about write. write writes a single byte, or an array of bytes, to the serial line. This should be
straightforward. If we type

Serial.write(100);

we should receive the value 100 in the serial line. This has both advantages and disadvantages. The
advantage is that we receive a value as is, but a disadvantage is that we can only receive bytes, and not
values longer than that (remember, an int for example is two bytes long, and can’t pass the serial line as
is). To send and receive values greater than a byte (an analog pin has a 10-bit resolution and a byte is 8-bit)

81

CHAPTER 2 * INTRODUCTION TO ARDUINO

we must somehow disassemble them before we send them, and reassemble them when we receive them.
Another disadvantage of write is that we must make sure we receive the bytes in the correct order, as there’s
no default for beginning or ending a stream of data. Another advantage is that we can send whole arrays,
which reduces the code we write to a great extent.

print sends anything as ASCII characters. ASCII stands for American Standard Code for Information
Interchange, and it’s a 7-bit code (now extended to 8-bit), quoting from http://ascii-code.com/: “Where
every single bit represents a unique character” This means that every character that can be printed on the
screen by a computer, takes a unique bit within this 7-bit range, so all characters (except from special Latin
characters) get a unique value from 0 to 127. What we most care about is the Latin alphabet, which we use to
pass strings over serial, and the 10 numbers of the decimal numeral system. Uppercase Latin letters take the
values 65 to 90 (A-Z), lowercase letters take the values from 97 to 122 (a-z), and the numbers from 48 to 57
(0-9) (if you want to check the whole ASCII table, check the ASCII URL earlier, http://ascii-code.com).
So, if we use print to pass the string hello, in Pd we’ll receive a list of values, which is 104 101 108 108 111,
where 104 is h, 101 is e, and so forth. If we send the number 100, we'll receive the list 49 48 48, which is 1,
0, and 0 in ASCII. Taken that there is a way to assemble these ASCII values back to the original strings and
numbers, using the print function should be easier and more intuitive than using write. Pd doesn’t have
an object to do the assembly, still it is possible both with vanilla and extended objects to create an
abstraction that does that. I have already made such an abstraction, which you can find in my GitHub
page, https://github.com/alexdrymonitis/Arduino_Pd. Download the .zip file, unzip it, and save the
abstractions to your “abstractions” folder, so that Pd can find them. We’ll use the [serial_print_extended]
abstraction now, but later we’ll use [serial_write] as well (mind, the [serial_print] abstraction is vanilla and
won't work with extended).

Open the serial_print.ino file in the Arduino IDE. Listing 2-8 shows the code without the initial
multiline comment.

Listing 2-8. Serial Communication Between the Arduino and Pd Using Serial.print

1. // analog values array size, must be constant

2. const int num_of analog pins = 3;

3. // digital values array size, must be constant

4. const int num_of digital pins = 3;

5.

6. // create an array to store the values of the analog pins

7. int analog_values[num of analog pins];

8. // create an array to store the values of the digital pins

9. int digital values[num of digital pins];

10.

11. void setup() {

12. for(int i = 0; i < num_of_digital pins; i++) pinMode((i + 2), INPUT_PULLUP);
13.

14. Serial.begin(9600);

15. }

16.

17. void loop() {

18. for(int i = 0; i < num_of analog pins; i++) analog values[i] = analogRead(i);
19.

20. for(int i = 0; i < num_of digital pins; i++) digital values[i] = !digitalRead(i + 2);
21.

82

http://ascii-code.com/
http://ascii-code.com/
https://github.com/alexdrymonitis/Arduino_Pd

CHAPTER 2 * INTRODUCTION TO ARDUINO

22. Serial.print("Analog values: ");

23. for(int i = 0; i < (num_of analog pins); i++){

24. Serial.print(analog values[i]);

25. Serial.print(" ");

26. }

27. // print last value of the group with Serial.println()
28. Serial.println(analog values[num of analog pins - 1]);
29.

30. Serial.print("Digital values: ");

31. for(int i = 0; 1 < (num_of digital pins - 1); i++){
32. Serial.print(digital_values[i]);

33. Serial.print(" ");

34. }

35. // print last value of the group with Serial.println()
36. Serial.println(digital values[num_of digital pins - 1]);
37. }

We have used the code in Listing 2-7 with some minor modifications. In lines 12, 18 and 20 we have
three for loops without curly brackets, as we already saw that it is legal and works. This time we print both
analog and digital values, all but last with a for loop, and we print the last outside the loop because we
have to use println instead of print. This is because of the way the Pd abstraction is made. It receives
values in groups, which groups can be recognized by a string, which is used as a tag (here Analog_values:
and Digital values:). Each value group must end with println, because this function adds the newline
character at the end (it actually adds the carriage return, and the newline character, which have ASCII 13
and 10 respectively), and this way we can tell that a data stream of a value group has finished. Notice also
that we have slightly modified the strings, as we separate their two words with an underscore, instead of a
white space. This is because the Pd abstraction uses the white space to separate the string of a group from its
values, but also to separate the values of a group between them. Take a close look to each string, they both
have a white space at the end. This way we can tell Pd that this is the tag of a value group, and now we’ll start
receiving the values. We also print a white space after every value, but the last, which we print with println.
Last modification is that we’re not using a delay at the end of our code, since we don’t need it to visualize the
values in Pd. Figure 2-22 shows part the help patch of the Pd abstraction.

83

CHAPTER 2 " INTRODUCTION TO ARDUINO

devi =

evices| =
=
0

T:'lose en $1

éomport 6 9661

serial_print_extended anf

s ul
r Analog_values: r Digital_values:
unpack f f f %llnpack Tt

?
273 918 239 E{I

pd another_way_to_use_it

Figure 2-22. The [serial_print_extended] abstraction help patch

In this patch, we use two new objects along with the abstraction. These are [comport] and [unpack f
ff]. [comport] is an object for serial communication with devices like the Arduino. It optionally takes two
arguments, which are the port number and the baud rate. If no argument is provided, it will try to open port
number 0, with a 9600 default baud. When you put this object in a patch, you might get an error message
saying that it cannot open the port. This is nothing to worry about. Send the message “devices” to [comport]
and you'll get a list of available serial devices connected to your computer, along with their port numbers,

like Figure 2-23.

84

CHAPTER 2 * INTRODUCTION TO ARDUINO

I
I o sl

[comport]: available serial ports:

1 /dev/tty.Bluetooth-PDA-Sync
2 /dev/tty.Bluetooth-Serial-1

3 /dev/tty.Bluetooth-Serial-2

6 /dev/tty.usbmodem411

Figure 2-23. List of available ports in Pd

Figure 2-23 shows a list with four serial ports, where we can see that the Arduino port is number 6 (in
this case it's /dev/tty.usbmodem411, depending on your platform, you should see something equivalent
to the port you open in the Arduino IDE). Lock your patch and type the port number in the number atom
connected to [open $1(, and [comport] will open that port and print a message declaring that in Pd’s console.
Taken that you have already uploaded the code in Listing 2-8 to you Arduino, and that you still have the
circuit in Figure 2-21 patched, you should immediately see the potentiometer values in the three number
atoms below [r Analog_values:], and the toggles below [r Digital_values:] should go on whenever you press a
switch.

I'll explain how this works. [serial_print_extended] takes in ASCII values from [comport]. The first thing
that comes in is a string, which is used as a tag. This string is being assembled to a symbol (in Pd, strings can
be displayed via the symbol atom, the fourth element of the Put menu—Ctrl/Cmd+4—or stored in [symbol],
an object that stores strings) using the [bytes2any] external object of the moocow library (in vanilla, this is
achieved with the new feature of the [list] object, [list tosymbol], which is a bit more efficient). When [serial
print_extended] receives a white space, it knows that the ASCII values of the tag are finished and it sends the
assembled tag out its right outlet to the right inlet of [s |. This way you can dynamically set the destination of
[send]. Afterward, the values of the first group arrive one by one, in ASCIL [serial_print_extended] assembles
them to their original values and stores them in a list, again using white spaces to separate the values from
each other. When the abstraction receives the newline character (ASCII 10) which is sent with the last
potentiometer value from the Arduino, it sends the list of values to the left inlet of [s], which sends that to the
corresponding [r]. In our case, we first print the values of the analog pins, and our tag is Analog_values:. So
[r Analog_values:] (we don’t include the white space to the argument of [r] here, it is used as a delimiter) will
receive this list, and will send it to [unpack f f f]. This object takes in a list and unpacks its elements. It will
create as many outlets as its arguments (in this case three). “f” stands for float, as you already know, so this
specific object unpacks a list of three floats, which we can see in the three number atoms below it.

Once we have received and assembled all analog values, we'll start receiving the digital values.
Receiving the newline character denotes the end of a value group, so [serial_print_extended] knows that
we're done with it and will start assembling the next value group, starting from the string tag. This time the
string tag is Digital values:, so we'll retrieve these values with [r Digital_values:]. [unpack f f f] below
[r Digital_values:] is connected to three toggles, and this is because the digital pins give only 0s and 1s, so
a toggle is a nice way to visualize this. The same assembling and listing technique applies here as well, and
we can visualize our switches with the three toggles, which correspond to their respective switches in our
circuit, from left to right.

The argument of [serial_print_extended] sets the delimiter character, which can be either a white space,
a comma, or a tab. Here, “any” means that all three characters will be used as delimiters. So in the Arduino
code, we could have used any of the three, in case we didn’t want to use a white space.

85

CHAPTER 2 * INTRODUCTION TO ARDUINO

You might notice a small lag, especially in the reaction of the toggles compared to when you press or
release a switch. This is because we have chosen a rather low baud, 9600. We'll start using higher baud
rates in the code we write, because we want the Arduino to be more responsive. Also, the values in the
number atoms should be flickering slightly. This is because there’s a little bit of noise in the circuit, but it’s
OK, since the flickering is only a little. So now we’ve seen how to use the print function to receive data
from the Arduino to Pd, let’s look at how we can use the write function, and what are the advantages and
disadvantages compared to print.

AsI've already mentioned, write writes a raw byte to the serial line. Open the serial write.ino
Arduino file from the GitHub folder. Listing 2-9 shows the code again without the initial multiline comment.

Listing 2-9. Serial Communication Between the Arduino and Pd Using Serial.write

1. // analog values array size, must be constant

2. const int num_of analog pins = 3;

3. // digital values array size, must be constant

4. const int num_of digital pins = 3;

5.

6. // assemble number of bytes we need

7. // analog values are being split in two, so their number times 2

8. // and we need a unique byte to denote the beginning of the data stream
9. const int num of bytes = (num_of analog pins * 2) + num of digital pins + 1;
10.

11. // array to store all bytes

12. byte transfer array[num of bytes] = { 192 };

13.

14. void setup() {

15. for(int i = 0; i < num_of digital pins; i++) pinMode((i + 2), INPUT PULLUP);
16.

17. Serial.begin(57600);

18. }

19.

20. void loop() {

21. int index = 1; // index offset

22.

23. // store the analog values to the array

24. for(int i = 0; 1 < num_of_analog pins; i++){

25. int analog_val = analogRead(i);

26. // split analog values so they can retain their 10-bit resolution
27. transfer array[index++] = analog val & 0x007f;

28. transfer array[index++] = analog val >> 7;

29. }

30.

31. // store the digital values to the array

32. for(int i = 0; 1 < num_of_digital pins; i++)

33. transfer array[index++] = !digitalRead(i + 2);

34.

35. // transfer bytes over serial

36. Serial.write(transfer array, num of bytes);

37. 1}

86

CHAPTER 2 * INTRODUCTION TO ARDUINO

Lines 6, 7, and 8 are comments explaining how many bytes the array we'll transfer over serial must have.
We'll now store all values, analog and digital, to one array, and we’ll transfer that array with one function call
to Pd. As I've already mentioned, the analog pins have 10-bit resolution, but we can only pas bytes through
the serial line, and a byte is 8-bit. For this reason, we must split the analog values to two, which we will
assemble in Pd. Therefore, we need two bytes for every analog pin. The digital pins will give eitheraOoral,
and that fits in a byte, so we use one byte only for each pin. Lastly, we need a unique byte at the beginning of
the data stream, to denote that we're starting to receive a new package. Using three potentiometers and three
switches, makes 10 bytes in total. Line 9 does the appropriate calculations to get the necessary byte number,
using the constants of line 2 and 4. This value is a constant as well, since it will be the size of an array.

In line 12, we define the array that will be transferred to Pd. This array is of the type byte, since we can
only transfer bytes over serial. We're also initializing the array’s first value to 192. This value will denote the
beginning of the data stream. This value must be unique, and since we’re sending bytes, we must make sure
it will be in a range no other value will ever reach. This range is in the 8" bit.

To understand this, it’s better to visualize it. Think of binary numbers. In an 8-bit binary number, 0 is

00000000

Number 127 is
01111111

This number has the first seven bits on, and the 8" bit off. Number 128 is
10000000

So from 128 onward, we begin to utilize the 8" bit. Any value above that (until 255, which can be
represented by 8 bits) will have the 8" bit on, while all values below it (from 0 to 127) will have the 8" bit
off. If we make sure that all other values are restricted to a 7-bit range (0 - 127), and assign to the first byte a
value between 128 and 255, then this byte will be unique. I got this technique from the rePatcher project by
Open Music Labs, where they used 192 as the unique byte, so this is what I use as well. Though, any value
between 128 and 255 will do. We'll also see that in practice along with the Pd patch.

Our setup function is the same as before, only this time we start the serial communication with a much
higher baud rate, 57,600. And then we move on to the loop function. Line 21 creates a new variable and
assigns the value 1 to it. This variable is called index and it will be used as the index to access elements of
the transfer_array. We assign the value 1 to it, because we have already stored the value 0xcO0 to the first
element of the array, which has index 0.

In line 24, we run the for loop to read and store the values from the potentiometers. We first create a
variable of type int, called analog_val, and assign it with the value returned by the analogRead function. In
line 27, we read:

transfer_array[index++] = analog_val & 0x007f;

The index++ inside the curly brackets of the transfer_array is called the post-increment technique.
This will first use the current value of the index variable, which is 1. So in this line we're accessing the
element with index 1 of the transfer_array. When the whole line has been executed, the index variable
will be incremented by 1 (with the double plus sign, ++), so for the next line of code, it will hold 2. The part
of this line after the equals sign takes the value stored in the analog_val variable and wraps it around a 7-bit
range. This means that when this value is between 0 and 127, it stays as is, but when it goes to 128, it wraps
back to 0. As the analog_val value rises up to 255, the result of analog_val & 0x007f will go up to 127, and
when analog val reaches 256, analog_val & 0x007f will again wrap back to zero, and this will happen over
and over, for the whole range of analog_val. This happens because of 0x007f, which is the hexadecimal
version of the number 127. Hexadecimal values are useful here because we can express the size of a value

87

CHAPTER 2 * INTRODUCTION TO ARDUINO

without needing to define it as a specific data type (an for example). Since analog_val is an, when we apply
operations to it, we need to use the same data type, or a value with the same length (two bytes in this case).
A hexadecimal number can express 256 values with two digits, from 00, which is 0, to ff, which is 255. This is
the range of one byte. Using four digits, we can express a value in the range of two bytes, which is the same as
an int. The 0x prefix is the C++ prefix to indicate a hexadecimal value. So, without having declared a variable
of the type int, we can use the hexadecimal value here to indicate the same length of the int data type, and
be sure that our operations will have correct results.

Line 28 again uses the post-increment technique, where index now holds 2, so we're accessing the third
element of the transfer_array. The second half of the line reads:

analog val >> 7;

What this does is shift the bits of analog_val by 7 positions to the right. The result of this is a number that
increments by one, whenever the line wraps back to 0. By restricting both values to a 7-bit, we can be sure that
no analog value will ever reach the first byte of the array, which is 192, in the 8-bit range. All this might sound
very strange, but when we look at the Pd patch, where we reassemble these values, it will start making sense.

In line 32, we read and store the value of the digital pins to transfer_array, again using the post-
increment technique we used in the loop. This time the code of the for loop is one line below, without curly
brackets. This syntax is also legal, since the executable code is only one line. We indent it manually (the IDE
won'’t do it automatically if there are no curly brackets) to make the code more readable.

Lastly, in line 36 we call the write function, of the Serial class, to write our array to the serial line.
When we write an array using this function, we must provide two arguments, the name of the array, and the
number of bytes we want to transfer. Usually we want to transfer the whole array, so we’re using the constant
that sets the size of it, num_of_bytes. Notice that we're using names that explain what each variable or array
does, so we can restrict our comments to a minimum, making our code self-explanatory.

Now let’s check the help patch of the [serial_write] Pd abstraction, part of which is shown in Figure 2-24.

devi =

vices| =
S
0

close en $1

'Ehalog 3

digital 3
éomport, 6 5?668=

serial_write analog 3 digital 3

unpack f f f unpack f f f
. n T

168 478 459

Figure 2-24. Pd [serial_write] abstraction to read bytes sent from Arduino with Serial.write()

The first thing to notice is that we are using arguments with [comport], which are the port number and
the baud rate. From Figure 2-23, we've seen that the Arduino port on my computer is number 6, so I'm using
this number for the first argument. You should use the number of your serial port, which is very likely to be
different. If you don’t remember which one it is, send the “devices” message to [comport] and it will print all

88

CHAPTER 2 * INTRODUCTION TO ARDUINO

available serial ports to Pd’s console. This time we're also using a higher baud rate, which is 57,600, so we
use that as the second argument (the comma is used only in the text of this book. When programming, use
the number 57600 (as in Figure 2-24).

Again, it can be quite cumbersome to receive and assemble all the data we receive from the Arduino,
so I have created another abstraction for this purpose, [serial_write], which is included in the GitHub link
I posted earlier. This abstraction takes two to four arguments. The first argument is the type of pins we're
reading (analog or digital), and the second is the number of these pins that we’'ll be reading (in this case 3).
We use the third argument is in case we’re reading both types of pins, analog and digital, so depending on
the first argument, this will set the other type of pins (in this case we first read the analog pins, so the third
argument is “digital”). The last argument is the number of pins of the second type that we're reading (again 3,
as we have three potentiometers and three switches). The first and third arguments cannot be set any way
we want, but must be aligned with the Arduino code. In our code, we first store the analog values, and then
the digital, so we must type our arguments in this order.

[serial_write] will output the values of the first argument (the analog values) out its left outlet, and the
values of the third argument (the digital ones) out its right outlet. We're again using [unpack f f f] to unpack
the lists we're receiving so we can see these values in the number atoms and the toggles.

It's not necessary to know the workings of [serial_write], but to make the Arduino code a bit clearer, I must
explain a couple of things. As already mentioned, an abstraction is clickable. So in a locked patch, if you click it,
the abstraction window will open. In there, click [pd $0-route_list], then click [pd specify_analog], and then
click one of the two [pd assemble_analog] subpatches. The patch in Figure 2-25 will open.

inlet bytes
ist split 2.
.

list Ltbb

bl

list prepend
»
t

e

list

x =

out let

Figure 2-25. The assemble_analog subpatch of [serial_write]

89

CHAPTER 2 * INTRODUCTION TO ARDUINO

This subpatch receives the list of the analog values. Since we're splitting the analog values to two, this
subpatch will receive a list with elements two times the number of analog pins we’re using. It then goes on
to split this list and separate the first two elements, using [list split 2], which comprise the first analog value.
These two values are sent to [unpack] (no arguments to this object is equivalent to [unpack f f]), which
unpacks the two element list and makes the operations below it. Bearing in mind the right-to-left execution
order in Pd, the second element will come out first, and the first element will come out second. In Pd, apart
from right-to-left, the depth-first execution order applies as well. This means that the right outlet of [unpack]
will go to [* 128] and then to the right inlet of [+]. Since the right inlet is cold, all execution will stop there,
and only then will the left outlet of [unpack] spit its value.

Now remember the operations we did in the Arduino code. We split each analog value to two, and
wrapped the first one to a range between 0 and 127, so whenever the analog pin would read 128, we’d get 0 and
start incrementing anew, up to 127, and then wrap back to 0 again. The second element of this list is a number
that increments by 1 (starting from 0) whenever the first element wraps back to 0. So, for the first 127 values, the
second element will be 0, which will be multiplied by 128, which will again be 0, and will be stored to the right
inlet of [+]. So as the first element goes from 0 to 127, it will be added to 0, so it will stay intact.

When the first element wraps back to 0 for the first time, the second element will be 1 x 128 = 128, which
will be added to the first element, so we’ll get 0 + 128 =128, the next number after 127. As the first element
again increments to 127, we'll get 127 + 128 = 255, and then it will wrap back to 0, and the second element
will be 2 x 128 = 256, the next value after 255. And this goes on until we get 1023, which is the maximum
value of the 10-bit resolution (2 to the 10" power, minus 1). After the first two elements of the analog values
list is assembled, the next two elements will go through this process, and the next two, until we reach the end
of the list. Don’t worry so much about how exactly this subpatch works, what you need to know is how we
combine the Arduino code with the Pd patch.

Figure 2-26 shows a simple Pd patch that helps visualize this technique. Go ahead and build it and drag
the values of the top number atom, from 0 to 1023 and check the other four number atoms to see how it
really works.

3

:

wIH]crlngﬂ
- -+
™~

~

v

Y

~]

mn/ﬂ
u-q
I~

X 128

~ I -
256

H+ [

323

Figure 2-26. Visualization of the Arduino-Pd technique for the Serial.write() function

90

CHAPTER 2 * INTRODUCTION TO ARDUINO

We've covered both ways of communicating the Arduino to Pd. Each has its own advantages and
disadvantages, plus they might seem a bit difficult to use. The advantage of both is that we can more or less
use them the way we’ve showed them here, for any number of pins we're using, doing only minor changes to
both Arduino and Pd. So we have a tool to help us combine the two platforms, without needing to write all
the code from scratch every time. This shows the great advantage of using abstractions, where one patch can
be used many times, without needing to create it anew. When to use which of the two techniques depends
on the project. We'll use both in the projects of this book, but not at the same time, as in one project it might
be better to use one technique, and in another it might be better to use the other technique.

Sending Data from Pd to Arduino

Let’s build the final project of this chapter where we'll send data from Pd to the Arduino. Table 2-8 shows the
components needed for this sketch.

Table 2-8. Final Project Parts List
Part Quantity

LEDs 3
Resistors 3 x220Q

Until now, we've covered the communication between Arduino and Pd, where the Arduino was sending
data to Pd. Now let’s look at this communication the other way round, we’ll send data from Pd to the
Arduino. The simplest form the Arduino code can take is shown in Listing 2-10.

Listing 2-10. Sending One Byte from Pd to the Arduino

1 int led pin = 13;

2

3 void setup() {

4. pinMode(13, OUTPUT);

5.

6 Serial.begin(57600);

7 }

8

9. void loop() {

10. if(Serial.available()){

11. byte in_byte = Serial.read();
12. digitalWrite(led pin, in_byte);
13. }

14. }

Up until the loop function, there should be nothing new. In line 10, there is something we haven'’t
encountered yet. This is the if control structure. Like the for loop, if has code of its own, written inside
its curly brackets. What if does is test the statement inside its parenthesis. The following line of code
demonstrates how this test works:

if(some_variable){
// code to be executed if the test above is true

}

91

CHAPTER 2 * INTRODUCTION TO ARDUINO

The code inside the curly brackets (here it's only a comment) will be executed only if some_variable is
true. True in the Arduino language is any non-zero value, and this concept is often used in control structures
like if. If some_variable is not true (if it’s zero), then the whole code inside the curly brackets will be skipped
and we’ll move further down to our program.

Inside the parenthesis of the if control structure in Listing 2-10, we call the available function of the
Serial class. Quoting from the Arduino web site, this function will “get the number of bytes (characters)
available for reading from the serial port” This means that if there are any bytes available in the serial port,
then available will return a non-zero value, so the statement inside the parenthesis will be true, and the
code inside if’s curly brackets will be executed. This means that whenever we send something from Pd to
the Arduino, Serial.available() will be true.

Inside the curly brackets of the if control structure, we define a variable of type byte, and assign it
the value returned by the read function, of the Serial class. This function will return the first byte of the
incoming serial data, so it will assign to in_byte whatever value we send from Pd. Then we use this variable
to set the state of the led_pin, in line 12. The Pd patch that works with this code is extremely simple, and it’s
shown in Figure 2-27.

&
gomport 6 5?68(’.1:’

Figure 2-27. Simple patch to control an LED of the Arduino

All we need to do is send either a 1 or a 0 to [comport], and the integrated LED of the Arduino board will
turn on and off accordingly. What if we want to control more than one pin on the Arduino? This technique
is not efficient because we cannot really separate bytes we send to the Arduino, so we'll have to use another
technique. Listing 2-11 shows a way to control various pins of the Arduino from Pd.

Listing 2-11. Sending More Than One Byte from Pd to the Arduino

1 const int num_of leds = 3;

2

3 int led pins[num_of leds] = { 3, 5, 6};

4

5. void setup() {

6. for(int i = 0; i < num_of leds; i++) pinMode(led pins[i], OUTPUT);
7

8 Serial.begin(57600);

9. 1}

10.

11. void loop() {
12. if(Serial.available()){

13. static int temp_val;

14. byte in byte = Serial.read();

15. if((in_byte >= '0') & (in_byte <= '9"))

16. temp_val = temp val * 10 + in_byte - '0';
17. else if((in_byte »>= 'a') 8&% (in_byte <= 'z")){
18. int which_pin = in_byte - 'a’;

92

CHAPTER 2 * INTRODUCTION TO ARDUINO

19. analoghrite(led pins[which _pin], temp_val);
20. temp_val = 0;

21. }

22. }

23. }

Now we’ll use an array to store the pins we want to control. In line 1, we set the size of the array, and
in line 3, we define the array and initialize it. Initializing an array, means to provide values for it, and the
syntax is the one used in line 3, we use curly brackets to include the values of the array, which are separated
by commas. Here we use the pins 3, 5, and 6, because they are PWM pins, and we want to control LEDs with
PWM. In the setup function we set the mode of the pins as OUTPUT with a for loop, where the variable i is
used as the index to access the elements of the led pins array. Then we start the serial communication.

In the loop function, we use the same if statement as before, but its code is very different. Line 13
defines a variable of type int, which is static. A static variable means that it is a local variable, but it retains
its value even when the function, which it belongs to has ended. We must define the variable as static,
otherwise the code won’t work. Line 14 stores the incoming bytes, one by one. In line 15 we use another
if statement, this time using a Boolean AND (the double ampersand, 88). All Boolean operations utilize
the concept of truth and falsity. The Boolean AND tests both sides, and only if both sides are true, it will be
true, otherwise it will be false. So the if statement in line 15 will be true only if both (in_byte >='0") and
(in_byte <= '9") are true. The numbers inside single quotes represent the ASCII values of these characters,
which are 48 and 57, respectively. This tells us that the data we'll be sending from Pd to the Arduino will be
in ASCII form. If this statement is true, the code of line 16 will be executed.

Notice that the code of this if statement is one line only, so we don’t need to use curly brackets, still
we're writing it one line below, and not in the same line with the declaration of the control structure. This
is legal as well, and we indent this line to make the code more readable (this time, the IDE won't indent the
cursor automatically, you need to do it manually).

The executable code of the if control structure reads:

temp val = temp_val * 10 + in_byte - '0';

These simple operations will assemble a value passed as ASCII. Let’s say that we send the value 152
from Pd, in ASCII. A list with the values 49, 53, and 50 will arrive to the serial line of the Arduino. The
preceding line of code will run three times, because the if statement in which it is included, will be true for
all the three values. The first time temp_val hold nothing, which is equivalent to zero. Multiplying this by 10
will give zero, adding in_byte , which will hold the first value of the three, will give 49, and subtracting ASCII
0 (0 in single quotes), which is 48, will give 1. The second time temp_val will hold 1 x 10 = 10 + 53 (the value
in_byte willnow hold) =63 -48 ('0"') = 15. The third time temp_val will hold 15 x 10 = 150 + 50 = 200 - 48 = 152.
This way we can assemble values arriving in ASCII. This is the same technique used in the [serial_print]
abstraction.

Line 17 calls the else if statement. This is an optional statement when we use the if control structure.
The else if statement will be tested only if the if statement it is false. In Pd, we send messages of the type
“200a’, where 200 is the value for the PWM, and “a” the PWM pin to use. After the numeric value has been
assembled, the if statement of line 15 won’t be true and the program will move on to the else if. The serial
line will now have the ASCII a, which is 97. Indeed, line 17 tests if the current byte from the serial line is
between ASCII a and ASCII z, which are 97 and 122, respectively. So this line will be true and its code
(now inside curly brackets, as it's more than one line) will be executed. This statement’s code creates a
variable called which_pin, and assign to it the value in the serial line, minus ASCII a, which is 97. If the byte
in the serial line is indeed ASCII a, line 18 will assign the value 0 towhich_pin. Line 19 calls the analoghirite
function, and passes as arguments the led_pins array usingwhich_pin as the index, and temp_val as the
value. Since which _pinis 0, led pins[which pin] accesses the first element of the led pins[which_pin]
array, which is the value 3 (check line 3). So line 19 will write the value 200 to digital pin 3.

93

CHAPTER 2 " INTRODUCTION TO ARDUINO

When we're done writing to the digital pin, using the analogWrite function, we assign 0 to temp_val, so
that we can start assembling value from scratch (temp_val is static, so it will retain its value, therefore we
must zero it). Figure 2-28 shows the circuit for this code, and Figure 2-29 shows the Pd patch.

ceevsooersrveeErovcro Erovse
. e 0 8w "0 . e L L
fritzing

Figure 2-28. PWM from Pd

94

CHAPTER 2 * INTRODUCTION TO ARDUINO

gomport 6 5’?669‘1:

Figure 2-29. Pd patch for controlling PWM pins in Arduino

Again, this is a very simple patch, where we send messages to [comport] of the type “print $1a” The
word print in the message converts the elements of the message to their ASCII values, which is necessary
to manipulate the data in the Arduino code. $1 will take the first value of a list that arrives to the inlet of the
message, and since we send one value only, $1 will take that value. So in the patch in Figure 2-29, the three
messages are actually “print 124a’; “print 52b’, and “print 255¢”. Going back to the Arduino code, we see that
the letters are converted to indexes in order to access the led_pins array. So the message “print $1a” will
control the LED on pin 3, the message “print $1b” will control the LED on pin 5, and the message “print
$1c” will control the LED on pin 6 (these are the three elements of the 1led_pins array, check line 3 of the
Arduino sketch). Upload the code to the Arduino. ([comport] must have its port closed to upload code to the
Arduino using its IDE, so send the message “close” to [comport] and when you've uploaded the code, send
the message “open port number’, where port number is the number of the Arduino port—in Figure 2-29 it
is 6.) Open the Arduino port in the Pd patch and start playing with the number atoms. You'll see the LEDs
dimming in and out, as you send various values between 0 and 255. This concludes the communication
between Arduino and Pd, and the whole chapter.

Conclusion

We have gone through the basics of the Arduino language, and some very simple circuits. What has been
covered in this chapter will be sufficient for most of the projects we’ll be building in this book. Even if we
encounter something new in one of the projects, we’ll be able to easily understand it, since we have been
introduced to the philosophy of the Arduino language and electronics. For all code in this chapter, we used
push buttons for the digital pins, and potentiometers for the analog ones, but further on we’ll use different
kinds of sensors, depending on the project. So even though we used the same elements to build all the
circuits, we have gained the foundation to comprehend and build other kinds of circuits, using the Arduino.

All circuits in this chapter were built using a breadboard, since they were testing circuits, and not a final
version. In the building projects of this book, we’ll use perforated boards, which make it possible to build
more steady circuits, compared to the breadboard. To build circuits using a perforated board, you must be
able to solder. Explaining how to solder is beyond the scope of this book, but there are many tutorials on the
web, so it shouldn’t be too difficult to learn how to solder yourself.

The last part of this chapter covered the communication between the Arduino and Pd, both directions.
You should be able to see the potential of this, since being able to use various kinds of sensors and receive
their input in Pd, gives infinite possibilities as to what you can build. There are many kinds of different
sensors, proximity sensors, accelerometers, tilt sensors, gyroscopes, even humidity sensors, and so forth.
The only limitation as to what you can realize is your own imagination. Being able to also give input from
Pd to Arduino, expands the possibilities one has using these platforms. The Arduino can give input to

95

CHAPTER 2 * INTRODUCTION TO ARDUINO

the physical world, not only with LEDs, but also with motors, solenoids, and so forth. Bearing in mind the
simplicity of the Arduino language, along with the provided tools for the communication between it and Pd,
you should just let your imagination take over, and realize things you might have thought impossible, or even
come up with things that never crossed you mind.

Lastly, you might want to sign up to Arduino’s forum, in case you have questions regarding it. You can
find that on Arduino’s web site. Take care when signing up to mailing lists and forums, to read the “rules”
before posting. Search the web before you post a question, as it is very possible to find the answer, since
someone else before you might have had the same question, and since forums and mailing lists keep an
archive, it’s rather easy to search for solutions. Nevertheless, if you play nice, you will be warmly welcomed
to these communities, and you'll find people willing to answer your questions.

Now on to embedded computers and wireless use of the Arduino.

96

CHAPTER 3

Embedded Computers and
Going Wireless

In this chapter, we're going to cover two topics, which are very popular with multimedia programming and
creative coding. The first topic is the embedded computers. These are small and low-cost computers that
can be embedded into projects, hence their name. There are quite some embedded computers around, and
we'll talk about which to choose for your needs.

The second topic of this chapter is the wireless use of the Arduino. This is possible with two ways. One
way is using a Bluetooth module with the Arduino, which is a quick and low-cost solution. The Bluetooth is
widely used, and there are dedicated modules that work with the Arduino. The other way is using the XBee
transmitter/receiver modules, which work nicely with the Arduino. These modules are not so expensive,
low-power, and easy to configure radios. There are many boards that help combine them with various Arduino
types (usually these boards are called shields), so you can easily find a board type that fits your project needs.

In this chapter, you'll learn how to

log in an embedded computer remotely, using your laptop (or desktop)
navigate through the Linux operating system

find and install software on a Linux computer

launch software on a Linux computer

do basic editing in text files on Linux

transfer files between your computer and an embedded computer
change the IP address of an embedded computer

shut down an embedded computer using a script

configure the XBee transmitter/receiver modules

use the XBee modules to make the Arduino wireless

Before You Begin

Usually these are open source hardware computers, which run on Linux. Therefore, we're going to cover
some Linux—navigating through the operating system, installing software, and launching software on a
Linux computer. In some of this book’s projects, where we're going to use embedded computers, we're going
to write some small scripts as well, to make the computer plug-and-play.

97

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

The goal of using such a device is to use the capabilities of a computer, without using the interface
we're familiar with, the screen, the keyboard, and the mouse. Since we will be building interfaces with the
Arduino, we're going to use these devices headless, meaning without a monitor to display information.

To do that we need to configure a computer in such a way that it will launch all software we want on boot,
and quit all software when we want to shut it down. Using scripts enables these features and helps us finalize
our projects.

Even though we're not going to deal with scripts in this chapter, you'll learn how to use a text editor on
Linux, as this will prove very helpful with writing scripts and debugging certain parts of an interface that
might occur (like crashes or immediate shutdown as soon as a patch loads), and configuring certain settings
of the embedded computer. We're going to do all this using our own laptop or desktop, without needing an
extra screen, keyboard, and mouse, to use the embedded computer. We'll log in the embedded computer
using an Ethernet cable and simple Unix commands, and we’ll use our laptop’s/desktop’s screen, keyboard,
and mouse to interact with the embedded computer.

In some projects in this book, we’re going to use the XBee because it frees the performer from having
a bunch of cables hanging out. Usually, we need to use the XBee (or Bluetooth) when we’re not using
embedded computers, as with the latter, it’s probably pointless to make the project wireless, since the
computer will be built-it the project’s interface. So this chapter will cover two sort of complementary topics,
which will prove very handy as we build the interfaces of this book’s projects.

Parts List

Table 3-1 lists the parts that you'll need for this chapter.

Table 3-1. Parts List

Part Quantity

Raspberry Pi or other embedded computer 1

SD card 1 microSD 8GB, class 10

Charger 15V 1A maximum. A smartphone charger will do.
Ethernet cable 1

XBee radios 2 (series 1 or 2)

Arduino XBee shield 1

XBee USB Explorer 1

Arduino Uno 1

Bluetooth module (HC-06) 1

Why Use Embedded Computers?

When building a project and putting it in an enclosure, it’s very likely we don’t want to carry a laptop to use
the interface we've built. An embedded computer helps us build a stand-alone interface, which can also
be plug-and-play. Think of digital synthesizers. Being digital means that they function with a computer,
which does all the calculations to produce the sound. Imagine a digital synthesizer that is only a controller
(the keyboard and a few knobs), and you need to bring along a laptop for it to work. This scenario doesn’t
sound very appealing. Using a computer to make electronic music has gained so much ground, that the
laptop has become a standard piece of equipment.

98

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

In the past few years, the revolution of the Arduino was followed by the revolution of the embedded
computers. Of course, they are nothing new because they have been around for years (many devices that
you use every day have an embedded computer). Over the past few years, new, easy-to-use, open source,
and low-cost embedded computers have made their appearance, making them more easily accessible.
Consequently, communities have been created around each embedded computer, where people share work
and knowledge and help each other with problems that may occur.

All this have brought the DIY communities to a very high level, as it is easier than ever before to create
lots of things, from hobbyist to professional level. The Maker movement has grown to a great extent. You see
people realizing DIY projects all over the world. This book is a result of the appearance of such tools, as it
realizes projects that the reader is encouraged to try at home.

Which Embedded Computer?

Again, there are quite a lot of embedded computers around, but I'll mention the most popular. The
computer with the wider use is by far the Raspberry Pi, https://www.raspberrypi.org/. This is a small
computer (well, all embedded computers we'll talk about are small), used by a very wide community,

and gets most of the attention when it comes to embedded computing. It runs on a Linux flavor based

on Debian, called Raspbian, but other Linux distributions are available. The latest version has a special
Windows 10 version, especially for the Raspberry. It is the only embedded computer, which can run on an
operating system other than Linux or Android.

Another very popular computer is the BeagleBone Black, http://beagleboard.org/black. Till recently,
it was quite more powerful than the Pi, but the latest Pi version has a processor, which runs a little bit slower
than the BeagleBone Black, but has four cores, whereas the BeagleBone Black has only one. Still, this is a
very nice low-cost embedded computer, which you should bear in mind. One disadvantage I find with the
BeagleBone Black is that it lack an audio output jack, and can play audio only via its HDMI, whereas the Pi
(and the other boards I'll mention here) does have an onboard audio jack, and that makes things quite easier.

The third embedded computer in our list is the Udoo, http://www.udoo.org/. This one is rather special
because it is a computer with an embedded Arduino Due (a 32-bit Arduino board)! At the time of writing
(August 2015), a new version is being released with an Arduino Uno pinout, and a few on-board sensors.
The two pre-existing versions are a dual and a quad core computer, with an on-board Arduino Due. This is a
powerful computer that integrates an Arduino, so it can make things very flexible. It comes at a higher price
though (the Arduino is included in this price), and it has quite a bigger size (it’s still small), so sometimes it
ca prove not very appropriate as being a one-board machine, reduces casing flexibility.

The last embedded computer we're going to look at is the Odroid, http://www.hardkernel.com/
main/main.php. This is the most powerful of all four computers. There are a few different versions available,
where the lowest performance one has a higher performance than all the computers mentioned here. There
are other powerful versions of the Odroid, but it’s not really necessary to look at them at this point. This
computer has the smallest size as well, so one might really consider one of these boards for a project. The
latest versions of the Odroid don’t include an onboard audio jack, like the BeagleBone Black, but even an
older version provides very poor audio quality. You should either use the HDMI for audio (there are some
shields for that), or an external sound card.

Having covered shortly these four embedded computers, we'll stick to the first one, the Raspberry Pi,
for a few reasons. It might be the one with the lowest performance, but still it’s powerful enough to host
some of this book’s projects. Price is one reason, even though the Odroid-C1+ can compete with it. The
latter is missing the audio jack feature, so the Pi wins this round, as we’ll be dealing with audio throughout
this book. Another reason is its community. The other boards do have an active community, but the one
of the Pi outnumbers them all, and this is a good reason for one to choose one board over another. The Pi
is so popular that even Miller Puckette, the maker of Pd, has a compiled version of the latest Pd-vanilla for
the Pi. He has compiled one for the Udoo as well, but with the previous things in mind, again the Pi wins
this round over the Udoo. One last reason is that, apart from the on-board audio jack (which provides a

99

https://www.raspberrypi.org/
http://beagleboard.org/black
http://www.udoo.org/
http://www.hardkernel.com/main/main.php
http://www.hardkernel.com/main/main.php

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

restricted quality audio) there dedicated external sound cards, which mount on top of the Pj, increasing its
performance, and making it quite compact, easy to fit in an enclosure. We're not going to cover the external
sound card topic in this book, but it’s good to know in case you want to extend one of your projects.

All these reasons lead us to the Raspberry Pi, which we’ll use throughout this chapter. If you want to
follow this chapter, it’s better to get an embedded computer, as only by reading the instructions, you're not
going to get as familiar with all processes described here. If you want to use another embedded computer,
you're free to do so. The steps we're going to take are similar for all boards. You'd better use a Debian Linux
flavor, however, as we’ll be working with the Debian flavor for the Raspberry Pi: Raspbian. Still, even if you
use Ubuntu Linu, it’s OK, since Ubuntu is Debian-based. If you don’t want to get an embedded computer
yet, and leave it for later, you can skip this chapter and come back to it when you have one. Not all projects of
this book will use the Raspberry Pi, so you'll be able to build quite some of the projects without one. You can
buy a Raspberry Pi (or whichever computer you want) from its web site, or ask your local electronics store
whether they distribute it.

Getting Started with the Pi

Now that you have your new Raspberry Pj, let’s start using it. The first thing you’ll need to do is install the
Linux image to an SD card (image is the way to refer to the OS distributions. The SD card should be at least
8GB, preferably class 10). Go to the DOWNLOADS section of Raspberry’s web site, and click the Raspbian
icon (not the NOOBS one). As of September 2015, there are two Raspbian images: a Jessie and a Wheezy. I
recommend downloading Jessie, which is more up-to-date, since Wheezy is the previous Debian OS. On the
Jessie page, you can get instructions for writing the image to your SD card. It's beyond the scope of this book
to get you through the steps required, but the instructions provided by the web site should be sufficient. If
you encounter problems, you can sign up the Raspberry’s forum and search the archives, or ask for help. I'll
now assume that you have written the Raspbian image to your SD card, and we'll take it from there.

Since we’re not going to use an external monitor, a keyboard, and a mouse to use the Raspberry, we’ll
have to log in remotely, using our laptop/desktop. You'll need an Ethernet cable to connect the Raspberry to
your computer. If you have a Mac without an Ethernet port, you should get an Ethernet converter, to be able
to log in your Pi. You'll also need a changer (a smartphone charger will do, as the Pi uses a micro USB for
power, and 5V/500mA will be enough power), and access to a router with Internet connection. Connect the
Pi to the router with the Ethernet cable and power it up. Make sure your laptop/desktop is connected to the
same router and that you don’t have any firewalls enabled that could block the communication with the Pi.

First, you have to find the IP address of the pi. The simplest way to do this is to log in the router. Most
Internet services give access to the IP addresses of devices connected to them, through the router. To log
in the router open an Internet browser and type the router’s IP address to the URL field. This should be
something like 192.168.1.1, where the last two fields will be either a 1 or a 2 (most likely the very last will
be 1 anyway). Try all four combinations until you get connected to the router. When you get in the router’s
home page, you'll be asked for the router’s password, and maybe the username as well. Usually they are
both admin, so if you're lucky enough, you'll be logged in. If it’s not admin, it’s very likely that the password
for the device is written in the back of the router, so use that. On the router’s home page, browse to the list of
connected devices; it could be called Status or something similar—routers are all different. There you should
see the IP address of the Pi. You'll know it’s the Pi because its name will be displayed. In case your router
doesn’t provide this feature, you’ll have to use another way. There should be quite some different ways to
achieve that, depending on your platform (Linux, OS X, Windows). Nmap is one solution, which runs on all
three platforms. Go to Nmap’s web site (http://nmap.org/download.html), and install it on your computer.
The fastest way is to type the following in your computer’s terminal:

nmap raspberrypi.local

100

http://nmap.org/download.html

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

This prints some information about the Pi, including its IP address. On Windows, use the Zenmap GUI
provided by Nmap, and use the same command on Zenmap’s window.

If you're using another embedded computer, I don’t really know how to get its IP from its name, but
typing the following will give all the active hosts in your network:

nmap 192.168.2.0/24

The first three fields should be the same for your computer’s IP (and the same with your router). This
will print a few different IPs, one of which should be the IP of your embedded computer.

If all this seems a bit overwhelming, there’s a simple, not very efficient way to find the IP. Check your
computer’s IP (if you're connected wirelessly, check the wireless IP, otherwise check the Ethernet IP of your
computer). If you're at home, there shouldn’t be many devices connected to the network, so if your IP is for
example, 192.168.1.3, then it’s very likely that the Pi’s IP will be 192.168.1.4, or something similar. In general,
the first three fields will be the same, since the two devices are connected to the same network, and the last
field will be different, where it should be a sort of an incrementing number. Since your laptop was connected
to the router prior to the Pj, the Pi should have a greater number in that field. Once you have the IP, it’s time
to connect to the Pi (if you're trying to guess the IP, just repeat the following process until you are logged in).
On OS X and Linux, the process is the same, but on Windows, it differs, so we’ll go through it immediately
afterward.

Getting Your Computer’s IP

Since we'll need to know our computer’s IP, let’s see how we can find it. On Linux, you can get it from the
terminal by typing:

ifconfig | grep "inet " | grep -v 127.0.0.1 | awk '{print $2}'

This will print the IP address of the Wi-Fi, and the Ethernet port. In this case, we care about the Wi-Fi.
On OS X, you can get it from the terminal by typing:

ipconfig getifaddr en1

Another way is to open your System Preferences by clicking the apple icon on the top-left part of your
screen and choosing System Preferences.... Select Network under Internet & Wireless, and then on the
Wi-Fi tab on the left side, and you'll get your IP address.

On Windows, Go to Control Panel » Network Connections » Wireless Network Connection, and
under the Support tab, you'll find your IP address. This is tested on Windows XP, which is now obsolete, and
Windows versions tend to change quite a lot of things in their OS upgrades, so the process might be a bit
different on your Windows machine. Still, this information should give some insight as to where you should
look for your IP address.

101

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

Logging in the Pi from OS X and Linux

On OS X make sure you have XQuartz installed, http://xquartz.macosforge.org/landing/. Open a
terminal window (on OS X go to Applications » Utilities and launch the Terminal.app; on Ubuntu press
Ctrl+Alt+T, or search your files) and type the following:

ssh -X pi@192.168.x.x

ssh stands for Secure Shell, which is a protocol for getting a secure access to a remote computer, like the
Pi. Replace the x’s in the two last fields of the IP address with the ones of the IP of the Pi. The -X character
(called a flag, which is recognized by the hyphen symbol) means that we will be using X11 (XQuartz on OS
X) so that the Pi can display its GUI. Depending on the version of the OS X you're using, you might need to
launch XQuartz prior to typing this command in the terminal. Hit Return and your computer will connect
to the Pi. The first time that you connect, you'll get a warning concerning the authenticity of the host (the Pi)
and you'll be asked whether you're sure that you want to continue. Type yes and hit Return. Then you’ll be
asked for the password of the Pi, which is raspberry. As you type it, you won't see anything in the terminal
(like the top of Figure 3-1, there’s nothing seen after password), but the password will actually be typed.
Once you enter the password, hit Return and you'll be logged in the Pi. Figure 3-1 shows the prompt of your
first log in to the Pi.

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program ore described in the
individual files in Jusr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY ND WARRANTY, to the extent
permitted by applicable low.

Last login: Thu Mov 12 18:45:55 2015 from 192.168.2.7
pi€raspberrypi ~ $ [|

Figure 3-1. Firstloginto Pi

Logging in from Windows

In Windows, you'll need a couple of things before you log in your Pi. First, you'll need an X server, which the
Pi will use to display its GUI on your computer. There are several X servers around, including MobaXterm,
http://mobaxterm.mobatek.net/, Xming, http://www.straightrunning.com/XmingNotes/, and Cygwin,
http://x.cygwin.com/. Choose whichever you like and install it on your computer. You'll also need PuTTY,
http://putty.org/. Choose the first link on its download page, putty.exe. Next, launch the X server you
have installed and run putty.exe. (I use Xming, and when launched, there’s a small icon on bottom left of
the screen, no window opens.) Figure 3-2 shows the PuTTY window.

102

http://xquartz.macosforge.org/landing/
http://mobaxterm.mobatek.net/
http://www.straightrunning.com/XmingNotes/
http://x.cygwin.com/
http://putty.org/

CHAPTER 3

{@ PuTTY Configuration
Category:
-1 Session Basic options for your PUTTY session
ST I;?u Specily the destination you want to connect to
al: S Host Name (or IP address) Port

Bell 192.1688.1.4 22
Features Connection type:

- Window ORag Olenet ORlogn ®SSH O Segil
BI : .m Load, save or delete a stored session
Translation Saved Sessions
Selection
Colours F :

| e oo st
Data Save
Proxy
Telnet Delete
Rlogin

+ SSH
Senal Close window on exit
Odays OMNever (5 Only on clean ext
[geen [Concsl]

Figure 3-2. PuTTY window

EMBEDDED COMPUTERS AND GOING WIRELESS

Type the Pi’s IP in the Host Name (or IP address) field. (In Figure 3-2, I typed the IP of my Pi. You
should use the IP of your Pi.) The SSH selection underneath should be selected by default, which we want.
SSH stands for Secure Shell, which is a protocol for getting a secure access to a remote computer, like the Pi.
Before you click Open, go to the right-side menu and click SSH. Next, click X11. Figure 3-3 shows this menu.
Make sure that you select the Enable X11 forwarding tick box. Once you've done that, click Session on the
left-side menu, and you'll get back to the login window, as shown in Figure 3-2. In this window, you can save
your session, but don’t do it just yet, because we're going to change in IP of the Pi, so you'll have to be a bit

patient.

103

CHAPTER 3 " EMBEDDED COMPUTERS AND GOING WIRELESS

[Options contioling SSH X11 forwarding |
X11 forwarding
E Enable X11 forward
X display localion —
Remote X11 authentication protocol
(5 MIT-Magic-Cookie1 () XDM-Authorization-1

X authority file for local display

Figure 3-3. X11 menu in PuTTY

Once you have all this done, click Open. You'll get a window telling you that the host is not registered in
your computer, as shown in Figure 3-4.

D 7 Ty - |

) The server's host key is not cached in the registry. You
p mmmmmmwkmmyw
itis
The server's rsa2 key fingerprint is:
ssh-rsa 2048 e7:b0:59:58:6d:e6:8e:dc:F3:e9:bf198:f9:7d:64:69
If you trust this host, hit Yes to add the key to
PuTTY's cache and carry on connecting.
I you want to carry on connecting just once, without
adding the key to the cache, hit No.
I you do not trust this host, hit Cancel to abandon the
connection,

[yes J[0 J[cance |

Figure 3-4. PuTTY host registration window

104

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

Click Yes and you'll get to the login window, shown in Figure 3-5. In the beginning there will be the first
line only, which reads Login as:. Type pi and hit Return. You'll be asked for Pi’s password, like in Figure 3-5
(don’t mind the IP that appears in the Figure). Type raspberry. As shown in Figure 3-5, the password won’t
be visible as you type it, but the computer will receive it. In Unix terminals (Linux and OS X), passwords are
hidden from the monitor. If you typed the password correctly, you'll be logged in. Congratulations!

#£192.168.100.10 - PuTTY Q@

login as: pi
pif192.168.100.10's password: |

Figure 3-5. PuTTY login window

105

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

Configure the Pi

The steps from now on are common for all three operating systems (Linux, OS X, and Windows), since we're
now logged in the Pi, and no matter what OS you use, we’re now in Linux. The first time you log in you'll
need to configure your Pi. To do this run the following command:

sudo raspi-config

This will lead you to the Configuration Tool, which is shown in Figure 3-6 (other embedded computers
might prompt you to configure them and guide through the configuration).

NaNs) 7% alexandrosdrymonitis — pi@raspberrypi: ~ — ssh — 118x36 ¥

pi@raspberrypi: ~ F

| Raspberry Pi Software Configuration Tool (raspi-config) |
£ that all of
Change password for u p

3 Enable Boot to Desktop/Scratch Choose whether to boot into a desktop environment, S
4 Internationalisation Options Set up longuage and regional settings to match your
5 Enoble Comera Enchle this Pi to work with the Raspberry Pi Comera
6 Add to Rostrock Add this Pi to the online Raspberry Pi Map (Rastrack
7 Overclock Conf igure overclocking for your Pi
8 Advonced Options Configure advanced settings
9 About rospi-config Information obout this configuration tool

<Selects> Finish=

Figure 3-6. Raspberry Pi’s software configuration tool

To navigate in this tool, you have to use the arrow keys. The up and down arrow keys will navigate
through the options on the left side of Figure 3-2, which are numbered. The right arrow key will get you to
<Select>, and if you hit it once more, it will get you to <Finish>. Clicking the left arrow key will get you back to
the configuration options. Hit Return on the first option, 1 Expand Filesystem. This will take just a moment.
Hit Return to get back to the options, and navigate to 7 Overclock. Hit Return and in the options, choose
High 950Hz. Hit Return to enable it and go back to the main menu. Click the right arrow key and navigate
to <Finish>. You'll be asked if you want to reboot now. Click yes and the Pi will reboot. This means that the
connection between the Pi and your computer will be lost. Wait until the Pi reboots and log in again using
the ssh command for OS X and Linux, and PuTTY for Windows, as before.

106

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

Navigating Through the Linux system

Now that we've logged in the Pj, let’s navigate through its system. Since we're logged in the Pi remotely
from another computer, we’'ll do all navigation, folder creation, file management, and so forth through the
terminal. Figure 3-7 shows the prompt of the Pi’s terminal.

I pi€raspberrypi ~ $ l

Figure 3-7. Raspberry Pi’s command-line prompt

In green, you see the name of the user, which is pj, logged in to the “raspberrypi” device. The dollar
sign is the user sign, called the prompt. If you're not a super user (called a root), but a plain user, you get
this prompt. If you’re root, you get the # prompt. Go ahead and type the following: ($ or # will be included
in all commands from now on to clarify the user. You shouldn’t write it yourself in the terminal because it is
already there.)

$ whoami

You should get pi. This is a Unix program telling you what kind of user is currently using the computer.
Pi’s default user is called a pi. Now type the following:

$ 1s

This is a shortcut for list. “Is” is a program that prints to the monitor the contents of the current directory
(by directory, we refer to what is usually called a folder). It should read python_games. To see what kind of file
this is, type the following:

$ file python_games

Note that all commands are separated from their arguments with a white space. The first word (or
combination of few letters) is the command, and afterward the arguments follow, don’t mix them in one
long word. The preceding command should print python_games/: directory. We can see that thisis a

directory by default on the Raspbian image. Directories appear is in blue to distinguish them from other
types of files. Now type the following:

$ pwd
This stands for present working directory, which is a program that prints the path to the directory you
currently are. This should give you /home/pi. This is the home directory of the user “pi” Now let’s create a

new directory in our home directory. Type the following:

$ mkdir pd_patches

107

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

mkdir stands for make directory, which is a program that creates directories. pd_patches is the name of
the directory we want to create, which we pass as an argument to mkdir. If you type Is again, you'll now see
two directories, one called python_games and another one called pd_patches. To go into the new directory,
type the following:

$ cd pd_patches

This stands for “change directory and we provide the directory we want to go to as an argument (here
pd_patches). Now if you type pwd again, you'll get /home/pi/pd_patches. Notice that Linux has a tree
structure, where / is the hard drive of the computer, and subsequent directories are being separated by
forward slashes. The new directory we created is in the pi directory, which is in the home directory, which
is in the / directory, which is the hard drive of the Pi. Now let’s go back to our home directory. Type the
following:

$cd..

The double dot means one directory up. This will get us back to /home/pi. Now create a directory called
pd_abstractions, inside the pi directory, the same way you did with the pd_patches directory. Go to this
directory using cd, but do the following. Type the following:

$ cd pd_a

Hit the Tab key. You'll see the whole name of the directory appear on screen. The Linux command line
has tab completion, which means that if enough letters of a directory are provided, hitting Tab will give the
rest of the name (by “enough” I mean that there’s no name clash. In /home/p1i there’s only one directory
starting with pd_a, the newly created pd_abstractions). This is a good way to use the terminal, not only
because it saves you some typing, but it’s also less error-prone since the computer finds the name of a
directory, so there’s no way you'll make a typing mistake.

Let’s go back to our home directory (by “home” I mean the /home/p1i directory, not /home) and create
another directory. Now we want to create a directory inside the pd_abstractions directory. We could have
created it while we were in that directory, but we came back to the home directory for practice and to better
understand the Linux tree structure. We'll create a directory to store the abstractions that deal with the
Arduino, so we'll call it arduino_abs. In your home directory, type the following:

$ mkdir pd_abstractions/arduino_abs

Now go to that directory using cd. Type the following:
$ cd pd_a

Hit the Tab key, and you'll get cd pd_abstraction/. Type a and hit Tab. You'll get cd pd_
abstractions/arduino_abs/. Hit Return and you'll be taken to the newly created directory. To go back to
the home directory, type the following:

$cd../..

This will take you two directories up, where the home directory should be. Another way to navigate back
to home, from whichever directory you are (as user “pi”) is this:

$cd~

The tilde character means “the home directory of the current user.”

108

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

Editing Text Files in Linux

Now that we’ve navigated a bit through the system, let’s do a bit of text editing. Raspbian, and many other
Linux distributions, has a text editor preinstalled, which runs in the terminal. This editor is called nano.
There is also the vi text editor, but I prefer to use nano because it’s very simple and easy to use, so we'll use
that in this book. In your home directory, type the following:

$ nano test_text.txt

The nano editor will open, as shown in Figure 3-8.

ano £ alexandrosdrymonitis — pi@raspberrypi: ~ — ssh — 118x34 e
[pi@raspberrypi: ~ l

GHU nang .6 test_ L]
I

Get Help g Writedut a8 Read File Prev Page Cut Text gt Cur Pos

Exit & Justify &y Where Is Next Page UnCut Text sl To Spell

Figure 3-8. The nano text editor

Go ahead and type something; for example, “This is a test text using the nano text editor” Press Ctrl+0
(if you're on OS X, still use Ctrl, as now we’re actually on Linux) and at the bottom you’ll see the prompt:
File Name to Write: test_text.txt. Hit Return. At the bottom, in the place of [New File] (shown in Figure 3-8),
you'll see [Wrote 1 line] (or as many lines of text as you entered). Press Ctrl+X to get out of nano and back to
the Unix prompt. Now type Is to get a list of the present directory’s contents, including the three directories
(python_games, pd_patches, and pd_abstractions). You'll see the new text file, test_text.txt. To see the
file’s contents, type (use tab completion):

$ cat test_text.txt

109

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

And you'll get the text that you just wrote in nano. “cat” is short for concatenate, which is a program to
concatenate files. Using it this way, we can just see the contents of a file, without entering an editor. We'll be
using nano, mostly for writing some simple scripts to tell the Pi to launch certain software on boot or to shut
it down, but also in case we need to debug a Pd patch that might cause a crash or an automatic shutdown.
This is in case we cannot edit it in Pd itself, but only in its textual form.

Since the text file we wrote is only a test to see how nano works, let’s delete it. To do this type (remember
to use tab completion):

$ rm test text.txt

rm stands for remove. When you use rm, the file is completely deleted, instead of going to some “trash”
directory from where you can delete it later on. Also, the Pi doesn’t ask you if you're sure whether you want
to delete the file or not, so be very careful when you use it, as you might delete a file you don’t really want to,
and you won't be able to retrieve it.

Installing Software

It’s time to install some software on your Pi.

Installing Pd

Let’s start with Pd. To install it, type the following:
$ sudo apt-get install puredata

“sudo” is a Unix program that enables us to run commands with superuser privileges. Whenever we
want to use a terminal program, but we are denied access to it, we use sudo. To install software, we need
superuser (root) privileges, so we have to use sudo. apt-get install searches the Raspbian repositories for
the software we want, “puredata” The repositories of Linux distributions are storage places with software for
each distribution. apt-get install searches for the software and install it without us needing to compile
the software from source. Once it finds it, it will print some data to the monitor, and it will then inform you
about the amount storage place this software will need, and ask you if want to continue, like the following
text:

Do you want to continue [Y/n]?

Type y and the installation will go on. The terminal will type quite some data about the installation
process, and when it’s done you'll get back to the $ user prompt. Installing Pd this way will actually install
Pd-vanilla, so you'll need to install some external libraries. To find which ones are available in the Raspbian
repository, type the following:
$ apt-cache search "“pd-"

We don’t need to use sudo for apt-cache search, since it only searches the repositories, but doesn’t
install any software to the computer. This will print a list with all available external libraries in the Raspbian
repositories. To enhance our Pd, we'll install some of them but not all. Go ahead and type the following:
$ sudo apt-get install pd-arraysize pd-comport pd-freeverb pd-ggee pd-iemmatrix pd-list-abs
pd-mapping pd-pan pd-pdstring pd-purepd pd-zexy

110

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

Again, type y for yes when asked if you want to continue with the installation. This will install all the
libraries to a directory created by the Pd installation, which is /usr/1id/pd/extra. After the installation is
done, type the following:

$ 1s /usr/lib/pd/extra
This will print the directories of the installed external libraries:

Gem arraysize comport cyclone freeverb~ ggee iemmatrix 1libdir list-abs mapping
maxlib pan pddp pdstring pix_drum pix_fiducialtrack pix_mano purepd zexy

There are few more packages that were installed when we installed Pd, such Gem, pix_fiducialtrack, and
the ones we installed ourselves.

Launching Pd

To launch Pd, you must type the following command in Pi’s terminal:
$ /usx/bin/pd

What we’re doing here is call an executable file, called pd, which is in the /usr/bin/ directory. This file
launches Pd (you can launch Pd in a similar way on OS X too, since it’s also a Unix system). The first time you
launch Pd, it might take a while, and you'll see the “watchdog signaling pd...” message in the terminal. Don’t
worry, Pd will launch and these messages will stop appearing on your screen. When Pd launches, the first
thing to do is test if the audio is working properly (we didn’t do this in Chapter 1 because we started building
patches from the beginning, and the first patch did essentially the same thing). Go to Media » Test Audio
and MIDL..., and the patch shown in Figure 3-9 will open.

As the comment on top of the patch states, this patch is made for testing the audio and MIDI
connections in Pd. Plug a pair of headphones into your Pi and click 80 on the left radio underneath TEST
TONES. This should create a (low in volume) sine tone at 440 Hz. To make it louder, type 100 in the number
atom underneath the radio. You can also listen to Pd’s white noise by selecting noise. If you have a MIDI
device, you can plug it in the Pi and relaunch Pd to see if that is also working, as we'll use a MIDI keyboard in
one of this book’s projects.

111

http://dx.doi.org/10.1007/978-1-4842-1583-8_1

CHAPTER 3 " EMBEDDED COMPUTERS AND GOING WIRELESS

M O O X\ testtone.pd - /usr/share/puredata/doc/7.stuff/tools
File Edit Put Find Media Window Help
Welcome to Pd (“Pure Data"). You can use this window to

test audio and MIDI connections. To see Pd's DOCUMENTATIOI
select "getting started" in the Help menu.

TEST TONES AUDIO INPUT (RMS dB)

E fons® b1l Yo1fo Yoo o)

tone
69) Oaw

-0:: m:;m E‘E E@ ‘EIE |X].Duovat

(100 max) AUDIO OUTPUT ON/OFF

MIDI IN [] monitor-inputs input -hipass
MIDI OUT
=
pd midi

Pd is Free software under the BSD license. See LICENSE. t:1
in_tha dictribhutian far datsaile

K j

Figure 3-9. Test Audio and MIDI... Pd patch

Setting up External Libraries in Pd

Once you've tested audio in Pd, you should set the external libraries paths to Pd’s search path. Go to Media
» Preferences » Path... and you'll get the Path window. Click New and the window to add a new patch
will open, shown in Figure 3-10. Click the Directory: to get the pop-up menu, which should display three
directories, /, /home, and /home/pi. Click / and navigate to /usxr/1ib/pd/extra. From there, choose the
libraries you've already installed, one by one, all but zexy and iemmatrix.

8 00 '\ Add a new path
Directory: /home/pi = | ‘

1 python_games

r
|4
1=l

Selection: oK

[~ Show Hidden Directories Cancel |

Figure 3-10. Add new path window

112

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

Once you've selected the libraries, you search path window should look like Figure 3-11. Click Apply
and then OK so that the new settings will be enabled.

B O O |\ Pd search path for objects, help, fonts, an...

fusr/lib/pd/extra/arraysize /|
fusr/lib/pdfextra/comport
fusrflib/pd/extra/freeverb~
fusr/lib/pd/extra/ggee
fusrilib/pd/extra/list-abs
fusr/lib/pd/extra/mapping
‘usr/lib/pdfextra/pan

New... ‘ Edit... ‘ Delete

v Use standard extensions [Verbose

Figure 3-11. Selected libraries in Pd’s search path window

For the other two libraries, zexy and iemmatrix, we need to do something else to add them to Pd. Go to
Media » Preferences » Startup... and the Pd libraries to load on startup window will appear, as shown
in Figure 3-12. In the Startup flags: field type -lib zexy -lib iemmatrix, like in Figure 3-12. Click Apply and
then OK to set these features as well.

BOO || Pd libraries to load on startup

New... | Edit... | Delete

tartup flags: [-lib zexy -lib iemmatrix

Figure 3-12. Startup flags Pd window

113

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

Now, to test the new setting, you must quit and relaunch Pd. Go to File » Quit, or press Ctrl+Q. Go back
to the terminal and relaunch Pd, by typing /usr/bin/pd. Figure 3-13 shows the Pd console with the zexy and
iemmatrix libraries loaded. You should have the same comments on your console.

[-NaNs) %\ Pd
File Edit Put Find Media Window Help

log: 2 | - DSP

the zexy axternal 225 @

() forum: fir umlaute @
iem @ kg @

compiled May 13 2012 @

send me a "help' message @

L Lo @ @

| warning: class "abs~' overwritteni: old one renamed "abs~_alased
| matchbox: OSC-pattern matching code (c] Matt Wright, CHMAT
| warning: class "wrap' overwritteny. old one renamed 'wrap_alased

| ermmatrix 0.2
objects for manpulating 2d-matrices
(<} 10hannes m zmalnig. Thomas Musil, Franz Zotter ;- iem, 2001-2005
compied May 13 2012 : 231507

Figure 3-13. Pd’s console with the “zexy” and “iemmatrix” libraries loaded

Test a few objects that we will very likely need for this book’s project. Open a new patch and try to create
the following objects (OS X users, all shortcuts that use Cmd on OS X, should be replaced by Ctrl, as this
is Linux): [arraysize], [comport], [shell], [list-drip], [uzi]. If Pd can create all the objects, then everything is
fine. If there are any objects that cannot be created, go to the search path window and check that you've set
everything as suggested.

You should also test the two libraries we set via a startup flag: zexy and iemmatrix. Try to create the
following two objects: [limiter~], and [mtx_*~ 4 4 20] (there might be a possibility that the second object can
be created like this [mtx_mul~ 4 4 20], instead). If Pd can create both these objects, then again all is fine.

If there’s any problem, go to the startup window and check if the names of the two libraries appear in the
window (not the Startup flags: field, but the white space in Figure 3-12). Here’s something that might be
useful to some users of OS X computers: to be able to right-click in the Pi, you need to edit the Preferences of
XQuartz. Under the Input tab, you might need to select the Emulate three button mouse tick box. On some
computers, it might not be necessary, but you may need it on newer Mac computers.

Installing Arduino

Now that we've tested Pd’s audio and all the external libraries we want to use, we can go on and install the
Arduino IDE to our Pi. As with Pd, to install Arduino, type the following:

$ sudo apt-get install arduino

114

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

This will take you through the same process as with Pd, and it will install the Arduino IDE to the Pi.
Installing the Arduino IDE with apt-get creates a directory called sketchbook on your home directory (/
home/p1i) to save your sketches. When the installation is finished, type the following and the Arduino IDE will
launch.

$ /usr/bin/arduino

You'll get a few warning messages in the terminal, but that’s nothing to worry about. It will take a bit of
time to launch, but eventually you'll see a new sketch window on your screen. It doesn’t look exactly like the
new sketch window of your computer’s IDE, because it doesn’t have the void setup() and void loop()
functions already there. This is because the IDE we've installed is an older version than the one you have
on your computer, if you installed it recently. Let’s first test if the Arduino IDE works properly, and then
we'll talk about versions. Go to File » Examples » 01.Basics and click Blink (the color highlighting is a bit
different as well, because of the different version). This sketch, apart from being the first sketch to write/read
when learning Arduino programming, also serves as a test sketch, to see that the IDE works fine with your
board. Go to Tools » Board and select your Arduino (if it's the Uno, it will most likely be already chosen),
and then go to Tools » Serial Port to choose the Arduino port. You'll probably get only one available port, /
dev/ttyACMoO, which is the Arduino port. Choose it and upload the sketch to your board. If all goes well, the
integrated LED of the Arduino board should blink.

When launching software this way, we can’t use the terminal anymore, until we quit the software. Still,
as we create Pd patches, or as we write Arduino sketches, we might want to change things in the Pi, and since
the terminal is the only way, we need to launch software in such a way that enables us to use the terminal.
This is done using the ampersand (&) at the end of the command. So, to launch Arduino, it’s best to use this:

$ /usr/bin/arduino &

This way, you'll be able to go back to the terminal and do whatever you want, while the Arduino IDE is
running. The same applies to Pd, of course.

Let’s Talk About Versions

Now let talk about software versions. The Arduino IDE version (which is on top of a sketch window) is 1.0.5,
whereas the one we've installed on our computer from the Arduino web site is 1.6.5. That’s quite a version
difference. To see which Pd version was installed, run this command:

$ /usr/bin/pd -version

Using the -version flag will output the version of Pd and will not launch the software. This should
produce the following output:

Pd-0.46.2 ("") compiled 07:48:11 Oct 29 2014

The latest vanilla version is 0.46-7, while we got 0.46.2 The version difference is not big, but it’s worth
mentioning. If you're using Raspbian Wheezy, then the version difference will be quite big, since you'll get
Pd-0.43.2 instead.

When we install software using apt-get, the program will search the repositories of the Linux
distribution, and install the software it will find, that fits its argument (“puredata” and “arduino”). The
repositories are not always up-to-date, so even though you’ll find the latest version of the software on its own
web site, this won’t apply to a Linux repository as well. If you really want to get the latest version of software,
you'll need to download its source code and compile it yourself. This is beyond the scope of this book, so I
won'’t explain the process. Still, the software versions from the Raspbian Jessie repositories are good enough.

115

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

Exchanging Files Between Your Computer and the Pi

We've already created a directory called arduino_abs inside the pd_abstractions directory, to store the

Pd abstractions that deal with the communication with the Arduino. We could launch Pd and make those
patches again, but since we have downloaded them from the Internet, and there are quite some subpatches
there, it will be a bit difficult to make them from scratch, plus it will be rather error prone, which could create
bugs difficult to trace. A solution to this would be to either install an Internet browser on the Pi and go the
web page where these abstractions are and download them, or transfer the already downloaded files form
your computer to the Pi. The second solution proves to be the best, because once you know how to transfer
files, you can do that for any kind of file, and not only for stuff you've downloaded from the Internet. On OS X
and Linux, this is done the same way, but on Windows it’s different, so we’ll go through the OS X/Linux first
and then we’ll talk about Windows.

Transfer Files from OS X and Linux to the Pi, and Vice Versa

Although there are some GUI programs to do this, like Cyberduck, a WinSCP Mac port, and some others,
we'll use the good old terminal to do this, since it’s rather straight forward and fast. In a new terminal
window on your computer (not Pi’s terminal), type the following command, taking care of the white spaces
between the scp command and the two arguments, the path to the files we’ll be transferring, and the
destination computer:

$ scp /path/to/arduino/abstractions/serial*.pd pi@192.168.x.x:/home/pi/pd_abstractions/
arduino_abs

scp stands for secure copy protocol, which is a Unix program/protocol that copies files over an SSH
connection. Replace /path/to/arduino/abstractions/ with the actual path, which, for example, could be
~/Documents/pd_patches/abstractions (on OS X, you can drag and drop the folder you want to navigate to
in the terminal, and its path will automatically print). The two x’s in the Pi’s IP, with the actual values of the
Pi’s IP address (tab completion will work for the path of your computer, but not for the path of the Pi). Notice
the asterisk after the word serial. This is called a wild card and it means anything starting with serial
and ending with . pd, because we want to copy both [serial_print] (actually [serial_print_extended]) and
[serial_write], plus their help patches, which are called serial print-help.pd and serial write-help.pd,
respectively. So instead of writing this command four times, we write it only once. Hit Return and you’ll be
asked for Pi’s password (which is raspberry). Type it (remember, you won't see the text as you type) and you
should get the following in your terminal:

serial print-help.pd 100% 4408 4.3KB/s 00:00
serial print.pd 100% 8576 8.4KB/s 00:00
serial print_extended-help.pd 100% 4446 4.3KB/s 00:00
serial print_extended.pd 100% 8672 8.5KB/s 00:00
serial write-help.pd 100% 2997 2.9KB/s 00:00
serial write.pd 100% 9606 9.4KB/s 00:00

This informs us that all the files we wanted to transfer, have been transferred successfully.

We also want to copy the Arduino sketches we have that work with these abstractions. Remember that
all Arduino sketches must be included in folders sharing the same name with the actual sketch. Using scp
this way won’t work with directories (folders). We need to include a flag to do this. Go ahead and type the
following:

$ scp -r /path/to/arduino/abstractions/serial*/ pi@192.168.x.x:/home/pi/pd_abstractions/
arduino_abs

116

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

Here we're using the -1 flag, which means recursive. This way the computer will copy not only the
directory, but also its contents. This is necessary when we want to copy whole directories using the terminal.
The fields of the command now are four, the command name, the -1 flag, the path to the directories to copy,
and the path to the copy destination. This means that we must insert a white space between each of these.
Type Pi’s password when asked to. Now in the arduino_abs directory on your Pi, you should have two new
directories: serial print and serial write. Each contains the corresponding Arduino sketch.

What if you want to transfer a file from the Pi to our computer? We use the same program, the other way
round. Go to Pi’s terminal and create a test text file, like we did earlier, using nano. Type the following:

$ nano test_text.txt

Type some dummy text in there. Hit Ctrl+0 and Return to save the contents, and then hit Ctrl+X to exit
nano. Now, in your computer’s terminal (not the Pi’s; don’t confuse the two), type the following:

$ scp pi@192.168.x.x:/home/pi/test_text.txt ~/Documents

Again, you'll be asked for Pi’s password, so type it and then go to your Documents directory, in your
computer, and you should see the dummy text file in there. Check its contents to make sure it’s exactly what
you typed in the Pi. This way we can exchange files between our computer and the Pj, in a fast and easy way.
Mind though, that this way you could make Pd patches on your computer and then transfer them to the Pi,
but that’s not a very good way to go, because your computer is much more powerful, concerning CPU. It’s
easy to make a heavy patch that the Pi will find very difficult, or impossible, to handle, and launch its CPU
sky high. It’s always advisable to develop your Pi project in the Pi itself.

Transfer Files from Windows to the Pi and Vice Versa

In Windows, you'll need to install some software to be able to transfer files to your Pi. I found WinSCP
(https://winscp.net/eng/index.php), which is open source and a rather user-friendly software for that.
There are more solutions, but this is rather straightforward that seems to work out of the box, with GUI, so
we'll use that. Install it onto your computer and launch it. Figure 3-14 shows WinSCP’s login window. “SCP”
stands for “Secure Copy Protocol’, which is a Unix program/protocol for transferring files from one computer
to another. WinSCP is an SCP program for Windows.

117

https://winscp.net/eng/index.php

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

B Login - WinSCP

€]

S New Site Session
File protocol:
scp vl
Host name: Port number:
192.168.100.10 22

User name: Password:

pi sssssssee

| .

Figure 3-14. WinSCP login window

Click the File protocol: tab and select SCP. In the Host name: field type the IP of your Pi (not the IP
you see in Figure 3-14). In the User name: field type pi, and in the Password: field type raspberry. Your
session should look like Figure 3-14, except from the IP address. Hit Login and you'll get connected to the Pi.
Mind that you don’t need to log out from PuTTY to use WinSCP; you can be logged in from both programs
simultaneously.

The first time you log in, you'll get a warning window saying that, “The server’s host key was not found
in the cache”” Click yes to log in. Figure 3-15 is a WinSCP connected to a Pi session. Don’t save this session
yet, as you did with PuTTY, because we're going to change the IP of the Pi later on.

On the left side, you have your computer directories, and on the right side, you have the Pi directories.
Transferring files from one computer to another is super easy, as it’s done with a single drag and drop.

Navigate to the Pd abstractions that deal with the communication with the Arduino, and drop these files to
the arduino_abs directory on your Pi.

118

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

| Locol Mark Bles Commands Sesson Options Remote Heb

VR 5 G simdvonie | [@] 7 (G come - | Tranfr st Befek e -

i_ PP192.168.100.10 L‘m

| Kibydocinenis - @@ - RIRQ @[S B S @ e - 06 Q2 | W |2
1 unosd [| [£de 3¢ off Ly Procertes [ES [1B E &) i Dowricad g | [£k € il Ly Proceces [B8 (B I E @

Name - Sizs | Type | Changed Hate | Size | Changed

0B of 24,054 Bin 0 of 9 1 hadden OBof 0Bin0of 4 9 hidden
& se) moen

Figure 3-15. WinSCP connected to Raspberry Pi session

Changing the IP of the Pi

Up until now, we've used the Pi through a network router, but that’s not always very convenient. We'll need
to use the Internet sometimes, if we want to install software from the Raspbian repositories, but in general,
when we want to work with the Pj, it’s best that it is connected straight to our computer, instead of the router.
If we use the Pi as is, it will automatically get an IP using the DHCP protocol (this is the protocol used by your
computer to get an IP when logging in to a network). We can use tools like Nmap to get the IP, but this is not
very efficient, as we want to log in pretty fast and start developing our projects. The best solution to this is to
set the Pi to have a static IP, which we’ll know. The way to set an IP address is via a file, which lies in /etc/
network/ in the Pi. cd to that directory (by “cd” I mean to use the cd command to go to that directory) and
type the following:

$ sudo nano interfaces

119

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

Don’t forget to use tab completion. Nano will open with the interfaces file content. We need to use
sudo because we’re using the Pi as user pi, but we're not in our home directory, so we need root privileges.
Listing 3-1 shows what you should type in that file.

Listing 3-1. The /etc/network/interfaces File

auto lo
iface lo inet loopback

auto etho

allow-hotplug etho

#iface etho inet dhcp
iface etho inet static
address 192.168.100.10
netmask 255.255.255.0

10. network 192.168.100.0

11. broadcast 192.168.100.255

W oo~NOUT B WN PR

” o«

The “interfaces” file might have some more text in it, like “auto wlan0’;, “allow-hotplug wlan0’, and
so forth, but we don’t mind it. Line 6 in Listing 3-1, which begins with #, is a comment. Well, it’s not really a
comment, but an executable line that has been commented out. By “commented out” I mean that we want
this line to be there, but we don’t want it to be executed, so we turn it into a comment. Of course, in the
actual file, the lines won’t be numbered, they're numbered only here for convenience. All we really need to
care about are lines 7 and 8. Line 7 defines that a static IP address will be set. Line 6, which is commented
out, defines that an automatic IP address will be set, via the DHCP protocol, but since it’s commented out, it
won't actually do it. Line 8 sets a static IP address. The first two fields (192 and 168) are standard, so we'll just
use these. The last two fields are the ones we set manually. The third field, which is set to 100, is called the
subgroup. This is a group without the network. We set it to 100, because usually DHCP sets small numbers
like 1 and 2, so setting a high number will make it unlikely to get a clash with a DHCP address. The last field
is the ID of the device. This can be anything between 1 and 254, but it must be unique within the subgroup.
Don’t worry about lines 9 to 11, just use them as they show in Listing 3-1.

For these setting to take effect, we must reboot the Pi, but we must also change the IP of our computer,
otherwise they won’t belong to the same subgroup, and they won’t be able to see each other and get
connected. In your Pi’s terminal, type the following:

$ sudo reboot

Unplug it from your router (don’t unplug the power). On Windows, PuTTY might warn you that the
“Server unexpectedly closed network connection,” but it’s of no importance; just close the window. The Pi
will now reboot, and the new, static IP will be set. Connect the Pi to your computer via the Ethernet cable,
and set a static IP to your computer. Your computer’s IP must have the first three fields the same as the
Pi, and in the last field any number between 1 and 254, but not the same as the Pi, because this is the ID
of the device, and the two devices must not have the same ID in the same subgroup (the third field is the
subgroup). Each operating system has its own way to set a static IP, so we'll cover them separately.

Setting a Static IP on Linux

In your computer’s terminal, type the following:

$ ifconfig etho

120

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

The output of this should be something like the following:

etho Link encap:Ethernet HWaddr 08:00:27:e3:ef:78
inet addr:10.0.2.15 Bcast:10.0.2.255 Mask:255.255.255.0
inet6 addr: fe80::a00:27ff:fee3:ef78/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:1120 errors:0 dropped:0 overruns:0 frame:0
TX packets:852 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:800971 (800.9 KB) TX bytes:454335 (454.3 KB)

This is information about the Ethernet connection of your computer. The second line reads inet
addr:10.0.2.15, which is the IP of the Ethernet connection of your computer (yours is very likely to be
different). To change it, type the following (don't forget to include sudo):

$ sudo ifconfig etho 192.168.100.20

The last field can be any number between 1 and 254, but not the same with the Pi, which in Listing 3-1
is 10. Now type sudo ifconfig eth0 again and check the inet addr: field, and make sure that it includes the IP
you just set. This technique changes the IP of your computer only for this session. As soon as you reboot it,
the IP will again be set via DHCP. To set a permanent static IP you have to do what you did with your Pj, since
that’s also a Linux system. Mind, though, to change only the Ethernet IP, not the Wi-Fi.

Setting a Static IP on OS X

On OS X, you can set a static IP in a very similar way to Linux, or via the System Preferences. For the
command-line version, in your computer’s terminal, type the following:

$ ifconfig eno

This will give you information about your Ethernet connection, which will look like this:

en0: flags=8863<UP,BROADCAST, SMART,RUNNING, SIMPLEX,MULTICAST> mtu 1500
options=27<RXCSUM, TXCSUM, VLAN_MTU, TSO4>
ether 00:25:00:a0:1a:b2
inet6 fe80::225:ff:fea0:1ab2%en0 prefixlen 64 scopeid Ox4
inet 169.254.15.79 netmask oxffff0000 broadcast 169.254.255.255
media: autoselect (100baseTX <full-duplex,flow-control>)
status: active

What we care about is the fifth line, which reads inet 169.254.15.79. This is the IP set via DHCP
(yours will probably be different). To change it, type (don’t forget to include sudo) the following:

$ sudo ifconfig en0 192.168.100.20
As with the Linux version, the first three fields must be the same with the Pi, but the last must be a

number between 1 and 254, not the same with the Pi, which is 10 in Listing 3-1. Now type sudo ifconfig en0
again and check the line of the IP, to make sure that it’s the one you've set.

121

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

Instead of the terminal, you can also use System Preferences. Go to Applications » System
Preferences, and click Network, in the Internet and Wireless section. Figure 3-16 shows the Network
window of OS X’s System Preferences. Click the Configure IPv4 tab and select Manually. This will enable
you to type in the following three fields: IP address, Subnet Mask, and Router. In the IP address field type
the static IP for your computer, which should be 192.168.100.x, where x must be between 1 and 254, but
not the same as the Pi’s, which is 10. In the Subnet Mask field, type 255.255.255.0, and leave the Router
field blank. The Apply button on bottom right of the window will have become clickable, so when you type
the two addresses, click it. Now your computer has a static IP for Ethernet connections. Using the System
Preferences will make this IP permanent, whereas using the terminal will only change the IP for the current
session, and as soon as you reboot your computer, the IP will be set via DHCP again. There are ways to set a
permanent IP apart from using the System Preferences, but they are a bit complicated, and since the System
Preferences allow us to do this so easily, we won’t deal with that here.

L RS Network
l_d > || ShowAll | Q
Location: | Location (2/17/14 12:01 PM) i
e ‘é“)’ Status: Connected
5 = Ethernet is currently active and has the IP
@ M-FI = address 169.254.140.171.
h Y
@ USB Serial 2 & Configure IPv4: | Using DHCP :
USB Serial @ IP Address: 169.254.140.171
| B \(\\H;_.)
Subnet Mask: 255.255.0.0
GT-N7100 @
e Not Cor i \g:.) Router:
CP210...ntroller @ »* H
C i s\u DNS Server:
< FireWire Search Domains:
v 802.1X: | WPA: boavista... % Connect
~ Bluetooth PAN 9
., 7
] o P Advanced. 7
n
'] 1" Click the lock to prevent further changes. Assist me... Revert Apply

Figure 3-16. Network preferences on OS X

Setting a Static IP on Windows

The description here applies to Windows XP, but other Windows versions should be rather similar. Go to
Control Panel » Network Connections » Local Area Connections, click Properties. In the Properties
window, select Internet Protocol (TCP/IP) and click Properties again. The window shown in Figure 3-17
will open. The Obtain IP automatically option will be chosen by default. Click Use the following IP address
and the fields that follow will become editable.

122

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

_‘ Internet Protocol (TCP/IP) Properties E]
. General

You can get IP settings assigned automatically if your network. supports
this capability. Otherwise, you need to ask your network administrator for
the appropriate IP settings.

(O Dbtain an IP address automatically
(® Uge the following IP address:

1P address: 192 .168 . 100 . 20
Subnet mask: 255 255 .255. 0
Default gateway:

(®) Use the following DNS server addresses:
Preferred DMS server:

Alemate DNS server:

Figure 3-17. IP set window on Windows XP

In the IP field, type your IP , which should be 192.168.100.x, where x must be between 1 and 254, but
not the same as the Pi’s last field of its IP, which is 10. In the Subnet mask: field type 255.255.255.0 and leave
the rest blank. Click OK and the new, static IP will be set.

Log in to the Pi Without a Router

Now that both the Pi and your computer have a static IP and they are both in the same subgroup, you can
connect to the Pi straight from your computer, without using your Internet router. Your Pi should already be
connected to your computer’s Ethernet, so go ahead and connect to it like you did before, only this time type
the new IP where required. On Linux and OS X, in a terminal, type the following:

$ ssh -X pi@192.168.100.10

Then on Windows launch PuTTY (I assume that your X server is still running), put the new IP in the
Host Name (or IP address) field, and click Open. If you are refused the connection for a few times when
you try to reconnect, wait a bit as the Pi might be still booting. If you continue to get refused, insist a bit and
eventually you'll be asked for Pi’s password. If all goes well you should be logged in your Pi like before, only
now the Pi has no Internet connection.

Whenever you want to connect the Pi to the Internet (to install software with apt-get, for example),
you'll need to modify the /etc/network/interfaces file, shown in Listing 3-1. All you need to do is remove
the comment sign from line 6 and comment out lines 7 to 11 (put a # at the beginning of each line). Then
you'll need to find the IP of the Pi, as you did in the beginning (log in to your router, or use Nmap, for
example) and log in with that [P. When your Internet session is done, go back to /etc/network/interfaces
and do the reverse, comment out line 6, and remove the comment sign from lines 7 to 11, and reboot the
Pi. For the use of the Pi in this book, we won’t need any Internet, so it’s best if you always reset the static IP
whenever you log in the Internet.

123

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

Save Login Sessions on Windows

Since your Pi now has a static IP, you might want to save this session, so you don’t need to type the static

IP every time you want to log in the Pi. In PuTTY, in the Saved Sessions field, type the name of the session,
which could be raspberry, and click Save. To test that the session has been saved, close PuTTY and open it
again. Underneath the Saved Sessions field, you'll find the space where your saved sessions are. raspberry
should be in there—click it and then click Load. The static IP of the Pi should appear in the Host Name (or IP
address) field. Click Open and log in to the Pi.

You might also want to save the Pi session to WinSCP, to make things a bit faster. Launch WinSCP and
type the new IP along with the rest of the data, the same way you did before. Now click Save and the Save
session window will open, shown in Figure 3-18. It recommends that you not save the password, but you
can do as you like. It can also create a desktop shortcut, which you might want if you work a lot with the Pi.
If you have a shortcut of WinSCP however, it’s still fast enough. Click OK and relaunch WinSCP to make sure
your session has been saved. It will appear on the right side of the login window, shown back in Figure 3-14
(this figure doesn’t include the saved session, because we hadn’t saved it when we first used WinSCP), and
is probable already selected. The Pi’s data will appear in the login window (except from the password, if you
didn’t save it). Lastly, log in to test if all goes well.

Save session as site @

Site name:
pi@192,168,100,10

Folder:
<none>| v
[[] save password (not recommended)

[[]Create deskrop shortcut

[QK] [Cancel I I Help

Figure 3-18. WinSCP “Save session” window

Shutting Down the Pi

Like all computers, the Pi needs to be shut down via a command (clicking buttons is the same: it generates
commands), and not only by powering it off. To shut it down properly you must type the following in the Pi
terminal:

$ sudo poweroff

You'll get a message in your computer’s terminal saying that the connection is now closed (maybe not
on Windows). To reboot it, unplug the power cable and plug it back in and log in as before. Note that on
other embedded computers the command might be sudo halt instead. What we’ll do now is write a script
to shut the Pi down, because we will need this when we” be using the Pi without a screen and keyboard. cd
to /etc, create a new directory called my_scripts, and cd to that. To do this, type the following:

$ cd /etc
$ sudo mkdir my scripts
$ cd my scripts

124

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

You'll need sudo only for the command that creates the new directory. Now we're in the new directory,
where we’'ll write our script to shut the Pi down. We’ll use nano to edit the script and afterward one
command to make it executable. Type the following:

$ sudo nano shut_down.sh

We need sudo because we're not in the home directory, and we’re not root. The . sh extension is the
extension for shell scripts. In nano, type the following:

sudo poweroff

Hit Ctrl+0 and Return, to write the text to the file, and then Ctrl+X to exit nano. To test if it’s working,
go back to your home directory and type the following:

$cd "~
$ sh /etc/my_scripts/shut_down.sh

This will properly shut down the Pi. You might be wondering what the point of this is since you can just
type sudo halt to shut down the Pi. When we’re building projects using the Pi headless, we won’t have the
ability to type anything to the Pi’s terminal, so we need to have a way to quit all programs and run sudo halt
so that the Pi can shut down properly. Now go back to edit the script. From your home directory, type the
following:

$ sudo nano /etc/my_scripts/shut_down.sh

In nano, type the following:

sudo killall pd
sleep 3
sudo poweroff

The last line was already there; you just need to type the other two lines above it. The first line will
quit Pd (we assume that we’'ll be running Pd), then the Pi will wait for three seconds (with “sleep 3”), and
eventually the halt command will run. Save it (Ctrl+0 and Return) and exit nano. Now launch Pd and open
a new window. Figure 3-19 shows the patch you should build. [shell] from the “ggee” library enables us to
talk to the shell, therefore to run scripts, apart from other things. Since we’ve already wrote our script, all we
need to do is call it, the same way we would call it from a terminal. Save the patch (I've named it shut_down),
lock it and click the message. Pd will quit, and the Pi will shut down.

This is a very helpful feature, since we can use the Arduino to run this script and shut down the Pi
properly, even if there’s no keyboard or screen attached to it. Don't try yet to use the patch in Figure 3-19
with the Arduino, because it’s very likely to cause a crash, since the Arduino will be sending its data at the
specified baud rate, so this message will be called several times. We’ll see in some of this book’s projects how
to implement this in a patch.

125

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

800 \| shut_down.pd - /home/pi/pd_patches
File Edit Put Find Media Window Help

[sh 7etc/my_scripts/shut_down. sh(

Figure 3-19. Pd patch to shut the Pi down

This concludes our Pi overview. It is a very useful tool that we'll use in some of this book’s projects.
Hopefully it will be useful to you in more projects that you build yourself. Now let’s see how we can use the
Arduino wirelessly.

Going Wireless

There will be some occasions where we’ll rather use the Arduino wirelessly. This can be the case when
building an interface for a performer that doesn’t want to have cables hanging out of him/her. Being able to
receive and send data between the Arduino and Pd wirelessly, expands the possibilities of interfaces a lot,

so we'll go through that in this section. To have wireless communication, we’ll need some more equipment.
There are various options, depending on the actual interface we want to build. Here we’ll cover the two most
popular, the Bluetooth, and the very popular XBee.

Bluetooth vs. XBee

The Bluetooth solution is the cheaper of the two. The Bluetooth modules used with the Arduino are just that,
Bluetooth modules, which can communicate with the computer if the computer’s Bluetooth is activated.
Then we can see it in our serial ports list and use the Arduino as we do with a USB cable. All you need to

use Bluetooth with the Arduino is a Bluetooth module. Then you can immediately send and receive data
between your computer and the Arduino.

XBee is a radio transmitter/receiver (also called a transceiver) produced by Digi International, which
can be configured in any of the three OSes (Linux, OS X, Windows), and replaces the USB cable we've been
using so far. The XBee is a more expensive solution. First of all, you'll need at least two XBees: one connected
to the Arduino and another one connected to your computer. Apart from that, you'll also need some
breakout boards to be able to configure them. The XBee has a non-breadboard friendly design so you can’t
build a circuit on a breadboard/perforated board to use it, you'll need to buy special breakout boards (called
XBee Explorer) to make your life easier. If you want to use the XBee with an Arduino Uno, you'll also need
a shield to mount on top of the Arduino, on which you’ll mount the XBee so it can act like a transmitter/

126

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

receiver for the Arduino. If you want to use it with another kind of Arduino (the Pro Mini, for example), you'll
need another kind of XBee Explorer for that.

All this might sound a bit expensive, but with a moderate budget, you can build a very flexible and
powerful interface. The XBee has some advantages compared to the Bluetooth. First, it has a greater range
than the Bluetooth, which might be very useful in a case of a concert where the performer is on stage and
the computer is next to the mixing console (there can always be reasons for such a setup). In this case, the
Bluetooth might not be able to cope with the demands of the setup. Other occasions are very likely to prove
the XBee a more suitable solution, compared to the Bluetooth. Another advantage is that with the XBee,
you can build more complex networks, like start networks (where many XBees communicate with a central
XBee), mesh networks (where all XBees cooperate in the data distribution), and others. These are beyond
the scope of this book, so I'm not going to cover them here; they’re mentioned only as general information.
Figures 3-20 and 3-21 show a Bluetooth module and an XBee transceiver respectively.

Figure 3-20. HC-06 Bluetooth module

Figure 3-21. XBee series 1 with trace antenna

127

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

Using a Bluetooth Module with Arduino

We'll use the HC-06 Bluetooth module to communicate with the Arduino. This is an inexpensive module
that works out of the box. The only thing you need is a breadboard and some jumper wires. We'll first use it
with its default settings, and then we’ll configure it to change some things, like its name, its baud rate, and its
passcode pin. Most likely this module comes with headers (the pins on its bottom in Figure 3-20) soldered
on its communication pins, so you don’t need to do it yourself. If there’re no headers soldered, you should
use angled male headers and solder them yourself. The pins we’re going to use are VCC, GND, TXD, and
RXD, which are indicated in the back side of the module.Go ahead and upload serial_print.ino sketch found
in the GitHub page of the Pd abstractions [serial_print] and [serial_write]. Make the appropriate circuit (the
three potentiometers and three switches circuit from Chapter 2). Once you do that, unplug the USB of the
Arduino and make the following connections with it and the Bluetooth module:

HC-06 VCC connects to Arduino 5V.

HC-06 GND connects to Arduino GND.

HC-06 TXD connects to Arduino Rx (digital pin 0).
HC-06 RXD connects to Arduino Tx (digital pin 1).

We see here that we're using the first two digital pins of the Arduino, which we haven’t used before.
Chapter 2 mentioned that these pins are used for serial communication. Since we’ll communicate serially
with the Arduino via the Bluetooth module, we have to use these pins for this reason. Tx (or TXD) is the
transfer pin, and Rx (or RXD) is the receive pin. So the transfer pin of the Bluetooth module should connect
to Arduino’s receive pin, and the receive pin of the Bluetooth module should connect to Arduino’s transfer
pin, so that whatever the Bluetooth module transfers is received by the Arduino, and the other way round.
You can use the USB to power up the Arduino, or an external power supply, like a 9V battery (the external
battery is preferable because there’s no physical connection between the Arduino and the computer, so we
can clearly see how the Bluetooth module works wirelessly). Figure 3-28 shows a battery connected to the
Arduino with the XBee shield mounted on top of it. Connect the positive pole of the battery to the VIN pin of
the Arduino (the first pin of the header next to the analog pins header), and its negative pole to the GND pin
of the Arduino, which is right next to the VIN pin. With the Bluetooth module you just don’t have the XBee
shield on top as in Figure 3-28, so just connect the battery poles to the corresponding pins of the Arduino.

When you power up the Arduino you should see the a red LED blinking, on the Bluetooth module. This
means that it is powered, but it’s not connected to any device yet. You must first pair your computer with
the Bluetooth, like you would pair it with any Bluetooth device (every OS has its own Bluetooth parity tool,
but I'm not going to cover that here). If you're asked for a passcode key, use 1234. When you pair it, the red
LED on the Bluetooth module will stop blinking and will stay lit. Open the help patch of the [serial_print]

Pd abstraction and click the “devices” message. You'll get the available serial ports on Pd’s console, and the
Bluetooth module should be there. It will appear under the name /dev/tty.HC-06-DevB, where /dev/tty.
might differ, according to your OS. If [comport] has already connected to another port, click the “close”
message and then type the Bluetooth port number on the number atom connected to the “open $1”
message. If all goes well, you should see the values of the potentiometers and the switches in the Pd patch.

Mind that we used the serial_print.ino sketch because it runs on a 9600 baud rate. If you have changed the
baud rate of the sketch, it won’t work, so set it back to 9600 and try again. This is because that’s the default baud
rate of the Bluetooth module. There might be some cases where we’ll need another baud rate, so we’ll have to
configure the module for that. To do that we'll need to connect to it serially and type some AT commands
(AT commands are commands for embedded computers). These commands are pretty easy, and we could use
them with any terminal emulator program, like CoolTerm, or PuTTY. There is a drawback with HC-06, though.
Commands don't get through with the newline feed (hitting Return), but the device waits for one second once
you start typing. When that second is over, it will check its input buffer and use whatever is there. If a command
is not full, it will just ignore it. This means that we need to type quite fast, and this can prove to be quite difficult.
There is a work around to that issue, using the Arduino itself to configure the Bluetooth module.

128

http://dx.doi.org/10.1007/978-1-4842-1583-8_2
http://dx.doi.org/10.1007/978-1-4842-1583-8_2

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

Close the Bluetooth port of your computer, and unplug the Arduino. Disconnect the jumper wires from
the potentiometer/switch circuit and make the following connections:

HC-06 VCC -> Arduino 5V
HC-06 GND -> Arduino GVD
HC-06 TXD -> Arduino D10 (digital pin 10)
HC-06 RXD -> Arduino D11 (digital pin 11)
Listing 3-2 shows code I found in a post on plasticbots.com, which I have slightly modified to fit the

needs of this chapter. Write it in a new sketch window in the Arduino IDE.

Listing 3-2. Sketch to Configure the HC-06 Bluetooth Module

1. #include <SoftwareSerial.h>

2.

3. // RX, TX pins of the SoftwareSerial object

4. // they connect to the TX and RX pins of the other serial device, respectively
5. SoftwareSerial bt serial(10, 11);

6.

7. void setup()

8.

9. Serial.begin(9600);

10. //Serial.begin(57600);

11. Serial.println("Set up HC-06 Bluetooth module!");
12. bt serial.begin(9600);

13. //bt_serial.begin(57600);

14. delay(1500);

15.

16. // check connection, should receive OK

17. bt_serial.print("AT");

18. // wait for a second and half because HC-06 responds to commands after one second
19. delay(1500);

20. // check firmware version

21. bt serial.print("AT+VERSION");

22. delay(1500);

23. // set pin to 6666

24. bt serial.print("AT+PIN6666");

25. delay(1500);

26. // change name

27. bt serial.print("AT+NAMEmyBTmodule"); // Set the name to myBTmodule
28. delay(1500);

29. // set baud rate either to 9600 or 57600

30. // bt_serial.print("AT+BAUD4");

31. bt serial.print("AT+BAUD7");

32. delay(1500);

33. }

34.

35. void loop() {

36. // loop does nothing

37. 1}

129

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

Line 1 imports the SoftwareSerial library, which enables us to connect serially to other devices,
while leaving the default Arduino serial pins, digital pins 0 and 1, free. This way we’re able to upload code
to the Arduino board, communicate with it via the IDE’s serial monitor, and at the same time connect to
the Bluetooth module. Line 5 defines an instance of the SoftwareSerial library, called bt_serial, which
stands for Bluetooth Serial. An instance of a class is called an object, so bt_serial is considered an object
of the SoftwareSerial class. This approach to programming helps us use functions and other data of a
given class in a different way for each instance of the class. For example, if we defined two objects of the
SoftwareSerial class, bt_serialland bt serial2, we could use different pins for each, like 10 and 11
forbt_seriali, and 8 and 9 for bt_serial2. It’s not really important to grasp the concept of objects in
programming, this information is provided only for those interested.

Line 9 begins the serial communication between the computer and Arduino, using the Serial class,
and line 12 begins the serial communication between the Arduino and the Bluetooth module, using the
SoftwareSerial class, via the bt_serial object. Don’t mind the commented lines for now, I'll explain them
in a bit. Line 17 sends the AT command, which does nothing really, it only returns an OK if we're connected
to the module. Note that all commands are sent with print and not with println, because we don’t want to
send the newline character.

Line 21 send the AT+VERSION command, which returns the firmware version of the module. It’s not
really necessary here, but it’s provided just for the information. Line 24 sends the AT+PINxxxx, where x is a
number, and it’s used to change the passcode pin of the module. Again, you don’t really need this, but you
might want to change the default pin.

Line 27 sends the AT+NAME command, which is used to change the name of the module. Like with the
AT+PIN command, there’s no space between the command and its argument (the name you want to set to
your module). This is a helpful command since you might want to use more than one module at the same
time, and naming them will make things a bit easier, as it will be much simpler to tell which serial port
communicates with which module. In this case, we're renaming it myBTmodule.

Finally, line 31 changes the baud rate of the module to 57600. The available baud rates are shown in
Listing 3-3.

Listing 3-3. Availalbe Baud Rates for the HC-06

= 1200

= 2400

= 4800

= 9600

= 19200
= 38400
57600
= 115200
= 230400
= 460800
= 921600
= 1382400

N W >OWoONOoOUT S WN R
1}

All the delays after each command are there to make sure that the module will have enough time
to receive the commands and make the appropriate configurations. When you upload this code to your
Arduino, open the serial monitor from the Arduino IDE. The first thing that will be printed is “Set up HC-06
Bluetooth module!” and then you'll receive the replies to each command from the module, which will
be printed in the same line. Make sure you set the correct baud rate to the serial monitor. If you get the
following line in the serial monitor, all will be fine:

OKOKfirmwareversionOKsetpinOKsetnameOKsetbaud

130

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

“firmwareversion” will be replaced by the firmware version of your Bluetooth module, of course. Now
I'll explain what the commented lines do. We’'ve now changed the baud rate of the module, if we want to
reconnect to it, we must make sure we use the correct baud rate for both the Arduino and the Bluetooth
module. Our baud rate is now 57600, so if you want to run this sketch again, you have to comment out lines 9
and 12, and remove the comment sign from line 10 and 13. This will start the serial communication between
the computer and the Arduino, and between the Arduino and the Bluetooth module at the correct baud rate.
The rest of the commands depend on what you want to do whenever you upload this code to the Arduino.
The AT and AT+VERSION commands are not so important, but the commands on lines 24, 27, and 31 are.

If you want to set a different passcode pin to your module, set that in line 24, to change the name set it
inline 27, and to change the baud rate do it in line 31. The 9600 baud is there in line 30 and it's commented
out. If you want to set another baud rate, use the numbers from Listing 3-3. Note that if you want to configure
another module, which hasn’t been configured yet, you should use the begin functions in lines 9 and 12
(exactly like they are in Listing 3-2), and not the ones in lines 10 and 13, because this Bluetooth modules if
configured to a 9600 baud by default.

Using this sketch enables us to easily configure the HC-06, since we don’t need to type its commands in
real time, and stress ourselves with the timing issue. Save it with a name that helps you understand what it
does, so you can use it in the future.

Now unplug the Arduino and again build the potentiometer and switch circuit, and disconnect the
Bluetooth module. Connect the Arduino to your computer and upload the serial_write.ino sketch to it (this
sketch uses a 57600 baud rate). Unplug the Arduino and connect the Bluetooth module like you did with the
serial_print.ino sketch, where the TXD pin of the module goes to the Rx pin of the Arduino (digital pin 0),
and the RXD pin of the module goes to the Tx pin of the Arduino (digital pin 1). Power up the Arduino (again
it’s better to use an external battery), open your computer’s Bluetooth and pair it to the Bluetooth module,
which will now appear as myBTmodule. Now open the help patch of the [serial_write] abstraction and check
the serial port number of the Bluetooth module. The port will be now called something like /dev/tty.
myBTmodule-DevB (on OS X, replace /dev/tty. with your OS’s port name). Open the port and you should get
the values of the potentiometers and the switches. Congratulations, you're now free of wires!

Using the XBee with Arduino

To use the XBee, we'll use an XBee Arduino shield (shown in Figure 3-22) and an XBee Explorer USB (shown
in Figure 3-23). Make sure that you've mounted the XBee on the Explorer properly, otherwise you could
damage it. There are two lines on the Explorer and the shield indicating how the device must be mounted,
by outlining the shape of the XBee. Figure 3-24 shows that. XBee has its own software called X-CTU, which
runs on Windows only. This software provides a lot of features that we won't really need, but luckily there

is free software for all three operating systems, which we can use to configure the XBee. On Linux and OS

X, we can use the same software, CoolTerm (http://freeware.the-meiers.org/) to configure them. On
Windows, we're going to use PuTTY to do this. There is also Minicom for all three platforms (on Windows it’s
available through Cygwin) and other solutions, but we’re not going to use any of it here.

Connecting to the XBee from Linux and 0S X

To connect wirelessly with an XBee (actually two XBees) we'll need an XBee shield, like the one shown
in Figure 3-22, and an XBee Explorer USB, like the one in Figure 3-23. Launch CoolTerm with the XBee
Explorer USB connected to your computer. In CoolTerm go to Connections » Options... (or click the

Options icon on top of the window) and the window in Figure 3-25 will open.

131

http://freeware.the-meiers.org/

CHAPTER 3 " EMBEDDED COMPUTERS AND GOING WIRELESS

On the left side, Serial Port is chosen, which is what we want. Click the Port: tab to select the serial port
of the XBee. This should be something like “usbserial-xxxxx” where x is either a letter or a number. The Baud
rate: will be at 9600 by default, which is what we want for now, because the XBee is configured at this baud
rate by default. Leave the rest of the fields as they are. Click Terminal on the left side menu. In Terminal,
make sure the Local echo tick box is selected, otherwise what you type in the CoolTerm window won't
appear on screen—much like when typing passwords in a Unix terminal, and this is not very convenient.
Click OK and you'll be back to the CoolTerm session. On top of the window, click the Connect icon to get
connected to the XBee.

ODO00O0O000
CO0000QOO0O®
o000
Q000

00®
09
00000000
O0000OO00®
cecceLOOOO®

Figure 3-22. XBee Arduino shield

Figure 3-23. XBee Explorer USB

132

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

Figure 3-24. XBee Explorer indication for proper mounting

Duy CoolTerm_0
@iE & & K W [« O
New Open Save mmmmammmmmm
Serial Port Options
Roer Port: usbserial-A%014627 :) ||
Transmit Baudrate: 57600 %
Miscellaneous Data Bits: 8 A
Parity: none H
Stop Bits: 1 H
Flow Control: | | CTS
L /DTR
|_| XON

Re-Scan Serial Ports |

~ Cancel | E

Bluetooth-Serial-1 / 9600 B-N-1 L RES: (L DTR (. DCD
| Disconnected Hu:x O ers Cmsr O m

Figure 3-25. CoolTerm’s connections options window

133

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

Connecting to the XBee from Windows

We'll use PuTTY to configure the XBee. First, check which serial port your XBee is at. On Windows XP, click
Start, right-click My Computer and click Properties. On the Properties window click the Hardware tab and
there click the Device Manager button. In the Device Manager, you'll find the serial port of the XBee under
Ports, which should be a USB Serial Port, referred to as COMx, where x is a number. On other Windows
versions, the procedure should be similar. If you don’t get a port number, you might need to install drivers
for the XBee. A simple online search should give sufficient results for this.

Now launch PuTTY, but instead of an SSH session, choose Serial, as shown in Figure 3-26. In the Serial
line field, type the port name of the XBee. The Speed should be set to 9600, which is the default baud rate
of PuTTY, but also the baud rate the XBees have by default. Before opening the connection, click Terminal
on the left side menu, and under Local echo, make sure you tick on Force on, as shown in Figure 3-27. This
will enable displaying whatever you write on PuTTY’s terminal as you're configuring the XBee. If it’s left un-
ticked, then you won't be seeing what you type, which is not very convenient. Now click Open and PuTTY’s
terminal window will open, where you can start configuring your XBee.

.

ERPUTTY Configuration
Categony:
- Session Basic options for your PuTTY session
Lm Specify the destination you want to connect to
Skt Senal line Speed
Keyboard
Bel COM4 9600
Features Connection type:
-1 Window ORaw OJelnet ORlogin (O SSH (@ Segial
i Load delete a stored sessi
TR oad, save of delete a stored session
Translation Saved Sessions
Selection
Colours :
: Default Settings ad
-1 Connection raspbeny Lo
Do
o
Flogin
+ S5H
Seial Close window on exit
O tways O MNever () Only on clean exit
|

Figure 3-26. PuTTY Serial session

134

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

ERPUTTY Configuration
Categony:
1= Session Options controling the terminal emulation
L_m Set various terminal oplions
i= Terminal i3
Keyboard Auto wrap mode initially on
Bel ["] DEC Origin Mode initially on
Features [Implicit CR in every LF
= Window [Implicit LE in every CR
Appearance Use background colour to erase screen
Behaviour [] Enable blinking text
;uiec;l;n Answerback to “E:
Sl PuTTY
= Connection Line discipline options
HEL Local echa:
£y O Auto @®F O Force off
;m Local line editing:
1 6H @) Auto O Force on O Force off
Serial Remote-controlled printing
Printer to send ANS| printer output to:
v/
_Qeen J[Comcel]

Figure 3-27. Enabling Local echo in PuTTY’s terminal

Configuring the XBee

Now that we're connected to the XBee, we're ready to type some commands to configure it. The following
steps are common for all three OSes. I'll first show the commands and then explain what each does. Once
you're connected and you start typing in the CoolTerm or PuTTY window. Type the following:

+++

Don’t hit Return after this command, only wait until you receive an OK from the XBee. Once you
receive the OK, go ahead and type the rest, now hitting Return with every command. Mind that once you
get the OK you have about 30 seconds to type each command, so don’t take your time doing it, otherwise
the commands won’t go through. You can tell that a command was set successfully by the OK respond from
the XBee. If you don't get it, you must type the three plus signs again and start the whole configuration (not
connection) procedure from the beginning. Listing 3-4 shows the rest of the commands. On PuTTY, all
commands will appear on the same line, which is a bit confusing.

Listing 3-4. The Five AT Commands Used with the XBee
ATID1234

ATMY1
ATDL2
ATBD6

ATWR

135

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

Again we're using AT commands (this time with no plus sign), so we’ll use only the last two letters to
refer to them. ID is the PAN (personal area network) ID, used to broadcast messages to a certain network.
The value for the PAN ID is 16-bit, so you can have any number in the range 0-0xFFFE If you want to
broadcast messages to all PANs, use 0XFFFF, otherwise the XBee will broadcast its messages only to the set
PAN. We used a decimal value here (1234), but hexadecimal values are also valid (using the 0x prefix).

The MY command is the source address. Again, this is a 16-bit value in the range 0-0xFFFE. This is the
address that the XBee will listen to. In our case, it’s 1, but you could use anything in the 16-bit range, except
from OXFFFF. The DL command is the destination address (in fact, it’s Destination Address Low). This is the
address that the XBee will transmit to. This command reads the lower 32 bits of a 64-bit address, but we can
use it with 16-bit values only, again in the range 0-0xFFFF, excluding OxFFFF. BD is the baud rate command.
Listing 3-5 shows the available baud rates.

Listing 3-5. Available Baud Rates for the XBee

= 1200 bps
= 2400

= 4800

= 9600
19200

= 38400

= 57600

= 115200

N ouipbhwN R o
"

Here we have used the 57600 baud rate, since we provided number 6 to the command. Changing the
baud rate of the XBee is not really necessary, but we do it to know how to, since it will very probably be
necessary in some cases. The last command, WR, is the write command. If you exclude it, anything you've set
will be discarded. With the WR command, all the data you've sent to the XBee will be stored even when the
XBee is powered off, so you can use it in a plug-and-play mode.

Now that we've configured the first XBee, let’s configure the second one too. The steps are identical up
to writing the commands. On Linux and OS X, hit the Disconnect icon in CoolTerm first, and unplug the
Explorer USB. On Windows, you can leave the PuTTY window open and unplug the USB. Mount the second
XBee on the Explorer and plug it in. On Linux and OS X, click the Connect icon. On Windows, right-click the
title bar of the PuTTY window and click Restart Session. We’re now ready to configure the second XBee.
The commands are essentially the same, only the MY and DL commands get reversed arguments. Listing 3-6
shows the commands for the second XBee.

Listing 3-6. Configuring the Second XBee, Using the Same Commands with the ATMY and ATDL
Arguments Reversed

+++
ATID1234
ATMY2
ATDL1
ATBD6

ATWR

136

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

Again, don’t hit Return when you type the first command (+++), and wait for the OK. After entering
each of the rest of the commands, hit Return and again wait for the OK, to type the next command. When
you receive the OK after the last command (WR), on Linux and OS X, click the Disconnect icon on top of the
window. On Windows, just close the PuTTY window, and you're done.

The ID command takes the same argument so the two XBees are in the same network. As you see
MY now got 2, and DL got 1, so the two XBees can talk to each other. The BD must definitely get the same
argument, otherwise the XBees won't be able to communicate. Finally, WR will write the changes so they
can take effect. The full command list for the XBee is available on the Internet, if you're interested in more
configuration options. The ones here will be enough for us to use the Arduino wirelessly, however. Make sure
you don’t forget the baud rate of the XBee in case you want to reconfigure it in the future. Trying to log in the
XBee with a 9600 baud rate won’t work because it is now configured at a 57600 baud rate, and the computer
won't be able to talk to the XBee.

Now it’s time to test the two XBees. We can use the serial_write.ino Arduino sketch that from the GitHub
page with the Pd abstractions. We’ll use that because we’ve already configured the XBees to a 57600 baud
rate, and the serial_write.ino sketch uses this baud rate. Apart from both XBees needing to have the same
baud rate to communicate with each other, the Arduino must have the same baud rate as well, so that it can
transmit its data via the XBee. Mount the XBee shield on top of the Arduino, an XBee on the XBee headers on
the shield, and build the circuit with the three potentiometers and the three switches. To upload the sketch
to your Arduino board you need to use a switch on the XBee shield, which is next to the XBee headers.

This switch has two positions, DLINE and UART. To program the Arduino set it to DLINE and connect the
Arduino to your computer via USB. Once you've programmed it, you can unplug it to power up it with a
battery so you can clearly see the wireless connection is action (you can use the USB cable as well). Turn

the XBee shield switch to the UART position, so you can use the XBee. Then connect the batter the same
way you did with the Bluetooth module. Figure 3-28 shows the battery connections. Once you power it up
you should see both the Arduino and the XBee turning on. Mount the other XBee on the XBee Explorer and
connect it to your computer with a USB cable. The XBee is simultaneously a transmitter and a receiver, so it’s
not important which XBee will be connected to the Arduino and which will be connected to the computer.

Now open the help patch of the [serial_write] abstraction and click the “devices” message to see the
available serial devices. Look for the serial port of the XBee, and type its number to the number atom
connected to the “open $1” message. The serial port of the XBee will open and you should start seeing the
values of the potentiometers and the switches in the Pd patch. Congratulations! You've gone wireless once
again!

137

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

AEROCELL

Figure 3-28. Powering up the Arduino with a 9V battery

Conclusion

This chapter covered the use of the Raspberry Pi (most of which applies to other embedded computers as
well) and how to use the Arduino wirelessly. This concludes all introductions needed for this book. In some
of the projects that will be developed here, we'll use either an embedded computer or a wireless connection
to the Arduino, so this chapter is very important to realize these projects.

Apart from the interfaces built here, being able to use embedded computers and wireless connections,
enables you to realize lots of very flexible and powerful projects. Embedded computers are very useful when
building mobile projects where there’s no need to look at a computer screen, so the computer can be hidden
inside the project enclosure. You can build custom-made, very flexible interfaces that exactly fit your needs.
Wireless communication between the computer and the Arduino can prove to be very helpful when cabling
can make a setup problematic, and a cable-free setup seems more appropriate.

A subject we haven'’t covered here is the use of external sound cards with embedded computers. When
using computer audio, it’s generally advisable to use an external sound card, because the computer’s sound
card circuit is usually not very good. This is because computers tend to be rather compact, and since they are
general purpose devices, they're not dedicated to audio, so their audio circuit is not of the highest priority,
resulting in quality reduce. An external sound card is dedicated to audio, so the quality of the audio output
is number one priority, making it more appropriate for making music. Also, an external sound card usually
provides input channels, whereas the Raspberry Pi does not. Some sound cards provide more than two
input/output channels, which might be desirable, plus most sound cards provide pre-amps for input and
output, which helps the audio overall amplification. The Raspberry Pi has dedicated sound cards, because
it's a very popular computer with a big community. These sound cards usually come with OS images
including the necessary drivers so that the sound card can work.

138

CHAPTER 3 © EMBEDDED COMPUTERS AND GOING WIRELESS

In case you want to use another sound card, or in case you're using another embedded computer, you'll
have to find another solution (if you want to use an external sound card). There is an issue here because
most of the sound cards don’t include drivers for Linux. In general, Linux is outside the commercial market,
so sound card designers usually don’t bother to build drivers for it. Sound card drivers for Linux depend
on the Linux developers. If you're planning on buying a sound card for your embedded computer, do a
thorough research first. Search the Internet for sound cards that are reported to work with your embedded
computer, check forums, and ask around. A general rule is that a class-compliant USB sound card (which
will most probably not need drivers for OS X, which, like Linux, is Unix-based) is very likely to work with
Linux. If it doesn’t work (or doesn’t work properly) with the default settings of Pd, try to use it with the Jack
audio server (we'll cover it in the first project that uses an embedded computer). There is a great possibility
that Jack will work better with a sound card than another audio server.

Now that we have acquired all necessary background, we can start building musical projects. In the
next chapter, we'll build some very simple interfaces, to start getting the hang of it. They won'’t be finalized
interfaces and they will be rather limited. They will be the kickoff for building more complex, expressive
tools to make music.

139

CHAPTER 4

Getting Started with Musical
Applications

You have now been introduced to all the necessary tools, so we can start building some real interfaces. In this
chapter, we're going to build a couple of rather simple interfaces on a breadboard. Since they’re not going to
be finished projects, we're not going to deal with soldering circuits on a perforated board, as the breadboard
will serve just fine for our purposes. This chapter acts more like an introduction to using Pd and Arduino to
create musical interfaces, and as a kickoff to making really interesting projects for your musical creations.

We're going to combine things learned in the first two chapters (we're not going to use any embedded
computers or wireless communication) in a way that will create some more interesting sounds than the ones
we've already made. We're going to build two interfaces—a phase modulation interface and a simple drum
machine, and we're also going to combine them. The interfaces here will be fairly simple, but they cover the
basis of a general approach to building finished projects.

Parts List

Table 4-1 lists the parts needed for each of the three interfaces. The third one is a combination of the first
two, but it’s listed here as well.

Table 4-1. Parts List for the Interfaces of this Chapter

Interface Potentiometers Switches Push buttons LEDs Resistors
Phase modulation 4 2 0 1 1 x220Q
Drum machine 2 2 3 1 1 x 220Q
Combination 5 3 4 1 1 x220Q

Phase Modulation Interface

The first project we’ll realize is a phase modulation Pd patch, controlled by some potentiometers and some
switches with the Arduino. Phase modulation is a technique similar to frequency modulation, but slightly
different. I didn’t cover it in the first chapter, but since we've already covered frequency modulation, it

won'’t be very difficult to understand what’s happening. It is a celebrated technique that can produce very
interesting sound results with just a few elements. As in frequency modulation, in phase modulation there’s a
carrier oscillator that has its phase (instead of its frequency) modulated by another oscillator. Again, there are

141

CHAPTER 4 * GETTING STARTED WITH MUSICAL APPLICATIONS

three elements: the carrier oscillator, the modulator oscillator, and the index. To understand what is meant by
phase, let’s think of a sine wave oscillator. Figure 4-1 illustrates how the waveform of a sine wave occurs.

800 GEM

Figure 4-1. Sinusoidal waveform produced by a rotating angle

How Phase Modulation Works

The angle in Figure 4-1 (which is made in Pd, by the way) is rotating counter-clockwise, constantly. As it
rotates, a straight line is drawn from the point where the rotating angle meets the circle circumference

(if the sine wave has full amplitude) to the vertical axis of the circle. The end of the line that meets the
vertical axis of the circle (indicated by a dot) is the sine of the angle. On the right side of the circle, the

sine is translated in time, forming its waveform. When we modulate the phase of a sine wave oscillator,
we're actually modulating the rotation of the angle. So, instead of going constantly counter-clockwise in a
steady frequency, it will change both direction and frequency according to the wave form of the modulator
oscillator. When these changes occur slowly, we hear a glissando that goes up and down, around the carrier
frequency. When these changes occur fast, what we perceive is a tone rich in harmonics. You can see that
this effect is very similar to frequency modulation. You can get similar results with the two techniques, if the
right coefficients are provided. It might be a bit easier to use phase modulation to control timber richness
(at least to my experience); whereas with frequency modulation, you can control frequency shifts easier.

142

CHAPTER 4 " GETTING STARTED WITH MUSICAL APPLICATIONS

Making the Pd Patch

Since I've started by explaining the technique, we’'ll use for the sound. Let’s first look at the Pd patch for this
project. Figure 4-2 illustrates the patch, which I'll explain in detail.

r pd é Analog_values: é Digital_values:
Close route dsz unpack f f f fg unpack f f
open 7 rint $ia § amp change change -1
s index b
conport 7 57600 dsp $1 s choose_waveform
- & n= s s mod_freq be
serial_print_extended : 2 pd
h —————— s carrier_freq
s
r index
mop B 1023 8 2.
r mod_freq Euck ¢ 2I8=
r carrier_freq nd modulator =
| e k Line~
Ehasor-v -
—
o
p =

cOs~ r amp

map @ 1623 6 1,

éack f Zéa
line?

K

L

dar~

Figure 4-2. Phase modulation Pd patch

Receiving Values from the Arduino

On the top-left part of the patch we have [comport] with the serial port and baud rate arguments (the serial
port argument is very likely to be different in your computer), along with some messages, which we’ll look at
in a while. On the top-right part of the patch, we have the [r Analog_values:] and [r Digital_values:] objects
that receive the corresponding values from the Arduino, exactly like in the help patch of the [serial_print_
extended] abstraction. This time we're using four analog values (four potentiometers) and two digital (two
switches), which you'll see when I explain the Arduino code and circuit.

Implementing Phase Modulation in Pd

On the lower part of the patch, we have all the signal objects, which is where the phase modulation is
happening. On the left side, you see a [phasor~] connected to a [+~] and then to a [cos~]. Connecting

a [phasor~] straight to a [cos~] will produce a pure cosine oscillator. [cos~] takes a signal in its inlet and
multiplies that by 2pi. Sending a [phasor~] to it, which is a rising ramp from 0 to 1, creates a rising ramp
from 0 to 2pi. [cos~] will give the cosine of this, which results in a sinusoid oscillator. This makes the name of
[phasor~] meaningful, as it is actually the phase of the oscillator. If we place a [+~ | between [phasor~] and
[cos~] and connect another oscillator to the right inlet of [+~], we are modulating the phase of [cos~].

143

CHAPTER 4 © GETTING STARTED WITH MUSICAL APPLICATIONS

Building the Modulator Oscillator

On the right side of [phasor~], there is a subpatch called modulator. Figure 4-3 shows its contents. Here we
can choose between the two waveforms for the modulator oscillator, which are a sinusoid and a triangle
oscillator. Both oscillators are controlled by the same [phasor~], so they will have exactly the same phase.
Again, we're making the sinusoid by connecting [phasor~] to [cos~], instead of using [0osc~], so we can share
the phase between the two oscillators. On the right side we’re creating a triangle oscillator the same way we
did in Chapter 1. On the top-right side of the modulator subpatch, you see a [r choose_waveform], which
takes a value from [s choose_waveform] in Figure 4-2, which comes from the second switch of the circuit.
Since a switch is controlling this value, it will be either a 1 or a 0. The triangle oscillator is controlled straight
by that value. So whenever the switch is in the OFF position, it will output a 0, so the triangle oscillator will
be multiplied by 0, and it will give 0 output. When the switch is in the ON position, it will output a 1, and the
triangle oscillator will be multiplied by it, so it will output its waveform intact. The value of the switch is also
sent to the cosine oscillator, but it first connects to [== 0] and then to the signal multiplication object. [== 0]
takes in a value and tests if that value is equal to 0. If it is, the test is true, so the object will output a 1. If it’s
not equal to 0, the test will be false, and the object will output a 0. So if we send a 0 to [== 0], it will output a
1, and if we send it a 1, it will output a 0. This is a very easy way to invert 1s and 0s. So, when the switch is in
the OFF position, it will output a 0, and [cos~] will be multiplied by 1, therefore it will output its signal intact.
When the switch is in the ON position, it will output a 1, and [cos~] will be multiplied by 0, producing 0
output. This way, we can easily use one ON/OFF switch to choose between two elements.

inlet r choose_waveform

hasor~ t ff

- ok | =

Figure 4-3. Contents of the modulator subpatch

144

http://dx.doi.org/10.1007/978-1-4842-1583-8_1

CHAPTER 4 © GETTING STARTED WITH MUSICAL APPLICATIONS

Mapping the Index Values

On the right side of the modulator subpatch, you see a [r index] (in Figure 4-2), which takes its value from

[s index], which comes from the third potentiometer of our circuit. [r index] is the connected to [map 01023 0 2].
This is an abstraction I've made that makes it very easy to map a range of values to another range. You can
get it from my GitHub page at https://github.com/alexdrymonitis/miscellaneous_abstractions.

This page contains various abstractions along with help patches, so it might be quite useful to you. Once
unzipped, place all its contents to your “abstractions” folder, which is included in your Pd’s search patch.
[map] takes four arguments, the lowest value of the original range, the highest value of the original range, the
lowest value of the desired range, and the highest value of the desired range. In this case, we’re receiving an
analog value from the Arduino, which has a 10-bit range.

This means that it will go from 0 to 2 to the 10" power minus 1, so from 0 to 1023. What we want is to
get a range from 0 to 2, so the arguments we provide to [map] are 0, 1023, 0, 2. You can build a patch that
does the same thing simply by dividing the input range by its highest value, and multiplying the result by the
maximum desired value. In this case one would have to divide by 1023 (which is the maximum value of the
analog pins of the Arduino) and multiply by 2. A division is more expensive as far as the CPU is concerned,
and [map] avoids doing it. Open the abstraction if you want to see how it works. [map] then connects to
[pack f20]’s left (hot) inlet. [pack f 20] will pack the value coming in its left inlet along with the value 20, so
it will output a list of these two values, which is sent to [line~]. To refresh your memory, [line~] takes a list
of the target value and the ramp time in milliseconds, and it will make a ramp from its current value to the
target value, which will last as long as the milliseconds provided by the second value of that list. It is used to
combine the control domain with the signal domain, avoiding possible clicks that occur by this combination.

The output of [line~] goes to the right inlet of the signal multiplication object the modulator subpatch
connects to. This way the value received by [r index] becomes the index of the phase modulation in our patch.!

At the bottom of the patch, we're multiplying the output of [cos~], which is the modulated oscillator,
and what we actually hear, by the values received in [r amp], which comes from the fourth potentiometer.
We're mapping that value to a range from 0 to 1, because that’s the range used to control the signal
amplitude sent to the speaker. Again, we're using [line~] to smooth out the value changes and avoid clicks,
and we finally send that output to [dac~].

Handling the Values Received from the Arduino

Before we go on to the Arduino code, I must talk about the top-right part of the patch in Figure 4-2.

[r Analog_values:] sends a list of four values (as many as the potentiometers we're using), which is unpacked
by [unpack f f ff] and each value is sent to its destination by the corresponding [send] object. That is pretty
straightforward. The digital values get a different kind of treatment to be used properly. [r Digital_values:]
receives a list of two values (as many as the switches we're using) and unpacks it with [unpack f f]. Below
[unpack], you see two [change] objects, where the right one has an argument, -1. [change] takes in a value
and compares it to its argument (if no argument is provided, it compares it to 0). If the value is the same as
the argument, [change] won't output it. If it is different, it will output it and it will also update its arguments
with the value it has just output. When we send the values of a switch to [change], we’ll get the switch value
only when it becomes 1 (when the switch goes to the ON position), and [change] will update its internal
value to 1. As long as the switch remains in the ON position, [change] won’t output anything, because its
internal value is now 1, and the switch keeps on sending the value 1. When we put the switch to the OFF
position, it will output a 0, and [change] will output it, since it’s different than 1, and it will again update its
internal value. This way we can receive digital values only when they change, which is really necessary in
some cases.

1Tt is said that “good” index values for phase modulation are between 0 and 1, but higher values can produce nice results.

145

https://github.com/alexdrymonitis/miscellaneous_abstractions

CHAPTER 4 © GETTING STARTED WITH MUSICAL APPLICATIONS

The left [change] is connected to the message “dsp $1” “$1” will take the first value of an incoming list.
Our list consists of one value only, so “$1” will take the value of the switch, when it goes through [change].
The message that will be constructed (“dsp 1” or “dsp 0, according to the position of the switch) is sent to [s
pd]. We can send certain messages to Pd, which can control certain aspects. The “dsp” message controls the
DSP, as you can imagine. So sending a “dsp 1” message will turn the DSP on, and sending a “dsp 0” message
will turn the DSP off. This way we can control the DSP from the Arduino, without needing to our computer’s
keyboard or mouse.

The right [change] has an argument that is -1. This is there only to initialize this [change]. We do
this because when we open the serial port, the data from the Arduino will start coming in, and if the
corresponding switch is in its OFF position, it will send a 0. If we don’t provide an argument to [change], it
will compare its incoming value to 0, and if the incoming value is 0, it won’t output it. We’re using this switch
to control the waveform of the modulator oscillator, where sending a 0 will give a sinusoid, and sending a 1
will give a triangle. If [change] has no arguments and the switch is in the OFF position, nothing will come out
of [change], so no oscillator will be chosen. By giving -1 as an argument to [change], we make sure that any
position of the switch will go through as soon as we open the serial port (whether OFF or ON, 0 or 1), and
we’ll immediately choose our modulator oscillator.

Sending Data from Pd to the Arduino

The last thing that I need to explain about this patch is the “print $1a” message in the top-right part of it.

As we can send messages to Pd using [s pd], we can also receive messages from Pd, using [r pd]. In our
case we connect [r pd] to [route dsp], so we filter out all messages sent by Pd, and receive only messages
about the DSP. These will be either 1 or 0, according to the DSP state. So when the DSP is on, [route dsp]
will output a 1, and when it’s off, [route dsp] will output a 0. We send that value to the “print $1a” message,
which goes to [comport]. The word “print” will convert the rest of the message to its ASCII values (this is a
feature of [comport]). Using “a” is a convenient way to diffuse the data we send from Pd to Arduino, as you've
already seen in Chapter 2. This message receives the DSP state and controls an LED in the Arduino circuit,
which indicates whether the DSP is on or off. This will be really necessary when we’ll be building interfaces
with embedded computers, or when we’ll be using a wireless connection between the Arduino and Pd.

In general, we need some kind of visual feedback for the state of the DSP, whenever we won’t have visual
contact with the screen of the computer.

Arduino Code for Phase Modulation Patch

Now let’s take a look at the Arduino sketch. This is shown in Listing 4-1.

Listing 4-1. Code for the Phase Modulation Patch

// analog values array size, must be constant
const int num_of analog pins = 4;

// digital values array size, must be constant
const int num_of digital inputs = 2;

// digital outputs, doesn't need to be a constant
int num_of digital outputs = 1;

// create an array to store the values of the potentiometers
int analog values[num of analog pins];

// create an array to store the values of the push-buttons
int digital values[num of digital inputs];

W ooNOUVTI B~ WN R

N
N P O -

146

http://dx.doi.org/10.1007/978-1-4842-1583-8_2

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.

CHAPTER 4 " GETTING STARTED WITH MUSICAL APPLICATIONS

void setup() {

}

// set digital input pin modes
for(int i = 0; 1 < num_of_digital inputs; i++)
pinMode((i + 2), INPUT PULLUP);

// set digital output pin modes
for(int i = 0; i < num_of digital outputs; i++)

pinMode((i + num_of digital inputs + 2), OUTPUT);

Serial.begin(57600);

void loop() {

}

if(Serial.available()){
static int temp_val;
int which_pin;
byte in byte = Serial.read();
// check if in_byte is a number and assemble it
if((in_byte >= '0') & (in_byte <= '9'))
temp_val = temp_val * 10 + in_byte - '0';
// check if in_byte is a letter and call digitalWrite
else if((in_byte »>= 'a') 8& (in_byte <= 'z")){
which pin = (in_byte - 'a');
which_pin += (num_of digital inputs + 2);
digitalWrite(which_pin, temp val);
temp_val = 0;
}
}

// read and store analog and digital pins
for(int i = 0; 1 < num_of_analog pins; i++) analog_values[i] =

for(int i = 0; i < num_of digital inputs; i++) digital values[i]

// write the stored values to the serial line
Serial.print("Analog values: ");
for(int i = 0; 1 < (num_of analog pins - 1); i++){
Serial.print(analog values[i]);
Serial.print(" ");

}

Serial.println(analog_values[num_of analog pins - 1]);

Serial.print("Digital values: ");

for(int i = 0; i < (num_of digital inputs - 1); i++){
Serial.print(digital values[i]);
Serial.print(" ");

}

Serial.println(digital values[num of digital inputs - 1]);

analogRead(i);

ldigitalRead(i + 2);

147

CHAPTER 4 © GETTING STARTED WITH MUSICAL APPLICATIONS

This is a modified version of the serial_print.ino sketch that comes with the [serial_print_extended] Pd
abstraction. Some things are the same, but there are some new things as well, which I am going to explain.

Defining Constants, Variables, and Pin Modes

Lines 2 and 4 set the number of analog and digital input pins we’re using. We're using four potentiometers
and two switches. Line 6 sets the number of digital output pins we’re using, which is 1. This variable doesn’t
need to be a constant, as it doesn’t define the size of an array, it will only be used in the test field of a for
loop. In line 15 we run a for loop to set the pins where the switches are attached to as inputs with the pull-up
resistors enabled. Notice that we add 2 to the i variable, because we use digital pins from 2 onward, as pins

0 and 1 are used for the serial communication between the Arduino and Pd. In line 19, we run another for
loop to set the pin of the LED as output. Here we add the num_of_digital inputs plus 2 to the i variable,
because the variable starts counting from 0, but the pin we’ve attached the LED to is number 4.

Handling Input from the Serial Line

In lines 26 to 40, you see the same technique we used in the last sketch of Chapter 2. This is a technique that
makes it easy to receive different kinds of information and diffuse it accordingly in the Arduino code.
Line 27 defines a static int variable that will hold its value even after the function it belongs to has ended.
Line 28 defines a variable that will hold the number of the pin we want to control, and line 29 stores the
incoming bytes in a byte variable, one by one. Line 31 checks if the current byte is a numeric value, and if it is,
it assembles all numeric bytes the original value sent. Here we’ll be sending only Os and 1s, so temp_val * 10
could have been omitted, but if we want to send values with more than one digit, we’ll need that line exactly
as it is, so we're using it this way here as well. Line 34 checks if the current byte is an alphabetic character, and
itifis, it stores that value to the which_pinvariable. In line 35, we subtract 'a' from in_byte, and in line 36
we add num_of_digital inputs + 2 to that, so we can obtain the first digital output with the letter a, the
second digital output with the letter b, and so forth. If in_byteis 'a’, thenin_byte - 'a'is0.Adding
num_of digital inputs +2makes it4, which is the digital pin we've attached our LED to. Here, we're using
only one digital output, but if we used more, we could use incrementing letters of the Latin alphabet this
way, to map each value to the corresponding pin.

Line 37 writes the value stored in temp_val to the which_pin pin using the digitalWrite function.
This function is called only when we receive input in the serial line, and only if that input is an alphabetic
character. This way we can save some processing power, since we're not calling this function over and over
again in each iteration of the loop function. After we call digitalWrite, we set temp_val to 0, so when we
send a new value, it will be assembled anew.

Reading the Analog and Digital Pins and Writing the Values to the Serial Line

Lines 43 and 45 read and store the values read from the analog and digital pins respectively. In line 45 we
use the exclamation mark to invert the readings of the digital pins because of the pull-up resistors, as if we
didn’t use it, when a switch would be off, we would read 1 instead of 0. Lines 48 to 53 and 55 to 60, write
these values to the serial line, using the print and println functions, so we can retrieve these values with
the [serial_print] abstraction in Pd.

148

http://dx.doi.org/10.1007/978-1-4842-1583-8_2

CHAPTER 4 " GETTING STARTED WITH MUSICAL APPLICATIONS

Circuit for Arduino Code

Now that we've gone through the Arduino sketch too, let’s see the circuit for this project. Figure 4-4 illustrates it.

fritzing

Figure 4-4. Phase modulation project circuit

The potentiometers must use analog pins 0 and onward, and the switches must use the digital pins 2
and onward for the Arduino sketch to work properly. The LED must be attached to the first digital pin after
the switches. We're not using resistors with the switches because we use the internal pull-up resistors of the
Arduino processor, by using INPUT_PULLUP in the pinMode function. These resistors are different than the
ones we need for LEDs, so we have to use a 2200 external resistor with it. Notice that we use a jumper wire
to connect the ground buses on bottom and top of the breadboard. This is because of the limited space on
our breadboard. We've placed the LED on the upper part of the breadboard, and connected its ground pin to
the upper ground bus. If we don’t provide ground from the Arduino, the bus won’t be grounded and the LED
won't work. Since we connect Arduino’s ground to the lower bus of the breadboard, we must connect the
two buses with a jumper wire, so that the LED gets the ground too.

149

CHAPTER 4 © GETTING STARTED WITH MUSICAL APPLICATIONS

Once you've built the circuit, upload the sketch to your Arduino board, and open the Pd patch. Open
the Arduino’s port in [comport] (making sure you use the correct baud rate, here 57600) and put the first
switch to the ON position. You should see the DSP indication in Pd’s console turning green and being
ticked, and the LED on your circuit lighting up. We could have controlled the LED straight from the Arduino
code, without having Pd interfering. Controlling it from Pd, gives us more valid information about the DSP.

If for any reason, we turn the DSP switch on, but the DSP doesn’t really go on, the LED won't light up, so
we'll know that the DSP is not running. If we were controlling the LED only inside the Arduino code, we
could face a situation where the DSP switch could be on, the LED as well, but the DSP not running, and we
wouldn’t have an indication for it. Now we have eye contact with the computer screen, but in the case of an
embedded computer, or a distant wireless connection, the LED would be our only indication for the DSP. For
this reason, it’s very important to use LEDs controlled by Pd when building such interfaces.

Now you can use the fourth potentiometer to control the overall amplitude of the Pd patch, and the
first to third potentiometers to control the carrier frequency, the modulator frequency, and the index,
respectively. This is a quite simple interface, but it is nevertheless a completed one. We've built it to start
getting the hang of such processes. The projects that are yet to come will realize even more musical ideas.
Congratulations, you've built your first audio interface!

A Simple Drum Machine Interface

For the second interface, we'll build is a simple drum machine. This is a bit more complex than the previous
interface. Again, we’ll start with the Pd patch, which is shown in Figure 4-5.

pd arduino_stuff
pd sound_tabs
pd audio_out
pd metronome

pd set_sequence

r sequence
tabread kick_seq
se 1 r kick_trig
tabplay~ kick

L - =

*~ 8,33

=

throw~ out

r sequence
e

tabread snare_seq

S8 r snare_trig

tabplay~ snare
: [—]

X~ 9,33
L

throw~ out

Figure 4-5. Simple drum machine patch

150

NN
|
H|E[
Himn.

kick
share
hihat

I sequence

tabread hihat_seq
seTL r hihat_trig
tabp lay~ hihuté‘

L -

*~ 8,33

=

throw~ out

CHAPTER 4 © GETTING STARTED WITH MUSICAL APPLICATIONS

Building the Pd Patch

We're going to use drum sound samples, instead of procedural audio (drum sounds generated by
oscillators). You can register at freesound.org to get loads of audio samples that you can use for free. Mind
the license of each sample, depending on what you want to do with it. You can use some of the samples even
for professional reasons and earn money, but not all of them. Read about the different licenses (they’re three
in total) if you want to do something else than personal use. Here we're just building a simple drum machine
for fun, so all licenses allow such use.

The Parent Patch

Part of the whole interface is in the parent patch, and part of it is in subpatches. This helps to keep things
clear. In the parent patch, you can see a matrix of toggles, a Vradio, the [tabread] objects that read the
sequence for each drum sound, and the [tabplay~] objects that play the stored audio files. Since we have
three sounds in total, we're multiplying their output by 0.33, so that their sum doesn’t exceed 1, in case they
are all triggered together.

Notice that the toggles don’t have inlets or outlets. This is because we’ve set some things in their
properties, which you'll see a bit further on. The same applies to the outlet of the Vradio. Once you've built
the lower part of the patch, let’s build the subpatches, one by one.

The arduino_stuff Subpatch

Figure 4-6 illustrates the contents of the arduino_stuff subpatch. This is where we have [comport] listening
to the Arduino serial port, at a 57600 baud rate. Below it, we have the [serial_write] abstraction. We could
have used [serial_print] again, but we'll use [serial_write] for variety, and to get the hang of using this one

as well. In [serial_write] we first receive the digital values, which are five in total, and then the analog, which
are two. You can see that in the order of the arguments of the abstraction. This is the way we’re going to write
the Arduino sketch too. If we were to store the analog values first in the Arduino sketch, we should invert the
order of the arguments in [serial_write].

The left outlet of [serial_write] outputs a list of five values, which are the values of the five digital input
pins we'll use in the Arduino. We're unpacking this list with [unpack fff f f] and we send each value to its
destination using [send]s. Before the values go to each [send], we send them through a [change], so that they
output their values only when they are changed (we could do that in the Arduino sketch instead, but in Pd
it’s a bit easier, and since the Arduino has a rather limited processing power, we prefer to do it here).

The right outlet of [serial_write] outputs a list of two values, which are the values of the potentiometers.
We unpack the list with [unpack] (no arguments to [unpack] is the same as [unpack f f]) and send the values
to their destinations again using [send]s. You'll see further on where these values go.

151

CHAPTER 4 * GETTING STARTED WITH MUSICAL APPLICATIONS

Eevices
B
= r pd _
open $1 route ds&
close rint $ia

comport 7 5'?662

serial_write digital 5 analog ’Z

unpack f f f f f unpack
s amp s tempo

change change change change change
- - — — o ,
dsp $1 s metro_on s kick_trig s snare_trig s hihat_trig

s pd

Figure 4-6. Contents of the arduino_stuff subpatch

The sound_tabs Subpatch

The next subpatch is sound_tabs, which is shown in Figure 4-7. In this subpatch, we’re storing the audio

samples for our drum machine. I have downloaded three samples from freesound.org, a kick-drum, a snare-
drum, and a hi-hat sample, which I have named “kick,” “snare,” and “hihat,” respectively. Inside the Pd patch
folder, I've created a folder called sounds, and I put all three samples in there. All this is necessary so that Pd

knows where to look for these audio samples, to load them to tables.

152

CHAPTER 4 " GETTING STARTED WITH MUSICAL APPLICATIONS

Tbudbang
read -resize ./sounds/kick.wav kick

soundfiler table kick

Y
t b

L

read -resize ./sounds/snare.way share

soundfiler table snare

t b
&

read -resize ./sounds/hihat.wavy hihat

L

gpundfiler table hihat

Figure 4-7. Contents of the sound_tabs subpatch

Since this is going to be a fixed interface, it’s nice not having to load your audio samples manually. To do
this, we're using [loadbang], which sends a band as soon as the patch is loaded, which goes to a message that
reads “read -resize ./sounds/kick.wav kick” This messages is sent to [soundfiler], which will load the sample
to the table it is told to. The message tells [soundfiler] to “read” the file called kick.wav (the file extension,
.wav, must be included), which is located in the sounds directory, which directory is located in the current
directory. This is the ./sounds/kick.wav part of the message. The dot means the current directory, and then
we're being navigated to the sounds directory to retrieve the kick.wav file. This is Unix syntax, which you
saw in Chapter 3, when we were navigating through the Linux system in the Raspberry Pi. This syntax will
work in Windows too, even though it is not Unix. The message also contains the -resize flag, before the path
to the audio file, which tells [soundfiler] to resize the table it will store the audio file to, to the size of the file.
The last word in the message is the name of the table. To put it all together, when you want to load an audio
file to a table, the message sent to [soundfiler] should contain the read command with the -resize flag, then
the path to the audio sample, and lastly, the name of the table to load the file to.

Next to [soundfiler]. You can see the table that the audio file will be loaded to. Make sure that you give it
the same name as the last word in the message. We could have used arrays, but we don’t really need to look
at the graph of the audio file, so we prefer to use [table] instead. If you click [table] (in a locked patch), you'll
be able to see the graph of the file.

[soundfiler] outputs the number of samples the audio file consists of. Don’t confuse the word sample
with the way we use it for an audio file. In computer music, a sample is a discrete value representing the
amplitude of sound. It is confusing when the same word is being used for a short audio file, like one kick of
a kick drum. Since the drum machine we’re building is based on audio files, we're using the word sample
to refer to these files, as it is widely used this way, but the samples number [soundfiler] outputs, concern
the discrete amplitude values. This number [soundfiler] outputs is necessary when we use [tabread~] to
read the audio file from the table. In this patch, though, we’re using [tabplay~], so we don’t really need it.

153

http://dx.doi.org/10.1007/978-1-4842-1583-8_3

CHAPTER 4 © GETTING STARTED WITH MUSICAL APPLICATIONS

[tabplay~] only takes a bang to play the contents of a table. The advantage of this is that it is much easier to
set up a playback patch, but the disadvantage is that we can’t really change various aspects of the playback
of the audio file, like the speed, the start and end positions of the table, or the playback direction. We’'ll use
[tabread~] in other chapters in this book. So, we might not need the value output by [soundfiler], but we do
need to bang the next message to load the next audio file to the next table, once we're done with the current
audio file. To do this, we're connecting the outlet of [soundfiler] to [t b], to convert the outgoing value to a
bang, which will bang the message below it. This whole procedure is being done in a chain, resulting in the
automatic load of all audio samples when the patch loads.

The audio_out Subpatch

The next subpatch is audio_out, which is shown in Figure 4-8.
EPtCh” out

Y amp

E =

map 8 1623 8 1

 e—

Eow 4

E:lck f 20

line?

.

¥

N

dac~

Figure 4-8. Contents of the audio_out subpatch

Here you see the first [receive], which takes input from [s amp], which comes from the first
potentiometer, and it’s located in the arduino_stuff subpatch (actually all [send]s are located there). We
also have the [catch~], which takes audio from the three [throw~]s in the parent patch. We could have used
[inlet~] instead and connect the output of all [tabplay~]s to it, but [throw~]/[catch~] makes the patch a bit
more tidy. It might increase the CPU a bit, but the audio processing done in this patch is very small, so CPU
is not a problem. Again, we're mapping the 10-bit range of the potentiometer to a range from 0 to 1, but this
time we're sending the output to [pow 4]. This object raises the value that comes in its left inlet to a power
set either via an argument, or via the right inlet. In this case, we're raising the value to the 4" power. We do
this to make the audio fade in and out smoother, more like in audio equipment, like mixers for example.
Figures 4-9 and 4-10 show a linear and an exponential curve respectively, the latter made by raising an
incrementing value from 0 to 1, to the 4" power (you'll see [loop] in action later). Our perception of loudness
is logarithmic, and using an exponential curve to control it, makes things sound more natural.

154

L
@

Tal
106

gs
H~H&HT

ow 1

tabwrite arrayl

Figure 4-9. Linear curve

=1

00

==
z
‘_.J‘

g

Tal
106

ow 4

tabwrite arrayl

arrayl

CHAPTER 4

GETTING STARTED WITH MUSICAL APPLICATIONS

arrayl

Figure 4-10. Exponential curve by raising values to the 4th power

The metronome Subpatch

The next subpatch is metronome, which is shown in Figure 4-11. This is the heart of the sequencer of our
drum machine. [metro] is an object that outputs bangs at a specified time interval, in milliseconds. This
interval can be set either via an argument, or via the right inlet. Any non-zero value in its left inlet will start
it, and a zero will stop it. [r tempo] takes input from the second potentiometer, which we map to a range
between 40 and 240. We send that to [i] to get the integral part of the value (“i” stands for integer) and we
multiply it by 4. This will be our tempo in BPMs, but we're splitting each bit to four, because we want to bang
16-notes and not quarter notes, so we need four bangs per beat. Then we send that value to an abstraction
called BPM2ms. This is quite similar to the [Hz2ms] abstraction we made in Chapter 1; it is shown in

Figure 4-12.

155

http://dx.doi.org/10.1007/978-1-4842-1583-8_1

CHAPTER 4 * GETTING STARTED WITH MUSICAL APPLICATIONS

r tempo
map @ 1023 40 240

i=
S

change
metro_on ;

T
tfb v =
L
m

et

ff

f
t
]: el 1§=
s

sequence

Figure4-11. Contents of the metronome subpatch

156

CHAPTER 4 " GETTING STARTED WITH MUSICAL APPLICATIONS

inlet

L o
/ 608

" e -
swap 1006

N
&

out let

Figure 4-12. [BPM2ms] abstraction

I'm not going to explain how this abstraction works, as it is pretty simple, but try to understand it
yourself (mind that [swap 1000] has both its outlets connect to both inlets of [/]). Since BPM is a more
musical measure unit, it’s better to use it in our interface. [metro] takes in milliseconds, so we need to do
the conversion before we send the potentiometer value to the right inlet of [metro], otherwise, the tempo
would rise as the potentiometer’s value fell. In Figure 4-11, you see that before the BPM value goes to the
multiplication object, it goes through a [change]. The analog pins of the Arduino tend to have a bit of noise.
Since we're reducing the resolution of the potentiometer by mapping its value to a much smaller range, we
also reduce the noise, making it much more stable. I have also mentioned that division in computers is quite
CPU-intensive, so it’s better to avoid it when you can. Since the potentiometer’s output have become more
steady, we can use [change] to make sure that the its value will be sent to [BPM2ms] only when it is changed,
so we can avoid doing these two division shown in Figure 4-12 every time we receive input from [comport].

In Figure 4-11, below [metro], you can see a simple incrementing counter. This counter sends its values
both to [sel 15] and to [s sequence]. [sel 15] will output a bang out its left outlet whenever it receives the value 15.
This bang goes to the message “0’, which goes to the right inlet of [f]. So, whenever our counter reaches 15,
its internal value will be updated to 0, and it will start again (the right inlet of [f] is cold and will only store
the value and won’t output it, it will only be output when [f] receives the next bang). We're building a 16-step
sequencer here, so we need to update our counter after 16 steps, and since the counter starts counting from 0,
the last step will be step number 15. [s sequence] will send the counter’s value to each [tabplay~] object
in the parent patch. Finally, [metro] will be triggered when [r metro_on], the second switch in our circuit,
sendsal.

157

CHAPTER 4 © GETTING STARTED WITH MUSICAL APPLICATIONS

The set_sequence Subpatch

The next subpatch is set_sequence, which is shown in Figure 4-13. In this subpatch, we can set the sequence
for each audio file.

pd diffuse_beats
pd set_tab

table kick_seq 16
table snare_seq 16
table hihat_seq 16

Figure 4-13. Contents of the set_sequence subpatch

The diffuse_beats Subpatch

The first subpatch is [pd diffuse_beats] , which you can see in Figure 4-14. This subpatch takes input from
the toggle matrix of the parent patch. To achieve this you have to go to the parent patch and change the
properties of each toggle. Right-click the top-left toggle and select Properties. You should get a window like
in Figure 4-15. Go to the Send symbol: field and type tog0, like in Figure 4-14, and in the Receive symbol:
below, type r-tog0. Do this for every toggle, but increment the number, so the second from top-left toggle
should get the symbols togl and r-togl, the third from top-left should get tog2 and r-tog2, and so forth. You
can use any name you like for these toggles, but using consistent names that don’t need much explanation
is a very good programming practice. When done with the top line of toggles, go to the line below and again
start from left to right. You should end up with the bottom-right toggle, which should get the symbols togl5
and r-togl5. This is a bit of a cumbersome procedure, but it will facilitate the use of the patch a lot. Also
notice that we start numbering the toggles from 0, and we end with 15, instead of 16. This is because in
programming, we usually start counting from 0, and since we’re going to reference these toggles with some
automation processes, it’s easier if we do it this way, instead of numbering them from 1 to 16.

158

CHAPTER 4 " GETTING STARTED WITH MUSICAL APPLICATIONS

r togd r togl r tog2 r tog3

- = - = . = - -

a $1 1% 2031 3

I r which_tab I r which_tab I r which_tab I r which_tab
- = - - =

s s s s

r tog4 r togh r togé r tog?

p = Z . =

4 $1 5 $1 6 $1 (el

I Y which_tab I ¥ which_tab I r which_tab I Y which_tab
- - - - -

s s s s

r togd r tog%9 r togla r toglil

p = - = p =

8 $1 9 $1 10 $1 11 $1
r which_tab I r which_tab I r which_tab r which_tab
- = o " " -

s s s s

r togl2 r togl3 r togl4 r toglhs

- = - = - = - =

12 $1 13 $1 14 $1 15 $1

r which_tab I r which_tab I r which_tab I r which_tab
= = = = =

S S S

L0

Figure 4-14. Contents of the diffuse_beats subpatch

Now let’s go back to the [pd diffuse_beats] subpatch. Even though it looks like a lot of work to build
this patch, it is actually quite easy if you use the duplicate feature. Go ahead and make the top-left set of
objects, [r tog0], [r which_tab], [s], and the “0 $1” message, and connect them like in Figure 4-15. Then select
them all and hit Ctrl/Cmd+D, for duplicate. Press Shift+up arrow to bring the duplicated objects to the
same height with the original ones, and use Shift+right arrow to move them to the right. Select both sets of
objects and again duplicate them. Again, use Shift and arrows to move them. Now you should have four sets
of objects, all connected as they should. Now select all four and duplicate them to get eight sets. Lastly, select
all eight sets and duplicate them, and you'll get sixteen sets.

159

CHAPTER 4 © GETTING STARTED WITH MUSICAL APPLICATIONS

8 .00 [tgl| Properties

No init
Messages
Send symbol: tog0

Receive symbol: r-tog0

Label
X offset 17 ' Y offset 7
Monaco Size: 10
Colors
(*) Background () Front () Label
Compose color o=|1=0Test label
Cancel Apply OK

Figure 4-15. Toggle’s properties

All you need to do now is change the numbers in [r tog0] and in the message “0 $1’, replicating
Figure 4-14. These sets represent the position of the toggles of the parent patch, so make sure that their
names match along with the names set to the toggles via their properties. [s | will take a symbol with the
name of the table to write to, which will be one of the [table]s in Figure 4-13. The messages “0 $1’, “1 $1’,
and so forth. will write the value received by $1 to the index set by the value 0, 1, and so forth. What actually
happens here is that [r tog0] will get a value from the corresponding toggle, and it will write it to the first
index (index 0) of the table set by [r which_tab]. [r tog1] will get a value from the corresponding toggle
and it will write it to the second index of the table, and so on. [r which_tab] receives a symbol from the
set_tab subpatch you see in Figure 4-13, which is shown in Figure 4-16. The 1s and 0s that we’ll write to the
sequence tables will be read in the parent patch by the [tabread] objects, where a 1 will trigger the audio file
read by [tabplay~]. This way we can use the counter to trigger each audio file at the location we want. This is
how a sequencer works.

160

CHAPTER 4 " GETTING STARTED WITH MUSICAL APPLICATIONS

r set_tab
tb £=
sel 812
. & _
é which_tab symbol hihat_seq

16
R set $1 sympol snare_seq
432 symbQ lf Kick_seq

t £/t

s which_tab
tabread
s =

et $1 symbol r-tog$i

s

Figure 4-16. Contents of the set_tab subpatch

The set_tab Subpatch

This subpatch takes input from the Vradio shown of the parent patch. We've set the number of cells of the
radio via its properties, in the number: field, which by default is 8, and we set it to 3 (right-click it and select
Properties). Also, we've used comments next to each cell of the Vradio to specify what each cell will select
(kick, snare, and hihat). In Figure 4-16, we receive that value and we send it to [sel 0 1 2], which will bang

the corresponding symbol. In Pd, you can create a symbol from a message by prepending the word symbol.
These symbols are the names of the tables in Figure 4-13, which will store the sequences for each audio file,
and they are being sent to [s which_tab], which we receive with [r which_tab] in Figure 4-14. This way we can
set the table to write our sequences in an easy-to-use way.

161

CHAPTER 4 © GETTING STARTED WITH MUSICAL APPLICATIONS

Once the table has been set, we run a loop that will read the values stored in the selected table, and
will set each value to the corresponding toggle of the parent patch. [loop] is an abstraction found the in
“miscellaneous_abstractions” GitHub page, already provided. Check its help patch to see how it works.
[tabread] takes a message that is formed according to what is received in [r which_tab], which is a symbol
with the name of the table. The message “set table_name” sent to [tabread], sets the table to read from. So, if
we click the first cell of the Vradio in the parent patch, [tabread] will read from [table kick_seq 16]. [loop] will
output 16 incrementing numbers starting from 0, ending in 15. These numbers will first go to the “symbol
r-tog$1” message, which is sent to the right inlet of [s]. This will set the destination of [s], to each toggle of
the parent patch, sequentially (remember, we've set their Receive symbol: fields to r-tog0, r-togl, etc.). Then
the values go to [tabread], which will output the value at that index. So, the value at index 0 of [table kick_seq
16] will go to the toggle that receives from “r-tog0’, the value at index 1 will go to the toggle that receives from
r-togl, and so forth. Sending a value with the message “set’, only sets the value to the toggle, and doesn’t
produce any output. If you omit to put the message “set $1’, whatever you send to each toggle, will be output,
and again written to the table. In this case this won’t cause an infinite loop, but in general, when you only
want a toggle to project its value, it’s good practice to use the message “set” to avoid possible bugs. The
mechanism of the set_tab subpatch projects the values stored at each table as soon as you select it. If you
omit the loop in this patch, you'll realize that whenever you’ll want to write a sequence to a new table, what
you'll get in the toggles will be the values of the previous table, which is not efficient at all. You can try for
yourself to see why that is. To create your sequences, in the set_sequence subpatch, select the audio file you
want from the Vradio, and click the toggles where you want that file to be triggered in the sequence.

Concluding the Patch and Explaining the Data received from the Arduino

The patch we’ve built is rather complex, and yet it is a simple drum machine. This is a good demonstration
of programming, since you can see that even the simplest things in computers need quite some work, when
we program them from scratch. Still, the advantage of programming is that you can build unique interfaces
and projects that don’t exist in the market, as they are tailored to one person’s needs. Now let’s go back

to Figures 4-5 and 4-6, the parent patch and the arduino_stuff subpatch. In the arduino_stuff subpatch,

you see that the first switch controls the DSP state of Pd. The second goes to [s metro_on], which is sent to
the metronome, inside the metronome abstraction. Whenever this switch is in the ON position, the drum
machine will play the sequences stored in the set_sequence subpatch, with the tempo set by the second
potentiometer. Whenever it is in the OFF position, the sequence won’t play, but you'll be able to trigger
each audio file with the three push buttons of your circuit (we haven't built the circuit yet, but I'll explain

it further on). In the arduino_stuff subpatch you can see three [send]s, [s kick_trig], [s snare_trig], and [s
hihat_trig]. These take input from the three push buttons of the circuit, and they are sent to the parent patch.
Each [receive] in the parent patch goes to [sel 1], so when you press a button, [sel 1] will output a bang, and
[tabplay~] will play the audio file stored in the table it reads from. You can actually trigger the audio files
manually, even when the sequence is playing. Finally, we receive input from Pd with [r pd], about the DSP
state, which is sent to the Arduino, to control an LED that will indicate the DSP state.

Arduino Code for Drum Machine Patch

Let’s now move on to the Arduino sketch, shown in Listing 4-2.

Listing 4-2. Drum Machine Code

// analog values array size, must be constant
const int num_of analog pins = 2;

// digital values array size, must be constant
const int num_of digital inputs = 5;

B W N R

162

28.

30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.

CHAPTER 4 " GETTING STARTED WITH MUSICAL APPLICATIONS

// digital output pin
int num_of digital outputs = 1;

// assemble number of bytes we need

// analog values are being split in two, so their number times 2
// and we need a unique byte to denote the beginning of the data stream
const int num of bytes = (num_of analog pins * 2) + num of digital inputs + 1;

// array to store all bytes
byte transfer array[num of bytes] = { 192 };

void setup() {
for(int i = 0; i < num_of digital inputs; i++)
pinMode((i + 2), INPUT PULLUP);

for(int i = 0; i < num_of digital outputs; i++)
pinMode((i + num_of digital_inputs + 2), OUTPUT);

Serial.begin(57600);
}

void loop() {
int index = 1; // index offset

if(Serial.available()){
static int temp_val;
int which_pin;
byte in_byte = Serial.read();
// check if in_byte is a number and assemble it
if((in_byte >= '0') & (in_byte <= '9"))
temp_val = temp_val * 10 + in_byte - '0';
// check if in_byte is a letter and call digitalWrite
else if((in_byte »>= 'a') 8& (in_byte <= 'z")){
which pin = (in_byte - 'a');
which_pin += (num_of digital inputs + 2);
digitalWrite(which_pin, temp val);
temp_val = 0;
}
}

// store the digital values to the array
for(int i = 0; 1 < num_of_digital inputs; i++)
transfer array[index++] = !digitalRead(i + 2);

// store the analog values to the array
for(int i = 0; i < num_of analog pins; i++){
int analog val = analogRead(i);

// split analog values so they can retain their 10-bit resolution

163

CHAPTER 4 © GETTING STARTED WITH MUSICAL APPLICATIONS

54. transfer array[index++] = analog_val & 0x007f;
55. transfer_array[index++] = analog val >> 7;

56. }

57.

58. // transfer bytes over serial

59. Serial.write(transfer array, num_of bytes);

60. }

This sketch is a modified version of the serial_write.ino sketch that goes along with the help patch of the
[serial_write] Pd abstraction. There’s really not much to explain here. As with the previous Arduino sketch,
in lines 2 and 4 we set constants that will set the size of the array we’ll send to the serial line. This time we’'re
using the write function instead of print, so we can send all the values in one function call. In line 6, we set
the number of digital outputs, which is only one, and in line 11, we assemble the constants of lines 2 and 4,
to set the size of the array we’ll send to the serial line. Remember that write sends bytes, and the analog pins
of the Arduino have a 10-bit resolution, therefore we need to split them to two, and reassemble them back in
Pd. For this reason we need two bytes for each analog pin, and one for each digital (these will be either 1 or 0),
plus one unique byte to denote the beginning of the data stream.

In the setup function, we set the modes of the digital pins and we begin the serial communication at a
57600 baud rate. In the loop function we first set the unique byte to the beginning of the array, and then we
define an index offset for writing the rest of the values to the array. If you can’t remember how this works and
why we need to do it this way, go back to end of Chapter 2. Then in lines 29 to 45 we check whether we have
input from Pd, to control the DSP LED. Afterward, we read and store the digital input values (remember in
the Pd patch, we've set the digital pins first in the arguments of [serial_write]. The order of these arguments
should be aligned with the order of the reading on pins in the Arduino sketch), and then the analog ones.
Once we're done, we send the whole array to Pd.

Circuit for Arduino Code

Now let’s check the circuit for this project, which is shown in Figure 4-17.

164

http://dx.doi.org/10.1007/978-1-4842-1583-8_2

CHAPTER 4 ' GETTING STARTED WITH MUSICAL APPLICATIONS

EKUNO

pem————— 1|
Al duing’ .

fritzing

Figure 4-17. Simple drum machine circuit

We follow the same philosophy concerning connections, so make sure that you connect the
potentiometers from analog pin 0 onward, and the switches and push buttons from the digital pin2 onward.
The LED should go to the first digital pin after the digital inputs. This helps automating some routines in the
Arduino sketch, like setting the mode of the digital pins, and reading the correct pins; otherwise, we would
need to set the pin numbers explicitly, and the for loops wouldn’t be so simple.

Go ahead and store some sequences to the Pd patch, and start playing! One drawback of the Pd patch
is that we cannot save the sequences we write, so every time we open the patch we need to create them
anew. A simple way is to go to the toggle’s properties and click the No init button, which will become Init.
This way the patch will save the last value each toggle had before the patch was closed. If we want to store all
sequences, we must save the contents of the [table]s to text files, but this adds some complexity, and since
this is just an introductory project, we won’t deal with it. If you want to check for yourselves, check [textfile].
An easy work around is to use arrays instead of [table]s, because in the array’s properties we can set it to save
its contents. Having the graphs of the arrays for the sequences is not so elegant, and we really don’t need to
look at them, as the toggles project the sequences in a much more user-friendly way. At the time of writing
(September 2015), the latest Pd-vanilla has introduced the [array] object, which can save its contents, much
like the array can. Unfortunately, this object doesn’t exist in Pd-extended, so we must go for one of the other
solutions mentioned.

165

CHAPTER 4 © GETTING STARTED WITH MUSICAL APPLICATIONS

Drum Machine and Phase Modulation Combination

Before we close this chapter, let’s combine the two interfaces we built. It shouldn’t be very complicated to do
this, still there are some details I'll need to explain thoroughly. This time we’ll start with the Arduino sketch.
We're going to use the print function to send data to Pd, so we can retrieve it with objects like [r drum_
machine_switches], which should make things self-explanatory.

Arduino Code

Listing 4-3 shows the Arduino sketch, which is the longest we've written so far. This is because we want to
send groups of values separately, for example, one group will consist of the switches for the drum machine,
another group will consist of the switches for the phase modulation, and so on. Write the code in

Listing 4-3 to the Arduino IDE and check the circuit of the project, shown in Figure 4-18, as I explain how the
code functions.

Listing 4-3. Combining the Two Projects

1. const int drum_machine pots = 2;

2. const int phase_mod_pots = 3;

3. const int drum_machine_switches = 2;

4. const int phase mod_switches = 1;

5. const int drum machine_buttons = 3;

6. const int phase _mod buttons = 1;

7. int digital outputs = 1;

8.

9. // pin offsets

10. int pm_pot_offset = drum_machine_pots;

11. int dm_switch_offset = 2; // this is the first digital pin
12. int pm_switch offset = dm_switch _offset + drum_machine_switches;
13. int dm_button_offset = pm switch_offset + phase_mod_switches;
14. int pm_button_offset = dm_button_offset + drum_machine_buttons;
15. int led offset = pm_button_offset + phase_mod_buttons;

16.

17. // create arrays to store values from pins

18. int dm_pots[drum machine pots];

19. int pm_pots[phase_mod pots];

20. int dm_switches[drum machine switches];

21. int pm_switches[phase mod switches];

22. int dm_buttons[drum_machine buttons];

23. int pm_buttons[phase mod buttons];

24.

25. void setup() {

26. // set digital input pin modes

27. for(int i = 0; i1 < drum machine_switches; i++)

28. pinMode((i + dm_switch offset), INPUT PULLUP);

29. for(int i = 0; i < phase_mod_switches; i++)

30. pinMode((i + pm_switch offset), INPUT PULLUP);

31. for(int i = 0; i < drum machine buttons; i++)

32. pinMode((i + dm_button_offset), INPUT PULLUP);

166

33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.

CHAPTER 4 " GETTING STARTED WITH MUSICAL APPLICATIONS

for(int i = 0; i < phase _mod buttons; i++)
pinMode((i + pm_button offset), INPUT PULLUP);

// set digital output pin modes
for(int i = 0; i < digital outputs; i++){
pinMode((i + led offset), OUTPUT);

Serial.begin(57600);

void loop() {

if(Serial.available()){
static int temp val;
int which_pin;
byte in byte = Serial.read();
// check if in_byte is a number and assemble it
if((in_byte >= '0') & (in_byte <= '9"))
temp_val = temp val * 10 + in_byte - '0';

// check if in_byte is a letter and call digitalWrite
else if((in_byte »>= 'a') 8& (in_byte <= 'z')){
which pin = (in_byte - 'a') + led offset;

digitalWrite(which_pin, temp_val);
temp_val = 0;
}
}

// read and store analog pins
for(int i = 0; i < drum_machine_pots; i++)
dm_pots[i] = analogRead(i);
for(int i=0; i < phase_mod_pots;i++)
pm_pots[i]=analogRead(i + pm_pot offset);
// read and store digital pins
for(int i = 0; i1 < drum_machine_switches; i++)
dm_switches[i] = !digitalRead(i + dm_switch_offset);
for(int i = 0; i < phase mod_switches; i++)
pm_switches[i] = !digitalRead(i + pm_switch offset);
for(int i = 0; i < drum machine_buttons; i++)
dm_buttons[i] = !digitalRead(i + dm_button_offset);
for(int i = 0; i < phase mod buttons; i++)
pm buttons[i] = !digitalRead(i + pm button offset);

// write the stored values to the serial line
Serial.print("drum machine_pots ");
for(int i = 0; i < (drum machine_pots - 1); i++){
Serial.print(dm pots[i]);
Serial.print(" ");
}

Serial.println(dm pots[drum machine pots - 1]);

167

CHAPTER 4 © GETTING STARTED WITH MUSICAL APPLICATIONS

82. Serial.print("drum machine_switches ");

83. for(int i = 0; i < (drum machine switches - 1); i++){
84. Serial.print(dm_switches[i]);

85. Serial.print(" ");

86. }

87. Serial.println(dm_switches[drum machine switches - 1]);
88.

89. Serial.print("drum machine buttons ");

90. for(int i = 0; i < (drum machine_buttons - 1); i++){
91. Serial.print(dm_buttons[i]);

92. Serial.print(" ");

93. }

94. Serial.println(dm buttons[drum machine buttons - 1]);
95.

96. Serial.print("phase_mod_pots ");

97. for(int i = 0; i < (phase_mod_pots - 1); i++){

98. Serial.print(pm_pots[i]);

99. Serial.print(" ");

100. }

101. Serial.println(pm pots[phase mod pots - 1]);

102.

103. Serial.print("phase_mod_switches ");

104. for(int i = 0; i < (phase_mod_switches - 1); i++){
105. Serial.print(pm switches[i]);

106. Serial.print(" ");

107. }

108. Serial.println(pm_switches[phase mod switches - 1]);
109.

110. Serial.print("phase _mod_buttons ");
101. for(int i = 0; i < (phase_mod buttons - 1); i++){

102. Serial.print(pm_buttons[i]);

103. Serial.print(" ");

104. }

105. Serial.println(pm_buttons[phase_mod_buttons - 1]);
106. }

This sketch is long only because we have things being repeated. Lines 1 to 7 define some constants that
hold the number of pins for each group. We're separating switches from push buttons and potentiometers
into different groups, one of each for the drum machine and one for the phase modulation part of the patch.
This makes a total of six groups, and lastly we define a variable for the LED, which will indicate the DSP state.
Lines 10 to 15 define offsets for the pins of each group, according to the number of pins used by each group.
The drum machine potentiometer group, doesn’t need an offset, because it starts from analog pin 0.

The drum machine switch group needs an offset, because even though it’s the first digital pin group, we
start using digital pins from 2 onward. Combine this part of the sketch with the circuit in Figure 4-18. In the
circuit, switches, buttons, and potentiometers, are being grouped by being placed close to each other. Check
which pin each switch, button, or potentiometer of each group uses, and try to understand how these offsets
will be helpful to use. Lines 18 to 23 define arrays for each value group.

168

CHAPTER 4 © GETTING STARTED WITH MUSICAL APPLICATIONS

In the setup function, we set the mode of all digital pins used. Here is the first part where we use the
offsets we've set in lines 10 to 15. We need the variable i of the for loop to start from 0, so the loop will run
as many times as we need, using the constant that stores the number of pins of each group (drum_machine_
switches for example, in line 27). Since i will start from 0, we need the pin offsets so that the pinMode
function will use the correct pin. In the loop function, the first thing we do is check if we have input in the
serial line, and use that to control the DSP LED. This happens in lines 44 to 57. Afterward, in lines 60 to 72,
we read and store the values read from each group, starting with the potentiometers, then reading the
switches, and finally the push buttons of each group, alternately. Finally, in lines 75 to 115, we print the
values of each group to the serial line, each time using an appropriate tag. Notice that we don’t need to
print the groups in some specific order, since all values have already been grouped and stored in different
arrays. It might have been easier to use the write function instead of print, and save ourselves from quite
some code writing. If we did that, we would be receiving all values together and we would have to split them
in the Pd patch. Now we’ll be receiving each group according to its tag, using [receive], which will make
things easier. I can’t say that one technique is superior to the other; they’re just different approaches. I'm
presenting both approaches in this chapter so that you can see which one works best for you.

Arduino Circuit

As you can imagine, the circuit is a combination of the circuits of the two previous interfaces. It is shown in
Figure 4-18.

LR
R
LRCRC
LR
LRI
LRCE
LRI
LR

.

.
e
LRI
LR
e
LRI
LR
e

.

CRCE
LR
“ e w0
LR

.....
L I
L B B)
ceena

e & & & &
et

lII
- 8 "0
0
.

L I
seene
L I)
PR

“

.
.
- 8 " @ -
. g
.e
.
.
- - 8 8w
0 e
- it
. .
Y o .
.
- L I)
efeve
-
Pdene
- & 8 8
- & 8 @
cese

LRI

e
=

LR
O
LRI
[
LR
LR
LR

.

.
LR
CRCI
R
LRI
CRCE
LR
CECI
CRCI
LR
(R
R
RN
LR

.
e w

TXHE Dttt
rx@1 Arduino

fritzing
Figure 4-18. Drum machine-phase modulation circuit

169

CHAPTER 4 © GETTING STARTED WITH MUSICAL APPLICATIONS

Pd Patch for Drum Machine-Phase Modulation Interface

Now let’s check the Pd patch. It is obviously a combination of the two previous patches, but it has some
enhancements. Figure 4-19 illustrates it.

pd arduino_stuff | kick
snare

hihat

pd sound_tabs

pd audio_out

pd metronome
pd set_sequence
pd drum_machine

pd phase_modulation
Figure 4-19. Drum machine-phase modulation patch

Like with the previous interface, we've put most of the stuff in subpatches to make things clear. The
subpatches sound_tabs, audio_out, and set_sequence, are the same with the previous project of this chapter,
so I'm not going to explain them here. The arduino_stuff and metronome have changed a bit, and we now
have two new ones, drum_machine and phase_modulation.

The arduino_stuff Subpatch

Figure 4-20 illustrates the contents of arduino_stuff.

170

CHAPTER 4 © GETTING STARTED WITH MUSICAL APPLICATIONS

=
devices
(e}

r pd

I -
S0is1 route dsp,

rint $1a

g
&
0

éomport 7 57666=

serial_pri nt_extendgtz

="

S

Y drum_machine_switches Y drum_machine_pots
unpack unpack
ey
change § metro_on s amp s tempo
dsp $1
o
s pd
Figure 4-20. Contents of the arduino_stuff subpatch

Here we send the bytes [comport] outputs to [serial_print_extended], which sends them to [s]. Below
we receive two of the value groups, drum_machine_switches and drum_machine_pots, which unpack
the values of their groups and diffuse them using [send]s. The first switch controls the DSP, and the
second controls [metro], which is in the metronome subpatch. The first potentiometer controls the overall
amplitude, and the second the BPMs of the metronome. The first switch and the first potentiometer don’t
really belong to the drum machine group, but we’ve left them there, from the previous interface.

171

CHAPTER 4 © GETTING STARTED WITH MUSICAL APPLICATIONS

The metronome Subpatch

Figure 4-21 illustrates the contents of the metronome subpatch. This subpatch hasn’t changed a lot, the only
difference is that we're sending the BPM value both to [metro], and to [s env_dur]. The latter will control the
duration of an amplitude envelope for the phase modulation, in the phase_modulation subpatch.

r metro_on

change

b

r tempo

map @ 1023 49 240
—
1
o

change

* 4
p o
BPM2ms
. 2
tafar

t f
:

Iﬁt
f
iif f
s

sequence

sel 1§:

- &

s env_dur

Figure 4-21. Contents of the metronome subpatch

172

CHAPTER 4 © GETTING STARTED WITH MUSICAL APPLICATIONS

The drum_machine Subpatch

Figure 4-22 illustrates the contents of the drum_machine subpatch. This is the main part of the parent patch
of the previous interface. Only two things have changed here. One is the amplitude attenuation of each audio
file. Now every [tabplay~] is being multiplied by 0.25, instead of 0.33, because we have the phase modulation
part as well, so we have four different audio sources in total. Multiplying each one by 0.25, makes sure that
they’ll never exceed 1, even if they are all triggered together. The other thing that has changed is that we have
removed the [r kick_trig], [r snare_trig], and [r hihat_trig] objects, because we're now receiving the drum
machine push-button values straight in this subpatch. After unpacking them, we send each to a [change], so
that their values will be output only when they’re changed.

Y drum_machine_buttons

e
nLinpack fff

I sequgnce sequence é sequence

tabread kick_seq tabread snare_seq ead hihat_seq

se ==I§h0nge ée L change se 1 change
tabp lay~ kici; tabplay~ snare, tabp lay~ hihaté.
- - - -

;EH B8.25 ¥~ 0,25 ¥~ 0,25

throw~ out throw~ out throw~ out

Figure 4-22. Contents of the drum_machine subpatch

The phase_modulation Subpatch

Finally, Figure 4-23 illustrates the contents of the phase_modulation subpatch. The bottom-left part of

the patch is copied from the patch of the first interface we built in this chapter. This time we’re using an
amplitude envelope made with the [ggee/envgen]| external object (the GUI in Figure 4-23). In the left part

of the patch, you see a [r phase_mod_pots], which, as its arguments states, receives the values from the
potentiometers for the phase modulation. We're unpacking the list of values and sending them to the carrier
frequency, the modulator frequency, and the index. We map the value for the index to the range from 0 to 2,
using the [map] abstraction, like we did before. What I need to explain in detail is the right part of the
subpatch, where we have the envelope for the amplitude. In Figure 4-23 I have made some sort of an ADSR
envelope (the sustain part is also decaying here). Above [ggee/envgen] there is a [r sequence] that receives

the sequencer counter, but converts the counter values to two bangs with [t b b]. The first bang (from the right
outlet), goes to [f]. [f] stores the value from the fourth push button, which is received via [r phase_mod_buttons].

173

CHAPTER 4 © GETTING STARTED WITH MUSICAL APPLICATIONS

r sequence é phase_mod_buttons
tbb E‘WE
S r env_dur
= —- -
Spigot dunp __guration $1
r phase_mod_pots
unpack f f f
E‘-‘D 916823 @8 2
K f 28
d modulator gc -
=~ | ine~
Ehusorﬂ' "
=
Eos- b= s -
f o Line~ List prepend set
pes 3
E o028 l1s:. trim
o | oadbang
throw~ out

9 11.5 1 17 0.707143 48.5 0.607143 23 0

Figure 4-23. Contents of the phase_modulation subpatch

When a new value from the sequencer counter comes in, it will bang [f], and its value will go to the right
inlet of [spigot]. [spigot] works like a gate. If it receives any non-zero value in its right inlet, it will let anything
that comes in its left inlet through. If it receives a zero in its right inlet, it will block whatever comes in its left
inlet. So, when we keep the button pressed, [spigot] will let the second bang of [t b b] through, which will
bang the envelope, so we'll hear the phase modulation. As long as we keep the button pressed, we'll keep
on triggering the sound of this subpatch with every new count of the sequencer. As soon as we release the
button, we’ll stop triggering the envelope and we won't get the subpatch’s sound. This is designed this way
so that the phase modulation is synced with the drum machine. Remember, in the metronome subpatch
shown in Figure 4-21, we send the BPM value converted to milliseconds to a [s env_dur]. In Figure 4-23, you
see the [r env_dur], which goes into the message “duration $1” This will set the duration of the envelope to
exactly the same length of one bit of the metronome. So, even if we keep the button pressed and we trigger
the phase modulation sound on every beat, [ggee/envgen] will have enough time to complete its envelope.

On the bottom-right part in Figure 4-23, we connect the second outlet of [ggee/envgen] to [list prepend
set], and then to [list trim] and to a message. Don’t type the values you see in the message of the figure, just
leave it blank. Above [ggee/envgen] there is a message “dump.” If you click it, [ggee/envgen] will output the
values of its graph out its right outlet. To save our envelope, we store these values to a message that we bang
with [loadbang] and send it to [ggee/envgen]’s inlet, so it can create the same envelope by itself. [list prepend
set] takes in a list and prepends the last argument, in this case “set”. If we send the message “set something”
to an empty message, the word “something” will be printed in the empty message, try it. [list trim] trims the
“list” selector off from a list, which has been added by [list prepend set]. If we omit [list trim], what will come
out from [list prepend set] will be “list set” along with the values from [ggee/envgen], and the empty message
won’t understand it. Trimming out “list” from the list will result in the message “set” along with the values
of [ggee/envgen], and this way the values will be saved in the message. Go ahead and create an envelope
(make any kind of graph you like in [ggee/envgen]) and click [dump]. You'll immediately see some values in
the empty message. Save your patch, and the next time you'll open it, you'll see your envelope still there.

174

CHAPTER 4 " GETTING STARTED WITH MUSICAL APPLICATIONS

The modulator Subpatch

The last thing to mention about this patch is the modulator subpatch of the phase_modulation subpatch,
which is shown in Figure 4-24. This is essentially the same subpatch with the first interface of this chapter,
only instead of a [r choose_waveform] in the top-right part of it, there’s a [r phase_mod_switches], which
receives the switch value for the phase modulation straight from the [serial_print_extended] abstraction.
Again, we're sending the value to [change -1] so it will give output even if we start the patch with the switch
to the OFF position, as we need to select the type of the modulator oscillator right away.

%F‘Et r phase_mod_switches
hasor~ change -1
=

CATr

out let~

Figure 4-24. Contents of the modulator subpatch

This concludes the description of this interface. We extensively used the print function along with
the [serial_print_extended] abstraction to make the Pd patch a bit easier to make and understand. It's up to
you what kind of approach you’ll take for your own projects. Go ahead and play with this interface, it should
be fun!

175

CHAPTER 4 © GETTING STARTED WITH MUSICAL APPLICATIONS

Conclusion

In this chapter, we went through the process of creating a musical interface. The three interfaces made
here might not be appealing to everyone, but they server as a generic platform on top of which you can
build many different kinds of interfaces. We focused on the two different techniques for communication
between the Arduino and Pd, which we have been introduced to in Chapter 2, showing the advantages and
disadvantages of each. You should pick the technique that fits your needs best, there’s no definite rule as to
which technique is better over the other.

We have also developed both our Pd patching and our Arduino programming in this chapter. As we move
further into this book, things will get even more advanced. This should apply mostly to the Pd patching, as
the Arduino code we’ll be using will most of the time follow the lines of the [serial_print_extended] and the
[serial_write] abstractions. In some cases, we'll be building complex interfaces where the Arduino code
will also differ from what we’ve already seen, but that won’t happen often. Our Pd patching will definitely
grow larger, as we’'ll need to create complex patches to express our musicality.

Up until now, we've used oscillators and sound files to create sound. The oscillator is the basis of
electronic music, but in some cases, we might want to process live input, from an instrument for example.
In the next chapter, we'll build a synthesizer using a MIDI keyboard, so again, we'll use oscillators (along
with filters and envelopes) to create our sounds, but in the chapter after that we'll start using live input and
we’ll learn different ways to manipulate that input to create something interesting. Chapters will alternate
between the use of oscillators, audio files, and live input, in an attempt to meet as many needs as possible.
Even if the interfaces that we're building in this book aren’t something you're really interested in, if you want
to make electronic music by building your own interface, you'll find very useful information and techniques
that will prove helpful in creating your own ideas.

This chapter finalizes all the introductory material, from a technical point of view, but also from a
creative point of view. Now you should be ready to start creating projects that utilize musical ideas to a great
extent; projects that you should be able to use even at a professional level. Next, a keyboard synthesizer
using a MIDI keyboard, Arduino, and Pd.

176

http://dx.doi.org/10.1007/978-1-4842-1583-8_2

CHAPTER 5

A Simple Synthesizer Using a MIDI
Keyboard and Arduino

In this chapter, we’ll start building interfaces that can really be used for expressing musical ideas. Our first
project will be a clavier synthesizer. For this interface, we’ll use a MIDI keyboard to control the pitch of the
synthesizer, and the Arduino for various other types of control parameters. If you have a MIDI keyboard that
provides potentiometers, pitch-bend wheels, and push buttons, you might want to avoid using the Arduino
altogether. Still, the Arduino has a better resolution in its analog pins, so you might find that it provides more
room for expression when it comes to sound quality control parameters. In this chapter, we're going to cover
different types of MIDI keyboards, from the new USB MIDI to the old-style 5-pin DIN cable MIDLI. In the case
of the latter, using an Arduino will be necessary if you want to avoid buying a MIDI-to-USB converter, which
might be rather expensive.

The idea behind this project is to revive any old equipment that you might have lying around. I found a
30-year-old keyboard synthesizer in my house, which hasn’t been used for decades. Even though it’s a very
old instrument, it does have MID], although with the old 5-pin DIN cable. This is where the Arduino came in
handy—with a simple circuit and very cheap components, I managed to receive input from the synthesizer
and send it over to my computer. This is not a real MIDI-to-USB converter, as my computer doesn’t see the
Arduino as a MIDI device. Still, it’s possible to send the messages received from the keyboard over to the
computer “MIDI style,” so you can use the keyboard to control you oscillators in your Pd patch. If you have a
USB MIDI keyboard that you'd like to use to hack and create a brand-new synthesizer, use that instead, as it
will save you from some circuit building and some coding too.

In this project, we'll end up with an interface with an embedded computer (a Raspberry Pi) that will
be enclosed in the synthesizer. For this reason, I chose to use an Arduino Nano instead of the Uno, as it is
much smaller and destined to be enclosed in projects. It is a bit more expensive than the Uno, but it has the
same capabilities and fits in very small enclosures. Also, it provides eight analog inputs, which seems quite
necessary for this project. You are welcome to use whichever Arduino you like best. If you use an Uno, which
has fewer analog pins, you'll have to compensate by reducing your control parameters.

I'll provide some suggestions as to how this project can be implemented with fewer control pins as we
build the Pd patch. You are not obliged to embed a computer to your own implementation of this project.

If you want, you can do all the coding and patching, but keep your devices outside enclosures. This may be
because you have a MIDI keyboard that you use for other reasons too, and you don’t want to hack it and
transform it to something else. You might also want to use your laptop instead of a Raspberry Pi, because
you already have an external sound card. The way this project is built is only a suggestion. You are welcome
to make your own version of this or any other project in this book.

Another thing that we'll cover to some extent is external sound cards. We'll go through a few different
options for the Raspberry Pi, and how to use them with Pd. Not using one won't affect the project very much,
as we're not going to receive audio input. The difference will be that the audio without an external sound
card will be a bit lower in volume, and it will have some noise. If you don’t have one, you can always build

177

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

this interface without it, and if you want, you can get one in the future and come back to this chapter to get
information as to how to use it with Pd. Now let’s get started.

You may find some of the patching or coding in this project a bit complex, so you might want to go
through the chapter more than once. In any case, stay focused during the whole process, and if there is
something you don'’t grasp during your first read, go ahead and read it again. It’s all a matter of programming
with the two languages—Pd and Arduino, so eventually it should all come together and make sense.

Parts List

Table 5-1 lists the parts we'll need to build this project.

Table 5-1. Parts for this Project

Part Quantity
Arduino 1 (preferably Nano)
MIDI keyboard 1 (USB or 5-pin DIN)
Optocoupler 1 x 4N35 or 4N28
Potentiometers 8 x 10 kiloohm
Push buttons 4 (to mount on panel)
Switches 5 (to mount on panel)
LED 1
Resistors 1 x 22002

1 x 3K3Q

1 x 100KQ2
Diodes 1 x 1N4248 (diode type)

What Is MIDI?

Before we start using MIDI with Pd, I should talk a bit about MIDI itself. MIDI stands for Musical Instrument
Digital Interface, which is a communication protocol, digital interface, and connector type (although
the standard MIDI cable has mostly been replaced by the USB type one), that allows for communication
between different devices, for control of musical applications. There are quite some different kinds of MIDI
messages a MIDI device and deliver or accept, and we’re going to use some of the here. MIDI was initiated
in 1983 and it’s still a prevailing interface in digital (sometimes interfering with analog too) electronic music.
Even though it’s so old, it still hasn’t been replaced by another protocol. The OSC (Open Sound Control)
protocol started off as a replacement for MIDI, but as it developed, it took another route, and ended up in a
more network oriented communication protocol.

MIDI devices enable us to physically control various aspects of our musical applications. Different types
of control interfaces, like keyboards, potentiometers, pads, foot pedals, push buttons, and so forth provide a
wide variety of controllers, which we can use to create various musical interfaces. All this might sound a bit
similar to the use of the Arduino we make in this book. Although MIDI and Arduino are two different things,
they both aim at control and communication (the Arduino has a wider range of capabilities, like motors and
solenoids, for example). At least the way we use the Arduino here is very similar to the way MIDI controllers
are used. Why not use MIDI devices and avoid Arduino programming in the first place? One drawback of
MIDI (at least in my point of view) is that first of all, MIDI controllers are rather expensive compared to

178

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

their quality, and secondly, one depends on the products of the market. With Arduino you can build really
unique control interfaces that cannot be found on the market (you can only find the components of such
an interface on the market, but not the interface assembled and programmed), and the overall cost will
be much smaller. In addition to that, the high resolution of the Arduino’s analog pins provide much more
flexibility in controlling the sound aspects.

In this chapter, we're using MIDI mostly because of the keyboard interface you can easily find in the
market. Building a keyboard is a difficult task that can cause a lot of frustration to someone who is not
experienced in electronics. Since a MIDI keyboard is something very common, and many people using
a computer for music (in any way) do have one lying around, it’s a good idea to start with something like
this, as the first finished project of this book. I'll assume you have a MIDI keyboard. If it has a MIDI cable,
I'll assume you have a MIDI-to-USB converter or a sound card that has a MIDI connector, so that you can
connect the keyboard to your computer. If you have a MIDI cable controller, later in this chapter, you'll see
how to get its input using the Arduino.

Pd and MIDI

Using MIDI in Pd is quite simple. This project is based on a keyboard, so we’ll first cover the use of MIDI
keyboards in Pd. To be able to use a MIDI device with Pd, you need to plug the device in your computer
before launching Pd. Once you launch Pd, set your keyboard as a MIDI input device, as shown in Chapter 1.
The object that receives data from MIDI keyboards is [notein]. Figure 5-1 shows [notein] receiving input
from a MIDI keyboard.

® 00 Untitled-1

notein

L
]

127 | velocity

channel

£8 midi note

Figure 5-1. The [notein] object

179

http://dx.doi.org/10.1007/978-1-4842-1583-8_1

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

How [notein] Works

[notein] has three outlets. The leftmost outlet outputs the MIDI note number. In Figure 5-1 we see MIDI note
60, which is the middle C. The middle outlet outputs the velocity, which means how hard the key is pressed
(hence, the dynamic of the note, in more musical terms). The rightmost outlet outputs the MIDI channel
the device is talking to. The channel can be set via an argument, in which case [notein] will have only two
outlets, one for the MIDI note number, and one for the velocity. MIDI notes, as well as velocity, counts
from 0 to 127, with 127 velocity being full amplitude. The channel is used to avoid clashes with other MIDI
controllers used simultaneously. Check its help patch for more information.

To use [notein] in a meaningful way, we also an object to convert the MIDI note numbers to
frequencies, so we can control oscillators this way. Pd has a built-in object for that, [mtof], which stands
for MIDI to frequency. Figure 5-2 shows how to use these two objects to control the pitch and amplitude of
an oscillator. In this figure, we see that the incoming note is MIDI note number 69 (which by the way is the
tuning A) and the velocity is 116. The MIDI note goes through [mtof] which converts it to the corresponding
frequency (440 in this case), and then sent to [osc~]. The velocity is first divided by 127, because 127 is the
maximum velocity we get from MIDI keyboards, and the maximum amplitude value we should use is 1.
The result of the division is sent to [line~] to smooth the possible clicks of the control and signal domain
combination, and is then multiplied with the oscillator’s output to control its amplitude. The number atoms
used in the figure are not necessary, and it’s better to avoid them when not needed, as they require a CPU,
but there're there to demonstrate the conversions from one type to the other. Go ahead and build it to see
how MIDI keyboards are used in Pd.

® 0O 0 Untitled-1

notein
L
&

channel

116 velocity
69 idi note
s

gtof

440 / 127

OSC"“": EQCK f 23=I
linef

Hoe

dac~

Figure 5-2. Using [notein] and [mtof] to control an oscillator

180

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

Using a Different Tuning and an Amplitude Envelope with [notein]

The patch in Figure 5-2 demonstrates the simplest use of [notein], and we can see that two issues arise

from this kind of use. First, we have a fixed tuning at 440 Hz, which is not the case with most acoustic
instruments, as modern tuning is usually at 442 Hz or higher, and other kinds of music might use different
tunings, like early music for example. The other issue is that this patch doesn’t make use of an amplitude
envelope, making the audio output sound rather mechanic. A solution to the first issue is provided by the
[mtof_tune] abstraction, which is included in the miscellaneous abstractions GitHub page already provided.
This abstraction lets you set the tuning A pitch to any frequency you want, and will then convert MIDI notes
according to that pitch. The second issue can be solved by using [ggee/envgen], which helps us create
amplitude envelopes in a user-friendly way. Figure 5-3 illustrates the use of the [mtof_tune] abstraction and
the [ggee/envgen] external.

®@00 Untitled-1

notein

i channe |
65 velocity
2 midi n:.te ‘duration 1068
mtof _tune 442
z

442 -
E = Seld

D_SC“' b
t bt
£
e
Lne~
£ / 127
L —"

Figure 5-3. Using [mtof tune] and [ggee/envgen] to set tuning and amplitude envelope

Our patch has now become a bit more complex. The easy part is the left side of the patch, where we
use [mtof_tune] instead of [mtof], with a 442 argument, and we can see that the tuning A produces a 442
Hz frequency, which is very likely to be desired if a synthesizer is combined with acoustic instruments. The
right side of the patch applies an amplitude envelope with [ggee/envgen]. We first connect the velocity value
to [sel 0], and connect the right outlet of [sel 0] to [t b f]. [sel 0] will output a bang out its left outlet when it
receives a 0, and anything else will be output out its right outlet intact. We do this to strip the 0 velocity from
the message, as we only care for the maximum velocity of each key press since the amplitude envelope we
use has a fixed length and it doesn’t need a 0 velocity to end. [t b f] will output the maximum velocity of the
key press out its right outlet which goes to [/ 127] below [ggee/envgen], and a bang out its left outlet which

181

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

goes into [ggee/envgen], triggering the envelope. We multiply the output of [line~], which is triggered by
the envelope, with the normalized velocity of the key press, because if we used the envelope as is, no matter
how hard or soft we hit the keys, we would always get the same amplitude envelope. This way we map the
envelope to the velocity of the key press, making it responsive to our playing. [ggee/envgen] has a very short
duration by default, but we can set the duration we desire with the “duration” message, as shown in Figure 5-3.
Mind that if you hit a key before an envelope has finished, you'll get a click. This is solved later on with the
use of an abstraction.

Holding the Sustain Part of the Envelope

We have solved the frequency and envelope issue, but the [ggee/envgen] external has introduced another
issue. It’s very common among synthesizers to hold a note as long as the corresponding key is pressed. This
is usually done by maintaining the sustain part of an ADSR envelope while a key is pressed. [ggee/envgen]
has a fixed duration, and doesn’t provide this feature. What this object does is output lists for [line~], where
each list is delay by the amount of the ramp time of the previous list. To be able to hold a note while a key

is pressed, we must hold the last list output by [ggee/envgen] until we receive a 0 velocity from the MIDI
keyboard. I have made an abstraction that does this called (not surprisingly) [hold_sustain], which you can
find on GitHub https://github.com/alexdrymonitis/envelopes. This abstraction takes in lists from
[ggee/env] and holds the very last list, until it receives a 0 in its left inlet, which is when it will output the last
list. It takes one argument, which is the amount of breakpoints our envelope has (disregarding the start and
end breakpoints), and according to that argument, it will hold the last list. Even if the release ramp takes a lot
of time, and we send a new note before the release has ended, [hold_sustain] will hold the new lists, until the
release ramp has ended. Figure 5-4 illustrates the use of this abstraction.

182

https://github.com/alexdrymonitis/envelopes

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

800 % basic_midi_use.pd

notein
I E channel
79 velocity
§4 midi note Erutim 2008

=
mtof e 442

12 HyH
o =
TR
12

~H=1

Figure 5-4. Using the [hold_sustain] abstraction to hold the sustain part of an ADSR envelope while a
key is pressed

The patch in Figure 5-4 is almost identical to the one in Figure 5-3, only this time when we receive a 0
velocity we bang a 0 message and send it to [hold_sustain] (remember, [sel 0] outputs a bang from its left
outlet when it receives a 0, it doesn’t output 0). The envelope now has a longer release ramp, so you can test
the delay applied to a new note when the envelope is retriggered before the release ramp has ended.

Polyphony with MIDI in Pd

The preceding examples utilized MIDI to control one oscillator. This setup is monophonic, as there’s no

way to have two distinct notes at the same time with only one oscillator. To have polyphony, we'll need to
use more oscillators, and a way to allocate the MIDI notes to each voice. Luckily, Pd has a built-in object

for voice allocation, [poly]. [poly] takes in MIDI notes and velocities and outputs a list consisting of a voice
number along with the MIDI note and the velocity for that voice. When a new note comes in, while the
previous is still playing, [poly] will send the new note to another voice, keeping the previous voice reserved
until it is freed, which will happen when [poly] receives the MIDI note number of that voice with a 0 velocity.
The number of voices is set via an argument to [poly]. Sending the MIDI note and velocity to the voice
specified by [poly] is achieved using [route]. Figure 5-5 illustrates the use of [poly].

183

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

® 00 midi_polyphony.pd

Teea
duration $1

s enve lope_data

s~ out

=
r~ out

dac~

Figure 5-5. Using [poly] for MIDI polyphony in Pd

We have placed the voices in subpatches for cleanliness. Also [s~ out] and [r~ out] is there for patch
cleanliness, as it saves us from patching some cords. The left and middle outlets of [notein] go to the two
inlets of [poly], which outputs the lists of voice number along with MIDI note and velocity. These values are
packed and sent to [route], which will route the MIDI note number and the velocity, according to the voice
number. Figure 5-6 illustrates the contents of the [pd voice~] subpatch.

184

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

e 00 voice~

inlet
Z
unpack

ntof_tine 442
=

% i —1
= jsel B
i T r envelope_data
2 tbft
‘hold_sustoir?
(=)
line? 7 497
E i/ 127
— ‘—_N
Ko
: =
*~ 8,25
> o
out let~

Figure 5-6. Contents of the voice~ subpatch

At the top of the patch, we're receiving the list with the MIDI note and the velocity, which is unpacked
and sent to its destinations. There’s a [r envelope_data] connecting to the inlet of [ggee/envgen], which will
receive various data concerning the envelope. This is because it is cumbersome to make the envelope for
each voice by hand, plus there’s no way that the envelopes will all be the same, if done manually. Also, if we
want to set the duration for the envelopes, it’s easier if there is a global “duration” message that will affect all
envelopes. Even for this patch that has only four voices, doing all this by hand can be tiring, let alone if we
want to create more voices, like 10 or 20!

185

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

To create the envelopes for all subpatches, create the envelope you want in the parent patch, and click
the “dump” message. When [ggee/envgen] receives these messages, it outputs its points’ values out its right
outlet. This list is sent to [s envelope_data] going to the inlet of each [ggee/envgen] in all subpatches, which
will create exactly the same envelope. The same applies to the “duration” message, which is sent to all
subpatches too. Now if you play with your keyboard, you'll see that you can have four voices simultaneously.

In Figure 5-5, we see that [poly] has two arguments. The first one is the number of voices it will create.
The second one enables or disables voice stealing (which is disabled by default). Voice stealing is the
technique where if one note too many arrives, [poly] will zero the oldest note in its list and will allocate the
new note to that voice. The same goes for even more notes that arrive. For example, if you play an arpeggio
of a 9th chord, you'll first send C, then E, then G, then B, and lastly D. When D arrives, [poly] will zero C and
will send D with its velocity to the voice that was playing C. Try it to get a better understanding of how voice
stealing works.

MIDI Control Messages in Pd

Let’s now look at another type of MIDI message, the control message. This type of message is sent from MIDI
devices with potentiometers and foot pedals. You MIDI keyboard is very likely to have potentiometers as
well. In Pd, you can retrieve these messages with [ctlin], which stands for control in. If your MIDI keyboard
has potentiometers on it, use that, otherwise plug in a MIDI controller with potentiometers or pedals (keep
your keyboard plugged in too). If you plug in a new controller, you'll have to restart Pd, so it can see it. Go

to Media 4 MIDI Settings... and click Use multiple devices to use both MIDI controllers. On Linux, you'll
need to set the In Ports: to 2 and then use aconnect -1io on your terminal to see all MIDI devices and
applications and make the appropriate connections in the same line as we did in Chapter 1 (using ALSA-MIDI).
Choose your keyboard as Input device 1:, and your potentiometer controller as Input device 2:, click Apply
and then OK. Now open the polyphony patch we created earlier so that we can work on it a bit more. Place
a [ctlin] object and check its help patch. This object has three outlets as well: [notein], which output the
controller value, the controller number (there’s one number for each potentiometer), and the channel the
controller is talking at. Open one of the subpatches and apply the changes shown in Figure 5-7.

186

http://dx.doi.org/10.1007/978-1-4842-1583-8_1

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

8 0 0 voice~

r oscillator_data

éoute detune inde>l<=

*
r =
2 line~ e g
hasor~ s % (kb L envelope_data
“'-— = £
=
cos~
ghold_su uirz
Line] [/ 127]
el
W
e
~ 9.25
out let~

Figure 5-7. Contents of the voice~ subpatch, receiving data from [ctlin]

In this subpatch we’re applying phase modulation, like we did in the first project in Chapter 4.
[r oscillator_data] on the top part of the subpatch receives input from the parent patch, and we're using
[route] to diffuse that input to where we want. We’re using two potentiometers (or sliders) to control the
detune of the modulator oscillator and the index of the modulation. The detune value goes to [t b f], because
we're sending it to the cold inlet of [* |. Using [t b f] we're banging the hot inlet of [* | whenever we send
anew value to the cold inlet, thus producing output. If we press and hold a key, we can use this value to
instantly change the modulator frequency while the voice is still sounding. If we didn’t use [t b f], we would
have to wait until we hit a new key to hear the new frequency, and that is not very nice. Try the subpatch with
and without [t b f] to hear the difference (without [t b f], the left outlet of [route] goes to the right inlet of [*]).

Figure 5-8 shows the parent patch. The only change in the parent patch is on the bottom part of it,
where we have two [ctlin] objects, one listening to controller number 14, and another one listening to
controller number 15. They both map their incoming range from 0 to 127, which is the MIDI range of 0 to 2,
and send that to [s oscillator_data]—the first one as detune, and the second as index, so they can be routed in
the subpatches using [route].

187

http://dx.doi.org/10.1007/978-1-4842-1583-8_4

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

e 00 % midi_ctl.pd

IEilump

aH=l

uration $1

s envelope_data

s~ out ctlin 14 ctlin 15,

T~ out mop B 127 0 2 mop © 127 8 2|
detune $1 index $1

dac~

s oscil lator_data s oscillator_data

Figure 5-8. Parent patch using [ctlin]

Again, create an envelope in the parent patch and send it to the subpatches by clicking [dump]. Set
the duration of the envelope to a desired value and play. You can use the two potentiometers to modify
the sound of the oscillators. The first potentiometer detunes the modulator oscillator of each voice by
multiplying the voice frequency with a value ranging from 0 to 2. If you keep this value around 1, but not
1, you'll hear the beat frequency effect, which is created by small differences in frequency between the
carrier and the modulator, resulting in an alternating boosting and attenuating of the amplitude (due to
phase alignment and offset between the two oscillators). The second potentiometer controls the index of
modulation, which we have already seen a few times in this book. By using [t b f] in the voices subpatches
for the modulator detune, we can use the detune potentiometer to change the sound of the voice while the
voice is playing.

Pitch Bend Messages in Pd

Many MIDI keyboards have a pitch bend wheel, which sends pitch bend MIDI messages. This is different
from control messages in the sense that it has a much wider range, from 0 to 168383, where the value of the
middle position (these wheels return to their center position) is 8192. In Pd, we can retrieve these values
with [bendin]. This object has two outlets, one for the value of the pitch bend wheel, and one for its channel.
The channel can be set via an argument, in which case the object will have only one outlet and will listen to
the set channel only.

Modify the “voice~ subpatches, as shown in Figure 5-9. The only addition is that [route] now takes a
“bend” message and sends its value to [t b f] (for the same reason as the “detune” value) and then multiplies
it with the frequency of the voice. Figure 5-10 shows the parent patch. The only addition to that is the
[bendin] message, which maps its values from its own range (0 to 16383) to a range from 0.5 to 2. Again,
create an envelope and set its duration, but this time you'll have to give some input from the pitch-bend
wheel before you start playing, because the frequency of each voice is multiplied by it, and if you give no

188

CHAPTER 5 " A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

input, all frequencies will be multiplied by 0, and you'll get no sound. So, spin the wheel once and then start
playing. Now the pitch of all voices is controlled by the pitch-bend wheel, where when the wheel is all the
way down, the oscillators will go one octave down (their frequencies will be multiplied by 0.5, so they will be
halved, which is one octave down), and when the wheel is all the way up, they will go one octave up (their
frequencies will be multiplied by 2, so they will be doubled, which is one octave up).

8 0 0 voice~
énlet r oscillator_data
unpack éoute bend detune index,

ad
e .
line~ =X
Ehusor~ E,."'_- =; %b f r envelope_data
o [T/...
: o
cos~
hold_sustain,
gires] [127]
—
W
e
r =
¥~ 9,25
out let~

Figure 5-9. The voice~ subpatch receiving pitch bend messages

189

CHAPTER 5 " A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

® 00 midi_bend.pd
dnp
notein, T
&=
Eoly 41
I S
Eack 111
route 1 Zf 4]
voice~ §
duration $1
ice~
d vpige~
d woic = envelope_data
s~ out ctlin 14, ctlin 15 éendm_
T~ out map 8 127 0 2 wop 6 127 8 2| tiop © 16383 8.5 2|
m detune $1 index $1 bend $1
ac~
s oscil lator_data s oscillotor_data s oscillator_data

Figure 5-10. Parent patch receiving pitch bend messages with [bendin]

Polyphony with MIDI in Pd is rather straightforward to achieve, but might seem a bit too much
patching, especially if we want to create many voices. One way to reduce the patching is to create the first
voice as you want it, test it until you are satisfied with it, and then duplicate it as many times you want. For
this chapter’s project, we're going to use another technique to create many voices: dynamic patching. We're
going to use certain messages to create abstractions (which we will have already made and stored in our
system) dynamically without needing to patch everything by hand. We'll see it in action further on.

Program Change MIDI Messages in Pd

Another type of MIDI message is the program change message. These messages are being sent by MIDI
devices with foot switches or pads. In Pd, you can receive these messages with [pgmin]. These messages are
single numbers, assigned to a switch or pad. So when you press a foot switch, [pgmin] will output the value
of that switch. In the patch we've been using so far, there’s no real use of such a message, as it is an on/off
kind of message. Later on, when we build the entire project, I'll mention where this can be helpful, replacing
switches used with the Arduino.

This concludes our introduction to MIDI in Pd. We can see that with a MIDI keyboard that includes
potentiometers and a pitch-bend wheel, you can create a rather complete synthesizer with Pd. If you want
to make it a stand-alone instrument, then the Raspberry Pi (or any other embedded computer) comes in,
which we will cover later on in this chapter. Also, not all MIDI keyboards have potentiometers and pitch-bend
wheels, and that is where the Arduino comes in, especially if the keyboard has an old-style 5-pin DIN cable.
Next is the Arduino code in different versions to include all cases (no potentiometers, 5-pin DIN cable) so you
can build a stand-alone synthesizer with any kind of MIDI keyboard.

190

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

Arduino Code

Now that we've been introduced to MIDI in Pd, let’s see the possible version of the Arduino code that will
complement this project. We have three different cases, one where we don’t need Arduino at all, because the
MIDI USB keyboard we're using has potentiometers and a pitch-bend wheel, plus some pads. The second
case is a MIDI USB keyboard that’s only that and doesn’t have any potentiometers or anything else apart
from the keys. The third case is a MIDI keyboard with a 5-pin DIN cable with no potentiometers; we're going
to use the Arduino for attaching potentiometers and switches, and also for receiving MIDI messages from
the keyboard and transferring them to Pd. We’re not going to deal with the first case here, because it doesn’t
include an Arduino. I'll talk about it when we build the Pd patch. So we’ll start with the second case, where
we'll be using the Arduino only with potentiometers and switches. Listing 5-1 shows the sketch. If you are in
the third case, go through this section, as including MIDI messages in Arduino will only be complementary
to the code in Listing 5-1.

Listing 5-1. Code Without Receiving MIDI Messages in the Arduino

1. // potentiometer variables and constants

2. const int num_synth_pots = 4;

3. int synth_pots[num synth pots];

4. const int num_filter_pots = 3;

5. int filter pots[num filter pots];

6. int amp_pot;

7. // potentiometer pin offsets

8. int filter pot_offset = num_synth_pots;

9. int amp_pot_offset = num_filter pots + num_synth_pots;
10.

11. // digital pins arrays, variables, and pin numbers
12. const int oscillator types = 4;

13. 1int osc_type buttons[oscillator types];

14. int old_osc_type_buttons[oscillator_types];

15. int filter switch, old_filter switch;

16. int tune_switch, old tune_switch;

17. int sustain_switch, old sustain_switch;

18. int dsp_switch, old_dsp_switch;

19. int carrier _mod_switch_pin = 6;

20. 1int filter_switch_pin = 7;

21. int tune_switch_pin = 8;

22. int sustain_switch pin = 9;

23. int dsp_switch pin = 10;

24. // use pin 13 so you don't need to use an external resistor
25. int dsp_led pin = 13;

26.

27. void setup() {

28. for(int i = 2; i < 11; i++) pinMode(i, INPUT PULLUP);
29. pinMode(dsp_led pin, OUTPUT);

30.

31. // Arduino's baud rate

32. Serial.begin(38400);

33. }

34.

191

CHAPTER 5 " A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

35. void loop () {
36. if(Serial.available()){

37. byte in_byte = Serial.read();

38. digitalWrite(dsp_led_pin, in_byte);
39.)

40.

41. // read the potentiometers

42. for(int i = 0; i < num_synth_pots; i++)
43. synth_pots[i] = analogRead(i);

44. for(int i = 0; i < num_filter pots; i++)
45. filter pots[i] = analogRead(i + filter pot offset);
46. amp_pot = analogRead(amp_pot offset);
47.

48. // print their values
49. Serial.print("synth_pots ");
50. for(int i = 0; i < (num_synth_pots - 1); i++){

51. Serial.print(synth pots[i]);

52. Serial.print(" ");

53. }

54. Serial.println(synth_pots[num synth pots - 1]);
55.

56. Serial.print("filter pots ");
57. for(int i = 0; 1 < (num_filter pots - 1); i++){

58. Serial.print(filter pots[i]);

59. Serial.print(" ");

60. }

61. Serial.println(filter pots[num filter pots - 1]);
62.

63. Serial.print("amp ");

64. Serial.println(amp_pot);

65.

66. // read the switches

67. int carrier mod switch = digitalRead(carrier mod switch pin);
68. for(int 1 = 0; i < oscillator types; i++){

69. osc_type buttons[i] = digitalRead(i + 2);

70. if(osc_type buttons[i] != old osc_type buttons[i]){
71. if(losc_type buttons[i]){ // if button is pressed
72. if(carrier_mod_switch){

73. Serial.print("carrier type ");

74. Serial.println(i);

75. }

76. else{

77. Serial.print("modulator type ");

78. Serial.println(i);

79. }

80. }

81. old osc_type buttons[i] = osc_type buttons[i]; // update old value
82. }

83. }

84.

192

85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

filter switch = digitalRead(filter switch_pin);

if(filter switch != old filter switch){
Serial.print("filter switch ");
Serial.println(!filter switch);
old filter switch = filter switch;

}

tune_switch = digitalRead(tune_switch pin);
if(tune_switch != old tune_ switch){
Serial.print("tune_switch ");
Serial.println(!tune_switch);
old tune switch = tune_ switch;

}

sustain_switch = digitalRead(sustain_switch pin);
if(sustain_switch != old sustain_switch){
Serial.print("sustain_switch ");
Serial.println(!sustain_switch);
old sustain_switch = sustain_switch;

}

dsp_switch = digitalRead(dsp_switch_pin);

if(dsp_switch != old dsp_switch){
Serial.print("dsp_switch ");
Serial.println(!dsp switch);
old dsp_switch = dsp_switch;

}

Before I explain the code, we should take a look at the circuit, which is illustrated in Figure 5-11. For

now just look at the parts of the circuit and which component connects to which pin on the Arduino. It will

help to understand the approach to writing the code in Listing 5-1.

193

CHAPTER 5 " A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

LRCE
LRI
LR
CRCEC
CRCE
RO
RN
LRI
LRI
CRCEE

LRI
LR
LR
CRCEC
s 88
LR
LRCE
CRCE

e
s
LRCEC I
LRCE
LR
R
LRCEC
CRCEC
LRI
LR
LR
LR
LR
CRCIC

LR]
LRCEC
LR

.
=
.
.
-
.

L
-
-
-
-
-
-
-
-

v e e
. - .
“
L]
LU
=% e

.o .
e ww H.
ceoscsveele
L B -
e L} '
.

“w e
.

LU
.

.

CRCC
CRCRC
LU
LR
[N
LR
LR

fritzing
Figure 5-11. Test circuit for synthesizer project

First of all, we can see that now we're using an Arduino Nano, which we have placed on the breadboard.
We have four push buttons patched to the first four digital pins of the Arduino (starting from digital pin 2,
as always). Then we have five switches patched to the next five digital pins, and then we have an LED
connected to the digital pin 13. We use this pin for the LED so we can avoid an external resistor, which is
rather useful when building circuits on perforated boards. The circuit shown in Figure 5-11 is only a test
circuit. It’s always a good idea to test your circuit on a breadboard before you attempt to solder it on a
perforated board.

On our synthesizer, we'll have four potentiometers for the two oscillators of each voice, three
potentiometers for a filter we’ll apply to the synth, and one potentiometer for the amplitude. The four push
buttons will select the waveform for both the carrier and the modulator. The first switch will set whether the
push buttons will set the waveform for the carrier, or the modulator, the second switch will control whether
we'll use the filter or not, the third switch will control whether we want to tune our synthesizer, using the
[mtof_tune] abstraction, and the fifth switch will control the DSP. The LED will indicate whether the DSP is
on or off.

Explaining the Code

Now that we know what each component of the circuit does, let’s go through the code. We're using the
print function to send data to Pd instead of write. This is mostly because in the next version of the code,
where we'll be receiving data from the MIDI keyboard, we prefer to use this function, because it makes it
easy to separate data before they arrive to Pd. The first 25 lines define variables, constants and arrays to read

194

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

and store data. The comments should make the code rather clear. Notice the offset variable in lines 8 and

9, which will be used along with a for loop, so we can read the correct pins, as we’ve already done. In line

13, we define an array called osc_type_buttons, which will store the values of the push buttons. We group
them all in one array, since they are used for the same purpose: to choose a waveform for an oscillator. In
line 14, we define another array, called old_osc_type buttons. This array will hold the previous value of
each button, which will be used for comparison when we read these pins, so we can print their values to Pd
only when they are changed (actually, when we press a button). You'll see how this works further on in the
code. Lines 15 to 18 define pairs of variables for the pins of the switches in the same manner as with the push
buttons arrays. We use two variables—one to hold the current value of each pin and one to hold the previous
value—so we can compare them and see if the values have changed. In these lines, you can see that we
define two variables in each line, separated by a comma, like this:

int filter switch, old_filter switch;

This syntax is perfectly legal in C++, and we use it to make our code a bit more compact and easier to
read, since the two variables cooperate. Lines 19 to 25 set pin numbers to variables, which we’ll use to read
the switches and write to the LED pin. We could have used the numbers straight in the functions that read
and write to pins, but using self-explanatory names makes the code more readable.

The setup and loop Functions

Our setup function is nothing special, we just set the mode of the digital pins we're using and start the
serial communication. This time we’re using a 38400 baud rate, because while testing (including receiving
data from the MIDI keyboard, although this should take long) it proved that a higher baud rate stressed
the Arduino. In this baud rate, everything works fine. In the loop function, the first thing we do is check for
data coming in the serial line, and use that to control the LED of the circuit. This time we're reading data
in a much simpler way than we did before, because the only thing we want to control is one LED, so we
don’t need the generic technique we used till now. All we do is create a byte variable to store the incoming
data, and write that byte to the pin of the LED. Then we read through the analog pins, which we separate in
groups, and afterward we write these values to the serial line. We don’t bother to test whether a value has
changed or not, because the analog pins have a little bit of noise and they kind of constantly change, so we
print them to Pd anyway.

Enter the New Technique

Now the new part comes in. In line 67, we read the first switch, which sets whether the push buttons will
set the waveform for the carrier or the modulator. In line 68, we run a for loop and read through the push
buttons. Line 70 checks with an if control structure whether the newly read value is different from the

old one, and if it is, its code will be executed. This test will be true whenever we press or release a button.

If the value has indeed changed, line 71 will check whether we are pressing the button. We're using the
exclamation mark here, since when we press the button, we’'ll read 0 because of the pull-up resistors. Using
if this way, its test will be true when the value is indeed zero, since we're reversing the value by placing

the exclamation mark, so when we press the switch, this test will be true. If the test is true, line 72 will

test whether the first switch is in the on or off position. This test will be true when the switch is in the off
position, because here we're not using an exclamation mark. If the test is true, we’re printing the i variable
to the serial line with the carrier type tag, and if it’s false, with the modulator_type tag. The i variable will
actually hold the number of the switch, since it’s the variable used to control the for loop and goes from

0 to 3. So, if we press the third switch for example, the tests in lines 70 and 71 will be true, and the value
we'll print to Pd will be 2 (we start counting from 0). This way, not only we print a value to Pd only when it’s
changed, and more precisely, when a button is pressed, but we also don’t need to print all four switches,

195

CHAPTER 5 " A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

but use them all as one entity. Finally, in line 81 we update the element of the 01d_osc_type buttons array.
If we fail to do this, the test in line 70 will hold true only when we press a switch. This might sound ideal, as
this is what we want. What will actually happen is that, while we keep a button pressed, this test will keep on
being true, and its code will keep on being executed, so we'll be printing data to Pd constantly. By updating
the variable that holds the old value, we make sure that the test in line 70 will hold true only when the value
has indeed changed.

Lines 85 to 90 read the second switch, which is used to define whether we’ll use the filter or not. Again,
we're testing if the value has changed, in line 86, and if it has, we're printing it with the appropriate tag. We're
using the exclamation mark to invert the value because of the pull-up resistor. We repeat this process for the
rest of the switches, each time reading the appropriate pin and using the appropriate tag. And this brings us
to the end of the code. It is a rather long sketch, but we're using the same principle for all digital pins. This
technique is very helpful because it facilitates things in Pd to a great extent. Next is the Pd patch, where we’ll
see the code and circuit in action, and things will become even clearer.

Pd Patch

Figure 5-12 shows the Pd patch. Most of the stuff is again hidden in subpatches for clarity’s sake. The lower
part of the patch should be rather clear. We're using [notein] with [poly] to receive and diffuse MIDI notes
from the keyboard. [poly_synth~] is an abstraction which creates voices according to its argument (in this
case 10). We use it this way both for keeping the patch clean, but also because with an abstraction we can
automate the process of voice creation so we don’t need to patch each voice separately. We'll see how this is
achieved further on. [pd filter~] contains the filter we're using in our synth, and after that we have the [dac~]
controlled by a potentiometer from Arduino. On the top part of the patch we see [declare -path ./polysynth].
This objects sets a search path exclusively for this patch. If we’re using abstractions that are project specific,
and we don’t want to place them in Pd’s standard search paths, we can put them anywhere in our system
and use [declare] to set their path for this patch. The -path flag means that what follows is a path. With
[declare] we can also import libraries, where we use the -1ib flag. The path for our abstractions is located in
a directory called polysynth, which is in the directory of the patch, hence ./polysynth. Again, we're using
Unix syntax to specify the path.

196

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

® O O = synthesizer with_usb_midi.pd

declare -path ./polysynth
pd arduino_stuff
pd create_envelope

pd generic_data

notein,
Eoly 18 1
T 5%
ack f f f
r synth_data
=
oly_synth~ 18
pd filter~
r amp

mop O 1023 8 1
z

w 4
=
£uck f 20
line~
B
dac~

Figure 5-12. Synthesizer Pd patch

The arduino_stuff Subpatch

Now let’s start looking at the subpatches one by one, starting with the arduino_stuff subpatch, which is
shown in Figure 5-13. The only different thing here is that we're sending the DSP value to [comport] as
is, without the “print” message, because we're not assembling the value in the Arduino code, but use the
incoming byte as is, so we don’t need its ASCII form here.

197

CHAPTER 5 " A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

e OO0 arduino_stuff

pry .
devices

open 7

r pd

lElose route dsE

éomport 7 384BB=

seria l_print_extendgtz

-
S

Figure 5-13. Contents of the arduino_stuff subpatch

The create_envelope and generic_data Subpatches

Figure 5-14 illustrates the contents of the create_envelope subpatch. Nothing new here as well. Only create
the envelope you want and click [dump]. The next time you'll open the patch, it will be banged on load and
will be sent to all voice abstractions.

198

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

eno create_envelope

d -
list prepend set
list trim

-loudbanq

z -
2list prepend envelope
List trim

s synth_data

Figure 5-14. Contents of the “create_envelope” subpatch

Figure 5-15 shows the contents of the generic_data subpatch. Here we receive most of the data from the
Arduino. At the top-left part you can see [r carrier_type] and [r modulator_type], which receive a number
from 0 to 3 from the Arduino, depending on which of the osc_type_buttons is pressed, and according to
the position of the carrier_mod_switch. All this happens in lines 67 to 83 in the Arduino sketch. We can
see here that we have done some processing in the Arduino code, and sent the resulting data to Pd instead
of only reading the pins, and printed them as is. [r sustain_switch] receives a value straight from the switch
that controls whether we’ll hold the sustain of our amplitude envelope or not. On the bottom-left part we
receive the value from the DSP switch and control the DSP state accordingly. On the right side of the patch
we receive the values from the oscillator potentiometers, which we map and then send to their destinations.
[r tune_switch] is there to either let the frequency tune potentiometer through, or not. Since the analog
pins have some noise, it’s good practice to not let that value through all the time. We can use the switch
that controls this to tune our synthesizer, and when we’re done tuning, we can put the switch in the OFF
position, and our tuning won't be affected any more. Each of these values is being sent to our [poly_synth~]
abstraction via [s synth_data].

199

CHAPTER 5 " A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

8no generic_data
r carrier_type r modulator_type r sustain_switch r synth_pots
carrier_type $1 mod_type $1 sustain $1 unpack f f f f
nop @ 1023 200 5000
duration $1
£ synth_data Py
wap § 1023 0 2,
I
index $1
502
e §1
r tune_switch
g 446
r dsp_switch
dsp $1
z
s pd

s synth_data

Figure 5-15. Contents of the “generic_data” subpatch

The [poly_synth~] Abstraction

Now let’s look at the [poly_synth~] abstraction, which is shown in Figure 5-16. There are quite some new
things here, which I'll explain in detail. This is a rather simple abstraction, but it facilitates polyphony a
great deal. It has three control inlets and one signal outlet. The control inlets send their data to various
destinations using [send]. Notice the $0 used in each [send], and in the name of the two subpatches. This

is a special sign in Pd. When we use it in abstractions it generates a unique number, usually starting from
something over 1000, which is used to create unique names for objects like [send]/[receive], or for arrays
and [table]s. If we want to create more than one instance of this abstraction, and we didn’t use $0, whatever
would arrive in an inlet of any abstraction, would be sent to the corresponding [receive]s of all instances of
the abstraction. Using $0 we make sure that whatever arrives in an inlet of an instance of the abstraction,
will be diffused only locally to that specific inlet. For example, if we created two [poly_synth~] abstractions,
$0 of the first would be something like 1009, and of the second something like 1013. When data arrived

in the first inlet of the first abstraction, it would be sent to [s 1009-voice-list], and would be received by all

[r 1009-voice-list], which would exist in the first abstraction only, so this data wouldn’t be received in the
second abstraction as well. If we sent data to the first inlet of the second abstraction, it would be sent to [s
1013-voice-list] and would be received by [r 1013-voice-list], without interfering with [r 1009-voice-list] at all.

200

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

e 00 # poly_synth~.pd (10)
inlet midi_note_list inlet generic_data inlet voice_num
s $9-voice-list s $0-data pd $8-voice_creation_loop
pd $8-voices

catch~ $0-sum

zA 32
Limiter~

Foew

out let~

Figure 5-16. [poly_synth~] abstraction

The [pd $0-voice_creation_loop] subpatch

We cannot see this unique this unique number printed, but wherever in the abstraction you see $0, it is
actually replaced by this unique number. [pd $0-voice_creation_loop] demonstrates its use clearer. Its
contents are illustrated in Figure 5-17.

201

CHAPTER 5 " A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

e 00 1071-voice_creation_loop (10)

[—]

loadbang
inlet num_voices
=

$1

tfb
Lm ‘clear

I

168 $2 synth_voice~ $3 $1

s pd-$8-voices

Figure 5-17. Contents of the “$0-voice_creation_loop” subpatch

This subpatch is banged on load with [loadbang], which bangs [$1]. [$1] takes the value of the first
argument of the abstraction. In Figure 5-12, which illustrates the main patch for this project, we can see that
we have initiated [poly_synth~ 10] with the argument 10. This is the value [$1] will take, which is the number
of voices we want to create. When this value is banged, it first bangs the message “clear’, which is sent to [s
pd-$0-voices]. This [send] sends its data to the “$0-voices” subpatch you see in Figure 5-16. By using the name
of a subpatch with “pd-” prepended to it, we can send data directly to the subpatch. The message “clear” will
erase everything in the subpatch. Then a loop will be initiated with 10 iterations (due to the argument provided
to [poly_synth~]) using the [loop] abstraction. At each iteration of the loop, the incremented value coming out
the rightmost outlet of [loop] will first be multiplied by 30 and added to 30. It will be stored to the middle inlet
of [pack ff$0], and then added to 1 and stored to the leftmost inlet of [pack f f $0]. This will cause [pack] to
output its values, because the leftmost inlet is hot. The last value of [pack], which is $0, will be the unique value
generated by $0, as already mentioned.

The list output by [pack] goes to the message “obj 100 $2 synth_voice~ $3 $1” This message is sent to
[s pd-$0-voices], hence to the “$0-voices” subpatch. Sending a message of this type to a patch (or subpatch)
will create an object, much like putting an object from the Put menu, or by hitting Ctrl/Cmd+1. This specific
message will create the object [synth_voice~] with two arguments, the third and first values output by
[pack] ($3 and $1 in the message), positioned at 100 pixels to the right and $2 (the second value of [pack])
pixels down. As the loop iterates, $2 will take the following values: 30, 60, 90, and so forth (remember, [loop]
starts counting from 0). So the [synth_voice~] objects that will be created, will be placed at the following
coordinates in the “$0-voices” subpatch: 100 30, 100 60, 100 90, and so forth. This means that the objects will
be placed one below the other, all aligned at vertically. The two arguments each [synth_voice~] will take, are
the unique number of [poy_synth~], and the number of each voice, starting from 1. So the objects that will

202

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

be created inside [pd $0-voices] will be [synth_voice~ 1009 1], [synth_voice~ 1009 2], [synth_voice~ 1009 3],
and so forth, given that the unique number generated by $0 is 1009.

How Dollar Signs Work in Pd

The dollar-sign numbers in Pd are very useful and it’s important that you understand them. In objects, like
[$1], dollar-sign numbers starting from 1 take the value of the corresponding argument in an abstraction.

So [$1] will take the value of the first argument, [$2] will take the value of the second argument, and so forth
$0, as already mentioned, generates a unique value for abstractions (for subpatches too, but it behaves a bit
differently there), which is used to avoid name clashes with [send]/[receive] pairs and [table]s and arrays.

In messages, dollar-sign numbers take the corresponding value from an incoming list. So, when the list

“6 1327 9” comes in the message “$1 $2 $3 $4’, $1 will take the value 6, $2 will be 13, $3 will be 27, and $4 will
be 9. Messages cannot take values directly from arguments, but only from lists that arrive in their inlet. Also
$0 won’t work with messages. That’s why in Figure 5-17, we store $0 in [pack] and send it to the message,
which is retrieved by the message’s $3. Dollar-sign numbers might be a bit confusing in the beginning, but
once you get the grasp of it, you’ll see how powerful this feature is.

The [synth_voice~] Abstraction

In [poly_synth~], create a subpatch called “$0-voices’, like in Figure 5-16, and leave it empty. That’s where
all the [synth_voice~] objects will be created. Of course [synth_voice~] is no native Pd object, but another
abstraction we'll create ourselves. You can see the abstraction in Figure 5-18.

203

CHAPTER 5 " A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

8 00 synth_voice~.pd (1204 1)

r $1-voice-list

route $2,
= r $1-data
unpack - -
route tune_freq carrier_type mod_detune mod_type index
envelope duration sustain o
1 =
mtof _turle 442 tffiett
zf L duraffion $1
fhasarf y
s | =./ T
sel 8
pd carrier % i -
b b
S &
f it 1]
— ==
igot
te
hold_sustain 3
del
=
al
4 127 switch~
¥~

Ko

throw~ $1-sum

Figure 5-18. The [synth_voice~] abstraction

At the top part of the patch we have a [r $1-voice-list], which will receive values from [s $0-voice-list]
of [poly_synth~]. Since we'll be creating the [synth_voice~] as described earlier, the first argument of this
abstraction will be the unique number generated by $0 of the [poly_synth~] abstraction. We cannot use $0
straight in [synth_voice~] because it will generate a new unique number which won’t be the same with that
of [poly_synth~], plus every instance of [synth_voice~] will get its own unique number, and now we don’t
want that, since we want to send the same data to all voices. All $1 values in Figure 5-18, will be the same as
$0 in Figures 5-16 and 5-17.

On the right part of the abstraction we receive data with [r $1-data], which is diffused with [route]. The
leftmost outlet of [route] will output the tuning frequency for our synth, the second outlet will output the
oscillator type for the carrier oscillator, and so on. The arguments of [route] should make clear what each
value does (don’t hit Return after the “index” argument, just type all the arguments with spaces between
them. When they become too many to stay in one line, Pd will start printing them one line below by itself).

204

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

[r $1-voice_list] sends its list to [route $2], which will give its output according to the second argument
of [synth_voice~], which is the voice number. When [poly] in the parent patch (Figure 5-12) outputs the
list “1 69 127’ [route $2] of the first [synth_voice~] will output the list “69 127" [route $2] of the rest of the
[synth_voice~] abstractions won’t output anything, because the first element of the list “1 69 127” won't
match their argument.

The list coming from [route $2] in unpacked and the note number is sent to [mtof_tune 442], which
will convert the note number to its frequency, tuned at 442 Hz. The velocity (the second element of the list
output by [route $2]) is sent to [sel 0], like with the MIDI examples earlier in this chapter. The main structure
of this abstraction is very similar to the subpatches of the MIDI examples, where we apply phase modulation
and we use an amplitude envelope. This time we can choose between different waveforms for both the
carrier and the modulator. The “modulator” subpatch in Figure 5-18 is shown in Figure 5-19. And the
contents of each subpatch in [pd modulator] is shown in Figures 5-20 to 5-23.

e OO0 modulator (1009 1)
%Plet inlet type
hasor™ R,

out let~

Figure 5-19. Contents of the “modulator” subpatch of the [synth_voice] abstraction

205

CHAPTER 5 " A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

® OO0 sinusoid (1204 1)
inlet
inlet~ sel B‘"
T &
out let~ V
switch~

Figure 5-20. [pd sinusoid]

8 O 0

triangle (1204 1)

inlet~

oy

B

HY inlet
L b
min-~ sel 1
I = - re—

4 1 8
h
-~ 1
@ switch~
out let~

Figure 5-21. [pd triangle]

206

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

e OO0 sawtooth (1204 1)
inlet~ Jinlet
Ty | sel 2,
r: 5
R f‘ 1 '8
outlet~ Suitch~

Figure 5-22. [pd sawtooth]

e OO0 square (1204 1)
inlet"' ‘i.nl.et»
~y I I
.
-~ 1
TR switch~

Figure 5-23. [pd square]

207

CHAPTER 5 " A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

The modulator Subpatch and Its Subpatches

When [synth_voice~] receives the message “mod_type $1’, it sends this value to [pd modulator], and from
there it goes to the subpatches in Figures 5-20 to 5-23. In these figures each [sel] will control the [switch~]
of each subpatch. [switch~] enables turning the DSP of a subpatch or abstraction on or off, independently
of the DSP state of Pd. This helps us both to choose the oscillator type we want, but also to save some CPU
since we have four oscillators for the modulator and four for the carrier of each voice, eight in total, for ten
voices, which makes them 80! If we want to use more voices then the oscillators we’ll be using will start
becoming a bit too many. Using [switch~] reduces the amount of CPU Pd needs drastically. We've also used
[switch~] in the parent patch of [synth_voice~], the use of which I'll explain in a bit.

The carrier Subpatch

[synth_voice~] also has a [pd carrier], which sets the oscillator for the carrier. This subpatch is almost
identical to [pd modulator], only [phasor~] is outside the subpatch so we can modulate its phase. Figure 5-24
shows the subpatch. This subpatch has a signal inlet for the oscillators, which first connects to [wrap~]. This
object wraps the value in its input between 0 and 1. So if it receives 1.1, it will wrap it back to 0.1. If it receives
-0.1, it will wrap it back to 0.9. Check its help patch for more information. We’ve put it there because we add
the modulator oscillator to the phase of the carrier. The phase must always be between 0 and 1, whether it is
modulated or not. When we built the MIDI examples earlier in this chapter we didn’t use [wrap~] because
we used a cosine oscillator with [cos~], and [cos~] wraps the values it receives internally, so we didn’t need
to do this explicitly. This time, though, we use more oscillators which consist of objects that don’t wrap their
input internally, so we must use [wrap~] to avoid strange results. The subpatches of [pd carrier] are identical
to those of [pd modulator], as shown in Figures 5-20 to 5-23.

e OO0 carrier (1009 1)
aniets inlet type
~ P Efret

out let~

Figure 5-24. Contents of [pd carrier]

208

CHAPTER 5 " A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

The Amplitude Envelope

Now I'll explain the bottom-left part of [synth_voice~] where we have the amplitude envelope plus some
other things. In the middle part of Figure 5-18, we see a [sel 0] that receives the velocity of the MIDI note, and
connects to [t f b], which first outputs a bang out its right outlet, which goes to [t b b]. This last [trigger] first
bangs [f], which takes its value from “duration” from the [route] above it. This value is the duration of the
envelope, which also goes to the message “duration $1” and is sent to [ggee/envgen] to set this duration to
the envelope. The output of [f] goes through [spigot], and if [spigot] is open, it goes to the left inlet of [del].
“del” stands for delay, and it’s a delay object for the control domain. It is somewhat different from the signal
domain delay. It receives a value and it outputs a bang delayed by the value it received, in milliseconds.
Check its help patch for information. When [del] receives the duration amount in its inlet, it will send a bang
out its outlet after the set delay, which will send 0 to [switch~]. The left outlet of [t b b] sends 1 to [switch~],
which means that the abstraction will turn its DSP on. After all this is done, [t f b] will send the velocity out
its left outlet to a [t b f], which will first output the velocity from its right outlet and it will go to [/ 127] at the
bottom part of the patch. Then [t b f] will output a bang from its left outlet, which will trigger the envelope.

The gate Subpatch, How It Works, and How We Manage the
Audio of [synth_voice~]

Below [ggee/envgen)] there’s [pd gate], which we can see in Figure 5-25. This subpatch takes the output of
[ggee/envgen] in its left inlet, and the “sustain” value from [route] in its right inlet. This value is either a 1

or a 0, controlled by the sustain switch in the Arduino circuit. It sets whether we’ll hold the sustain part of
the envelope as long as we keep the key pressed, or not. If the “sustain” switch value is 0, then the output of
[ggee/envgen] will connect straight to [line~]. Ifit’s 1, it will connect to [hold_sustain] and then to [line~].
The “sustain” switch value also controls the [spigot] after [f] in the parent patch of the abstraction, which
holds the duration of the envelope. If the “sustain” switch is off, then the [spigot] will be open (because of
[==0]), and if it’s on, [spigot] will be closed. If we keep the “sustain” switch off, then [switch~] will receive

1, the envelope of [ggee/envgen] will be triggered, when after the duration of the envelope has ended,
[switch~] will receive 0 banged by [del], since [spigot] will be open. If the “sustain” switch if on, then
[switch~] will receive 1, the envelope will be triggered, but [spigot] will be closed, so [del] won’t receive the
duration value from [f], but [hold_sustain] will output the appropriate delay time out its right outlet when
it receives 0, and [switch~] will be closed when it should. Check the help patch of [hold_sustain] to see how
this works.

209

CHAPTER 5 " A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

e OO0 gate (1204 1)

inlet
route list floaté‘ énlet
AL 4
t 1L
ﬁ/=. spigot
= a fj
out let
spigot
out let

Figure 5-25. Contents of the “gate” subpatch

Each [synth_voice~] sends its output to [throw~ $1-sum], which all go to [catch~ $0-sum] in [poly_synth~],
in Figure 5-16. The output of [catch~] is controlled by [limiter~]an external of the zexy library— to make
sure we'll never exceed an amplitude of 1. We could have multiplied the output of each [synth_voice-]
by the reciprocal of the number of voices, but using [limiter~] gives a better result, as if we play only one
voice, it will have full amplitude, instead of one-tenth (in the case of 10 voices) of it. Check the help patch of
[limiter~] to see how it works.

The filter~ Subpatch

Now that we've discussed and built [poly_synth~] and [synth_voice~], let’s go back to the parent patch

of our project, the one shown in Figure 5-12. There’s one subpatch left to show and discuss: filter~. It is
shown in Figure 5-26. Compared to all we've already done, this should be fairly easy. It receives the

output of [poly_synth~] and sends it both to its [outlet~], intact, but also to [omniFilter_abs~ lowshelf].
[omniFilter_abs~] is an abstraction for many types of filters. The filter type is sent via an argument (or from
the rightmost inlet; check its help patch). [r filter_pots] receives the filter potentiometer values from Arduino,
and [r filter_switch] receives the value of the filter switch of the Arduino circuit. If the switch is in the OFF
position, the input of [pd filter~] will be output intact. If it the switch is in the ON position, the input will go
through [omniFilter_abs~]. The output of [pd filter~] is being sent to [dac~] having its amplitude controlled
by the last potentiometer of the Arduino circuit.

210

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

e 00 filter~
r filter_pots
unpack f f f
Em 6 1623 20 20000 Eapaa 162381 mop B 1623 -50 50
inlet~ §uck t 28 Ezck £ 28 Euck f 28
line~ line~ line~

e

omniFi[ter_abs~ lowshelf

filter_switch

=§.

I!f
!

i~ 2

1=r

out let~

Figure 5-26. [pd filter~]

Done with Patching, Time to Test

We have now completed the Pd patch for this project. If your MIDI keyboard doesn’t have a USB cable,
the modifications to the patch will be minor, and we’ll go through them in a bit. Now close the patch and
re-open it, click [poly_synth~] and check [pd $0-voices]. This subpatch should look like Figure 5-27.

211

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

® 00 1045-voices (10)

synth_voice~ 1845 1
synth_voice~ 1845 2
synth_voice~ 1845 3
synth_voice~ 1845 4
synth_voice~ 1845 5
synth_voice~ 1845 6
synth_voice~ 1845 7
synth_voice~ 1845 8
synth_voice~ 1845 9

synth_voice~ 1845 18

Figure 5-27. Contents of [pd $0-voices]

In the title bar of the window, you should see something like 1045-voices. 1045 is the unique number
created by $0 (yours is very likely to be different), so this title is the result of “$0-voices” The number in the
parenthesis is the argument passed to [poly_synth~], which appears on the title bar of all subpatches of the
abstraction. Using $0 in [pack ff $0], in [pd $0-voice_creation_loop] results in creating all [synth_voice~]
abstractions with this unique number as the first argument. It doesn’t really matter what your unique number
is. What is really important is that the number on the title bar of [pd $0-voices] should be the same as the first
argument of all [synth_voice~] abstractions; otherwise, things are not going to work properly. The second
argument of [synth_voice~] is the voice number, and it should be an incrementing number starting from 1.

Building this project with all the subpatches, and especially with the abstractions, might be a bit
complicated, but if you build the abstraction carefully, and go through the explanations (maybe more than
once) you should be able to understand how everything works. Pd, being a visual programming language,
projects the data flow very clearly, so it’s easy for you to follow the data from beginning to end, or the other
way round, to understand how a patch works. You should first have a good understanding of the Arduino
circuit and code, and what each component is supposed to do, and then apply this to the Pd patch and
abstractions, so you can fully understand their behavior.

212

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

Arduino Receiving MIDI Messages from the MIDI Keyboard

In case you have an old MIDI keyboard that has a 5-pin DIN cable, you'll need to do some tweaking to the
code and circuit to be able to use it with the Raspberry Pi. If you intend to build this project with a laptop
(or a desktop), and you have a MIDI-to-USB converter, or you have an external sound card that takes MIDI
cables, then you don’t need to go through this section, except if you're just curious.

Figure 5-28 shows a female MIDI connector. If you connect one end of a MIDI cable to your keyboard
and the other end to such a connector, then you'll have easy access to it pins. You might need a multimeter
to make sure you connect to the right pins. This device is very useful when building electronics, so it’s
advisable to get one. Learning how to use it is rather easy, and there are a lot of resources online. To build the
circuit you'll also need an optocoupler. This is a very small, inexpensive chip that will help the circuit work.
I'have used the 4N35 optocoupler, but the 4N28, or probable any from these two families would do. Instead
of building the circuit yourself, you could get an Arduino MIDI shield that exists on the market, but building
such a circuit will cost very little money (probably less than one dollar), and can also be fun to do.

fritzing

Figure 5-28. Female MIDI connector

Arduino Circuit Additions

Figure 5-29 shows the additional circuit we’ll need to receive MIDI messages from our keyboard. The
previous circuit still holds, the one in Figure 5-29 is supposed to be added on top of the previous circuit.
There could be other ways to achieve this, but I found that this one was rather simple and used components
I'had lying around, so it took me very little time to build it. You are encouraged to search yourself to find
other solutions for this, but the circuit in Figure 5-29 should do the trick.

213

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

O"l....'..‘..l"'.'t...g
L B O B B O B DR B B O B O R B B B B B R B .

Ld
e & & & 8
e & & & 8
. e 8 00

A% A%

A0 " ih A7 SV EST gD VIN
A AL XL XL LR N
Ld
Ll

e & 8 8 8
" e 9 0w

fritzing
Figure 5-29. Connecting a MIDI cable to Arduino

In this circuit, we're connecting MIDI pin 4 (the second from right) to the first pin of the optocoupler,
via a 220Q resistor. The first pin of the optocoupler is marked with a dot (some chips might only have a
notch on one side, where having that side on top, the top pin on the left side is the first pin of the chip), and
the rest are numbered sequentially. Figure 5-30 shows the pin numbers of 4N35. All chips follow the same
numbering order. The second pin of the optocoupler connects to MIDI pin 5 (the second from right, MIDI
pins are not numbered sequentially), and also to the first pin of itself via a 1N4148 diode, with the ring of
the diode on the side of the first pin of the chip. Pin 4 of the optocoupler connects to ground, pin 5 connects
to 5V via a 3K3 resistor (3K3 notation means 3.3KQ) and to Arduino’s digital pin 11. Finally, pin 6 of the
optocoupler connects to ground via a 100K resistor.

214

CHAPTER 5 " A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

1 . I 6
2 . 5

3 . . 4
Figure 5-30. Pin numbering of 4N35 optocoupler

Arduino Code Additions

The code in Listing 5-1 stays, and we're just going to add a few things to it, so it can receive MIDI messages
and transfer them to Pd. First of all, at the beginning of the code type the contents in Listing 5-2.

Listing 5-2. Create a Software Serial Line and Variables for the MIDI Messages

#tinclude <SoftwareSerial.h>

1

2

3. // create a SoftwareSerial object with RX and TX pins 11 and 12
4. SoftwareSerial MIDI serial (11, 12);
5
6
7

byte MIDI note;
byte MIDI velocity;

As with the Bluetooth module from Chapter 3, where we needed an extra serial line to configure it,
we're going to need another serial line now to receive data from the MIDI keyboard. To do this, we need to
import the SoftwareSerial library and create an object with two pins, an RX (for receiving data) and a TX
(for transferring data). We're going to use only the RX pin, since we won’t be sending any data to the MIDI
keyboard, but when we initialize an object of the SoftwareSerial class we need to include both pins. Then
we'll need to define two variables, one for the MIDI note number and one for the velocity.

Then in the setup function we must start the serial communication of the new, SoftwareSerial port.
Listing 5-3 shows what you should type in the setup function.

Listing 5-3. Begin the Serial Communication in the Software Serial Line

1. // MIDI baud rate
2. MIDI serial.begin(31250);

The baud rate used here is the baud rate of the MIDI protocol. We need to use that to be able to
communicate with the MIDI keyboard. The baud rate we're using for the communication between the
Arduino and Pd is (Serial.begin(38400);), it doesn’t need to be the same (actually [comport] doesn’t
support this baud rate), so you can still use 38400. Lastly, Listing 5-4 shows what you should write in your
loop function.

215

http://dx.doi.org/10.1007/978-1-4842-1583-8_3

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

Listing 5-4. Check for Incoming MIDI Messages in the Software Serial Line

1 if(MIDI_serial.available()) {

2 byte cmd_byte = MIDI_serial.read();

3 if((cmd_byte >= 144) 8% (cmd_byte <= 160)){
4. MIDI note = MIDI serial.read();

5. MIDI velocity = MIDI serial.read();

6 // print the MIDI note to the serial port
7 Serial.print("MIDI_note ");

8 Serial.print(MIDI note);

9 Serial.print(" ");

10. Serial.println(MIDI velocity);

11.

12. else if((cmd_byte >= 128) &% (cmd_byte <= 143)){
13. MIDI note = MIDI serial.read();

14. MIDI velocity = MIDI serial.read();

15. // print the MIDI note to the serial port
16. Serial.print("MIDI note ");

17. Serial.print(MIDI_note);

18. Serial.print(" ");

19. Serial.println(MIDI velocity);

20. }

21, }

This can go anywhere in your code, I put it right after reading data from the serial line, in the beginning
of the loop function. What happens here is that we’re checking if there are data in the serial port of the MID],
and if there are, we read them. In the MIDI protocol, the first byte that is sent is called a status byte, which
tells the receiving device what kind of command it is receiving, and the rest of the bytes are called data bytes,
which hold the data of the command. What we care about is the note-on and note-off messages. These
messages are 144 for note-on on channel 1, 145 for note-on on channel 2 and so on, for sixteen channels, so
from 144 to 160. 128 is note-off for channel 1, 129 is note-off for channel 2 and so forth, for sixteen channels,
so from 128 to 143. So line 3 in Listing 5-4 checks if we're receiving a note-on message (we don'’t really care
about the channel). If it’s true it will assign the next two bytes to the MIDI_note and MIDI_velocity variables,
respectively, because this is the order these data bytes are sent. Then we print these two values to the serial
line Pd is listening to with the MIDI_note tag, including a space in between values so they can be properly
interpreted by the [serial_print] abstraction.

Line 12 checks if we're receiving a note-off message, and if it’s true, it will execute the same code with
the note-on message. Again, what we care about is the note number and the velocity. Of course, the
note-off velocity is zero, so this is kind of trivial. Many MIDI keyboards don’t even send note-off messages,
but instead they send a note-on message with a 0 velocity. Even if that’s the case with your keyboard, this
code should work. Again, we print the data bytes to Pd’s serial line with the MIDI_note tag. You can imagine
that in Pd we'll be receiving this data with [r MIDI_note].

Mind that all this code is added to the code we've already written for the Arduino, nothing should be
replaced by anything (including Serial.begin(38400);).

Your keyboard might also send control messages, which are indicated by the status bytes—176 up to
190, again for 16 channels. The data bytes that follow are the controller number and the controller value. The
keyboard I have doesn’t send control messages, so I can’t test it. Applying the values of control messages to
the code in Listing 5-4 should be fairly easy, and printing these values to Pd, are receiving them there should
also be rather easy. If your keyboard sends control messages, you're encouraged to modify your code to
receive them in Pd.

The basic status bytes, along with their values, can be found at http://www.midi.org/techspecs/
midimessages.php.

216

http://www.midi.org/techspecs/midimessages.php
http://www.midi.org/techspecs/midimessages.php

CHAPTER 5 " A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

You can test if your keyboard sends any of the status bytes in Table 5-2. All the status bytes in the table
are followed by two data bytes, except from program change and channel pressure, which are followed by
one data byte only. Make sure you read all data bytes in your Arduino code.

The pitch bend change status byte is followed by the 7 bits of the least significant byte, and the 7 bits of
the most significant byte. To assemble these two bytes in Pd, you’'ll need to multiply the first byte (the least
significant byte) by 128, and add it to the second byte (the same technique we apply with the [serial_write]
abstraction to reassemble the analog pin values from the Arduino). This will yield a maximum value of
16383, which is the 14-bit value of the Pitch Bend wheel on MIDI keyboards.

To determine what data your MIDI keyboard is sending, [print] will come in handy in Pd. This object
prints whatever it receives in its inlet to Pd’s console. Replace the code in Listing 5-4 with that in Listing 5-5
to determine what kind of data your keyboard is sending.

Listing 5-5. Checking for Other Types of MIDI Messages

1 if(MIDI_serial.available()) {

2 byte cmd_byte = MIDI serial.read();
3. Serial.print("MIDI data ");

4 Serial.println(cmd _byte);

5.}

In a Pd patch connect [r MIDI_data] to [print] and use all potentiometers and wheels and other
controllers on your keyboard. [print] will print to the console anything it receives. Use Table 5-2 to determine
what kind of data you're receiving, whether it'’s Note On/Note Off events, Control Change, or Program
Change messages, and so forth. For example, if you're receiving a Control Change message on channel 1,
from controller number 8, sending the value 100, in Pd’s console you should get the bytes 176, 8, 100 one
after the other. It’s up to you how you use this information.

Pd Patch Receiving MIDI Data from Arduino

Once you've built the circuit and modified the Arduino code, you should make a very small modification to
the Pd patch. The patch is shown in Figure 5-31. The only actual change is that [notein] has been replaced by
[r MIDI_note], which sends its list to the left inlet of [poly], which is the same as sending the velocity to the
right inlet and the note number to the left, like we did with [notein].

217

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

® 00 synthesizer.pd

declare -path ./polysynth
pd arduino_stuff

pd create_envelope

pd generic_data

MIDI_note

itnai’
LT

ack f f
f r synth_data

{y synth-' 16
‘ad filter~
r amp
mop © 1623 0 1,
w4
ck f 20
line~
e
I
dac~

Figure 5-31. Pd patch receiving MIDI data from the Arduino

Pd Patch Receiving a Constant Velocity

Some MIDI keyboards may be so old that they won't really send a velocity value, because their keys might
not be force sensitive. This is the case with my MIDI keyboard, which instead of a velocity, on a key press

it sends the value 64 as velocity (which I found out by connecting [r MIDI_note] to [print]), and on a key
release it sends the value 0, both with a Note On event. In this case unfortunately you won’t have amplitude
control with the key presses, but you can still use your keyboard. What I've done is send a 127 with a note-on,
and let the 0 through. The patch is shown in Figure 5-32. I use [sel 64], so that whenever I press a key and get
64, Isend 127. When [sel 64] receives 0 it will let it through intact out its right outlet. This minor modification
to the patch in Figure 5-31 seems to fix the constant velocity problem.

218

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

e 00 " synthesizer.pd

declare -path ./polysynth
pd arduino_stuff

pd create_envelope

pd generic_data

i MIDI_note
oly 16 T
sel 64
E
ack f f f
i r synth_data
ly synth~ 13
‘:ld filter~
r amp
mop 0 1023 @ 1,
w4
ck f 28
line~
o
I
dac~

Figure 5-32. Pd patch receiving a fake velocity

This concludes our programming for this project, now we’re going to use the Raspberry Pi to embed
to our keyboard to make it a stand-alone instrument.

Running the Pd patch on Raspberry Pi

If you want to embed a computer to your keyboard, so it’s a stand-alone instrument, you'll need to use

a Raspberry Pi, or any other embedded computer you like. Most of the process should be clear by now,
there are a few things that I should explain. First of all, copy the Pd patch and the Arduino sketch to your
embedded computer using SCP, like we did in Chapter 3. Since the Pd patch contains a folder with the
abstractions, you'll need to copy this whole directory (the one that contains the patch and the polysynth
folder) to your embedded computer. Also, the Arduino sketches must be inside a directory with the same
name as the sketch, so again you’ll need to copy a whole directory. Use scp -r /path/to/directory to
copy the whole directory. The commands for copying to Pi’s pd_patches and sketchbook directories are

it

219

http://dx.doi.org/10.1007/978-1-4842-1583-8_3

CHAPTER 5 " A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

shown next. Replace /path/to/. .. with the actual path of the directory with the Pd patches and the Arduino
sketch.

scp -r /path/to/pd_patch/directory/pi@192.168.100.10:/home/pi/pd_patches
scp -r /path/to/arduino_code/directory/pi@192.168.100.10:/home/pi/sketchbook

You'll also need to copy any abstractions we used that are not in the polysynth folder, which is in
the folder of this project, like [loop], [map], and maybe [hold_sustain]. The best thing to do is to copy the
contents of pd_abstractions folder from your computer to Pi’s pd_abstractions, and set that directory to
Pd’s search path.

Since we're going to use the Pi headless (or any other embedded computer), we want to force it to
launch Pd and the synthesizer patch on boot. The process differs between the Raspbian Jessie and the
Raspbian Wheezy images, and very likely between the Raspbian Jessie image and a Debian Jessie image on
another type of embedded computer. First, we'll cover the Raspbian Jessie procedure.

Launching Pd on Boot with the Raspbian Jessie Image

In your home directory, create a directory named my_scripts. Go to that directory and type the following:
nano launch_pd.sh
The nano editor will open. In it, type the following:

#!/bin/sh
/usr/bin/pd -nogui -open /home/pi/pd_patches/synthesizer/synthesizer.pd &

Hit Ctrl+O and Return to save the file and Ctrl+X to exit nano. You have now created a script that
launches Pd in the background without the GUI and opens the synthesizer patch. The first line of the script
tells the shell which program to use to interpret the script. The third line (the second line is blank) is the
command that launches Pd.

Now, being in your home directory, type the following:

crontab -e

This will open the crontab file of the user pi. If it’s the first time you run the crontab editor, you'll be
asked which editor you want to use to edit crontab, while being prompted to use nano, as it’s the simplest
one. The choices will be numbered, and nano will probably be the second choice, so type 2, and hit Return.
The crontab file will open in nano and you'll be able to edit it.

If you haven’t edited this file it should only have a few lines with comments, telling you what this file does
and how to use it (well, giving some minimal instructions). After all the comments add the following line:

@reboot sleep 20 ; sh /home/pi/my_scripts/launch_pd.sh

This tells the computer that when it reboots (or boots) it should first do nothing for 20 seconds, and
then it should run the script we've just written. Take care to place the semi-colon between the sleep 20
command and the sh command. You might want to experiment with the number 20, and try a smaller
number. Give the Pi enough time to fully boot, but 20 might be too much. Try a few different values and see
which is the lowest that works.

220

CHAPTER 5 " A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

Launching Pd on Boot with the Raspbian Wheezy Image or with
Another Embedded Computer Running Debian Jessie

Linux systems include a script that runs on boot (this holds true for the Raspbian Jessie image, but it won't
work), so we can use that to tell the computer to do what we want it to do. This script is in the /etc directory
and it’s called rc.local. In your home directory (or wherever), type the following:

sudo nano /etc/rc.local

This sketch by default looks like Listing 5-6.

Listing 5-6. The /etc/rc.local script of the Raspberry Pi

#!/bin/sh -e

#

rc.local

#

This script is executed at the end of each multiuser runlevel.
Make sure that the script will "exit 0" on success or any other
value on error.

#

In order to enable or disable this script just change the execution
bits.

#

By default this script does nothing.

Print the IP address

_IP=$(hostname -I) || true
if ["$_IP"]; then
printf "My IP address is %s\n" "$_IP"
fi
exit 0

This is what it looks like in a Raspberry Pi. Maybe it will be a little bit different on some other embedded
computers, but essentially it does the same thing, run on boot. We shouldn’t care about what these lines do,
it’s not of our interest. Before exit 0 we’re going to write a command to launch Pd along with the patch we
want. The command you need to place there is shown here:

su -c '/usr/bin/pd -nogui -open /home/user/pd_patches/synthesizer/synthesizer.pd &' - user &

This command tells the computer to launch Pd without the GUI, and open the synthesizer patch
(here we suppose that the patch is called synthesizer.pd that is in the directory called synthesizer in the
pd_patches directory in the computer’s home). There seems to be an issue with [comport], which doesn’t
like to be used by root. su is the name of the root, and since we're using a script in the / directory, we must
have root privileges. The -c flag tells the computer to run the command inside the single quotes as the user
set after the single quotes close. This means that you must replace the word user with the name of the user,
where in the Raspberry Pi it’s pi, in the Odroid it’s odroid, in Udoo’s Debian images it’s probably debian, and
so forth. To find the name of the user, type the following:

$ whoami

221

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

The user name will be printed in the terminal monitor. The command in the /etc/rc.local script will
result in Pd being launched by the “user” user, and not by root (again “user” refers to the name of the user).
This way the patch will open and [comport] will run just fine. We're launching Pd in the background, and
the command that tells the computer to do this as user user, by using the ampersand (&) in both commands.
Use this command as is if you want things to run properly. After you type the command in the script, hit
Ctrl+0 and Return to save it, and Ctrl+X to exit nano.

Mind that it’s not definite that editing this script will work. If it doesn’t, try the procedure of the
Raspbian Jessie image explained earlier.

Using a USB MIDI Keyboard with the Pi

If you have a USB MIDI keyboard that you want to use with the Pi there are a few more steps you'll need to
take. First, you'll need to launch Pd with the -alsamidi flag with the GUI. Once launched open a new patch
and put a [r pd] connected to a [print]. Then go to Media & MIDI Settings... and make sure you have one

In Port:. If you changed the number of ports, click Apply. Whether you changed the ports number or not,
click OK. In Pd’s console you'll get a message of the type “midi-dialog00000000 1 1” (not necessarily the
same). Copy this message and paste it in a message box in your synthesizer patch. Connect a [loadbang] to
the message and the message to [s pd], like in Figure 5-33.

® 00 X\ Untitled-1* - /home/pi
File Edit Put Find Media Window Help

[midi-dialog 6 6 0 0 6 0 0 0 1 1(

Figure 5-33. Sending the MIDI dialog message to Pd on launch

Now, on Pi’s terminal, type the following and check the output:

aconnect -lio

222

CHAPTER 5 " A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

Your USB MIDI device and Pd should be in that list. In the script that launches Pd, after launching it
write the following:

sleep 3
aconnect yourUSBmidiDevice:0 'Pure Data':0

Change yourUSBmidiDevice with the name of your MIDI keyboard. The two 0s are the output port
number of the MIDI keyboard and the input port number of Pd. The output list of aconnect should print the
correct values. Check Chapter 1 if you don’t remember the exact process of getting MIDI input in Linux.

Shutting Down the Pi (or Any Embedded Computer)
While Running Headless

If we're going to use Pd without the GUI, we’ll need to be able to shut the Pi down somehow. We have used
all pins of the Arduino, so we can’t put another push button that will enable shutting down the Pi. We have
to use the existing components in some way that will help us achieve what we want. The most logical thing
is that when we’ll want to shut the Pi down, we’ll have turned the DSP off. We can use the DSP switch to
determine whether we can actually shut the Pi down or not. In the Arduino code add the code in Listing 5-7
to the end.

Listing 5-7. Sending the DSP Switch Data

1 if(dsp_switch){

2 int shut_down = digitalRead(2);
3. Serial.print("shut_down ");

4 Serial.println(!shut_down);

5 }

This code will run only if the DSP switch is in the OFF position (because of the pull-up resistors). If the
switch is indeed off, we’ll read digital pin 2, which is the first push button, and we’ll print that to Pd with the
shut_down tag. In the Pd patch, make a subpatch and fill it in with the contents in Figure 5-34.

223

http://dx.doi.org/10.1007/978-1-4842-1583-8_1

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

® 00 X\ Untitled-1* - /home/pi
File Edit Put Find Media Window Help

|loadbang|

[sh /etc/my_scripts/shut_down. sh(

Figure 5-34. Contents of the subpatch that shuts the Pi down

In this subpatch we're receiving the value of the first push button, only when the DSP switch is in the
OFF position. We're printing the value of the button with the exclamation mark prepended to it (line 4
in Listing 5-7), so that when we press it we'll receive a one, and when it’s released we’ll receive a 0. We're
using [timer] in this subpatch, which measures logical time. When this object receives a bang in its left inlet,
itis reset. When it receives a bang in its right inlet, it outputs the amount of milliseconds passed since it
was reset. We're sending the output of [timer] to [> 2000] to check if we held the button pressed for at least
2000 milliseconds (2 seconds). Think about it, when we press the button (with the DSP switch in the OFF
position), [timer] will be reset, and when we release it, we'll get the amount of milliseconds we kept the
button pressed. If this value is above 2000, [> 2000] will output 1, and [sel 1] will bang the message, which
will tell [shell] to run the script to shut the Pi down. This is the same script we wrote in Chapter 3, so if you
skipped that chapter, go back and check it. [change] connects to [spigot], which opens two seconds after the
patch has loaded, to prevent a shut down as soon as the patch opens, as the code in 5-7 will be printing the
value of the first button constantly, as long as the DSP switch is in the OFF position.

A Small Caveat for the Raspbian and Debian Wheezy Images

If you're using the Raspbian Wheezy image, or another embedded computer with a Debian Wheezy image,
you should have noticed that you can’t make [serial_print_extended] work. That is because it’s missing the
[bytes2any] and [any2bytes] externals from the moocow library. The Raspbian repositories don’t have this
library so we haven’t installed it. Go to GitHub and search for pdstring. Once you find it, download it as a
.zip file. In your Pi, make a directory called pd_externals and move the pdstring-1libdir-master directory
in there (the directory you unzipped from GitHub). Now navigate to pdstring-1ibdir-master and hitls to

224

http://dx.doi.org/10.1007/978-1-4842-1583-8_3

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

see its contents. There are three README files, which include instructions for installing the new externals.
The instructions say that you must type ./configure, but there’s no configure file there. All you need to
do is this:

make
and
sudo make install

First, run the make command, which will create binary files (executable files) out of the . c files, and
when it’s done (you'll get back to the $ prompt) run the second command. This will put the new binary
files to /usr/local/lib/pd-extenals/pdstring. Now launch Pd and go to Media & Preferences & Path
and choose this path so Pd can look up for these objects. Click Apply and OK and quit Pd. Re-launch it
and open a new window and put [serial_print_extended]. You'll get error messages saying that Pd couldn’t
create [moocow/bytes2any] and [moocow/any2bytes]. Open the [serial_print_extended] abstraction and
go to [pd $0-strings]. In there, change [moocow/bytes2any] to [bytes2any]. Then go to [pd $0-set_argument]
in the parent patch of the abstraction, and from there to [pd $0-split_symbols]. In there, change [moocow/
bytes2any] to [bytes2any], and [moocow/any2bytes] to [any2bytes]. Close the subpatches and save the
abstraction. The next time you open it, it should work. I should mention that these are not my externals.

I have only forked the repository in GitHub, so you can easily find these files.

Using an External Sound Card with the Pi

If you have an external sound card you want to use, you might need to take some steps to use it. I'll suppose
that it either doesn’t require drivers, or that you already have installed all necessary drivers for it. In Pd, you
can go to Media @ Audio Settings... and choose your sound card. That might not work though, and you
might either get audio dropouts (they produce clicks in the sound), or perhaps no audio at all. When using
external sound cards in Linux, many time we prefer to use the Jack audio server. If the Pi doesn’t have Jack
installed, you can install it with apt-get. In Pi’s terminal type jackd, and if you get a “command not found”
error, then type sudo apt-get install jackd.

Using QJackctl offers an easy way to find out which is your sound card on Jack’s list. This is a user-friendly
GUI version of Jack. In Pi’s terminal, type the following:

/usr/bin/qjackctl &
QJacketl will open, as shown in Figure 5-35. Make sure that you use the ampersand (&), because we'll

need to use the terminal while QJackctl is running.

® O 0O %\ JACK Audio Connection Kit [(default)] Stopped.

g | mao | G|
o=

3 connect | papatcnbay | 1| «| »| 0| »| @about.. |

Figure 5-35. QJackctl interface

225

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

In QJacketl click Setup and you'll get the window shown in Figure 5-36. In the Setup, click the Input
Device: menu and select your sound card. Figure 5-37 shows some choices provided by QJackctl, where a
Focusrite Scarlett 2i4 sound card is included. What we care about is its hw number (for hardware), which is
1. Go ahead and choose your sound card both as an input and as an output device, and then click OK (leave
Driver: on top right at “alsa”). This will take you back to the main window of QJackctl, as shown in Figure 5-35.

Click Start and wait till the QJackctl screen shows that it has started.

%\| JACK Audio Connection Kit [(default)] Stopped.
N\ Setup - JACK Audio Connection Kit

Settings | options | Display | Misc |

Preset Name: | (default) ~| Elsave | % Delete |
Parameters

Server Prefix: | jackd | Name: [(default) »] Driver: [alsa =l
¥ Realtime Priority: Im Interface: | (default) |

I" No Memory Lock Frames/Period: [1024 =] Dither: [None =]
I™ Unlock Memory Sample Rate: I 48000 'I Aldio: mm
I Soft Mode Periods/Buffer: |2 33 -

Input Device: | hw:USB -
:: Fﬂ:r:i:oll.reb‘rt Word Length: | 16 "I O'tpu': S ! e =]
W M_ it Wait (usec); |21333 I 2ute evice: | hw. =
onitor - -
= M_t Cchannels: [[@efaoin=] Channels vo: |2 = | (default) =
eter =
I Ignore HW Port Maximum: [256 =] Latency I/0: [(default) = [(default) =

I Verbose messages Limeout (msec): [s00 -] MIDI Driver:]none -]
Server Suffi: |] Start Delay. [2 secs = Latency: [42.7 msec

0K Cancel |

Figure 5-36. Qjackctl’s setup

@ hwAudio Built-in Audio (hw:0)
= hwAudio,0 (hw0,0)
® hwAudio,l (hw0,1)

hw:USB Scarlett 2i4 USB (hw:1)

® hwUSB.0 USB Audio (hw:1,0)
(default)

Figure 5-37. QJackctl sound card choices

Now go back to Pi’s terminal and launch Pd like this:

/usx/bin/pd -jack &

226

CHAPTER 5 " A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

This command will launch Pd in the background with Jack as its audio server. Go to Media 4 Test Audio
and MIDL... and see if your sound card is working properly. If it is, quit Pd, and click Stop on Qjackctl’s
window, and then Quit.

Since we'll be using the Pi headless, we can’t use Jack’s GUI, so we need to launch it without it. In Pi’s
terminal, type the following:

/usr/bin/jackd -d alsa -d hw:1 &

This will launch Jack, using Alsa as a driver and a hardware 1 sound card. Now launch Pd like before and
again test if your sound card is working properly. If all goes well, you'll need to modify the scripts that launches
Pd a bit. Open ~/my_scripts/launch_pd.sh and before the command that launches Pd, type the following:

/usr/bin/jackd -d alsa -d hw:1 &
sleep 3

This will launch Jack with the necessary driver and sound card, and then the Pi will wait for three
seconds, before it launches Pd. The command to launch Pd stays the same. If you're using another
embedded computer or the Raspbian Wheezy image, you’'ll need to add these two lines in the /etc/
rc.local script, before the command that launches Pd. No need to run this command as a simple user, so
the command will do just the way it’s written earlier. Now edit the script that quits Pd and shuts the Pi down.
Type the following to edit the script:

sudo nano /etc/my_scripts/shut_down.sh

We want to first quit Pd, then Jack, and then shut the Pi down. We already have this in our script:

sudo killall pd
sleep 3
sudo halt

Change it to this:

sudo killall pd
sleep 3

sudo killall jackd
sleep 3

So now the Pi will first quit Pd, then wait for three seconds, then it will quit Jack, again it will wait for three
seconds, and finally it will shut down. Now your Pi is ready to run your patch using your external sound card.

Editing the Pd Patch When Pd is Running on Boot

Once you have configured your Pi with the settings we've been through, whenever your power it up, it
will launch Pd and open the synthesizer patch. If you want to make changes to the patch, or use the Pi for
something else, as soon as you log in, quit Pd like this:

sudo killall pd

so you there’s no Pd instance running while you make your changes. If you need to quit Jack as well, do the
same for “jackd”. If you make changes to the already used patch, you won’t need to do anything else. If you
want to use another patch, or do something completely different, you'll have to edit at least the rc.local
script, so that the Pi won’t launch Pd, or won’t open the old patch on boot.

227

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

Enclosing the Pi in the Keyboard

To enclose the Pi in the keyboard so that it’s a stand-alone instrument is a process of trial and error. Since all
keyboards are different in size and shape, I can’t give definite guidance through this process. There are some
“global” rules that apply to such processes. Bear in mind that most electronic devices have very limited space
inside, so it might be very difficult or even impossible to enclose the circuit, the Arduino and the Pi inside
your keyboard. In this case, you might want to enclose all this stuff in a separate box and use that along with
your keyboard.

Choosing the Perforated Board

Whether you enclose the Pi inside the keyboard enclosure or you make a separate box, you'll need to choose
the perforated board you'll solder your circuit on. Breadboards won'’t do here because they’re not stable.

A perforated board is preferred because you solder the parts of your circuit on it, making it much more stable
than a breadboard. There are two kinds of perforated boards: boards with solder lines and boards with
solder points. Figure 5-38 shows both boards.

Figure 5-38. A perforated board with solder lines and a perforated board with solder points

The advantage of the board with lines is that whatever you solder on a line, will be connected with all
other components soldered on the same line, which saves us from some wiring. The drawback of such a
board is that you'll very likely need to cut the copper at certain points to avoid shorts. For example, if you
horizontally solder an Arduino Nano on it, you'll need to break the copper so as not to have pins on opposite
sides of the Arduino connected to each other. You can do that with a drill. Figure 5-39 shows a perforated
board with lines, and with the copper cut, exactly for this reason. You'll have to make sure that your circuit
doesn’t short anywhere, otherwise you might damage your Arduino.

228

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

s e e 088 0.

Figure 5-39. A perforated board with lines and with the copper cut to avoid shorts

The board with points, on the other hand, offers some more flexibility, as you won’t need to cut the
copper anywhere, but you'll need more wires to make your connections. It’s up to you what you find more
suitable for your projects.

If you're using an Arduino Uno, you can use the Proto Shield, which is a perforated board with points
that mount on top of the Arduino, giving you easy access to its pins and breaking out the 5V and GND pins to
many points, so you have access to power and ground for many components.

Reducing the Wires of Your Circuit Board

Another tip is that it's maybe preferable to daisy chain all grounding points of all components, and have

only one of them connect to the circuit board. If you're using a lot of potentiometers and switches, it’s better
to connect the potentiometer legs that connect to ground between them, and connect them to the ground
pins of the switches too, so that only one potentiometer connects to the ground of the circuit board, and it
then passes the ground to the other components with wires. The same applies to voltage. So, potentiometers
should have their ground legs all daisy chained, their voltage legs all daisy chained, and their middle legs
should all go to the circuit board, each to an analog pin of the Arduino. Figure 5-40 shows an example of this.

229

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

Figure 5-40. Wiring the voltage and ground pins of the potentiometers

Choosing the Right Power Supply and Getting Access to the Power Pins

You might want to use only one power supply. If your keyboard is powered by the USB cable, then you're
good to go, but in case it needs an external power supply, you'll have to use two, one for the keyboard, and
one for the Raspberry Pi. It is very likely that your keyboard operates at 9V, or maybe 12V. You can use a
power supply at this voltage with enough Ambers for both the keyboard and the Pi (1 Amber is more than
enough for the Pi), and use a voltage regulator to drop down the voltage for the Pi. If you open your keyboard
case, you'll get access to its power jack. You can solder wires on the bottom side of its circuit board and
connect it this way to the voltage regulator, which will power the Pi. Consult your local electronics store as to
which voltage regulator is best for your setup, and which capacitors you'll need to make it work.

Accessing the MIDI Pins

In a similar way you can access the MIDI or USB cable pins. When enclosing a device in a box, usually we
don’t want to have cables floating around, so we solder everything inside the box. Since the USB or MIDI
connectors will be facing the outer part of the enclosure, we have to access them from their connections
on the back side of their circuit boards. Figure 5-41 demonstrates accessing the pins of the MIDI connector
of a keyboard. All connectors, (USB, power supply) can be accessed this way. The proper way is to remove

230

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

the connector you want to have access to, and in its pins holes, connect your wires. Removing circuit
components can be quite difficult. Still, you are encouraged to try it. You'll need a solder pump and perhaps
some solder wick to remove the solder from a circuit board, and then remove the component. Sometimes
you might need to be a bit violent, as the solder will probably not be totally removed.

&

Figure 5-41. Accessing the MIDI pins of a keyboard from inside the enclosure

Whichever way you choose to make your connections, make sure you connect the correct pins, as
making a mistake in the circuit can lead to damage. A multimeter can become a very good friend, since you
can use its continuity to determine connections in a circuit.

231

CHAPTER 5 ' A SIMPLE SYNTHESIZER USING A MIDI KEYBOARD AND ARDUINO

Bringing the Power Input and Audio Output out of the Enclosure

Generally, it would be best if you visit your local electronics store or an online store to see what’s available
for your project. The powering cable for the Pi can be an issue, for example. It might be a good idea to get a
power jack to a micro USB or a USB type B-to-micro USB to power up the Pi. A roll-up USB cable is also a
something to consider, as it keeps things tidy inside limited enclosure spaces. Also, the way you have access
to the audio jack in the Pi is an important aspect of your project, which you should bear in mind. Figure 5-42
shows a suggestion of how you can get the Pi power input and audio output out of the enclosure.

Figure 5-42. Getting the power input and audio output of the Pi outside the enclosure

Conclusion

We have now finished our first finalized project. Even if you used your computer with a USB keyboard, and
you didn’t deal with enclosing your project at all, you still went through the software process, which is a
fundamental process for digital electronics. If you went all the way through the enclosure process, you have
been introduced to some serious project building, which enables you to realize independent, very flexible,
and powerful projects. We’ll be using the Pi in other projects in this book, but the process will be very similar
(if not identical) to the one we went through in this chapter.

232

CHAPTER 6

An Interactive Bow

In this chapter, we’re going to build a sensor circuit to use with a bow to manipulate the sound of a live
instrument, with input given by the gestures of the performer, who will control the instrument’s audio input.
This circuit can actually fit any instrument that involves some movement, such as a trombone, for example.
The sensor we'll use is an accelerometer, which in this particular case was chosen for its tilt-sensing
capability. Tilt sensing means that the sensor is able to orientate itself with respect to the Earth’s surface. This
sensor gives values for three axes, which we can use independently. In this project, we’ll give ourselves as
much freedom as possible so that we can use any of the three axes at any time (including all three together).
We can even receive no input from the sensor, so that the performer can move freely in case he/she doesn’t
want to affect the instrument’s sound at certain moments.

We'll also use the XBee transceivers to make our project wireless and give the performer more
freedom of movement. Of course, since we’'ll be manipulating the instrument’s audio input, we must use
a microphone—whether a contact microphone, a condenser, or a dynamic microphone. Still, having a
microphone cable hanging out of the instrument is not as limiting as having a cable (or more than one
cables) hanging out of the performer’s arm. For this reason, we're going to use a wireless connection
between the Arduino and the computer. We'll also be using an Arduino Pro Mini, which is a very small and
inexpensive Arduino that suits wireless projects very well. You're free to use any Arduino type that you want,
but the circuit building will be your own responsibility.

Parts List

Table 6-1 lists all the parts that you'll need to build this project.

Table 6-1. Interactive Bow Parts List

Arduino XBee XBee Explorer XBee USB Explorer Accelerometer Push buttons Battery

1 x Pro Mini 2 1 1 1 (ADXL335 4 1x9V
accelerometer
breakout used
in this chapter)

233

CHAPTER 6 " AN INTERACTIVE BOW

Writing Custom Functions

Let’s start building this project by writing the code first. In this sketch, we’ll write a custom function to make
things clearer. Writing our own functions makes the code more modular and easier to read and modify. This
is also where I'll explain what void means. Before we write the code for this project, let’s first write a simple
sketch that defines a custom function. Listing 6-1 shows the code.

Listing 6-1. Simple Custom Function

1. byte my val;

2.

3. void setup() {

4. Serial.begin(9600);

5.

6.

7. void loop() {

8. if(Serial.available()){

9. my_val = Serial.read();
10.

11. byte val_times_2 = double_val(my val);
12. Serial.write(val_times 2);
3. }

14. }

15.

16. // simple function to double value
17. byte double_val(byte val){

18. val *= 2;

19.

20. return val;

21. }

In this simple sketch, we’ve defined a function that receives a value and multiplies it by 2; we’ve named
itdouble_val. Of course, this function could have been included in the main loop function. Since we want
to get the hang of creating our own functions, this sketch serves as a first step toward that. Also, it will help
us understand the concept of the void data type, which we have been using since the beginning of this book,
but I haven'’t explained it yet. In line 8, we check whether we've received a byte in the serial line, and if so,
we store that byte to the my_val variable. Then we create a new variable of the type byte, and assign to it the
value returned by our new function double_val. Let’s jump to line 17, which reads as follows:

byte double val(byte val){}

This is the way we define a function in C++. The first thing we need to do is define the data type this
function will return. In this case, we'll be returning a byte. Then we write the name of the function (this
is anything we want, apart from standard keywords of the C++ and the Arduino language), and lastly we
open a parenthesis and place the types of data we’re expecting to receive, which are the arguments of the
function. This function receives one argument only, which is of the byte type. Inside the curly brackets of the
function we write the code that will be executed whenever this function is called (in the loop function, it is
called in line 11). This function takes its argument (the val variable) and multiplies it by 2 (line 18). Before
it exits, it returns the result of the multiplication by using the keyword return along with the value we want
to return, in this case val. Since val is a byte, that’s the data type we’re returning, and that’s the data type
our function needs to be, which is defined in line 17. This line uses the keyword byte twice, and that may

234

CHAPTER 6 * AN INTERACTIVE BOW

be a bit confusing. The first time we use it, outside the parentheses, we're defining the type of the data that
this function will be returning. The second time we use it, inside the parentheses, we define the type of data
that this function is expecting as an argument. These two types don’t necessarily need to be the same. It just
happens here because the argument the function receives comes from the serial line, which accepts bytes,
and the value it returns will be written to the serial line, which writes bytes. In line 11, we read the following:

byte val times 2 = double val(my val);

On the right side of this line, we have the function we wrote with the argument in the parentheses.
my_valis a byte, and we can see that in line 1. The double_val function returns a byte, and that’s why we
define the val_times_2 variable as such. If we defined this variable as another data type, for example, int,
the Arduino IDE would throw an error and the code wouldn’t be compiled. By “returning” a value, I mean
that we can assign the result of the function to a variable, which is what we do in line 11. If a function returns
no value, it must be of the type void, which is the type of the two main functions in Arduino: setup and loop.
These two functions don’t include the keyword return at the end, so they’re returning nothing, that’s why
they're of the data type void. This concept may be a bit confusing to grasp, but Listing 6-2 shows some code
that will help clarify it.

Figure 6-1 shows a Pd patch that works with the code in Listing 6-1. It is a very simple patch where
all we need to do is send a raw value to [comport] and it will output the double of this value. Instead of a
number atom, we're connecting [comport] to [print] to see that it outputs a value only when it receives one.
This is because all the code of the 1oop function in the Arduino sketch is included in the curly brackets of the
if control structure. If you place lines 11 and 12, or just line 12, outside the curly brackets of if, you'll see
that [comport] will be outputting values constantly. By placing the Serial.write function inside the code of
if, we make sure that it will be called only when there is data coming in the serial line of the Arduino.

Hoel

comport 7 9662

T
print

Figure 6-1. Simple patch that works with the double_val function Arduino sketch

Type some numbers in the number atom and check Pd’s console. It should print the double of the value
you've entered. Mind that the serial communication uses bytes, and since we're calling the Serial.write
function and not Serial.print, we'll be receiving raw bytes and not their ASCII values. If you send a value
higher than 127, its double will be wrapped back to 0. If, for example, you send 128, [print] will print 0; if you
send 129, it will print 2; and so forth.

This Arduino sketch and Pd patch are not really useful for any other reason than clarifying the concept
of custom functions and the void data type, which is explained even further in the code in Listing 6-2.

235

CHAPTER 6 " AN INTERACTIVE BOW

A Function of the Data Type void

Now let’s write another simple function, but this time of the type void. What we’ll do is send a value in
Arduino’s serial line, and use that value to read from the corresponding analog pin. The function we’ll build
will read the analog pin set by the incoming value and will print the reading to the serial line. Check the code
in Listing 6-2.

Listing 6-2. A Void Custom Function

void setup() {
Serial.begin(9600);

1

2

3

4

5 void loop() {

6. if(Serial.available()){
7 byte pin = Serial.read();
8

9

1

. print_analog pin(pin);
0. }
11. }
12.

13. void print_analog pin(byte pin){
14. int val = analogRead(pin);

15.

16. Serial.print("value ");

17. Serial.println(val);

18. }

In line 9, we're calling our custom function print_analog_pin, but this time we’re not assigning its
output to any variable, like we did with the custom function in Listing 6-1. This is because print_analog pin
is of the type void, and it doesn’t return anything. If we try to assign print_analog_pin to a variable,
the Arduino compiler will throw an error and won’t compile the code. In line 13, we’re defining the
print_analog_pin function like this:

void print_analog_pin(byte pin){}

This function is of the type void but its argument is of the type byte. As stated in the example in
Listing 6-1, having one type for the function and a different one for its argument(s) is perfectly legal (you can
actually have more than one arguments to a function, each of a different type). In this function we're creating
avariable and we store in it the reading of the analog pin set by the argument of the function. Afterward, we
print this value to the serial line (this time using Serial.print) and the function ends. Since the printing of
the value is being done inside the function, there’s no need for the function to return any value, that’s why
it’s of the type void. We could instead return the value of the analog pin, and in the main loop function,
assign that value to a variable, and print it from there. This code is made like this to clarify the concept of the
data type void.

Figure 6-2 shows the Pd patch that works with this Arduino sketch. Provide a number to [comport] and
it will print the value of that analog pin. If you provide a value beyond the number of the analog pins of the
Arduino, you'll get random readings. Try this sketch with a few potentiometers to see how it really works.

236

CHAPTER 6 * AN INTERACTIVE BOW

omport 7 9606':,

Ho Hel

éer ial_pri n'c_exter:dgcﬂ=

s

r value
print

Figure 6-2. Pd patch that works with print_analog_pin function

Actual Code for the Project

As I've already mentioned, in this project we’ll use an accelerometer, which has three analog outputs, one
for each axis, so we'll need to read three analog pins from the Arduino. This sounds pretty simple, but what
we essentially want to do is choose whether an axis is active or not. To do this we’re going to use three push
buttons. Using switches is easier to use in the code, since a switch has two states, on or off, and it can stay at
any of the two, whereas the push button is at its on state only while kept pressed, so we’ll need to alternate
between states at each button press. This sensor circuit is aimed at being used with a violin, viola, cello, or
double bass bow, and must be as small as possible, making the use of switches not very well suited.

Listing 6-3 shows the code.

Listing 6-3. Accelerometer Code

1. bool activity[3];

2. int old val[3];

3.

4. void setup() {

5. for(int i = 0; 1 < 3; i++){

6. pinMode((i + 2), INPUT PULLUP);
7. activity[i] = false;

8. old val[i] = 1;

9. }

10.

11. Serial.begin(57600);

12. }

13.

14. void loop() {

15. for(int i = 0; 1 < 3; i++){

16. int button val = digitalRead(i + 2);
17. if(button_val != old val[i]){

237

CHAPTER 6 " AN INTERACTIVE BOW

18. if(!button_val){ // if button is pressed
19. activity[i] = lactivity[i];

20. // show on patch the on/off state of the axis
21. Serial.print("axis");

22, Serial.print(i);

23. Serial.print("\t");

24. Serial.println(activity[i]);

25. }

26. old_val[i] = button_val; // update old value
27. }

28. }

29.

30. // call axes according to the button presses
31. for(int i = 0; i < 3; i++) if(activity[i]) axes(i);
32. }

33.

34. void axes(int which){

35. int value;

36. switch(which){

37. case 0:

38. value = analogRead(which);

39. Serial.print("x ");

40. Serial.println(value);

41. break;

42.

43. case 1:

44. value = analogRead(which);

45. Serial.print("y ");

46. Serial.println(value);

47. break;

48.

49. case 2:

50. value = analogRead(which);

51. Serial.print("z ");

52. Serial.println(value);

53. break;

54. }

55. }

In the first two lines, we define two arrays, one of the type bool and one of the type int. These will be
used for the output of the accelerometer, and since the sensor gives three values, they must have a size of 3. In
the setup function we set the mode of the first three digital pins to INPUT_PULLUP, so we can use the integrated
resistors of the Arduino and save some space in our circuit. We also initialize the two arrays with values,
the activity array with all its elements set to false, and the old_val array with all its elements set to 1.

Detecting Button Pressed and Acting Accordingly

In the loop function we read through these digital pins one by one, and compare them to their previous state.
Since we're using the integrated pull-up resistors of the Arduino, when the push buttons are not pressed,
their digital pins will read HIGH, which is equal to 1. That’s why we've initialized the old_val array with all

its elements to 1. Line 17 checks if the current reading has changed, by comparing it to the corresponding

238

CHAPTER 6 * AN INTERACTIVE BOW

element of the old_val array, and if it has changed, in line 18 we’re checking if the push button is being
pressed, by checking if the reading is 0 (using the exclamation mark). If the push button is being pressed,
in line 19, we're reversing the corresponding element of the activity array. This line reads as follows:

activity[i] = lactivity[i];

This way we’re assigning to the current element of the array its reversed value. So if the current element
was false, it will now be assigned to true.

Lines 21 to 24 print to the serial line the axis that we’re activating or deactivating. We're achieving that
by printing the string "axis", then the i variable, which holds the number of the push button being pressed
(starting from 0, not 2), and then a horizontal tab, "\t". We'll use the [serial_print_extended] abstraction
in Pd, which uses the horizontal tab, the white space, and the comma as delimiters between the tag string
and the rest of the values. This way the string "axis" and the value of the i variable will be concatenated,
resulting in one of the following strings: "axis0", "axis1", or "axis2". After we print the horizontal tab, we
print the value of the current element of the activity array. This way we can receive these values in Pd with
the objects [r axis0], [r axis1], and [r axis2] each corresponding to a push button of our circuit. We'll use these
values in Pd to visualize which axis is active and which in not.

Line 25 closes the curly bracket of the if(!button_val) test, and in line 26, we update the value of
the current element of the 0ld_val array. By updating this value we make sure that while a push button is
being pressed, the if(button val != old val[i]) testin line 17 will not be true, until we release the push
button. When we release the push button, this test will be true, but the if(!button_val) testin line 18 will
not be true, since releasing the push button will result in the value 1 (because of the pull-up resistors used),
so the code in this test will not be executed. With this technique we can use the push buttons like switches.
Every time we press a button the corresponding value of the activity array will be reversed, which is what
happens when we change the position of a switch. Using the value of each element of the activity array in
Pd to visualize the activity state of each push button gives the appropriate visual feedback we need.

Line 27 closes the curly bracket of the if (button_val != old val[i]) test, and line 28 closes the curly
bracket of the for loop. In line 31, we run another for loop. In this loop we’re checking the value of each
element of the activity array. Ifit's true, we're calling the axes function with the index of the array passed
as an argument to that function.

The Custom Function of the Project

Now to our custom-made function, axes. In line 34, we define this function like this:
void axes(int which){}

This function is of the type void and takes an int as an argument, which argument is the number of the
push button that has been activated. The first thing we do in this function is define a variable of the type int,
value. This variable will be assigned the value read by the analog pin set by the argument of the function,
which will be one of the three axis of the sensor readings. In line 36, we begin a switch control structure,
which takes the function’s argument as its argument. Mind that in the definition of a function we must
define the type of the argument(s), but in the switch control structure used here we should not define this
type, since it has already been defined in the definition of the function itself. We have named this argument
which because it tells to the program which of the three axis of the accelerometer has been activated. This
value will be either 0, 1, or 2. In the case tests of the switch control structure, we’re using these three values
to test which part of the code we'll execute. If the which variable holds 0, the first case will be met, and its
code will be executed.

239

CHAPTER 6 " AN INTERACTIVE BOW

The code in all three cases is very similar; the only thing that changes is the string tag. If the which
variable holds 0, the value variable will be assigned the value read by the analog pin 0, and then we’ll
print it to the serial line, preceded by the string "x " (the white space in the string is used as a delimiter in
the [serial_print_extended] abstraction in Pd). Once we print the value to the serial line, we call break to
exit switch. If we don’t call this, switch will go on and test all three cases, which will result in unexpected
behavior. If the which variable holds 1, the second case will met and the value variable will be assigned the
value read by the analog pin 1, and printed to the serial line preceded by the string "y ". Ifwhich holds 2,
value will be assigned the value read by the analog pin 2, and will be printed to the serial line preceded by
the string "z ". This way we can retrieve the value of each axis in Pd, using [r x], [r y], and [r z].

Once a case has been met and its code has been executed, the axes function ends and we’ll go back to
the main loop function, at the point where we called the axes function, which is the for loop, in line 31. This
enables us to read any of the three axis in any combination, including all three at the same time. If we have
activated all three axis, the for loop will go on and test the value of all the elements of the activity array. If
all are true, axes will be called at each iteration of the for loop. The first time it will be called with the value
0 passed as its argument, so it will print the value of the analog pin 0 with the "x " string tag. Once this value
has been printed, we’ll go back to the for loop, which will test the second element of the activity array,
and axes will be called with the value 1 passed as its arguments, and it will print the value of the analog pin
1 with the "y " string tag. After that, we’ll again go back to the for loop and this time we’ll call axes with
the value 2 passed as its argument, so it will print the value of the analog pin 2 with the "z " string tag. This
technique makes our code very flexible since we have full control on which axis of the accelerometer will be
read and printed to the serial line.

One thing to mention is that in the axes function we could have avoided defining the value variable
altogether, and in the parentheses of each Serial.println, we could have included analogRead(which)
right away (in which case lines 38, 44, and 50 should be removed). This would result in exactly the same
behavior, and we would also save the space the value variable takes. Since this variable is created only when
axes is called, and when the function ends, the variable is being destroyed, it’s not so much space loss, plus
the code is quite small in size and we have a lot of space in memory to use. It is up to the coding style of each
programmer as to which of the two techniques he/she will use.

The Test Circuit of the Accelerometer

Now let’s take a look at the circuit for this code. Figure 6-3 illustrates it.

240

CHAPTER 6 * AN INTERACTIVE BOW

" 0 ® 0 ° 0 0

e e 0 @
¢ e 0 o

L B
L
L
L
L]

e 8 0 @
. 8 8 @
e 8 8 o
. 8 0 0

ADXL335

M~ 0 w = u

DIGITAL (PWH=~)

-
-~

ANALOG IN

O A m m x u
< o = =« = =

fritzing
Figure 6-3. Accelerometer circuit

This is a test circuit, that’s why it’s built on a breadboard using an Arduino Uno instead of a Pro Mini, as
mentioned earlier. In this circuit, we're using the ADXL335 accelerometer breakout board made by SparkFun,
an electronics company (https://www.sparkfun.com). Its pins are being labeled with VCC for power, GND
for ground, and X, Y, and Z for the three axis. There’s also an ST pin, but we don’t need to mind about that.
This sensor is powered with 3.3V, and we can see that in Figure 6-3. The X, Y, and Z pins of the sensor breakout
are being wired to the first three analog pins of the Arduino, with X connected to 0, Y to 1, and Z to 2. The three
push buttons are wired to the first three digital pins, starting from pin 2, as pins 0 and 1 are being reserved for
the serial communication. As in all circuits, all components share the same ground. The breadboard used
here is a mini, so that you can easily hold it with your hand and shake it to test if the sensor is working as
expected. Make sure that you use long jumper wires so that you can easily test the sensor.

241

https://www.sparkfun.com/

CHAPTER 6 " AN INTERACTIVE BOW

The Test Pd Patch

To test it, build the Pd patch shown in Figure 6-4. Whenever you press a push button, the corresponding

axis should be activated and you should be receiving its activity and values with the corresponding [receive]s
in Pd. [r axis0] and so forth will output either a 1 or a 0, depending on whether the axis is active or not.

[r x] and so forth will output the values of each axis from the sensor. On the sensor breakout board there are
indications as to which direction you should tilt the sensor so you can get the values of that axis.

=
devices
=

s
open 7

s
close

éomport 7 5’?666:'

seria l_print_extendedj
L e
S

Y axise Y axisl Y axisz
o 1o T T

r X Yy Y Z

. I I
321 297 377

Figure 6-4. Accelerometer test patch

To get the values of the X axis and the Y axis, hold the sensor horizontally to the ground and tilt it
180 degrees (toward the board pins for the Y axis and toward the sensor name label for the X axis). This
should give you the full range of these two axes. For the Z axis, hold the breakout with the sensor chip
facing upward, and tilt it 180 degrees till it faces downward. These values are flickering and that’s because
the sensor is very sensitive. Also, its range should be from around 260 to around 400 (at least this is the
approximate range of my sensor—yours might differ a bit). These values may seem a bit difficult to use,

242

CHAPTER 6 * AN INTERACTIVE BOW

so it’s better if we map them to a specific range that seems more usable. To make this whole procedure a
bit easier we’ll build a subpatch for each axis and we’ll make it in such a way that it will be easy to map the
values and save them for later use.

Building the Pd Patch

In a new Pd window, create a subpatch and name it x_axis (put a new object and write pd x_axis). What you
need to do is put all the objects shown in Figure 6-5. The red rectangle in the figure is what is called a Graph-
On-Parent in Pd (also referred to as GOP). Right-click in the empty subpatch and select Properties. This will
open the subpatch’s properties window, which is shown in Figure 6-6.

r X
=
r x_in_from
r x_in_to
r x_out_from
t
r x_out_to save_x

‘nop 260 400 © 1
=

t.f T calibrate
= [=
s igor\m loadbang
K{f“ out_from out_to - - = T
set $1 set $1 tb b
4] a 1
r x_out_from iz I I
£ x_out_to EiTT f ff r save_x 260 %Bﬁ
= : E
clip_abs 8 1 I tbb s x_in_to_set
out let i

s x_in_from_set
f f Loadbang

= -
set $1 set $1 t b b

a 1

L

s x_out_to_set
s

x_out_from_set

Figure 6-5. Subpatch to read and map the values of the X axis of the accelerometer

How to Use the Graph-On-Parent Feature

The middle part of the window in Figure 6-6 is labeled Appearance of parent patch. In that field, select the
Graph-On-Parent tick box, but leave the Hide object name and arguments unselected. As soon as you
select that tick box, the fields on the Range and size part of the window become highlighted (they are grayed
out when Graph-On-Parent is not selected). By default, the value for X are 0, 1, 85, 100, and for Y -1, 1, 60,
100. What we care about are the last two numbers for each dimension.

243

CHAPTER 6 " AN INTERACTIVE BOW

enn
Scale

Canvas Properties

X units per pixel:

Y units per pixel:
Appearance on parent patch
(¥ Graph-On-Parent
Hide object name and arguments
Range and size

X range, from 0 to 1 Size: 180 | Margin: 200
Y range, from -1 to|1 Size: | 120 | Margin: 100
Cancel OK

Figure 6-6. Properties window of a subpatch, called Canvas Properties

The Size values are the width and height in pixels of the red rectangle you see in Figure 6-5 (width for the
X/horizontal dimension and height for the Y/vertical dimension). The Margin values are the position of the
top-left corner of the red rectangle inside the subpatch, in pixels. If you leave them both to 100, the rectangle
will appear 100 pixels to the right, and 100 pixels down. I've changed the X margin to 200, so I could have
some space on the left side of the rectangle to put some object that shouldn’t appear in the parent patch.

If you take a look at your parent patch, you'll see that the subpatch you have opened, with Graph-On-Parent
selected, appears as a gray box. Go ahead and put a number atom inside the red rectangle in the subpatch and
any object outside the rectangle, and close it. Now in the parent patch you should have a rectangle with the name
pd x_axis and a number atom inside it, but not the other object. Graph-On-Parent allows you to have only
certain objects of a subpatch appear in the parent patch. Figure 6-7 illustrates how the subpatch in Figure 6-5
appears in the parent patch.

pd x_axis
Eﬁie
calibrate in_from in_to
C] 260 400
raw out_from out_to
8 8 i

Figure 6-7. Figure 6-5 subpatch appearance on parent patch

If you compare the two figures you'll see that all objects inside the red rectangle in Figure 6-5 appear
inside the rectangle in the parent patch shown in Figure 6-7, and all other objects are excluded. Notice also
that the subpatch has an outlet, which you can see in Figure 6-7. Graph-On-Parent helps us create simple,
yet functional interfaces in Pd, which make our patches more user-friendly.

244

CHAPTER 6 * AN INTERACTIVE BOW

Setting the Properties of the GOP GUIs

Go ahead and build the patch in Figure 6-5 inside your x_axis subpatch. Take care to distinguish the
messages from the objects (everything that has a value, apart from the number atoms, is a message). Once
you've done that, you'll need to change the properties of all the GUIs inside the rectangle (change the Size
values in Figure 6-6 so that all the GUIs fit in the rectangle. If you've close the Properties window, right-click
an empty part of the subpatch).

First, right-click the toggle and select Properties. In the Label field, type calibrate, and set the X offset
to 0, and the Y offset to -7. Click Apply and OK (or simply hit Return). Then select the properties of the
bang. Label it as save and set the same X and Y offsets for the label. Before you close it, in the Send symbol:
field type save_x. This is like connecting the bang to [s save_x], so any [r save_x] will receive that bang. Click
Apply and OK so that the new properties will take effect. Mind that the Send symbol: or Receive symbol:
of bangs, number atoms, sliders, and so forth, are nice features, but also makes a patch not so obvious
when trying to understand what’s happening, since the symbols they use for sending and receiving data are
hidden. I suggest using these features with care.

Now open the properties of the number atom below the toggle and in the Label field, type raw, and
click Top to display the label on the top part of the number atom. As before, click Apply and OK (this
goes for all Properties windows). Now open the Properties window of the top-left number atom, from the
group of four number atoms, labeled in_from in Figure 6-5. In the Label field, type in_from and select Top.
In the Receive symbol: field, type x_in_from_set. Open the Properties window of the number atom
next to it, labeled in_to in Figure 6-7. Label it as in_to, set the label on Top, and set the Receive symbol:
tox_in_to_set. The two number atoms below should take the same labels and receive symbols, only change
the word “in” to “out’, so the labels are out_from and out_to, and the receive symbols are x_out_from_set
and x_out_to_set. These labels represent the range of a value going “from” some value “to” some other value.

What We Have Achieved So Far in this Project’s Pd Patch

This procedure may seem a bit complicated for what this subpatch is supposed to do, but once you have the
interface built, you'll see that it will be very helpful. The subpatch in Figure 6-5 takes the value of the X axis of
the accelerometer and maps it from the range of 260-400 to the range of 0-1. The four number atoms we have
justlabeled are there to correct the incoming and outgoing range of the sensor values received. Since the
values of the sensor are not exactly from 260 to exactly 400, we can use the top two number atoms to correct
this range. The values of these number atoms are being stored in [f |s and when you click the bang, the
values of [f |s will go to the messages [set $1(and from there they will be stored in the messages containing
the values of [map]. Using “set” will store the value to the message but won’t output it. If you save the patch,
when you open it again, the values stored in the messages will be banged with [loadbang] and will go to the
inlets of [map], and this way the calibrated mapping of the sensor range will be applied on load. Describing
this procedure is not the same as seeing it in action. In the parent patch, duplicate the pd x_axis subpatch,
rename it as pd y_axis (just click the subpatch once and its name will be editable), and change all x’s to y's

in all [send]s and [receive]s, plus in the bang’s Properties window, and the four number atoms. Make sure
that you don’t miss any send/receive name because you'll get strange behavior that might be difficult to
debug. Duplicate the subpatch once more and change its name to pd z_axis and also all the send/receive
names accordingly. Connect the outlet of each subpatch to a number atom and put a [comport] connected
to [serial_print_extended] in the parent patch. Figure 6-8 illustrates what your parent patch should look like.

245

CHAPTER 6 " AN INTERACTIVE BOW

| i s
devices
=
open 7

[—1
close

éomport 7 5?68@3

éeriul_print_extendedm
=.-___________._‘=l

s
pd x_axis pd y_axis pd z_axis
o) o) o)
calibrate in_from in_to calibrate in_from in_to calibrate in_from in_to
268 408 268 400 268 400
raw out_from out_to aw out_from out_to raw out_from out_to
2 2 i g g i | & 2 i
o Z s
2 L 2

Figure 6-8. Parent patch of the x_axis, y_axis, and z_axis subpatches

If you've uploaded the Arduino sketch to your board, you should be able to use this patch immediately.
Activating an axis of the accelerometer will display its values to the corresponding number atom connected
to the subpatches. Click the calibrate toggle of the axis you've activated and the number atom labeled
raw will display the same values. If these values go below 0, or above 1, the number atom connected to the
subpatch will display either a 0 or a 1, whereas the “raw” number atom will display the values properly.

This is because the subpatches use [clip_abs 0 1] (check Figure 6-5, which is an abstraction from the
“miscellaneous_abstractions” GitHub page), right before [outlet]. The reason why [clip_abs] is preferred to
[clip] is explained later.

The “raw” number atom helps us calibrate the mapping of these values. If the values of the sensor axis
go below 0, raise the in_from value a bit, until it goes down to 0, and not lower (it might go down to -0.005,
for example, which is good). If the value goes above 1, lower the in_to value until the sensor value goes up
to 1, and not higher (again, something like 1.005 is good). This should make the sensor output much more
stable. Do this for all three axes, until the sensor readings are stable within the 0-1 range. Then click all three
save bangs and save your patch. Now if you close the patch and re-open it, the in_from and in_to number
atoms should display the values you saved, and the sensor readings should be stable on load. For example,
in my patch these values are 268, 403 for the X axis, 263, 398 for the Y axis, and 272, 403 for the Z axis, and
these values have been saved with the patch, so every time I open the patch I get the same values. Using
messages is a simple way to save the state of a patch, since number atoms and [f] will always be initialized to
0 when Pd launches.

Using the Canvas to Create Visual Feedback

There is one more piece of information the Arduino code is sending in the serial line, which we haven’t

used yet in our patch. This is the activity value of each axis, sent with the tags axis0, axis1, and axis2. It’s very
helpful to have some indication of the activity of each axis of the sensor when it comes to live performance.
Since this project is not aimed at using a headless embedded computer, we can use the computer screen to
provide the necessary visual feedback. The values sent along with the axis0 tags and so forth are either 0 or 1,

246

CHAPTER 6 * AN INTERACTIVE BOW

depending on the activity of each axis. We'll use these values to create some sort of simple interface that will
constantly inform us about the activity of each axis.

In the parent patch, put a Canvas (either from the Put menu, or with Shift+Ctrl/Cmd+C). A gray
rectangle with a blue square on its top-left part will appear on the patch. This is a surface that we can edit
in various ways to highlight certain parts of a patch, or to display a message that can change. Using a canvas
is rather helpful because we can choose the font size (or even the font style), and we can even change the
background or text color, so we can display messages in various ways. If you open the help patch of the
canvas you'll see a [pd edit] subpatch on the top-right part. In there, you'll see various ways to edit a canvas,
from which we’re going to use a few. Right-click the blue square on the canvas and set its Receive symbol: to
x_canvas. Place another two canvases and set their receive symbols to y_canvas and z_canvas. Create a new
subpatch and call it canvas_control (or whatever else you like).

Figure 6-9 illustrates the contents in this subpatch. We're using four messages for each canvas,
depending on the value received by [r axis0] and so forth. If the value is 0, we're setting the background
color of the canvas to 10 (which is gray) and the font color to 12, which is black, using the “color” message.
We're setting the size of the canvas to 130 and 30, for the X and Y dimensions, in pixels, using the “vis_size”
message. Then we're setting the label position to 5 and 14 (this is pixels starting from the top-left corner)
using the “label_pos” message, and finally we set the label to X_axis_inactive, using the “label” message.

If the value received by [r axis0] is 1, we change the background color to red to indicate that the axis is active.
We change the size to fit the label and we change the label to X_axis_active. The same applies to the other
two canvases, only the [receive] name changes to [r axis1] and [r axis2], and the “label” messages change

to Y_axis_inactive, Y_axis_active, Z_axis_inactive, and Z_axis_active. You can’t include white spaces in

the label. If you use white spaces instead of underscores in the properties of canvas, the message will be
displayed with underscores anyway. If you use white spaces in messages, everything up to the white space
will be executed and the rest will be discarded.

r axis@ r axisl
4 H
sel‘%\ sel 81
I) I _ﬁb
tbbbb tbbbb tbbbb
I I L
color 18 12 color 18 12 color 13 12
visl size 138 38 visl size 138 38 vigl size 115 30
L lpos 5 14 L 514 s 5 14

labe b X idxis_inoctive lobe Y \dxis_inoctive lobel\Y\dxis_octive

§ X_Convas $ y_convas $ y.canvas

Figure 6-9. Contents of the [pd canvas_control] subpatch

Now whenever you activate an axis of the sensor, the corresponding canvas should change its color and
message, making it clear to the performer that the axis is active. Figure 6-10 illustrates what you patch should
look like with all of these additions. In this figure the Y axis of the sensor is active and you can see its output
value displayed in the number atom connected to the pd y_axis subpatch. Notice the in_min and in_max
values of all three subpatches in the figure, which are neither 260 nor 400. These are the calibrated values
I used with my sensor, which are close to the initial values but not the same. After calibrating the sensor,

I clicked all three save bangs and saved the patch. Now every time I open it, it launches with these values so I
don’t have to calibrate it again.

247

CHAPTER 6 " AN INTERACTIVE BOW

ri pd canvas_control
‘open 7 X_axis_inactive
Close

p =

serial_print_extended T

s |
pd x_axis pd y_axis lpd z_axis
o) o) o)
calibrate in_from in_to calibrate in_from in_to calibrate in_from in_to
268 483 O] 263 398 272 483
raw out_from out_to raw out_from out_to raw out_from out_to
2 2 4 8 g i 2 2 d
0 o =
] 8.288]

Figure 6-10. Parent patch with canvases indicating the activity of the sensor axes

Building the Audio Processing Part of the Patch

Now that we’ve built the basic patch to receive the sensor data from the Arduino, let’s start building some
audio processing stuff. I'll consider you're using some type of microphone to get the instrument’s sound
into your computer. Microphones need preamplification, and many external sound cards provide it (usually
referred to as “gain”). If you're using a condenser type microphone you’ll probably need phantom power,
which many external sound cards also provide, usually indicated as “48V” or “phantom”.

We'll use the input of the instrument for this project, which will be manipulated by the accelerometer
that the performer will be using. The patch will contain two different types of processing. One will be
modulating the frequency of the input signal. The other will shift the pitch of the signal, and output it along
with the original signal, which creates a nice effect called beat frequency (when the frequency difference is
rather small). We're going to use delay lines for both types of signal processing.

Pitch Shift Subpatch

Figure 6-11 illustrates the pitch shift part. Create a subpatch and name it pitch_shift, and put the objects

in Figure 6-11 in it. What we're doing here is write the input signal to a short delay line (100 milliseconds
length) and read it with an increasing or decreasing delay time, from 0 to 100 milliseconds. This is achieved
by providing [phasor~] with either a positive or a negative frequency. If we provide a negative frequency to
[phasor~], it will output its waveform inverted, so it will go from 1 to 0. Multiplying [phasor~]’s output by
100, will give a ramp either from 0 to 100 or from 100 to 0, depending on whether its frequency is positive or
negative. On the right part of the patch in Figure 6-11 we're adding 0.5 to [phasor~]’s output and send that to
[wrap~]. This gives an offset of half a period to [phasor-~], since when it outputs 0, adding 0.5 will yield 0.5.
When [phasor~] outputs 1, adding 0.5 will yield 1.5, but [wrap~] will wrap this value around 0, so it will again
be 0.5, so the result of this is a [phasor~] with half a period offset. Below [wrap~] we have the same objects as
the ones below [phasor~].

248

‘ade~ 1
delurite~ shift 100

0.5

out let~

r detune
o
* &
o o
=42
Z =
£?ck f 20
line~ .
= + 8-5
h
wrap~
*~ 100 i 0.5 oo
i LA f’ 2 Vo~ shift
COS~
l*—H *
¥~ 0.5

Figure 6-11. Contents of the pitch_shift subpatch

CHAPTER 6 © AN INTERACTIVE BOW
r which
T
switch~
—
~ 8.5

The part where we're subtracting 0.5 from [phasor~]’s output, then dividing by 2, and then feeding
it to [cos~], produces half a sine wave starting from 0 and rising, which you can see in Figure 6-12. Try to
understand how it works. You don’t need to build the patch shown in Figure 6-12; it’s there only to illustrate
the specific part of the patch in Figure 6-11. The only thing you need to know about Figure 6-12 is that we're
dividing the sampling rate by half the size of the array, so we can store two full periods of the waveform.
We use [samplerate~], which gives the sampling rate we're currently using, when it's banged, and we're
dividing it by 256, since the size of array1 is 512. When we bang [tabwrite~] we first send a 0 to the right inlet
of [phasor~] to set its phase to the beginning, so the stored waveform will start at 0 (again, this is only for
displaying the output of this part of the patch in Figure 6-11).

249

CHAPTER 6 " AN INTERACTIVE BOW

ﬁbng

samp lerate~
e
/ 256 //F\\

E 'I \‘ 'I \..
EhGSOY"‘ "
[—]

= ng :
BTN

/~ 2 kb
L

COS~

tabwrite~ arrayl
Figure 6-12. Rising part of sine wave used to cross-fade the two pitch shifted signals

This rising sine wave is used to make a smooth cross-fade between the two [vd~]s in the patch in
Figure 6-11. If we use only one [vd~] without the rising sine wave, we'll get a pitch shifted signal, but since
we're using [phasor-~] to control the delay time of [vd~], we’ll get a click every time [phasor~] goes back to
0. By using this rising sine wave, we zero the amplitude of [vd~]’s output at the beginning and end of each
period of [phasor~], so the clicks are not heard anymore. This causes the output of [vd~] to be silent at the
beginning and end of each period of [phasor~], and for this reason we’re using another [vd~], shifted by
half a period of [phasor~], so that when the first [vd~] is silent, the second is at its full amplitude, and they
constantly cross-fade, giving a smooth pitch shifted output.

The two pitch shifted signals go to the left inlet of [*~ 0.5]. When we provide more than one input to
an object’s inlet, these inputs are being added. We multiply them by 0.5 to bring their amplitude to its half,
because the pitch shifted signal is being output along with the original signal, which is also multiplied by 0.5.
Sending both signals to [outlet~] will add them, and if we omit to multiply them by 0.5, their total amplitude
will be 2, which is not good. By multiplying them by 0.5, we make their total amplitude go up to 1, which is
what we want.

On the top part of the patch in Figure 6-11 we see a [r detune]. This object will receive values from a
[s detune] in the parent patch, which will come out from one of the three axis Graph-On-Parent subpatches.
This value will be used also in the frequency modulation subpatch, which we'll build afterward. For this
reason, the value received from the Arduino is mapped to a generic range from 0 to 1 and then remapped
in each subpatch separately. Here we want to have a range from -2 to 2. When we provide a 0 frequency to
[phasor~], there will be no pitch shifting. When we provide a positive frequency, the signal’s pitch will be
shifted downward, and when we provide a negative frequency, it will be shifted upward. A range from -2 to 2
should be sufficient for this. You can fix this to a range that suits you most.

250

CHAPTER 6 * AN INTERACTIVE BOW

Finally, there’s a [r which] going to [switch~] on the right side of the patch in Figure 6-11. [r which] will
getal or a 0 from the Arduino (we'll need to add one more push button for this), and we’ll use it to control
whether we want to use the pitch shift or the frequency modulation part of the patch. [switch~] turns the
DSP of a subpatch (and all subpatches in this subpatch) on or off. It has some other features too, but we're
using it here for this feature only.

Frequency Modulation Subpatch

Now let’s build the frequency modulation subpatch, which is shown in Figure 6-13. There are a few new
things in this subpatch. First of all, at the top we can see [sigmund~]. This object is used for sinusoidal
analysis and pitch tracking. We're using it here for pitch tracking. With no arguments provided, we’'ll get the
pitch of the input signal out the left outlet, and its amplitude out the right outlet (which we’re not using in
this project). We're connecting [sigmund~] to [moses 0], because it can output some negative values when
you don’t play. I'm not really sure why this is; probably the preamplification of the sound card is producing
some artifacts. Using [moses 0], we get all values from 0 and above out of the right outlet, excluding all
negative values. [sigmund~] outputs the pitch estimation of the input signal in MIDI note numbers, so

we're using [mtof~] to convert them to frequency values. We don’t need the [mtof_tune] abstraction here,
because if your instrument is tuned at frequency other than 440 Hz, using [sigmund~] and [mtof] will yield
the correct frequency. If your instrument is tuned at 442 Hz, and you use [mtof_tune], you'll get 444 Hz when
you play the tuning A. The [r detune], [r index], and [r feedback] objects receive their values from the Graph-
On-Parent subpatches. [r detune] will get values from 0 to 1, which are scaled to go from 0.5 to 2. Multiplying
the output of [mtof] by 1, will yield the same frequency. Multiplying it by 0.5, yields half the frequency (one
octave down), and by 2 yields double the frequency (one octave up). Multiplying it by values like 1.05, 0.55,
or 1.95 will yield a slightly shifted frequency, which can give some nice results when this frequency is used to
modulate the original signal. We're using [t b f] to get output from [* | whenever we provide a value with

[r detune], even if the hot inlet of [*] doesn't receive input from [mtof].

251

CHAPTER 6 " AN INTERACTIVE BOW

‘ade~ 1

:Ed delwriter~

.d delreader~

out let~

sigmund:;

=
moses @
=

gpof
detune controlled by X axis
18
a.

inlet
b

oH+ H =H~

5
5
f

\

X r index controlled by Y axis

I ack f 20
d waveforms E —
Line~

-
Ko

Tbadbang

. =

samp lerate~
ow -1

* A i
10080 offset [vd~] by one sample

+

r feedback controlled by Z axis

Figure 6-13. Contents of the freq_modulation subpatch

252

CHAPTER 6 * AN INTERACTIVE BOW

We're modulating the input signal with an oscillator, the waveform of which we can choose between
two waveforms in the [pd waveforms] subpatch, which is shown in Figure 6-14. The two waveforms are
a sine wave and a triangle, which we can choose by providing either a 0 or a 1 (which comes from [inlet],
but is 0 by default, using [loadbang]), where with a 0 we’ll choose the sine wave and with a 1 the triangle.
[phasor~], which is common for both oscillators, takes in a signal to control its frequency, using [line~] to
smooth out sudden changes that come both from the Arduino and the pitch estimation from [sigmund-~].
Both waveforms go from 0 to 1, instead of -1 to 1. This is because we can’t have a negative delay time
with [vd~] (which is in the [pd delreader~] subpatch). [r index] controls the total amount of delay we'll
use, by multiplying the output of the modulator oscillator with a value provided by one of the axes of the
accelerometer.

inlet

Eack f 20

line~
L - inlet
hasor~
f -
« loadbang
i
a
= = N
r o %'JCK I i Ein” pack f 20
+~ 0.5 line’? Ko 2= § =
) — line~
I —
et K
out let~

Figure 6-14. Contents of the waveforms subpatch

The part of the patch in Figure 6-13 with the comment “offset [vd~] by one sample” yields the time one
sample takes, in milliseconds. Raising the sampling rate to the -1 power, will give the inverse of the sampling
rate, since the result is like dividing 1 by the sampling rate. Multiplying this by 1000, gives the time in
milliseconds between two consecutive samples. This is a tiny delay offset we give to [vd~], since the shortest
delay it can provide is a one sample delay.

253

CHAPTER 6 " AN INTERACTIVE BOW

One thing that is different in the way we're using delay here is that we've placed both [delwrite~] and
[vd~] into subpatches. Figures 6-15 and 6-16 illustrate these. If we don’t put these two objects in subpatches,
we won't be able to get delays shorter than one sample block. Pd runs with a 64 sample block by default, so
if you don’t place these objects in subpatches, the shortest delay that you'll be able to get is approximately
1.45 milliseconds (with a 44,100 sampling rate). To get shorter delays, writing to the delay line must be
sorted before reading from it. Putting [delwrite~] and [vd~] in subpatches, we can force this order, by using
a dummy [outlet~] in the subpatch of [delwrite~], and a dummy [inlet~] in the subpatch of [vd~], and by
connecting the two subpatches.

inlet~ T~ back

z~ 16

iimiter'v

[
p

delurite~ my_del 1008

out let~

Figure 6-15. Contents of the delwriter~ subpatch

254

CHAPTER 6 * AN INTERACTIVE BOW

inlet
Eack f 20

line~

L

s~ back

inlet~ =

out let~

Figure 6-16. Contents of the delreader~ subpatch

DSP sorting in Pd follows the connection chain between objects, so connecting the two subpatches
forces the order of the writing to and the reading from the delay line. This way we can get very short delays,
down to the milliseconds between two consecutive samples, which with a sampling rate of 44,100, is
approximately 0.0227 milliseconds. Since this is the shortest delay [vd~] can give, we provide this offset to
the modulator oscillator, which is explained in the previous paragraph.

In the delreader~ subpatch we're sending the delayed signal to [s~ back], which goes back to the
delwriter~ subpatch. We’re controlling the amplitude of this delayed signal, so we can get a controlled
feedback to the delay line. Since the original and the delayed signal will be added when they go into
[delwrite~], we're using [limiter~] to make sure their total amplitude won’t go above 1. When using
[limiter~], we must delay the signal to be limited by a few samples, otherwise [limiter~] won’t have enough
time to apply the limiting envelope. [z~] is an object that delays a signal but takes its delay time in samples
rather than milliseconds. Here we're delaying the signal by 16 samples, which should be enough for
[limiter~] to apply the necessary amplitude changes. We've used this object the same way in Chapter 5.

Lastly, on the top-right part of Figure 6-13, there’s a [r which] connected to [== 0] and then to [switch~].
Like the pitch_shift subpatch, [r which] receives either a 1 or a 0. Since this value controls the [switch~] of [pd
pitch_shift] directly, we're inverting its value with [== 0] here, so that when [pd pitch_shift] is chosen, this
subpatch will turn its DSP off, and when [pd pitch_shift] is deselected, this subpatch will turn its DSP on.

The Finished Patch

Figure 6-17 illustrates the finished parent patch. We've added a Vradio with two buttons to control the type
of the modulator oscillator (which by default is a sine wave). We could have added another push button to
our circuit for this, but when building such interfaces, you should hold back a bit, because if we start putting
buttons for every single thing we might want to control, then our circuit would become a mess. Bearing in
mind that the sensor circuit is supposed to be held in one hand, while holding a bow at the same time, we
should be careful as to what decisions we take about the circuit. Controlling the waveform of the modulator
doesn’t seem to be of a very high priority to me, so I preferred to control it with a GUI instead.

255

http://dx.doi.org/10.1007/978-1-4842-1583-8_5

CHAPTER 6 " AN INTERACTIVE BOW

= -
devices
(=]
open 7

=1
close

éomport. 7 57608

serial_pri nt._extend_ecz

pd canvas_control

X_axis_inactive

Y_axis_inactive

Z_axis_inactive

s |
freq_mod
pd x_axis pd y_axis pd z_axis
o} o} of
calibrate in_from in_to calibrate in_from in_to calibrate in_from in_to
268 483 263 398 272 463
raw out_from out_to raw out_from out_to raw out_from out_to
8 8 A [} 8 5 8 A [
& & &
s detune s index s feedback

pd freq_modulation

d pitch_shift

-

ow 4
éack f 227
Line~
l*-ﬂ
I‘\
dac~

Figure 6-17. The finished patch

Another thing we've added is one more canvas to indicate what type of signal processing we're

applying, whether it’s frequency modulation of pitch shifting. Figure 6-18 illustrates the addition in [pd
canvas_control] to control this canvas. As you can imagine, you should set the receive symbol of the canvas
to process_canvas, in its properties. We've also added [pow 4] to the amplitude control to make it sound

more natural by making the control range an exponential curve, like we did in Chapter 4.

256

http://dx.doi.org/10.1007/978-1-4842-1583-8_4

CHAPTER 6 * AN INTERACTIVE BOW

isL.size 100 30
pos 5 14

§ process_canvas § process_canvas

Figure 6-18. Addition to the canvas_control subpatch

In Figure 6-17, you can see the mapping values I've set for each axis of the accelerometer. The X axis
is mapped to a range from 0 to 1, because it will control both the detune of the frequency modulation and
the pitch shift. Each subpatch maps this range to its own one. The Y axis is mapped to a range from 0 to 5,
and the Z axis to a range of 1 to 0. I've inverted the values of Z because I wanted to get 0 when the sensor
is upright, and a 1 when it’s flipped, and this is where the [clip_abs] abstraction used in Graph-On-Parent
subpatches, came in handy. If we used [clip], in the case of the Z axis, we would have a problem, because
with [clip] the first argument must always be smaller than the second one, and the same goes for the values
overriding the arguments. In the Z axis, where the “from” value is 1 and the “to” is 0, we would have to set
these values to [clip] manually to make sure we don’t get unexpected behavior, and this would make the
whole patch a bit not so functional. Using [clip_abs] helps make your interface more user-friendly and kind
of plug-and-play. Check its help patch to see how this issue arises and how it is solved.

You'll have to experiment with which axis will control which aspect of the patch, and the value rages.
Since the Y and Z axes are controlling one aspect each, I could map their range inside the [pd y_axis] and
[pd z_axis] straight. Only the X axis is controlling two things, therefore I mapped it to the generic 0 to 1 range.
Obviously, you're free to map them any way you like.

257

CHAPTER 6 " AN INTERACTIVE BOW

Additions to the Arduino Sketch

Since we've added one more push button to our circuit, we need to modify the Arduino code a bit. There are
just a few additions, which are shown in Listing 6-4.

Listing 6-4. Adding One Push button to the Code

1. bool activity[4];

2. int old val[4];

3.

4. void setup() {

5. for(int i = 0; 1 < 4; i++){

6. pinMode((i + 2), INPUT_PULLUP);

7. activity[i] = false;

8. old val[i] = 1;

9. }

10.

11. Serial.begin(38400);

12, }

13.

14. void loop() {

15. for(int i = 0; i < 3; i++){

16. int button val = digitalRead(i + 2);

17. if(button val != old val[i]){

18. if('button val){ // if button is pressed
19. activity[i] = lactivity[i];

20. // show on patch the on/off state of the axis
21. Serial.print("axis");

22. Serial.print(i);

23. Serial.print("\t");

24. Serial.println(activity[i]);

25.

26. old val[i] = button_val; // update old value
27. }

28. }

29.

30. int button val = digitalRead(5);
31. if(button val != old val[3]){

32. if(!button_val){

33. activity[3] = lactivity[3];
34. Serial.print("which ");

35. Serial.println(activity[3]);
36.

37. old val[3] = button val;

38. }

39.

40. // call axes according to the button presses
41. for(int i = 0; i < 3; i++) if(activity[i]) axes(i);
42. }

258

CHAPTER 6 * AN INTERACTIVE BOW

44. void axes(int which){

45. int value;

46. switch(which){

47. case 0:

48. value = analogRead(which);
49. Serial.print("x ");

50. Serial.println(value);

51. break;

52.

53. case 1:

54. value = analogRead(which);
55. Serial.print("y ");

56. Serial.println(value);

57. break;

58.

59. case 2:

60. value = analogRead(which);
61. Serial.print("z ");

62. Serial.println(value);

63. break;

64. }

65. }

In lines 1 and 2, we've increased the size of the arrays to 4. In line 5, we've increased the number of
iterations of the for loop to 4 to include the new push button. In line 11, we’ve changed the baud rate of the
serial communication to 38,400 because the 57,600 baud rate was very sluggish with the analog pins, while
the 38,400 baud rate worked fine. Apparently this is because of the XBees, since the Arduino Pro Mini 5V/16
Hz works fine with the USB-to-serial board (which I'll explain later) with a 57,600 baud. If you choose the
38,400 baud rate, make sure that you set it in [comport] in the Pd patch as well; otherwise, you'll get weird
behavior or the serial communication won’t work at all.

In line 15, the for loop holds its 3 iterations, since it reads the push buttons that activate or deactivate
the axes of the accelerometer, which are 3. Lines 30 to 37 read the new push button, which is on digital pin 5,
hence the digitalRead(5) function call in line 30. The value of the push button is compared to its old value,
the same way it’s done with the other three push buttons. That’s why the old_val array is increased by one
element. Using the same technique as with the other push buttons, we detect if the push button is pressed,
and if it is, we're swapping its activity value. That’s why the activity array was increased by one element.
When this is done, we print the new value of activity[3] with the "which" tag (again, the white space
is used as a delimiter between the tag and the value). Notice that we've hard-coded the element number
of both arrays old_val, and activity. Since this is a very specific project and there’s no other process
depending on the reading of the pin of the new push button, we can just as well use hard-coded numbers to
indicate which element of the array we're accessing and which digital pin we're reading, instead of variables.
The value we're using for the arrays is 3, as arrays start counting from 0, so the fourth element is 3. The rest
of the code remains as is. The code in Listing 6-4 should be completely functional with the finished patch in
this project.

259

CHAPTER 6 " AN INTERACTIVE BOW

Finalizing the Circuit

Now let’s look at the new circuit, this time on a perforated board instead of a breadboard. It is illustrated in
Figure 6-19. Since this is a rather simple circuit, luckily we won’t need to cut the copper at any point of the
board. In Figure 6-19 the board is shown with its solder lines on top. These are actually on the bottom side
of the board, but Figure 6-19 illustrates them this way to make the circuit a bit easier to read. I've grouped
the three push buttons that activate/deactivate the axes of the accelerometer together, and the push button
that controls whether we’re applying frequency modulation or pitch shift is a bit isolated, so it’s easy for the
performer to tell which push button is which. Take good care to place each component on a free line, so
that you don’t short any connections. If you take a close look, you'll see that the isolated push button is not
aligned with the leftmost button of the group of three, so that they don’t short, and we won’t have to cut the
copper of the board.

ADXL335

O
<

él'

e
e e e e w9 v w @
2rerseenn.

NIQ

inoq

e e e
. OO

fritzing

Figure 6-19. Accelerometer circuit on a perforated board

The Arduino (a Pro Mini in this case) gives ground to one pin of the perforated board, and all
components get the ground from there, much like the way we do it with a breadboard, only now there’s no
clear indication that the specific strip is the ground. I have built this circuit on a perforated board with solder
points instead of lines, because I had one lying around. Since the circuit is rather simple, it’s not difficult
to build it on a board with points as well. I already mentioned that both boards have their advantages and
disadvantages, and it’s up to you as to what kind of circuit board you choose. Figure 6-19 illustrates the

260

CHAPTER 6 * AN INTERACTIVE BOW

circuit in this project on a perforated board with solder lines because it’s easier to show the connections.
Apart from that there’s no real preference to one of the two kinds of boards.

The only component that needs voltage is the accelerometer (the push buttons use the internal pull-up
resistor, so they're connected to 5V). The ADXL335 sensor is powered with 3.3V, so the Arduino Pro Mini
can'’t provide the correct voltage for it. If used with an XBee, and an XBee Explorer, we can use the onboard
3.3V pin of the Explorer to power up the accelerometer (in Figure 6-19 the XBee is partly visible, in order for
the board to be visible. On the actual circuit, an XBee is mounted on top of the XBee Explorer. The 3.3V pin is
labeled, as all pins on the Explorer board). Mind that the Arduino connects to the XBee Explorer with angled
headers and not jumper wires. It makes the connection more stable, Figure 6-20 shows it. The whole circuit
is powered by a 9V battery, where the positive pole connects to the RAW pin of the Arduino, and the negative
pole connects to ground. Then the Arduino provides power for the XBee, which provides power for the
accelerometer. All components share the same ground (that’s a rule in electronics, even if you have different
voltages, the ground must be common for all components of the circuit).

Figure 6-20. The Arduino Pro Mini and the XBee mounted on the XBee Explorer on one side of the bow

The concept of this circuit is to be held with the same hand that holds the bow. The battery with the
Arduino and the XBee can go on one side of the bow, and the perforated board can go on the other side.
Make sure that the wires you use are long enough so that you're able to split the circuit in these two parts, but
not very long, so that they hang from the performer’s hand. Figures 6-20 and 6-21 illustrate the positioning of
the Arduino and the sensor circuit. Figures 6-22 and 6-23 illustrate the bow held. I used some white glue and
arubber band to hold all the components of the circuit in place. Placing the circuit on the outer side of the
bow, facilitates key presses. With a little bit of practicing, it should become rather easy to use the circuit.

To make this circuit work you need another XBee with a USB Explorer, connected to your computer.
Make sure the XBees are properly configured, and they use the same baud rate with the Arduino (and
[comport], of course). The two XBees must be able to talk to each other so that you can get the accelerometer
data in Pd. Configuring the XBee was discussed in Chapter 3, so if you don’t remember how to do it, go back
to review that chapter.

261

http://dx.doi.org/10.1007/978-1-4842-1583-8_3

CHAPTER 6 " AN INTERACTIVE BOW

Figure 6-21. The accelerometer circuit on the other side of the bow

Figure 6-22. The Arduino side of the bow held

262

CHAPTER 6 * AN INTERACTIVE BOW

Figure 6-23. The sensor side of the bow held

The Arduino Pro Mini doesn’t have a USB-to-serial converter, which is necessary to upload code to
it from the Arduino IDE. The Arduino Uno has one on board, that’s why we can interact with it from the
computer right away. You need such a converter to upload code to the Pro Midi. There are a few different
ones, so make sure the one you get has its pins broken out on its board in such a way that it will work with
the Pro Mini. Consult your local electronics store as to which one to get.

The Arduino Pro Mini used in this project is 5V/16 MHz. There’s also an Arduino Pro Mini 3.3V/8
MHz. I haven’t used it so I don’t really know if you can wire it with the XBee the way it is wired in the circuit
in Figure 6-19, because the XBee Explorer pin connected to the VCC pin of the Arduino is a 5V pin, and
3.3V won'’t be sufficient. Also, I'm not sure if the 3.3V/8 MHz Arduino Pro Mini can handle the 38,400 baud
rate with the analog pins, even with a USB-to-serial board. You'll have to test for yourself. An advantage
of the 3.3V/8 MHz Arduino Pro Mini is that you can provide power from it for the accelerometer, since the
accelerometer also works at 3.3V. Since the XBee Explorer provides this voltage from its breakout pins, this is
not really a problem, when used with the 5V/16 MHz Arduino Pro Mini.

263

CHAPTER 6 " AN INTERACTIVE BOW

Using Bluetooth and a Voltage Divider Instead of the XBee

You should bear in mind that if you intend to use a Bluetooth module instead of the XBee, you should take
care not to provide the wrong voltage to the accelerometer. The HC-06 Bluetooth module does not provide

a voltage pin, so you can’t use it to power up the accelerometer. In this case, you'll have to power the
accelerometer from the Arduino. But I've already mentioned that the accelerometer needs 3.3V and not 5V.
To solve this problem, you need to make a voltage divider. This is pretty simple—all it takes are two resistors.
Figure 6-24 illustrates the schematic of a voltage divider that takes 5V and gives 3.3V. The two resistors must
have the value relationship as in Figure 6-24. As shown in this figure, you should apply half the resistance of
the other. This means that you don’t necessarily need to use a 10K and a 20K resistor to make your voltage
divider; you could also use a 1K and a 2K resistor, and you'd get the same results. I'm not sure if you can find
a 2K or a 20K resistor on the market, but it’s possible to build such a voltage divider with three resistors of
the same value. Two resistors must be connected in series; this way, they will apply the sum of their values,
which is double the value of one resistor. If you have three 10K resistors, then you can connect two of them in
series and they’ll yield 20K. Figure 6-25 illustrates how to build a voltage divider in a breadboard view.

< \W\—

Figure 6-24. Voltage divider schematic with two resistors

264

CHAPTER 6 * AN INTERACTIVE BOW

This side gives 3.3V

eseeleconpugercccsssssescscnss
....-w... * ® @ ° 0 0 0 0 " 0 0 O 00 E DN
-M’....... ® ® @ @ 9 0 0 0 0" 0 0 P 0 E DN

This side takes 5V

o o
fritzing
Figure 6-25. Voltage divider circuit with three resistors

Another drawback of the HC-06 Bluetooth module is that its VCC and GND pins are inverted compared
to those on the Arduino Pro Mini, so you can’t really use headers like we did with the XBee; but you'll need to
use wires, at least for these two pins. You could connect the RXD and TXD pins with headers on the Arduino
since they are aligned (they are also inverted, but that’s what we want—the RX1 pin of the Arduino to connect
to the TXD of the HC-06, and the TXO0 of the Arduino to connect to the RXD of the HC-06). But you'll need to
use wires for power and ground; otherwise, it won’t work and you might even damage your device.

Finally, once you've built the circuit, you might want to change what each axis of the accelerometer
controls in the Pd patch. You may find it more appropriate that the X axis controls the feedback of the
frequency modulation, and the Y axis controls the detune, for example. It’s up to you (or the performer who
you are building it for) how this circuit will behave; my input in this project are only suggestions.

265

CHAPTER 6 " AN INTERACTIVE BOW

Conclusion

The setup of this project might seem a bit too simply made, but that’s the goal of it. You can try to build a
case for the sensor circuit, but that’s beyond the scope of this chapter. Another solution is to use the LilyPad
Arduino, which is designed especially for embroidered projects. With this Arduino, you can use conductive
thread and sew your circuit onto textiles (including clothes). There are various sensors designed to be used
with the LilyPad, even an accelerometer based on the ADXL335. There’s also an XBee shield, so you can
make your project wireless. Since I'm no good at teaching anyone how to sew, I leave this to you.

Even though the setup is not very nice-looking, it’s still functional and enables you to create lots of
different projects. The audio part of this chapter is only a suggestion, of course; nevertheless, it’s one that
can be used as a finished project. Having three control inputs might seem a bit poor on some occasions, but
being able to use all three controls without occupying your hands for this is really freeing and can prove to be
very inspirational. You're invited to take this project from this point to another level, using your own creative
thinking and practice.

266

CHAPTER 7

An Interactive Drum Set

In this chapter, we’re going to build an interactive drum set. We're not going to build the actual drum set, of
course, but we're going to enhance a drum set by placing a few sensors on some of the drums, which

will give us input on each drum hit. We'll use that input to trigger some samples in various ways. We're

also going to use a few foot switches to change between various types of sample playback, but also to
activate/deactivate each sensor separately.

The sensors we're going to use are simple and inexpensive piezo elements, the ones used for contact
microphones. We're going to build four of these in such a way that it’s easy to carry around and set up, so you
can use this setup in gigs you're playing. This time, we’ll use the Arduino Uno since this project is not going
to be embedded anywhere, but we’ll be using it with our personal computer. To make our lives easier, we'll
use the Arduino Proto Shield, a board that mounts on top of the Arduino Uno with solder points that give
easy access to all Arduino pins.

Parts List

Table 7-1 lists the components that we'll need to realize this project.

Table 7-1. Parts List

Arduino Piezo Foot Connection LEDs Resistors Proto
elements switches Jacks Shield
1 (Uno or 4 (with or 4 4 x 1/4-inch female 4 4 % 220Q 1 (optional)
other type) without (mono or stereo) 4 x 1IMQ
enclosure) 4 x 1/8-inch female

(mono or stereo)
4 x 1/8-inch male

267

CHAPTER 7 © AN INTERACTIVE DRUM SET

Other Things We’ll Need

In this project, we'll use an abstraction I've made: [guard_points_extended]. You can find it on GitHub
athttps://github.com/alexdrymonitis/array abstractions. All the rest will be explained in detail
throughout the chapter.

First Approach to Detecting Drum Hits

Piezo elements can be used with the analog pins of the Arduino. They provide voltage that corresponds to
the vibration it detects. Our sketch will be based on the Knock tutorial, found on the Arduino web site, but
we're going to change it quite a lot to fit the needs of this project. What we essentially want is to detect drum
hits. This can be easily achieved just by reading the analog pins of the Arduino and printing their values
over to Pd. Since these sensors can be quite sensitive, we're going to apply a threshold value, below which
nothing will be printed. Listing 7-1 shows a sketch very similar to the Knock tutorial sketch.

Listing 7-1. Basic Piezo Element Reading

1. int thresh = 100;

2. const int num_of sensors = 4;

3.

4. void setup() {

5. Serial.begin(115200);

6. }

7.

8. void loop() {

9. for(int i = 0; 1 < num_of sensors; i++){
10. int sensor val = analogRead(i);

11. if(sensor val > thresh){

12. Serial.print("drum"); Serial.print(i);
13. Serial.print("\t");

14. Serial.println(sensor val);

15. }

16. }

17. }

This code is rather simple and doesn’t need a lot of explanation (or comments). All we do is set the
number of sensors we're using (which must be wired from analog pin 0 and on, so that the for loop on
line 9 will work as expected) and read through their analog pins. If the value of each pin is higher than the
threshold value we've set on line 1, then we print that value with the tag "drum" followed by the number
of the pin. Notice the high baud rate we're using in line 5. Since we want to detect every single hit on each
drum, a high baud rate (the highest the Arduino Uno can handle) is desired here.

268

https://github.com/alexdrymonitis/array_abstractions

CHAPTER 7 © AN INTERACTIVE DRUM SET

First Version of the Circuit

Figure 7-1 shows the circuit for the code in Listing 7-1. You don’t really need to have four piezo elements;
you can use as many as you have. Just make sure you set the correct number on line 1 of your code. Also,
you can test the circuit in Figure 7-1 on some hard surfaces if you don’t have a drum set available. Using
drumsticks or something similar will work better than knocking on these surfaces with your hands.

LouTNnpJy

. NO M eeerssssssnens,
{ iy
ONDEO
1 (~=WAd) TYLIZIQ

1)
UMW s o

fritzing
Figure 7-1. Four piezo elements circuit

The piezo elements shown in Figure 7-1 are enclosed in a hard case. Some electronics stores have
these kinds of piezo elements, but you can also use the ones without an enclosure. Of course, the enclosure
protects the sensor, which might be desired, especially during transportation (you don’t want to find your
sensor with its wires broken when you arrive at your gig venue for your setup and sound check). Both types
of sensors—with and without the enclosure—come with wires soldered on them, so all you need to do
is extend the wires to the length you want. Also, the enclosed sensors are easier to mount, since you can
use duct tape straight on them without worrying that untaping them will rip off the wires. Even with the
enclosure, these sensors are pretty cheap.

269

CHAPTER 7 © AN INTERACTIVE DRUM SET

The resistors used in this circuit are 1IMQ resistors, which connect the positive wire of the sensor to
ground. Other than that, the circuit is pretty simple and straightforward.

Read the Drum Hits in Pd

Figure 7-2 shows the Pd patch that you'll need for this circuit and the Arduino code to work with (you
probably already guessed how to build this patch anyway).

-
devices

open 7

[=]
close

éompc:rt 7 115262;

seria l_print_extendeg:

=

s

Y drum@ Y druml Y drum2 Y drum3
- = <

print drum@ print druml print drum2 print drum3

Figure 7-2. Pd patch that works with the Arduino sketch in Listing 7-1

Instead of number atoms, we're using [print] for each sensor for a reason. Try some hits on each drum
(or any hard surface you're using) with a drumstick. What you’ll probably get is a series of values instead of
a single value. This is because the piezo element is an analog sensor, and the values it sends to the Arduino
are a stream of numbers representing a continuously changing electrical current. Let’s say that we hit the
first drum (or whatever we're using as a surface) with a drumstick. As the for loop on line 9 goes through
the analog pins, it will detect a value greater than the threshold on the first analog pin, and it will print that
value. Then it will go through the rest of the pins and start over. When the loop starts over, the surface of
the drum we’ve hit will still be vibrating, and pin 0 will still be giving values greater than the threshold, so
the loop will again print these values to the serial line. Getting so many values per hit is rather messy, so
it’s better if you receive only one value, and preferably the highest value of the hit. We can do that in Pd or
Arduino. I'm going to show this both ways. It will then be up to you what you choose.

270

CHAPTER 7 © AN INTERACTIVE DRUM SET

Getting the Maximum Value in Arduino

To get the maximum value from all the values above the threshold is a rather easy task. All we need to do is
check every value above the threshold if it’s greater than the previous one. This is done by calling the max
function and checking every new value against the previous one. Listing 7-2 shows the code.

Listing 7-2. Getting Maximum Sensor Value in Arduino

1 int thresh = 100;

2 const int num_of sensors = 4;

3 int sensor_max_val[num_of_sensors];

4. int sensor thresh[num_of sensors];

5. int old sensor thresh[num of sensors];
6

7

8

9

void setup() {
Serial.begin(115200);

10. }

11.

12. void loop() {

13. for(int i = 0; i < num_of sensors; i++){

14. int sensor_val = analogRead(i);

15. if(sensor val > thresh){

16. Serial.print("drum"); Serial.print(i);
17. Serial.print("\t");

18. Serial.println(sensor val);

19. sensor_thresh[i] = 1;

20. sensor_max_val[i] = max(sensor_max_val[i], sensor_ val);
21. old sensor thresh[i] = sensor thresh[i];
22. }

23. else{

24. sensor_thresh[i] = 0;

25. if(sensor_thresh[i] != old sensor thresh[i]){
26. Serial.print("highest");

27. Serial.print(i); Serial.print("\t");
28. Serial.println(sensor max val[i]);

29. sensor_max_val[i] = 0;

30.

31. old_sensor_thresh[i] = sensor_thresh[i];
32. }

33, }

34. }

Lines 3 to 5 define three new arrays. The first one, sensor_max_val, will be used to store the maximum
value of each sensor, as its name suggests. The other two are used to see if we've just crossed the threshold
from above to below. The loop function begins the same way it did in Listing 7-1. Again, we're printing
all values above the threshold for comparison with the highest one to make sure that our code works as
expected. In line 19, we set the current element of sensor_thresh to 1, denoting that we're above the
threshold. In line 20, we test the value of the sensor to see if it’s greater than the previous one.

We achieve this by comparing the current element of the sensor_max_val array against the value stored
by the sensor, calling the max function. This function takes two values and returns the greater of the two. At
the beginning, the sensor_max_val array has no values stored, so whatever value is read and stored in the

271

CHAPTER 7 © AN INTERACTIVE DRUM SET

sensor_val variable will be greater that the current element of the sensor_max_val array, so that value will
be stored to the current element of the sensor_max_val array.

If the next time the for loop goes through the same sensor, its value is still above the threshold, if the
new value is greater than the previous one, again line 20 will store the new value to the corresponding
element of the sensor_max_val array, but if it’s smaller, then sensor_max_val will retain its value. Even
though we’re assigning to the sensor_max_val array the value returned by the max function, during the
test, the sensor_max_val array retains its value. Only if its value is smaller than the value of sensor_val
will the sensor_max_val array change, otherwise max will assign to it its own value, since it was the greatest
of the two. After we store the maximum value, we update the old_sensor_thresh array according to the
corresponding value of the sensor_thresh array. We’ll need these two values when we drop below the
threshold.

Updating the sensor_thresh Array

If we drop below the threshold, we set the current element of the sensor_thresh array to 0, and then we
test if its value is different from that of the o1d_sensor_thresh array, in line 25. If it’s the first time we drop
below the threshold after a drum hit, this test will be true, since the 0ld_sensor_thresh array won’t have
been updated yet and its value will be 1. Then we print the maximum value stored and we set the current
element of the sensor_max_val array to 0. If we don’t set that to 0, the next time we hit the drum, the values
of the sensor might not go over the last maximum value. And if sensor_max_val has retained its value, the
max function in line 20 will fail to store the new maximum value to sensor_max_val, since sensor_max_val is
part of the test.

After we've checked whether the current element of the sensor_thresh and the old_sensor_thresh
arrays are different, we update the old_sensor_thresh array. This way, as long as we don'’t hit the drum, the
test in line 25 will be false and we’ll prevent the Arduino from printing the same maximum value in every
iteration of the for loop.

Reading All Values Above the Threshold Along with the Maximum Value

Figure 7-3 illustrates the Pd patch for the code in Listing 7-3. Upload the code to your Arduino. (You'll need
to send the message “close” to [comport] in Pd if you have the previous patch still open; otherwise, the
Arduino’s serial port will be busy and the IDE won'’t be able to upload code to the board.) Open its serial
port in Pd. Now whenever you hit a drum, you'll get all the values that were above the threshold printed as
drum0, drum1, and so forth, and the highest value of each sensor printed as highest0, highest1, and so on.

272

CHAPTER 7 © AN INTERACTIVE DRUM SET

= -
devices

=
open 7

(==}
close

éomport 7 115261

seria l_print_extendedj

S ="

Y drumd r drumil r drum2 é drum3
print drum@ print drumi print drum2 print drum3
r highesta r highestl r highest2 r highest3

print highest@ print highestl print highest2 print highest3
Figure 7-3. Pd patch that works with the code in Listing 7-2, for testing the code and circuit

What you'll probably notice is that you'll probably get more than one highest values with a single drum
hit. Every time you hit a drum, the sensor values cross the threshold, and the code gives you the highest of
the values, but the sensor values might drop below the threshold and then rise above it again, all within the
same drum hit. Don’t forget that this is an analog signal that fluctuates as long as the drum surface vibrates.
Figure 7-4 illustrates this.

273

CHAPTER 7 * AN INTERACTIVE DRUM SET

e OO0 Pd-extended

. I .
- I o -

drumO: 208
drumQ: 365
highestQ: 365
drumO: 296
highest0: 296
drumQ: 185
drumO: 131
drumO: 155
drumO: 193
drumQ: 194
drumQ: 175
drumO: 101
drum0: 114
drumQ: 106
drumQ: 131
drumO: 129
drum0: 113
highest0: 194
drumQ: 106
highest0: 106
drumO: 105
highest0: 105

Tcl: ' | Log: | 2 |

Figure 7-4. Multiple highest values with a single hit

Debouncing the Fluctuation Around the Threshold

This is a bit tricky to overcome. What we need to do is define a debounce time, before which the maximum value

won't be printed to the serial line, but only saved. If the sensor values go above the threshold in a time shorter
than the debounce time, then we'll keep on testing to get the maximum value. Only when the debounce time is
over will we print that value to the serial line. Listing 7-3 shows the modified code that solves this problem.

Listing 7-3. Debouncing Sensor Readings

// variables and constants that you might need to change
int thresh = 100;

const int num_of sensors = 4;

int debounce_time = 10;

// arrays for the sensors
int sensor thresh[num of sensors];

~Nouvi s WN R

274

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.

CHAPTER 7 © AN INTERACTIVE DRUM SET

int old sensor thresh[num of sensors];
int sensor below_new[num of sensors];
int sensor_below_const[num_of_sensors];
int sensor_max_val[num of sensors];

int sensor_above thresh[num of sensors];

void setup() {
Serial.begin(115200);

}

void loop() {
for(int i = 0; 1 < num_of sensors; i++){
int sensor_val = analogRead(i);
if(sensor val > thresh){
Serial.print("drum"); Serial.print(i);
Serial.print("\t");
Serial.println(sensor val);
sensor_thresh[i] = 1;
if(sensor_thresh[i] != old sensor thresh[i]){
// count how many times the sensor rises above threshold
sensor_above_thresh[i] += 1;
}
sensor max_val[i] = max(sensor max val[i], sensor_ val);
old sensor_thresh[i] = sensor thresh[i];
}
else{
sensor_thresh[i] = 0;
// get a below threshold time stamp for the sensor
sensor_below const[i] = (int)millis();
if(sensor_thresh[i] != old sensor thresh[i]){
// get a time stamp every new time the sensor drops below threshold
sensor_below new[i] = (int)millis();
}
old sensor thresh[i] = sensor thresh[i];
if((sensor_below const[i] - sensor below new[i]) > debounce_ time){
// make sure we print the values only once per hit
if(sensor_above thresh[i] > 0){
Serial.print("highest");
Serial.print(i); Serial.print("\t");
Serial.println(sensor max val[i]);
sensor_max_val[i] = 0;
// zeroing sensor_above thresh[i] will prevent this chunk of code
// from be executed before we hit the drum again
sensor_above thresh[i] = 0;

275

CHAPTER 7 © AN INTERACTIVE DRUM SET

This code is a bit more complex than the code in Listing 7-2, as we need to overcome a pretty complex
problem. In the beginning of the code, we define some variables and constants that we might need to
change, but these are the only values; the rest of the code remains untouched. Lines 8 to 16 define some
arrays for the sensors. All these arrays are necessary to detect whether the values rising above the threshold
are within the same drum hit, or whether it’s a new drum hit.

In the loop function, the lines 23 to 29 are identical to the beginning of the loop function in
Listing 7-2. In line 27, we check whether we've risen above the threshold for the first time, by doing the
reverse test we did in Listing 7-2, when we went below the threshold. If it’s true, we increment the value of
the corresponding element of the sensor_above_thresh array, which counts how many times we’re going
above the threshold when coming from below it. Then we go on and retrieve the maximum value of the
sensor, like we did in Listing 7-2.

Getting Time Stamps

In line 34, the code of else starts. At the beginning, we set the current element of the sensor_thresh array
to 0, like in Listing 7-2 and what we do then is take a time stamp of when the current sensor was measured
to be below the threshold. We do that by calling the function millis(). This function returns the number of
milliseconds since the program started (since we powered up the Arduino, or since we've uploaded the code
to it). This function returns an unsigned long data type, but the sensor_below_const array is of the type
int. To convert the data type that the millis function returns, we cast its returned value to an int, by calling
it like this:

(int)millis();

This way the value millis returns will be converted to an int. It’s probably OK not to do this casting at
all, and call millis as if it returned an int, but casting its value is probably a better programming practice,
and it’s also safer.

Mind that the time stamp is not about when the sensor values drop from above the threshold to below
it, but whenever the sensor is measured to be below the threshold, which will happen in every iteration of
the for loop, if the sensor is below the threshold (meaning, for as long as the corresponding drum is not
being hit).

In line 38, we're checking if the sensor values have dropped from above the threshold to below it. If it’s
true, we're taking a new time stamp, this time denoting the moment we dropped below the threshold.
We're going to need these two time stamps for later. After taking the new time stamp, we update the
old_sensor_thresh array.

In line 43, is where we're checking whether we have just dropped below the threshold (which means

that we might go up again, and we don’t want to print any values), or if we have passed the debounce time,
so we need to print the maximum value to the serial line. We're checking if the difference between the two
time stamps is greater than the debounce time we've set in line 5, which is 10 (milliseconds). Since this test
will be made every time a sensor is measured below the threshold, which will happen for as long as a drum
is not being hit, we need to take care that the code in this test is not being executed every single time, but
only after a drum hit. This is where the sensor_above_thresh array is helpful. In line 45, we're checking
whether the current sensor counter in the sensor_above_thresh array is above 0. If it is, it means that the
sensor has gone above the threshold at least once, so there is some data we should print to the serial line.
If the test of line 45 is true, we're printing the maximum value of all the values of the sensor, including those
that went from below the threshold to above it, within the debounce time. After we print the value, we set to
0 the elements of the sensor_max_val and sensor_above_thresh arrays, so we can start from the beginning
when a new drum hit occurs.

We have added only a few things to the code in Listing 7-2 and we have overcome the problem of
multiple highest values with a single drum hit. All we needed was two time stamps and a debounce time.
You can use the same Pd patch (the one in Figure 7-3) with this code. Compare the results with the code in

276

CHAPTER 7 © AN INTERACTIVE DRUM SET

Listing 7-2 and the one in Listing 7-3. You'll see that with the latter you get only one “highest” value per hit,
whereas with the former you might get more. If you still get more than one “highest” value with the code in
Listing 7-3, try to raise the debounce time in line 5. Of course, we don’t need the raw “drum” values; they're
there only for testing. Experiment with the debounce time, try to set it to the lowest possible value, where
you don’t get multiple “highest” values with one hit, so that your system is as responsive as possible. Another
thing to change can be the threshold value, which will determine how responsive to your playing the system
will be. We'll leave that for later, as it’s better if we control this from Pd instead of having to upload new code
every time.

Getting the Maximum Value in Pd

Now let’s see how we can achieve the same thing in Pd. We'll collect all the values printed by the Arduino,
and when we're sure we're done with a drum hit, we'll get the maximum of these values. We'll take it straight
from the second step, where we define a debounce time, so that we don’t get multiple maximum values

for one drum hit. Even though we’re checking for the maximum value in Pd, we still have to start with the
Arduino code. Listing 7-4 shows the code.

Listing 7-4. Getting Maximum Value in Pd

1. // variables and constants that you might need to change
2. int thresh = 100;

3. const int num_of sensors = 4;

4. 1int debounce_time = 10;

5.

6. // arrays for the sensors

7. int sensor_thresh[num of sensors];

8. int old_sensor_thresh[num_of sensors];

9. int sensor_below new[num_of sensors];

10. int sensor_below const[num of sensors];

11. int sensor above thresh[num of sensors];

12.

13. void setup() {

14. Serial.begin(115200);

15. }

16.

17. void loop() {

18. for(int i = 0; i < num_of sensors; i++){

19. int sensor_val = analogRead(i);

20. if(sensor_val > thresh){

21. Serial.print("drum"); Serial.print(i);

22. Serial.print("\t");

23. Serial.println(sensor val);

24. sensor_thresh[i] = 1;

25. if(sensor_thresh[i] != old sensor thresh[i]){
26. // count how many times the sensor rises above threshold
27. sensor_above thresh[i] += 1;

28.

29. old sensor_thresh[i] = sensor thresh[i];

30. }

277

CHAPTER 7 © AN INTERACTIVE DRUM SET

31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.

else{

sensor_thresh[i] = 0;
// get a below threshold time stamp for the sensor
sensor_below const[i] = (int)millis();
if(sensor_thresh[i] != old sensor thresh[i]){
// get a time stamp every new time the sensor drops below threshold
sensor_below new[i] = (int)millis();
}
old_sensor_thresh[i] = sensor_thresh[i];
if((sensor_below const[i] - sensor below new[i]) > debounce time){
// make sure we print the values only once per hit
if(sensor above thresh[i] > 0){
Serial.print("drum");
Serial.print(i); Serial.print("\t");
Serial.println("bang");
// zeroing sensor_above_thresh[i] will prevent this chunk of code
// from be executed before we hit the drum again
sensor_above thresh[i] = 0;

}

This code is very similar to the code in Listing 7-3. What we don’t do here is check the maximum of

the values that are above the threshold since we’ll do it in Pd, we only print them to the serial line. Again,
we're taking the same time stamps and we’re checking if we’ve crossed the debounce time so we can get the

maximum value in Pd. If we've crossed the debounce time, we send a bang to Pd under the same tag, "drum

followed by the number of the sensor. This bang will force the maximum value to be output. Figure 7-5
shows the Pd patch for this code.

278

CHAPTER 7 © AN INTERACTIVE DRUM SET

= .
devices

=
open 7

=
close

énmport 7 1152lZIE1=

serial_print_extendeE:

S='_
T drum@ r druml r drumz r drum3
route bang flnut route bang f loat route bang f loat route bang f loat
s s = s = Z =
tbb tbb tbb tbb
4 a a

f=' mgy%f] mgy%f] mgy%f 7]
f f f f
" =
print drumB print druml print drumz print drum3

Figure 7-5. Pd patch that calculates the maximum value of each sensor

This patch is slightly more complex than the patch in Figure 7-3. Since both the values of the sensor, but
also the bang are printed to the serial line under the same tag, we'll receive them with the same [receive].
We use [route bang float] to distinguish between floats (remember, in Pd all values are floats, so even though
we're printing integers from the Arduino, Pd receives them as floats), and bangs. Each float goes to a [max 0],
which outputs the maximum value between its arguments and the value coming in its left inlet to two
[f]s. [max]’s output goes to the left (hot) inlet of the [f] on the right side, which will immediately output that
same value and send it to the right (cold) inlet of [max]. This way the argument of [max] will be overridden
by the output of the right [f], which is essentially the output of [max] itself. The same output goes to the right
inlet of the [f] to the left side. This way, we store the maximum of all incoming values. It is the same as the
following line of code in Arduino:

sensor_max_val[i] = max(sensor_max_val[i], sensor val);

279

CHAPTER 7 © AN INTERACTIVE DRUM SET

When we receive a bang, we first set 0 to [max], so we reset its initial argument for the next drum hit,
and then we bang the left [f] to force it to output its value. To test whether this works as expected, connect
a [print raw0] (type the number of each sensor, such as rawl, raw2, and so forth) to the middle outlet of
[route], which outputs all the incoming floats, and see if the value printed as drum0, drum1, and so on, is
equal to the maximum value of all the values printed as raw0, raw1, and so forth in Pd’s console.

Mind that we don't use [trigger] to send the output of [max] to the two [f]s, but instead we use the fan
out technique. The order these values are being output depends on the order the objects were connected,
and there’s no way to really tell how these objects were connected (only by looking at the patch as text, but
this is not something very helpful anyway, plus its rather confusing). In this case, the fan out doesn’t affect
the patch at all, since there’s no other calculation made depending on the order of this output. In general, it’s
better to use [trigger], but in such cases (like this or the case of a counter), it’s OK to use fan out.

Again, you might want to experiment with the debounce time set in the Arduino code to make your
system as responsive as possible. Make sure that you get only one value printed as drum0, drum]l, and so
forth for every drum hit. If you start having more than one, then you should raise the debounce time a bit.
Test this until you get the lowest debounce time possible.

What we've done here is take away some complexity from the Arduino code and add it to the Pd patch.
This shows us that the same thing is possible in different programming languages (well, they're not so
different, Arduino is written in C++ and Pd in C). Now let’s start building on top of this to make our project
more interesting.

Having Some Fun Before We Finalize

This project is aimed at playing various samples stored in arrays in the Pd patch, every time we hit a drum.
There are various ways to play back a sample. Before we build the circuit and code of the Arduino, let’s first
have some samples play back in reverse every time we hit a drum.

I have downloaded some drum samples from freesound.org. Since it’s a drum set, it could be nice to
have a drum sound corresponding to each kind of drum (kick drum, snare drum, and so forth), playing
backward every time we hit it. Figure 7-6 illustrates the Pd patch.

280

CHAPTER 7 © AN INTERACTIVE DRUM SET

= -
devices
=
open 7
=
close

Eomport 7 115262

seriul_print_extende&j

=

s

click here to load sample

read -resize ./sounds/kick.wav kKick

1, 8 %1 undfiler table kick

linef' he

T it f get amount of samples
e

= — _

tabread4~ kick 7 1023 normalize

S

dac~

Figure 7-6. Pd patch playing a kick drum sample backward on each drum hit

I've used the code in Listing 7-3 instead in Listing7-4, where the maximum value is being calculated
in the Arduino code and not Pd, just to make the patch a bit simpler. If you want to calculate the maximum
value in Pd, replace [r highest0] in Figure 7-6 with the part of the patch in Figure 7-5 that calculates the
maximum value ([r highest] should be replaced by [r drum0], and [print drum0] should not be included). Of
course, now we don’t need to print the raw values that are printed with the "drum" tag, and we're going to
change that as we develop the Arduino code even more. For now, we use the code in Listing 7-3 as is to make
some sounds with Pd.

The first thing you need to do is click the “read -resize ./sounds/kick.wav kick” message, which will
write the sample called kick.wav to the kick table. This sample is in a directory (folder) inside the directory
of the patch, hence the path ./sounds/kick.wav. We could also use [openpanel] instead which would open

281

CHAPTER 7 © AN INTERACTIVE DRUM SET

a dialog window with which we could navigate to the sample, but if we know the location of the sample, it’s
easier if we load it this way, since we can also automate it with a [loadbang].

Once we click the message, the kick.wav file will go through [soundfiler], which will first load the
sound file to the specified table and will output the number of samples of the sound file. This number goes
to two locations: [t f b] on the right side of the patch and [*~]. We're reading the sound file with [line~],
which makes a ramp from 1 to 0 (we'll read the sound file backward). To read the whole sound file we need
to multiply this ramp by the number of samples of the file, so instead of going from 1 to 0, it will go from the
total length of the sound file to 0. We could have used this value to set the ramp of [line~] instead of sending
it the message “1, 0 $1”; but further on, we’ll use different ways to read sound files, so it’s better if we have a
generic ramp and multiply accordingly.

The part where the number of samples of the sound file goes to [t f b] calculates the length of the sound
file in milliseconds. This is a pretty straightforward equation. We divide the amount of samples by the
sampling rate (using [samplerate~]), which yields the length of the sound file in seconds, and we multiply by
1000 to convert it to milliseconds. We store that value in [f], which waits for input from the Arduino. As soon
as we hit the drum with the first sensor on, [r highest0] will output the maximum value of the sensor. This
value goes first to [/ 1023], since 1023 is the maximum value we can get from the Arduino to be normalized
to 1, and set the amplitude of the sound file, and then it bangs [f] which goes into the message “1, 0 $1”.

This message means to “go from 1 to 0 in $1 milliseconds,” where $1 will take its value from [f], which is the
length of the sound file in milliseconds. As soon as you hit the drum, you should hear the sample playing
backward, with its loudness corresponding to how hard you hit the drum. This can be a nice echo-like effect.

Working Further with the Circuit and Arduino Code

Before we go on and see other ways we can play back the various audio files, let’s work a bit more on the
circuit. Since we're going to have a few different ways to play back sounds, we must have a convenient way to
choose between these playback types. Since this is an interactive drum set, the hands of the performer might
be available, but it’s still not easy to navigate to a certain point on a laptop screen with the mouse while
performing. It’s better if the performer has an easy-to-use interface, which he/she can control at any time. A
good interface is one with quite a big surface, which is easy to locate. For this project, we’re going to use foot
switches. These switches will control the playback type of the sound files, but also whether a sensor is active
or not. Like the project in Chapter 6, since we have an interface to control some aspects, why not have the
ability to control the activity of the sensors, since this gives the performer the freedom to choose whether to
play with or without the sensors at any given moment.

We're going to enclose the circuit in a box so that it’s easy to carry around, since you may want to take
it with you at some gig. We'll also use LEDs to indicate the activity of each sensor, so that you know which
sensors are active and which are not, at any given moment. Before we build the circuit on a perforated board
and put it in a box, we must build it on a breadboard and test if it works as expected.

Adding Switches and LEDs to the Circuit and Code

Since we have four sensors in our circuit, we're going to use four foot switches to control them. This applies
some limitation to how many different kinds of playback we’ll have, but when building interfaces we must
set strict priorities, which concern functionality, flexibility, ease of use and transport, among others. The
more control we want over a certain interface, the more the circuit will grow, and this can lead to rather
complex circuits, which may not be desirable. If you want to add more foot switches or piezo elements to
your project, you're free to do it. This chapter focuses on four of each.

To test the circuit and code we'll first use tactile switches (breadboard-friendly push buttons). Once it’s
all functioning properly, we’ll go on and enclose the circuit in a box, using foot switches. Figure 7-7 shows
the circuit with four push buttons and four LEDs.

282

http://dx.doi.org/10.1007/978-1-4842-1583-8_6

CHAPTER 7 © AN INTERACTIVE DRUM SET

£

*1+1

A

-
.
.
-
-

outnpJy B XH

fritzing
Figure 7-7. Full test circuit

There’s nothing really to explain about the circuit. We'll use the Arduino’s integrated pull-up resistors
for the switches, and we're using 220Q resistors for the LEDs, and 1MQ resistors for the piezo elements.
What I need to explain is the code that will work with this circuit. First, let’s try to make the switches control
the activity of the piezo elements. The code is shown in Listing 7-5.

Listing 7-5. Controlling Piezo Activity with Switches

// variables and constants that you might need to change
int thresh = 100;

const int num_of sensors = 4;

int debounce_time = 10;

// arrays for the sensors
int sensor_thresh[num of sensors];
int old_sensor_thresh[num_of sensors];

coO~N OV D WN B

283

CHAPTER 7 © AN INTERACTIVE DRUM SET

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.

284

int sensor below_new[num of sensors];
int sensor below_const[num_of sensors];
int sensor_max_val[num of sensors];

int sensor_above thresh[num of sensors];
bool sensor activity[num of sensors];

int all switch vals[num of sensors];

void setup() {
for(int i = 0; i < num_of sensors; i++){
sensor_activity[i] = true;
all switch vals[i] = 1;
pinMode((i + 2), INPUT PULLUP);
pinMode((i + 6), OUTPUT);
digitalWrite((i + 6), sensor activity[i]);

}

Serial.begin(115200);

}

void loop() {
for(int i = 0; 1 < num_of sensors; i++){
int switch val = digitalRead(i + 2);
// check if switch state has changed
if(switch val != all switch vals[i]){
if(!switch val){ // if switch is pressed
sensor_activity[i] = !sensor activity[i];
digitalWrite((i + 6), sensor activity[i]);
// update state
all switch vals[i] = switch_val;
}
// update state
all switch vals[i] = switch val;
}
}

for(int i = 0; i < num_of sensors; i++){
if(sensor_activity[i]){ // check sensor activity
int sensor val = analogRead(i);
if(sensor val > thresh){
sensor_thresh[i] = 1;
if(sensor_thresh[i] != old_sensor_ thresh[i]){
// count how many times the sensor rises above threshold
sensor_above thresh[i] += 1;
}
sensor_max_val[i] = max(sensor max val[i], sensor val);
old _sensor_thresh[i] = sensor_thresh[i];

}

CHAPTER 7 © AN INTERACTIVE DRUM SET

58. else{

59. sensor_thresh[i] = 0;

60. // get a below threshold time stamp for the sensor

61. sensor_below const[i] = (int)millis();

62. if(sensor thresh[i] != old sensor_ thresh[i]){

63. // get a time stamp every new time the sensor drops below threshold
64. sensor_below new[i] = (int)millis();

65. }

66. old_sensor_thresh[i] = sensor_thresh[i];

67. if((sensor_below const[i] - sensor below new[i]) > debounce time){
68. // make sure we print the values only once per hit

69. if(sensor_above thresh[i] > 0){

70. Serial.print("drum");

71. Serial.print(i); Serial.print("\t");

72. Serial.println(sensor_max_val[i]);

73. sensor_max_val[i] = 0;

74. // zeroing sensor_above thresh[i] will prevent this chunk of code
75. // from be executed before we hit the drum again

76. sensor_above_thresh[i] = 0;

77. }

78. }

79. }

80. }

81. }

82. 1}

The additions are very few, we've only added two arrays sensor_activity, and all_switch_vals. The
first determines whether each sensor is active or not, as its name suggests. Since we only need this array to
determine whether a state is true or false, we define it as a bool. The second array is used to test whether a
switch has changed its state, otherwise the code of the for loop of line 31 would be executed constantly.

In the setup function, we set values for the two arrays and the mode for the digital pins. We also set the
state of the LEDs according to the values of the sensor_activity array. By default, all sensors are active, so
all the LEDs will turn on as soon as the Arduino is powered.

In the loop function, we run through all the switches and test if their state has changed (whether they
are being pressed or released). If it has, we'll check if the switch is pressed in line 35, and if it is, we'll switch
the corresponding value of the sensor_activity array and update the state of the corresponding LED.
Then in line 39, we update the corresponding value of the all_switch_vals array so that the test in line 34
will work properly when the for loop goes through the same switch pin again. This update happens only
if a switch is pressed, so in line 42, we update the all_switch_vals array, in case the state of a switch has
changed, but we're releasing it.

Then in line 46, we go through the sensor pins, and in line 47, we check the activity of each sensor. If the
sensor we're at is active, then the code that reads its values, gets the maximum, and prints it is executed. If
the sensor is not active, then we go on to the next sensor. The code inside the if ofline 47 is the same as with
Listing 7-3, only this time we’re not printing every value that’s above the threshold, but only the maximum
of all the values with the "drum" tag instead of "highest". Figure 7-8 illustrates the Pd patch for this code.
It's essentially the same as with Figure 7-3, only there are not [r highest] objects, since we're not printing any
values with this tag.

285

CHAPTER 7 © AN INTERACTIVE DRUM SET

|y .
devices

=
open 7

=)
close

éomport 7 11528

seria l_print_extende

S =
Y drum@ r druml Y drum2 r drum3
print drum@ print druml print drum2 print drum3

Figure 7-8. Pd patch for the Arduino code in Listing 7-5

With this code and patch, you have control over to which sensor is active and which is not, having direct
visual feedback from the corresponding LEDs. Try to deactivate a sensor and hit its drum. Check the Pd
console to see if you get any values printed, you should not. This gives us great flexibility, as we might not
want to trigger samples all the time, but at certain moments during our playing.

Using the Switches to Control Either Playback Type or Sensor Activity

Now to the next step, where we’ll use the switches to control two things, playback type or sensor activity. To
do this we’ll use the first switch to determine which of the two aspects we’ll control. We’ll do this by checking
for how long we keep the switch pressed. If we keep it pressed for more than one second, we'll switch the
type of control. If we keep it pressed for less than one second, the switch will control whatever the other
switches control. (If the control type is set to sensor activity, it will control the activity of the first sensor;
otherwise, it will control the type of playback.)

To do this, we again need to take time stamps of when we press and when we release the first
foot switch. We’ll then compare the difference between the two time stamps; if it’s more than 1000
(milliseconds), we'll switch the type of control the switches will have. I'm not going to show all the code
because the greatest part of it is the same as before. I'll only show the additions we need to make. Listing 7-6
shows some new variables and arrays we need to create. Of course, all these strings should be written in one
line in the Arduino IDE, they just don’t fit in one line in a book.

286

CHAPTER 7 © AN INTERACTIVE DRUM SET

Listing 7-6. Additional Arrays for Switch Control Types

// variables and arrays for the switches

int all switch vals[num_of sensors];

int control = 1;

String control type[2] = { "playback", "activity" };

String playback_type[num of sensors] = { "ascending", "descending", "backwards",
"repeatedly” };

Ui b WN R

The first array all_switch_vals, was there in Listing 7-5 as well, but we’re including it here because
these variables and arrays all concern the switches. The second variable is an int that sets the type of
control. You'll see how this is done in Listing 7-7. Lines 4 and 5 define a new type that we haven’t seen
before: String. Stringisabuilt-in class in the Arduino language, which manipulates strings, therefore its
name. This class enables us to easily create string objects, even arrays of strings. Line 4 defines the strings
"playback" and "activity", which we’ll use in Pd to label the type of control the foot switch currently
has. Line 5 defines four strings that have to do with the type of playback we’ll use. "ascending"” means that
we'll play a sound file a few times repeatedly, where each time it will be played faster and at a higher pitch.
"descending" means the opposite. "backwards" means just that, and "repeatedly" means that we’'ll play
a short fragment of the sound file many times repeatedly, creating a sort of tone. We'll see all these types of
playback in practice when we build the Pd patch. Place this chunk of code at line 15 in Listing 7-5, where we
settheall switch vals array.

Listing 7-7 shows the for loop for the switches. This must replace the code in Listing 7-5 from line 31 to
line 44. Mind that if you have added the code in Listing 7-6, these line numbers will have changed.

Listing 7-7. Modified for Loop to Select Control Type for the Switches

1 for(int i = 0; i < num_of sensors; i++){

2 int switch val = digitalRead(i + 2);

3 // check if switch state has changed

4 if(switch val != all switch vals[i]){

5 if(1i){ // check if it's the first switch
6. static int press_time, release time;

7 if(!switch_val){

8 press_time = (int)millis();

9 all switch vals[i] = switch val;

1

0. }

11. else{

12. release time = (int)millis();

13. all switch_vals[i] = switch_val;

14. if((release_time - press time) > 1000){

15. control = !control;

16. Serial.print("control ");

17. Serial.println(control type[control]);

18. }

19. else{

20. if(control){

21. sensor_activity[i] = !sensor activity[i];
22. digitalWrite((i + 6), sensor activity[i]);
23.

287

CHAPTER 7 © AN INTERACTIVE DRUM SET

24. else{

25. Serial.print("playback ");

26. Serial.println(playback type[i]);
27. }

28.

29. all switch vals[i] = switch val;

30. }

31. }

32. else{

33. if(switch val){

34. if(control){

35. sensor_activity[i] = !sensor activity[i];
36. digitalWrite((i + 6), sensor_activity[i]);
37.

38. else{

39. Serial.print("playback ");

40. Serial.println(playback type[i]);
41. }

42. }

43. }

44. // update state

45. all switch_vals[i] = switch_val;

46. }

47. }

This is quite more complex than the for loop for the switches in Listing 7-5. The first thing we do after
we read each digital pin is check whether its state has changed, which is the same as in Listing 7-5. Then
in line 5, we're checking if the switch that is being changed is the first one, by using the variable i with the
exclamation mark. If it’s the first one, i will hold 0, and the exclamation mark will make it 1, which is the
same as true. If i holds any other value (1, 2, or 3), the exclamation mark will make it 0, which is the same
as false. In line 6, we define two local variables for the two time stamps we need to take, which are both
static, so even though they're local, even when the function in which they’re defined is over, they will retain
their values.

In line 7, we check if the first foot switch is being pressed, and if it is, we take a time stamp of when we
pressed it, and then update all_switch vals so testing if the switch’s state has changed will work properly.
else inline 11 will be activated if the first switch is being released, where we're taking another time stamp
of when that happened, and we again update all_switch_vals. Then in line 14, we're testing the time
difference between the two time stamps. If it’s greater than 1000 we switch the value of the control variable,
and we print the corresponding string from the control_type string array, where if control is 0, we'll print
"playback", and if it’s 1, we'll print "activity". By default, control is 1, so the first time we'll hold the first
switch pressed for more than a second, the control type will change to "playback".

If the difference between the two time stamps is less than 1000, we first check the type of control the
switches have. Ifit’s 1, releasing the foot switch will switch the state of the first element of the sensor_
activity array, and this value will be written to the pin of the first LED. If control is 0, we'll print the first
element of the playback_type string array, which is "ascending".

Afterward, we're updating the all_switch_vals array right before else ofline 11 has ended, which is
called if the first switch is being released. It’s very important to place the updates of the all switch_vals
array in the right places, otherwise the code won’t work properly. In this code, we’re separating the first
foot switch from the rest, plus we’re separating what happens when we press the switch from what happens
when we release it. For the rest of the switches we only care about releasing the switch. So we need to update
theall switch_vals array every time we press or release the first switch and every time the state of any of
the other switches changes. That’s why this array is being updated in one more place in line 45.

288

CHAPTER 7 © AN INTERACTIVE DRUM SET

In line 32, we have an else that will be executed if a state change has been detected, but it was not the
first switch. In line 33, we’re checking if the switch is being released. In Listing 7-5, we were checking when
a switch was being pressed. Since for the first switch we can’t determine what we want to do when we press
it, but only when we release it, because we’re counting the amount of time we held the switch pressed, it’s
better to use the release for the rest of the switches, for the compatibility of the interface. Depending on the
type of control the switches have, we’ll switch the current element of the sensor_activity array and write
that value to the corresponding LED, or we’ll print the corresponding element of the playback type string
array, which will be "descending", "backwards", or "repeatedly”. After updating the all_switch_vals
array, the loop ends and we go on to read the pins of the sensor. This is not included in Listing 7-7 because,
as I already mentioned, it is exactly the same in Listing 7-5.

Building the Final Pd Patch

We're now at a point where we can start building the actual patch for this project. This patch will consist of
three different levels, the audio file playback, the Arduino input, and the main patch. We'll first build the
patch that reads the audio files, and then the patch that receives data from the Arduino and triggers the
playback. Then we’ll go on and put everything together in the main patch for this project.

Building the Audio File Abstraction

Since the only difference between each audio file playback for each sensor will be the table where we’ll
load the audio file to, it’s better if we first make an abstraction that we can duplicate for each sensor. We can
set the name of the table via an argument, along with some other data that we'd like to pass, but different
for each abstraction. This abstraction should take a bang and play back the audio file loaded on the table
specified via an argument, in a way set by the switches. Figure 7-9 illustrates this abstraction.

The heart of this abstraction is [line~], which is the index for the table of the sound file, but also for the
window that smooths out the beginning and the end of the file. [loadbang] goes first to [del 100], because in
the parent patch we first want to load the audio files to the tables and then do any calculations depending on
those files, so we give some short time to Pd when the patch loads to first load these files to the tables. After
this 100 milliseconds delay, we get the size of the table each abstraction reads with [arraysize $1]. $1 will
be replaced by the first argument of the abstraction, which will be the name of the table with the audio file
we want to read. The value output by [arraysize] is the number of samples of the audio file, since the table
where it will be loaded will be resized to a size that will fit all the samples of the file. This value goes to two
locations, first it goes to [*~ | next to which there is the comment “this is the total length of the table” We'll
set [line~] to go from 0 to 1, so we'll need to multiply it by the number of samples of the audio file so that
[tabread4~] can output the whole file.

289

CHAPTER 7 © AN INTERACTIVE DRUM SET

Toadbang
del 108

= =d
arraysize $1

tff
p = inlet inlet inlet inlet inlet

i d 52

inlet E i s $8-ascend s $B-descend s $8-repeat_from s $B-repeat_to s $9-repeat_ms

I d #8-playback

list

L .

éd $8-extrgct_list

t 11

-repeat_list

d $0-set_ramp_length

this is thatotal length of the table
¥ 22058

- +~ 1 this table smooths out the beginning and end of the playback
tabreadd~ $1 -
tabread4~ window

£ 29

out let~

Figure 7-9. The read_sample abstraction

Converting Samples to Milliseconds and Dealing with the Sampling Rate

The second location the size of the table goes is the [pd samps2ms] subpatch, which calculates the amount
of milliseconds it will take to read the whole audio file. This is very often useful; you might want to consider
making an abstraction so that you can use it frequently. The contents of the subpatch are shown in Figure 7-10.
The calculations in this subpatch are pretty simple, so I won’t explain it. One thing that I need to mention

at this point is that you should take care of the sampling rate your audio files have been recorded in. If you
download sounds from freesound.org, the sampling rate of each sound is mentioned on the sound’s web
page. Otherwise, you can get this information from your computer, if you have stored sound files in your
hard drive. All the audio files that you load in your patch should have the same sampling rate. Pd must run at
the same sampling rate too for the audio files to be played back properly. To change Pd’s sampling rate, go to
Media » Audio Settings....

290

CHAPTER 7 © AN INTERACTIVE DRUM SET

inlet

. -
tfb
I n i
jamp lerate~
/
" =

X 1000

H

out let

Figure 7-10. Contents of the samps2ms subpatch

Creating Different Types of Playback

After [pd samps2ms] has calculated the amount of milliseconds an audio file takes to be read, it sends its
value to [pd $0-playback], the contents of which are shown in Figure 7-11. In this subpatch, we're creating
lists according to the string that sets the type of playback, sent by the Arduino. The only straightforward
playback type is “backward” which outputs the list “1 0 $1’) where $1 is replaced by the milliseconds it takes
to read the audio file. This list will be sent to [line~] which will make a ramp from 1 to 0, lasting as long as it
needs to read the audio file at normal speed, which will cause [tabread4~] to read the audio file backward.

201

CHAPTER 7 * AN INTERACTIVE DRUM SET

playback
s

s

X:
I
5

descendi ng buckward§= repeated IL

inlet tab_size_in_ms

ttfftl

=::u:t:i $0-repeate

pd $8-ascend

out let

Figure 7-11. Contents of the $0-playback subpatch

The rest of the playback types are inside subpatches because their calculations are not so simple, and
putting them in subpatches makes the patch a bit tidier. They are illustrated in Figures 7-12 through 7-15.

292

CHAPTER 7 © AN INTERACTIVE DRUM SET

The “$0-ascend” subpatch

In the “ascend” subpatch we receive, store, and output the audio file length in milliseconds in [f], and we
run a loop for as many times set by the second argument to the abstraction, which is stored in [$2]. We need
to store the value in case we want to set a different number of repetitions for this playback type with a value
entered in the second [inlet] of the abstraction. By sending the milliseconds length in the left inlet of [f],

we both output it and save it at the same time, so we can use it again even if [inlet tab_size_in_ms] doesn’t
output a new value.

[until] will bang [f] below it as many times the loop runs. At the beginning, [f] holds the length of the
audio file in milliseconds, and every time it is banged, it outputs it and it also gets divided by 2, so it stores
half that value. This values goes to the message “0 1 $1’, which is the list that will be sent to [line~] to make
aramp from 0 to 1 in the time specified by $1. (Remember that $1 in a message means the first value of a
list—in this case, it’s just one value list—that arrives in the inlet of the message. $1 in an object contained in
an abstraction means the first argument given to the abstraction. The interpretation of $1—or $2, $3, and
so forth—is totally different between messages and objects). The list of this message goes to [list prepend]
which outputs the lists it gets in its left inlet to [t 11] ([trigger list list]). [t11] will first send the list to the right
inlet of [list prepend], and the latter will store that list, and then it will send it to the right inlet of [list] at the
bottom, which will also store it.

This way we can create a growing list, since [list prepend] will prepend anything stored in its right inlet
to anything that arrives in its left inlet. So, if the length of the audio file is 1000 milliseconds, the message that
goes to [list prepend] will first output “0 1 1000, [list prepend] will output this list and it will also store it in
its right inlet. The second time, the message will send “0 1 500", which will go to the left inlet of [list prepend]
and the previous list will be prepended to it, resulting in [list prepend] storing the list “0 1 1000 0 1 500" The
third time the message will output “0 1 250, so the list stored in [list prepend] will be “01 1000015000 1
250, and so on. This will go on for as many times as we’ll set via the second argument to the abstraction. All
these lists will go to the right inlet of [list] at the bottom of the subpatch, and every time [list] will replace
whatever it had previously stored with the new list that arrives in its right inlet. When [r playback] in the
subpatch in Figure 7-11 receives the “ascending” symbol, it will bang [pd ascend] which will output the final
list stored in [list], which will be a set of lists of three elements, 0, 1, and the decreasing time in milliseconds.
This full list will go to the right inlet of [list] in the top-left part of the parent patch of the abstraction, shown
in Figure 7-9, which will be banged whenever the corresponding sensor will output a value. We'll see later on
how this works.

Notice that in Figure 7-12 there’s a [r $0-ascend] which receives values from [s $0-ascend] from the
parent patch of the abstraction (Figure 7-9). If we want to change the number of repetitions of the ascending
playback on the fly, we can send a value to the second inlet of the abstraction and it will arrive in [pd
$0-ascend]. When we receive this value we'll first bang the right inlet of [list prepend]. This will cause the
object to clear any stored list. Afterward, we'll store the value in [$2], so its value will be replaced. Then
we'll bang [f], which holds the duration of the audio file in milliseconds. And finally we’ll send a bang to the
outlet of the subpatch, which will go to [pd $0-playback] (Figure 7-11). This bang is sent to the left inlet of
[symbol], which has stored the symbol arriving from the Arduino (“ascending’, “descending’, “backwards’, or
“repeatedly”). We do that so we can output the list generated by the subpatch, which is stored in [list] at the
bottom of [pd $0-ascend]. If we don’t bang it, [list] won’t output its list and we won’t be able to hear the new
setting we made by sending a value in the inlet of the abstraction.

293

CHAPTER 7 © AN INTERACTIVE DRUM SET

iplet inlet tab_size_in_ms
f r $8-ascend
& =
tbf bbfb

out let bang_symbol

a

:$' t d
ist prep

=

t

B Ey—

list
out let

Figure 7-12. Contents of the $0-ascend subpatch

The $0-descend Subpatch

The next one is [pd $0-descend], shown in Figure 7-13. This is very similar to [pd $0-ascend]. Instead of
playing the audio file twice as fast (and at a higher pitch) every time, we start by playing it fast, and every
time we play it twice as slow, end it at the normal speed (starting at a high pitch and ending at the normal
pitch). In this subpatch, we calculate the shortest duration according to the length of the audio file and the
number of repetitions, which is set via the third argument, and then we run a loop starting with this shortest
duration and every time we double it. Apart from that the rest of the patch works the same way as [pd
$0-ascend].

294

CHAPTER 7 © AN INTERACTIVE DRUM SET

éplet inlet tab_size_in_ms

list
outlet
Figure 7-13. Contents of the $0-descend subpatch

I need to explain how the get_lowest_duration subpatch works, which is shown in Figure 7-14. This
subpatch runs a loop similar to that of [pd $0-ascend]. We start with the normal duration of the audio file
and every time we divide it by two. When we’ve gone through all the iterations of the loop, [sel $3] will
bang the final value, which is stored in [f] at the bottom of the subpatch. This value will then go in [pd
$0-descend] and another loop will run, now starting with the shortest duration, every time multiplying by
two, ending at the normal duration. Again, we have a long list stored in [list], which we bang whenever we
send the symbol “descending” from the Arduino. Notice that [r $0-descend] is in [pd get_lowest_duration],
as if we changed the number of repetitions. We’ll need that number in there too to calculate the shortest
duration for the audio file. Mind the order of sending that value or a bang and try to understand why we
need things to go in this order, so that everything works as expected.

295

CHAPTER 7 © AN INTERACTIVE DRUM SET

inlet

r $0-descend

f ff

Figure 7-14. Contents of the get_lowest_duration subpatch

The $0-repeatedly Subpatch

Then we go to [pd $0-repeatedly], which is shown in Figure 7-15. This is quite different than the other

two subpatches that I've explained. In this subpatch, we’re using the fourth and fifth arguments of the
abstraction, which are the points of the audio file where we want our repeated playback to start and end. We
don’t need to know the length of the audio file, either in milliseconds or samples, to set these two arguments.
They are set in some kind of percentage, from 0 to 1, where 0 will be the beginning of the file and 1 its end.
What we do in [pd $0-repeatedly] is subtract $4 from $5 to get the duration of the file we want to play back,
in a 0 to 1 scale, and then we multiply the result by the length of the audio file in milliseconds. This will tell
[line~] to go from 0 to 1 in the time it takes to play the portion of the file we want. In [pd $0-repeatedly] we
can see a [s $0-repeat_length] with a comment stating, “goes into [pd set_ramp_length]” This value (the
difference between $4 and $5) will set the amount of scaling and an offset to the ramp of [line~]. If [line~]
went from 0 to 1 in the time it takes to read only a portion of the file, which is set via $4 and $5, the result
would be that [tabread4~] would read the whole file much faster that its normal speed. Since we're using the

296

CHAPTER 7 © AN INTERACTIVE DRUM SET

ramp of [line~] to control a smoothing window, in the parent patch of the abstraction, we're telling [line~] to
go from 0 to 1, so that the smoothing window will be read properly, and then we scale its ramp and we give
it an offset before if goes to [tabread4~]. All this might start to get a bit complex, but if you go back and forth
from subpatch to parent patch, and try to keep track of what’s going on, you’ll understand how things work
in this patch. In [pd $0-repeatedly] we have two [receive]s, a [r $0-repeat_from] and a [r $0-repeat_to], which
take values from the fourth and fifth inlet of the abstraction. If we want a different portion of the audio file,
we can change the values with these two inlets, and the necessary calculations will be done. Again, we store
the resulting list to [list], which we’ll bang if the Arduino sends the symbol “repeatedly” And that'’s all about
[pd $0-playback], now back to the parent patch.

r $0-repeat_from
inlet tbf

- -
b f out ldt bang_symbol

aianlet
" -
t fZ goes into [pd set_ramp_length]
I s $0-repeat_length
é get percentage of total duration
81 $1

list

out let

Figure 7-15. Contents of the $0-repeatedly subpatch

The $0-extract_list Subpatch

In the parent patch we see another subpatch, [pd $0-extract_list], which is shown in Figure 7-16. This
subpatch takes input from [list] at the top-left part of the parent patch, which holds the list of the type of
playback we want. If we've set the playback type to “ascending” or “descending’, then the corresponding
subpatches will output a long list, which should be split to groups of three, the beginning of the ramp of
[line~], the end of the ramp, and the duration of the ramp. In [pd $0-extract_list] we do exactly that. [list
split 3] splits the incoming list at the point specified by its argument. So this object will output the first three
elements of its list out its left outlet, and the rest will come out the middle outlet.

297

CHAPTER 7 © AN INTERACTIVE DRUM SET

out let

Figure 7-16. Contents of the $0-extract_list subpatch

Since Pd has the right-to-left execution order, [list split] will first give output from the middle outlet
and then from the left one. The middle outlet receives the remaining of the list and stores it in [list]. The left
outlet outputs the three element list to [t 1], which first outputs this list to [list split 2]. [list split 2] will output
a list with the first two elements of the list it received out its left outlet, and the remaining third element out
its middle outlet, which goes to the right inlet of [del]. This last value stored in [del] is the ramp time of the
first three elements, in milliseconds. After the ramp time has been stored in [del], [t11] will output the three
element list out its left outlet, which goes to [outlet]. From there, it will go to the message “$1, $2 $3” in the
parent patch, which tells [line~]: “Jump to the first value of the list, and then make a ramp to the second
value which will last as many milliseconds as the third value.” So [line~] will make a ramp from 0 to 1 that
will last as many milliseconds as the audio file lasts.

At the same time [t 11] outputs the list through [outlet] in [pd $0-extract_list], it also bangs [del]
(actually it first bangs [del] since [t1b] will first send a bang out its right outlet). When [del] receives a bang,
it will delay it for as many milliseconds as the value it has stored in its right inlet, which is the amount of
milliseconds the ramp takes. So as soon as [line~] finishes with its ramp, [del] will bang [list], which has
stored the remaining list, and it will send it to [list split 3], and the whole procedure will start over, every time
taking the first three elements of the list, until the list is finished. This way we can have repeated ramps, each
lasting half the time of the previous one, in case we're playback in the “ascending” type, or twice as long, in
case we're playing back in the “descending” type. If we playback in the “backwards” or “repeatedly” type,
[pd $0-extract_list] will output one list only, since these two types produce a list of three elements only.

The $0-repeat_list Subpatch

The output of [pd $0-extract_list] goes to [t11] in the parent patch, which outputs the incoming lists first to
[pd $0-repeat_list] and then to the message sent to [line~]. [pd $0-repeat_list] is activated only if we receive
the symbol “repeatedly” from the Arduino. What it does is take the list generated by [pd $0-repeatedly]

and repeat it for an amount of time set in milliseconds by the sixth argument to the abstraction. It is shown
in Figure 7-17. If the Arduino sends the symbol “repeatedly’, we'll receive it in Pd via [r playback] and [sel
repeatedly] will send a bang out its left outlet, which will send 1 to the two [spigot]s. As soon as this subpatch
receives a list, it first bangs [del $6], which will have its delay time set via the sixth argument. Then, it will
bang [f] containing 1. Then, it will send the list to [list split 2], which will output the ramp time of the list out
its middle outlet into [pipe 0 0 0 0]’s rightmost inlet, and then the same list to the leftmost inlet of [pipe].

298

CHAPTER 7 © AN INTERACTIVE DRUM SET

r $0-repeat_ms

Eﬁl $6

r playback

repeated|

oo

f
i
t

“\gpiee
Figure 7-17. Contents of the $0-repeat_list subpatch

[pipe] is like [del], only instead of outputting bangs delayed by a specified time, it outputs numeric
values entered in its inlets. It can delay whole lists, where the arguments initialize the lists’ values, and
the very last argument is the delay time. Its inlets correspond to its arguments, so sending a value to the
rightmost inlet will set a new delay time; sending a list in the leftmost inlet will replace as many arguments
as the elements of the list with these elements. If [pd $0-repeatedly] generates the list “0 1 50", [list spit 2] will
send “50” to the rightmost inlet of [pipe], which will be the delay time, and in the leftmost inlet, [pipe] will
receive the whole list, which it will delay for 50 milliseconds.

This list goes out three different outlets ([pipe] creates one outlet for each element of the list, the delay
time is not included), which are [pack]ed to be sent as a list to [line~]. Since the [spigot]s are open, [t11]
will first send the list back to [pipe], which will again be delayed for 50 milliseconds, and this will go on
until [del $6] bangs the message “0’, which will close the lower [spigot]. This way we can send the same list
over and over for an amount of time that we specify either via an argument or through the sixth inlet of the
abstraction (which goes to [s $0-repeat_ms], received by [r $0-repeat_ms] in [pd $0-repeat_list]). As soon as
we send a symbol other than “repeatedly” from the Arduino, the top [spigot] in [pd $0-repeat_list] will close,
and incoming lists won’t go through anymore. And this covers how the four different ways of playback are
achieved.

The $0-set_ramp_length Subpatch

There’s one more subpatch that I need to explain and we're done with the [read_samp] abstraction, which is
[pd $0-set_ramp_length], shown in Figure 7-18. If you see Figure 7-9 you'll see that the output of [line~]

goes to two destinations, [*~ | and [*~ 22050]. The first multiplication object ends up in [tabread4~ $1],
which reads the audio file stored in the table the name of which is set via the first argument to the abstraction.
[*~ 22050] ends up in [tabread4~ window] which reads a smoothing window function which we’ll place in
the parent patch of our project. This window will smooth out the beginning and end of each audio file since
it may not begin or end smoothly and cause clicks, or in the case of playing back the sound repeatedly, since
we won't be reading the file from beginning to end, even if it’s smooth at its edges, we’ll get clicks for sure.
You'll see this window further on. The point here is that we need the same ramp to control two different

299

CHAPTER 7 © AN INTERACTIVE DRUM SET

things, that’s why we always set it to go from 0 to 1, or the other way around (the smoothing window can

be read backward too), and we then scale accordingly, and if necessary, give it an offset too. In [pd $0-set_
ramp_length], if we receive the symbol “repeatedly’, we’ll send $4 (the fourth argument) to the right [outlet]
and the value received by [r $0-repeat_length] to the left outlet. The right [outlet] goes to [+~], which sets the
offset of the ramp, and the left [outlet] goes to [*~] which scales the ramp.

r playback
- -

sel repeatedl
[—1

r $0-repeat_from

out let

-repeat_length

out let

Figure 7-18. Contents of the $0-set_ramp_length subpatch

If we want to play a portion of the audio file, which we set with values from 0 to 1, we need to offset
the ramp with the lowest value, and scale it with the difference between the two values, which is the value
received by [r $0-repeat_length]. I, for example, we set to read the file from 0.25 to 0.60, we need our ramp to
start at 0.25 and go up to 0.60, giving the ramp a total length of 0.35, which is the difference between the two
values. This way we set the correct ramp for our sample without affecting the ramp that reads the smoothing
window function. Of course, if we change the start and end point of the portion of the audio sample we want
to play, [r $0-repeat_from] will receive the beginning point and store it in [$4]. If the Arduino sends any
symbol other than “repeatedly’; we'll send a 1 to [* ~], and a 0 to [+~], so we'll multiply the ramp by 1, which
gives the ramp intact, and we’ll add 0, which gives no offset.

This concludes the [read_samp] abstraction. It is a bit complex, but we’ll use it for all four sensors as
is, the only thing we’ll change to each instance of the abstraction is its arguments. The next thing we need
to do is build an abstraction to receive the input from the sensors, and that will be enough for our patch to
work with the Arduino code. There will be only a minor addition to the Arduino code, which will enable us to
control the threshold and debounce time from Pd, so we don’t need to upload the code every time we want
to change one of the two values.

300

CHAPTER 7 © AN INTERACTIVE DRUM SET

In the directory where you'll save your main patch, make a directory called abstractions, and save
[read_samp] in there. This abstraction is project-specific, so it’s better if you save it in a directory that’s not
in Pd’s search path. (Don’t confuse the directory you'll make and call abstractions with the abstractions
directory that you might have already made and stored generic abstractions, like the ones from my
“miscellaneous_abstractions” GitHub page. They should be two different directories in different places, even
though they share the same name). In the main patch, we’ll use [declare] to help Pd find the abstraction.

Building the Abstraction to Receive Input from the Arduino

This abstraction is much simpler than the [read_samp] abstraction. It is shown in Figure 7-19. All we do here
is receive input from a sensor and normalize its value to a range from 0 to 1, using the [map] abstraction. The
values from the Arduino are printed with the “drum” tag along with the number of the pin of each sensor.

In [drum] we have a [r drum$1]. This means that for the first sensor, we must provide the value 0 as the first
argument to the abstraction, so that [r drum$1] will receive the value of that sensor. This abstraction has
three inlets, one to set a new threshold, one to set a new debounce time, and one for debugging. The first
two will take number atoms, while the third will take a toggle. When the toggle outputs 1, the value received
by the sensor won't go out the abstraction’s outlet, but will be printed as drum0, drum1, and so forth. This is
very helpful as we can calibrate our patch on the fly. We’ll cover that a bit further on. When the abstraction
outputs its value, it will send the normalized value out its right outlet and a bang out its left outlet, so it can
bang [read_samp] and the patch will play the audio file.

Zinlet threshold inlet debounce
Lf fZ “Toadbang
s $0-threshold tbb
T ., delay pccoring to sensor number, so that we don't send all
$1 messagps to Arduino simultaneously
¥ 100
de'laF édrumh inlet debug
b trf] krt
=—&
/ ok
A= 2 print drum$l
32 $3 -
daﬂck T siﬂ ack f $1'.= =|—':'= D
spigot 1
rint $2p$it Erint $2p$1d f
r $08-threshold
s to_comport s to_comport é b f

map $2 1623 8 1,
out let

'p' stands for pin, 't' for threshold, and 'd' for debounce Lot

Figure 7-19. The “drum” abstraction

301

CHAPTER 7 © AN INTERACTIVE DRUM SET

Sending the Threshold and Debounce Values to the Arduino

One thing we need to explain is the [loadbang] of the abstraction. Since we might want to have different
thresholds and different debounce times for each drum, we need to set these as arguments and send them
to the Arduino on load. To avoid sending all of these messages at the same time, we set a delay for each
abstraction. This delay depends on the first argument of the abstraction, which is the number of the pin of
the sensor each abstraction is listening to. So for the first abstraction, we’ll bang 0 x 100 = 0 milliseconds, so
there’s no delay, and we'll bang the threshold argument first, and the debounce argument delayed
by 50 milliseconds. The second abstraction will have its arguments delayed by 1 x 100 = 100 milliseconds
for the threshold argument, and another 50 milliseconds for the debounce. The third will be delayed
2 x 100 = 200 milliseconds, and so on. This way we avoid sending a bunch of messages all at the same time.

Lastly, I must explain the syntax of the messages sent to the Arduino. You've seen this in Chapter 2,
but I'll explain it shortly here as well. The message “print” sent to [comport] will convert all characters of
the message to their ASCII values, which makes it easy to diffuse values in the Arduino code. To set the
threshold for a specific sensor, we must define both the sensor pin and the threshold. The same applies to
the debounce time. The message “print $2p$1t” will print the second value stored in [pack f $1], which is the
number of the sensor pin, then “p’, then the value of the second argument, or the value sent in the leftmost
inlet, and lastly, “t" All numeric values will be assembled from their ASCII values in the Arduino code. When
the Arduino receives “p’; it will set the value it assembled as the number of the pin. When it receives “t’, it
will set the value it assembled as the value for the threshold for that pin. You'll see that in detail when we go
through the additions to the Arduino code.

Save this abstraction to the same directory with [read_samp]. You must have noticed that even though
[read_samp] and [drum] are abstractions, we're using hard-coded names for [send]s and [receive]s, like
[s to_comport] or [r playback]. We should clarify the difference between a generic and a project-specific
abstraction. When building generic abstractions (like [loop], for example), you should avoid using anything
hard-coded; instead use rather flexible names (like [r drum$1]). Since these abstractions are meant to be
used in many different projects, they should be built in such a way that they can adapt to any patch they're
used in. Project-specific abstractions are different because they are meant to be used in a single project, the
one they are made for. In this case, it’s perfectly fine to use hard-coded names in [send]s and [receive]s, since
that won’t create problems.

The Main Patch

Now that we’ve built the two abstraction we’ll need for our patch, it’s pretty simple to make the main patch.
It is shown in Figure 7-20. In this patch, we can see the two abstractions we’'ve made with their arguments.
[drum] takes the sensor pin number, the threshold value, and the debounce time as arguments; whereas
[read_samp] takes the name of the table where the audio file is loaded, the number of times the file is
repeated when played in the ascending mode, the number of times it is played in the descending mode, the
beginning and end of the repeated mode (in a scale from 0 to 1, where 0 is the beginning of the file and 1 is
the end), and finally, the amount of time (in milliseconds) the file is repeated in the repeatedly mode.

302

http://dx.doi.org/10.1007/978-1-4842-1583-8_2

CHAPTER 7 © AN INTERACTIVE DRUM SET

devices

7

Close declare -path ./abstroctions
pd sound_tobs
T to_comport
pd control_type playback type:
comport 7 115200 .t 3 - t d . g ot
arta print extendsd] activi y ascendi ng L
E — e
zu‘eshola t‘,-preshold Elgre.sho ld r;bra.sho ld
debounce debounce debounce
<) | & | & f ‘fﬁ’““
drum 8 100 18 drus 1 100 18 drum 2 100 18 drul 3 109 18
I L _R__1 I S S . ¥ I S LU . B E $.2.3
ieﬂd mp kick 18 19 9.05 9.88 158 ieﬂd mp gnore 10 10 8.1 9.2 58 Eeod beer_bottle 5 5 9.05 0.88 159 550.18.25
e e e
T T b=
thirow- out throw- out throw- out th!ou~ out

Figure 7-20. The main patch

Each abstraction takes a number atom for each argument to experiment with the playback settings and
to calibrate each sensor. Notice that there’s a [r to_comport] which takes input from [s to_comport] which is
in [drum], so we can send messages to the Arduino. Also notice that [drum] outputs the sensor value from
its right outlet, which goes to [*~] to control the amplitude of the audio file playback, and it then bangs
[read_samp] to read the file. We don’t need a [line~] to smooth the amplitude changes, because they occur
before the file is triggered.

The sound_tabs Subpatch

Apart from that we have a [declare -path ./abstractions], which tells Pd to look into the abstractions/
directory for the two abstractions. There’s also a [pd sound_tabs] subpatch. This is similar to the subpatch
with the same name in Chapter 4, and it is shown in Figure 7-21. In this subpatch, we’re loading our audio
files to the tables on load of the patch. The message to load an audio file is the same as already used in this
book a few times. When [soundfiler] loads the file to the specified table, we convert its output (which is the
length of the file in samples) to a bang so we load the next audio file. As you can see, I've made a directory
called sounds in the directory of the main patch, and I've stored the audio files in there. Making separate
directories for the audio files and the abstractions—instead of having everything together (along with the
main patch) in the same directory—keeps things tidy and easy to understand.

303

http://dx.doi.org/10.1007/978-1-4842-1583-8_4

CHAPTER 7 © AN INTERACTIVE DRUM SET

Tbudhang
reqad -resize ./sounds/kick.wav kick
éounclfi ler table kick

t b
5

reqd -resize ./sounds/share.way share
soundfiler table share

tb
&L

reqad -resize ./sounds/beer_bottle.way beer_bottle
soundfiler table beer_bottle

tb
i

read -resize ./sounds/organ.wav organ

épundfiler table organ

pd make-window

toble window 2265/

Figure 7-21. Contents of the sound_tabs subpatch

The make-window Subpatch

In [pd sound_tabs] there’s another subpatch, [pd make-window], which is shown in Figure 7-22. To avoid
clicks, this subpatch creates the smoothing window we use for reading the audio files when the beginning
and ending points are not zero. (Even if the beginning and end of the file are zero, when reading the file in
the repeatedly mode, the two points will most likely not be zero, since we’ll be reading from some point
other than the beginning to some point other than the end.) What this subpatch does is create a rapidly
rising ramp from 0 to 1, taking 500 samples, then it stays at 1 for 21050 samples, and finally it makes a rapidly
falling ramp from 1 to 0, which takes another 500 samples. You can see its output in Figure 7-23. We're using
[loop] to iterate through all the points of the table, and [moses] to separate the two ramps from the full
amplitude value, 1. [moses] separates two streams of values at the value of its argument, or a value in its right
inlet. Take a minute to try to understand how it works. The only thing that might be a bit confusing is [+ 499].
Since we start counting from 0, after 22050 iterations we’ll reach 22049.

304

CHAPTER 7 © AN INTERACTIVE DRUM SET

=loadbang
p
tbb

g =1
22050 %99
%ff tfffff

t

loo

tabwrite window

Zuard_points windov.?

Figure 7-22. Contents of the make-window subpatch

Figure 7-23 illustrates what is stored in the window table. Its frame shows values between -1 and 1, in
the Y axis, that’s why the window starts from the middle of the graph. You can see the rapidly rising ramp,
which hits the ceiling of the graph when it reaches 1. It stays there for the greatest part of the table and it then
goes back down to 0, making a sharp ramp. When we read each audio file, we're reading this table at the
same time and we're multiplying the two tables. This results in beginning with silence, then rapidly rising to
full amplitude, staying there for almost the whole table, and finally going back to silence. This prevents any
clicks at the beginning and end points of the table, since they will always be silent.

305

CHAPTER 7 © AN INTERACTIVE DRUM SET

window

Figure 7-23. The window table

The control_type Subpatch

Now I'll explain [pd control_type], which is in the parent patch. This patch controls the two canvases, which
label the kind of control that the foot switches have and the current type of playback. It is shown in Figure 7-24.
This is an extremely simple subpatch, and we could have included these objects in the parent patch. It’s
tidier and looks better if we place them in a subpatch. This subpatch takes input from the Arduino with

the tags “control” and “playback” The “control” tag inputs either a “playback” or “activity” symbol. The
“playback” tag inputs “ascending’; “descending’, “backwards” or “repeatedly” .

é control r playback :loadbang

label $1 label $1 tbb

. = - = T |

s control_label s playback_type symbol ascending
s playback

é?mbOI activity
s control

Figure 7-24. Contents of the control_type subpatch
306

CHAPTER 7 © AN INTERACTIVE DRUM SET

The subpatch controls the label of the canvases in the parent patch, which on load are labeled as
“activity” and “ascending” “activity” is the default control of the switches when the Arduino starts. We
explicitly set “ascending” as the default playback type. You need to set some of their properties to make it

look like this. The Properties window of the “control” (the yellow) canvas is shown in Figure 7-25.

8 00 |cnv| Properties

width: | 160 ' height: 40

Messages

Send symbol: | _i

Receive symbol: control_label '

Label
i

[p—

X offset | 5 | Y offset 16

l_ Monaco ‘ Size: 30

Colors
(¢) Background () Label

| Compose color | | |Test 1abel

L] L |

| Cancel | [Apply | [OK |

Figure 7-25. Canvas Properties

307

CHAPTER 7 © AN INTERACTIVE DRUM SET

Change the Properties of the Playback Type Canvases

To open its properties right-click the top-left corner of the canvas, or left-click that point, and you'll see a
blue rectangle. That'’s the control point of the canvas, which we can use to move the canvas around, or to
open its properties. For this canvas, I've set its width to 160, its height to 40, its Receive symbol: field to
control_label, which is the same name [send] has in Figure 7-24, its X offset to 5, its Y offset to 16, its Size:
(this if the font size) to 30, and its color to yellow. To set the color, click the yellow square in the Colors field.
This time we’re not controlling its color, or its size according to the messages we receive from the Arduino,
like we did in Chapter 6. We're only setting its label; that’s why we can set everything else using its properties,
which is more user-friendly, than sending messages for each property. For the second canvas, the only
differences are the width, which is 190, and the color, which is a default light green, from the squares in the
Properties window.

Scaling the Output of the [read_samp] Abstractions in the Parent Patch

One thing that you might need to take care of is that the output of the [read_samp] abstractions is not scaled,
so if you get two audio files being triggered simultaneously, or one triggered before the previous one has
ended, and their amplitude sum is more than 1, you'll get a clipped sound. Since this is aimed at being

used with a drum set, you might set it up in such a way that you won’t have more than one audio file being
triggered at a time. Also, the amplitude of the output of [read_samp] depends on how hard you hit a drum.
For these reasons, I haven’t included any scaling to their output. It depends on your playing style and how
you're going to utilize this project, so have that in mind as you might need to apply some scaling to the
output audio.

Finalizing the Arduino Code

Now that the Pd patch has been covered, let’s go back to the Arduino code to make the last additions. What
we haven’t done yet is to allow Pd to control the threshold and debounce values for each sensor separately.
Again, I'm not going to show the whole code, only the parts with the additions.

First of all, we now want to have separate threshold and debounce times for each sensor, therefore we
need to create two new arrays for that, which are shown in Listing 7-8.

Listing 7-8. Adding Arrays for the Threshold and Debounce Values

1. int threshold vals[num of sensors];
2. int debounce[num_of sensors];

Asyou can imagine, these arrays will replace the two variables thresh, and debounce, which were
defined in the beginning of the previous code, so make sure to erase them. Of course, these arrays need to be
global, so place them before any function. I've placed them along with the rest of the arrays and variables for
the sensors.

The next change occurs in the setup function, which is shown in Listing 7-9.

Listing 7-9. Initializing the New Arrays

1 void setup() {

2 for(int i = 0; 1 < num_of sensors; i++){
3. sensor_activity[i] = true;

4 all switch vals[i] = 1;

5 threshold vals[i] = 100;

308

http://dx.doi.org/10.1007/978-1-4842-1583-8_6

CHAPTER 7 © AN INTERACTIVE DRUM SET

6. debounce[i] = 10;

7. pinMode((i + 2), INPUT PULLUP);

8. pinMode((i + 6), OUTPUT);

9. digitalWrite((i + 6), sensor activity[i]);
10. }

11.

12. Serial.begin(115200);

13. }

Since it’s not big, I've included the whole function to avoid any errors that could occur while adding
things to the existing code. Here we’re just initializing the two new arrays with default values; all the values
of the threshold_vals array are set to 100 and the debounce are set to 10.

The next addition is in the loop function, where we're checking for input in the serial line and diffusing
the values to their destinations. This is shown in Listing 7-10.

Listing 7-10. Receiving Data from Pd Through the Serial Line

1 if(Serial.available()){

2 static int temp_val, pin;

3 byte in_byte = Serial.read();

4 if((in_byte >= '0') & (in_byte <= '9'))
5. temp_val = temp val * 10 + in_byte - '0';
6. else if(in_byte == 'p'){

7 pin = temp_val;

8 temp_val = 0;

9.

10. else if(in_byte = "t'){

11. threshold vals[pin] = temp val;

12. temp_val = 0;

13.

14. else if(in_byte = 'd"){

15. debounce[pin] = temp val;

16. temp val = 0;

17. }

18. }

If there is data in the serial line, we're creating two static ints, temp_val and pin, and then we’re
checking what kind of input we got. If it'’s numeric values we're assembling them and store them to
temp_val.Ifit’s 'p', we're copying the content of temp_val to pin and resetting temp _val to 0. Ifit’s 't’,
we're assigning the value of temp_val to threshold_vals, to the element set by pin. Finally, ifit’s 'd’, we're
assigning the value of temp_val to debounce, to the element set by pin. So if we send the message “0p150t”
from Pd, we'll store the value 150 to threshold vals[0]. If we send the message “3p5d’, we store the value
5 to debounce[3]. This way we can dynamically set a new threshold and debounce time for every sensor
individually. This means that whenever you use this patch and code, you should upload the Arduino code
only once to your board, and then enable “debug” with the toggle in the [drum] abstraction. Then you
should check each sensor by hitting the corresponding drum and make sure that you don’t get more than
one value for each hit. If you get more than one, raise the debounce time. If you get only one, bring the
debounce time even lower, until the lowest value that prints only one value per hit. The threshold will set
how sensitive the sensor will be. This will also be helpful to avoid getting input from a sensor when you hit
another drum, as your whole drum set may be vibrating and all the sensors might be giving output. You
should bring the threshold to the lowest value where you get input from the sensor only when you hit the
drum of that sensor. If you want your sensor to be less responsive, you should bring the threshold even

309

CHAPTER 7 © AN INTERACTIVE DRUM SET

higher. This type of control is very helpful because it enables the system to adapt to many different situations
(different drum sets, different drum sticks, and so forth), without needing to tweak the code at all. If you
want to save your new settings, all you need to do is change the arguments to the Pd abstractions.

The last addition to the code is in the for loop that goes through the sensors. The whole loop is shown
in Listing 7-11 to avoid potential errors.

Listing 7-11. Final Version of the for Loop That Reads the Piezo Elements

1. for(int i = 0; i < num of sensors; i++){

2. if(sensor_activity[i]){ // check sensor activity

3. int sensor_val = analogRead(i);

4. if(sensor val > threshold vals[i]){

5. sensor_thresh[i] = 1;

6. if(sensor_thresh[i] != old sensor thresh[i]){

7. // count how many times the sensor rises above threshold
8. sensor_above thresh[i] += 1;

9. }

10. sensor_max_val[i] = max(sensor max val[i], sensor_ val);
11. old sensor_thresh[i] = sensor_thresh[i];

12. }

13. else{

14. sensor_thresh[i] = 0;

15. // get a below threshold time stamp for the sensor

16. sensor_below const[i] = (int)millis();

17. if(sensor_thresh[i] != old sensor thresh[i]){

18. // get a time stamp every new time the sensor drops below threshold
19. sensor_below new[i] = (int)millis();

20. }

21. old sensor thresh[i] = sensor thresh[i];

22. if((sensor_below const[i] - sensor below new[i]) > debounce[i]){
23. // make sure we print the values only once per hit

24. if(sensor_above thresh[i] > 0){

25. Serial.print("drum");

26. Serial.print(i); Serial.print("\t");

27. Serial.println(sensor max _val[i]);

28. sensor_max_val[i] = 0;

29. // zeroing sensor_above thresh[i] will prevent this chunk of code
30. // from be executed before we hit the drum again

31. sensor_above thresh[i] = 0;

32. }

33. }

34. }

35. }

36. }

310

CHAPTER 7 © AN INTERACTIVE DRUM SET

The only change is in line 4, where we now use threshold vals[i] instead of thresh, and in line 22,
where we use debounce[1i] instead of debounce. Using arrays enables us to have a different value for each
sensor, which gives us great flexibility. And this concludes the code in this project. Make sure that you've
written everything correctly, and that your code and patch work properly. Once you have everything working
as expected you can start building your circuit on a perforated board and enclose it in a box. Next, I'll
provide some suggestions on how to make an enclosure to keep your project safe for transporting, and easy
to carry and install anywhere.

Making the Circuit Enclosure

Bringing around a circuit on a breadboard is not really a good idea, because every time you’ll probably
need to build the circuit from scratch, as the breadboard is not stable and the circuit can get destroyed
during transfer. The breadboards are designed only for testing circuits. What's best is to build the circuit
on a perforated board and close it in a box so you can easily carry it around. Another good idea is to build
your sensors in such a way that it’s easy and safe to carry them around. Figure 7-26 shows a piezo element
connected to a mono 1/8-inch jack. This way it’s very easy to transport them and use them.

Figure 7-26. Piezo element wired to a 1/8-inch jack

Figure 7-27 illustrates a box that I have made for this project. On the front side, there are four
quarter-inch female jacks for plugging in the foot switches, which usually come with a 1/4-inch male jack
extension. Since the switches have two pins, these jacks are mono. On the top side of the box, there are the
four LEDs that indicate which sensor is active and which is not, and the four female 1/8-inch jacks for the
sensors. This setup makes it extremely easy to plug in your switches and sensors, and play.

311

CHAPTER 7 © AN INTERACTIVE DRUM SET

Figure 7-27. Box containing the circuit of the project

This box doesn’t contain an Arduino, but it has a IDC male angled connector on its back side, which you
can see in Figure 7-28. I've used a Proto Shield along with the Arduino, which makes prototyping very easy,
giving easy access to all the pins of the Arduino.

Figure 7-28. Back side of the box

To connect the box to the Arduino I just used a ribbon cable (the kind of cable used with the IDC
connectors) between it and the Proto Shield. You can see that connection in Figure 7-29.

312

CHAPTER 7 © AN INTERACTIVE DRUM SET

LTI s

T

Figure 7-29. Connecting the circuit box to the Arduino

313

CHAPTER 7 © AN INTERACTIVE DRUM SET

What you need to take care of is how you'll wire both the circuit board and the Proto Shield. First,
connect the two IDC connectors and then check which component is connected to which pin of the IDC, so
that every component goes to the correct pin. IDC connectors may be a bit confusing, and you’ll probably
need a multimeter to use its continuity to verify your connections. You'll also probably need to solder some
wires on the back side of the circuit board and the Proto Shield.

I've already mentioned that when building circuits, it may be preferable to have only one component
connected to ground on the circuit board, and pass it to the other components (the same goes for voltage,
but we're not passing voltage here). Here, I have connected the first 1/4-inch jack to ground and I have
then daisy chained all components. Another thing I have used is stereo female 1/8-inch jacks for the piezo
elements. Even though they require mono jacks, using stereo in the box makes it easier to pass the ground
to the other components. As soon as you connect the male mono jack, the first two pins of the stereo female
jack will be connected (it’s pretty simple why this happens, test for yourself with a multimeter). This way you
can use one pin to receive ground from the previous component, and another pin to pass the ground to the
next component. You could apply this to the 1/4-inch female jacks too.

Another thing that you might want to consider is to minimize the components on the circuit board as
much as you can. In the same line of using the integrated pull-up resistors of the Arduino, you can solder the
other resistors right on their components. Figure 7-30 shows how I soldered the 1MQ resistors of the piezo
elements on the female 1/8-inch jacks.

Figure 7-30. 1M resistor soldered on a 1/8-inch female jack. The first two pins are used to receive and
pass ground

Soldering these resistors on the jacks is pretty easy (this is another advantage of using stereo female
jacks with mono male jacks) and minimizes the circuit you need to solder on the perforated board. In
Figure 7-30, you can also see how the stereo jack is used to easily receive and pass ground. When a mono
male jack is inserted, the two wires on top are both grounded, since they both touch the same area of the
male jack. The left one receives ground from the previous component, and the right one passes it to the next
component. Mind, though, that this is true only when the male mono jack is plugged in. If you don’t plugin a
mono male jack, the two pins won’t be connected. If you plug in a stereo male jack, again the two pins won'’t
be connected, because they will be touching different parts of the male jack. If you omit connecting a piezo
element, make sure you don’t have any other components in the chain waiting to receive ground; otherwise,
any components after the unconnected female jack won’t be grounded and won’t work. You can also wire
the 220Q resistors of the LEDs on their long legs, but I didn’t do that. I prefer to solder these resistors on the
perforated board instead.

314

CHAPTER 7 " AN INTERACTIVE DRUM SET

On the one hand, this kind of enclosure makes the circuit very stable, easy to use, and safe to transfer;
on the other hand, you don’t need to “sacrifice” your Arduino since you're not enclosing it along with the
circuit, enabling you to use it for other projects any time.

Conclusion

We have created a robust and flexible combination of hardware and software that enables us to extend the
use of the drums. As with all projects, the Pd patch is only a suggestion as to what you can do with these
sensors. You can try out different things with this patch and build something that suits your needs. The
Arduino code is not so much of a suggestion, as it provides a stable way for these sensors to function as
expected. This also applies to the part of the Pd patch that reads the sensor data (the [drum] abstraction).

The threshold values used here are most likely very low, and you'll probably find that you need much
higher values to avoid getting input from one sensor when you hit the drum of another sensor. A very low
threshold might also result in getting more than one value per hit, even if you use a rather high debounce
time value. Setting these two values is a matter of personal playing style, what you actually want to achieve,
and the drum set you use.

Another thing to bear in mind is that you might not want to use sensors on drums that share the
same base (tom drums, for example, which are based on the kick drum). Also, depending on the tuning of
the drums, hitting a drum might cause another drum to resonate, which can also be a factor you'd like to
experiment with. Regardless of these aspects, your sensor setup should bring in a lot of inspiration and fun.

315

CHAPTER 8

A DIY Theremin

In this chapter, we’re going to build an interface that’s very similar to the very popular theremin, an
electronic musical instrument originally built by Léon Theremin in the 1920s. The theremin allows the
performer to have no physical contact with the instrument; he or she can control both the pitch and
amplitude of the instrument with two antennae that sense the distance of the performer’s hands from it. The
instrument uses oscillators to produce sound, making it a purely electronic instrument. In this chapter, we'll
replicate the theremin by using two proximity sensors for the controls, and a few potentiometers for some

other controls that are available in today’s version of the instrument.

Parts List

To build this project we’ll need all the components listed in Table 8-1.

Table 8-1. Theremin Parts List

Part

Quantity

Arduino (Uno or Nano will do)

Proximity infrared sensors (I've used the Sharp 2Y0A21)

10KQ potentiometers

Push buttons to mount on a panel

Switches to mount on a panel

LEDs

LED holders

Raspberry Pi (or other embedded computer, if enclosing the computer)
Proto Shield (if you're using an Arduino Uno)

Perforated board (if you're using an Arduino Nano, or other microcontroller)
1/4-inch female jack (if the computer will be embedded into the enclosure)

Wire to make all the circuit connections

e T T e > > U = Y~V SN G R

Length of your choice

317

CHAPTER 8 © A DIY THEREMIN

Using a Proximity Sensor with the Arduino

Before we start building this project let’s take a first look at the proximity sensors we’ll be using. There are
various types of such sensors, including infrared and ultrasound, but we’ll use infrared because they are
wired to the analog pins of the Arduino and are more straightforward in their use. There are some libraries
that can be used to convert the output of the sensor to a scale that is easier to read, like centimeters, but in
our case, it’s not really necessary, so we won'’t bother to use any of them.

The infrared proximity sensors have an LED that emits infrared light that we humans can’t see, and a
receiver that detects the reflection of this light. According to the time spent for the light to be reflected back
to the device, the sensor outputs values to express this amount of time in distance. The sensors that I'm
using for this project are rather inexpensive, but you might find even cheaper ones. Let’s take a look at the
code that reads one proximity sensor, which is shown in Listing 8-1.

Listing 8-1. Reading One Proximity Sensor

1. // we'll use Serial.write so we need to split analog values to two
2. // we also need a unique byte at the beginning of the data stream
3. const int num_of data = 3;

4. byte transfer data[num_of data] = { 192 };

5.

6. void setup() {

7. Serial.begin(57600);

8. }

9.

10. void loop() {

11. int index = 1;

12.

13. int sens_val = analogRead(0);

14. transfer_data[index++] = sens_val & 0x007f;

15. transfer data[index++] = sens val >> 7;

16.

17. Serial.write(transfer data, num_of data);

18. }

Here we're using the write function of the Serial class, instead of print, which writes raw bytes to the
serial line. This means that any value above 255 (which is the highest value of a byte) will be wrapped back to
0. In order to obtain the 10-bit resolution of the analog pins of the Arduino we must split any analog value to
two, and reassemble it back in Pd. This is done in lines 15 and 16; it was explained in Chapter 2