
Engineer-to-Engineer Note EE-255

a

Technical notes on using Analog Devices DSPs, processors and development tools
Contact our technical support at dsp.support@analog.com and at dsptools.support@analog.com
Or visit our on-line resources http://www.analog.com/ee-notes and http://www.analog.com/processors

Porting PC-Based MP3 Player Software to ADSP-21262 SHARC®
Processors
Contributed by Srinivas K. and Kunal Singh Rev 1 – November 16, 2004

Copyright 2004, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices’ Engineer-to-Engineer Notes.

Introduction
ADSP-21262 devices are a members of the third
generation of SHARC® family of processors.
ADSP-21262 processors offer SIMD architecture
and are equipped with powerful DMA
engines,ensuring high bandwidth data transfers
to and from the processor. Data transfers are
completely transparent to the processor core.
ADSP-21262 processors operate up to 200 MIPS
and provide several peripherals (e.g., SPORTs,
PP, SPI, IDPs) that are well suited for audio
applications.

MP3 is a standard for digitally compressed
music. This compression algorithm is capable of
up to 10:1 compression with no noticeable loss in
quality of the audio data. MP3 (short for
MPEG3) stands for Motion Picture Experts
Group, Audio Layer 3. MP3 is becoming an
increasingly popular way to store audio in
electronic format. An MP3 decoder reads the
compressed data from the storage media and
performs various decoding steps to obtain the
raw audio data. This audio data is in PCM audio
format, which can be stored on storage media or
played to an audio output device (speaker) in real
time.

This application note is based upon experience
gained while porting pure PC-based C code for
an MP3-decoder to ADSP-21262 processors
using the VisualDSP++® 3.5 tools suite. The
target platform was the ADSP-21262 EZ-
KIT Lite® evaluation system. This application

note summarizes key considerations involved in
porting general PC-based C-code to ADSP-
21262 processors.

Data I/O - PC versus SHARC
As depicted in Figure 1, general PC-based code
primarily uses file I/O for data input and output
operation. The data may be stored in the form of
the files on the PC's hard drive. The file I/Os on
PC are supported by the OS running on the PC.
For example, MP3 files for an MP3 decoder may
be stored on the PC's hard drive.

Figure 1. Data I/O Scheme for a PC-based System

MP3-Decoder running on
the PC

Compressed Decoded

MP3 Music PCM audio

Music.mp3 Music.dat

PC Hard Disc

 a

Porting PC-Based MP3 Player Software to ADSP-21262 SHARC® Processors (EE-255) Page 2 of 7

Unlike a PC environment, the data on the
embedded processor would be available from an
external device (e.g., memory or a Host device).
The data from the external device would be
transferred in and out of the processor through its
peripheral. Figure 2 depicts the data I/O scheme
for an MP3 decoder ported onto an ADSP-21262
processor.

Figure 2. Data I/O Scheme for the SHARC-based
MP3 Decoder

The first task in porting the PC-based code to the
embedded platform, is to replace the file I/Os in
the PC code with the peripheral-based I/Os on
the SHARC processor.

Code Profiling
The next step is to obtain an estimate of the
MIPS consumption. The optimization process
can be an iterative procedure where MIPS for the
different functions would be measured, changes
would be made to the code structure, and the
effect on the MIPS utilization would be
evaluated.

The first step in optimization is code profiling.
The entire code is split into a set of smaller
modules for analysis. The benchmarks (in terms
of MIPS consumed) for these different modules

can be obtained, and the information can be
stored in an Excel spreadsheet.

Using the above profile, identify the functions
that consume the most MIPS. Devote your
efforts toward optimizing these functions. Don't
bother with the functions that require fewer
MIPS.

The following paragraphs summarize different
techniques that may be used to optimize the
different code modules.

Table 1 shows the instruction count for various
functions optimizing the MP3 code.

Function Cycle Count

Huffman Decode 82327

De-quantize Sample 239079

Anti_alias 4292

Inverse MDCT 52770

Hybrid Synthesis 1201638

Sub-band Synthesis 186984

Table 1. Instruction Count for Various Functions
Measured Before Optimization

Using DMA Engines
The data I/O operations through the peripherals
can be performed in core mode or in DMA mode.
For core-mode data transfers, the processor must
execute a read/write instruction to an address to
which the particular peripheral has been mapped.
These transfers involve one instruction cycle for
ever data transfer.

For DMA-mode data transfers, the SHARC
processor's I/O handles all of the data transfers.
The core processor needs only to initialize the
DMA control/parameter registers with
appropriate values, which may involve only a
few instructions cycles. Thus, while using the
DMA based transfers, the processor core is
relieved of the instruction penalties that would
have occurred with core-mode transfers. The

ADSP-21262

Parallel Port SPORT

DMA Processor

Core
Processor

FLASH

Memory

Audio

CODEC

 a

Porting PC-Based MP3 Player Software to ADSP-21262 SHARC® Processors (EE-255) Page 3 of 7

DMA scheme is particularly suitable for real-
time applications in which huge amounts of data
must be moved in and out of the processor in real
time.

ADSP-21262 processors offer powerful DMA
engines to perform data transfers across:

 Internal and external memory

 Internal memory and an external peripheral

The above data transfers are completely
transparent to the core.

Parallel Data Fetch and SIMD
ADSP-21262 processors offer dual data fetches
and a MAC operation in a single cycle. The
internal bus architecture of the ADSP-21262
processor consists of separate PM and DM buses.
In normal scenarios, the PM bus fetches
instructions from Program Memory and the DM
bus reads/writes data from Data Memory. While
executing computation instructions with dual
data fetch, one operand is fetched on the PM bus
and the second operand is fetched on the DM
bus. Having the executed instructions available
in the Instruction Cache (so instruction fetches
are not needed and the PM bus is free to access
data) is a prerequisite for the above operation to
complete in a single cycle.

Instructions involving dual operands are
encountered frequently in typical signal-
processing code. Some examples include FIR/IIR
filter loops, DCT, FFT, and other transforms.

The above routines involve MAC operations on
two vectors. The operations are performed in a
loop (so all instructions are moved to Instruction
Cache during the first execution of the loop, and
no instruction fetches are required for subsequent
loop iterations). If the two data vectors are
located in different memory blocks (PM and
DM), it may be possible to use a dual fetch in a
single cycle.

Another important feature of the ADSP-21262
processor is its SIMD architecture. The ADSP-
21262 has two parallel compute units which can
execute same instructions on different data sets
in parallel.

Consider the following multiplication loop:

float operand1[1024];

float operand2[1024];

float result;

{

 int j;

 result = 0;

 for (j= 0; j<1024; j++)

{

 result += operand1[j] *
operand2[j];

 }

}

Listing 1. Multiplication Loop Without Optimization

In the absence of a dual data fetch, the inner
multiplication loop in the above example would
require 2048 cycles to finish the execution. This
is because the fetching of operand1 and operand2
for each instruction requires a total of two cycles.

The above code structure can be modified such
that one of the operands lies in the PM block.
With the above modification, the two operands
can be fetched in a single cycle. Since the
multiplication is being performed within a loop,
the instruction would get cached after the first
execution, so that processor can fetch the two
operands in a single cycle.

float PM operand1[1024];

// the “PM” command would place
operand1

// in PM

float operand2[1024];

float result;

{

 a

Porting PC-Based MP3 Player Software to ADSP-21262 SHARC® Processors (EE-255) Page 4 of 7

 int j;

 result = 0;

 for (j= 0; j<1024; j++)

 {

 result += operand1[j] * operand2[j];

 }

}

Listing 2. Multiplication Loop with Dual Data Fetch

As shown above, the PM command instructs the
compiler that this particular variable must be
stored in the PM block. The above loop would
take approximately 1024 cycles to execute. The
code can be structured further, allowing the
compiler to use SIMD mode.

float PM operand1[1024];

// the “PM” command would place
operand1

// in PM

float operand2[1024];

float result1, result2;

{

 int j;

 result1 = 0;

 result1 = 0;

 for (j= 0; j<512; j++)

 {

 result1+= operand1[j] *
operand2[j];

 result2+=
operand1[j+1]*operand2[j+1];

 }

 result = result1 +result2;

}

Listing 3:

Listing 3. Multiplication Loop with Dual Data Fetch
and SIMD

With the multiplication loop re-structured in the
above fashion, the compiler would enable SIMD
mode and execute the instructions for result1 and
result2 on different processing elements. The

above loop would take approximately 512 cycles
to execute.

Native Instructions
Instructions in the processor's instruction set can
be executed in a single cycle. However,
operations that are not native to the instruction
set take multiple cycles.

Some complex operations can be performed in
alternative ways that rely only on the native
instructions to perform the operation. For
example, signal-processing code frequently
involves division by a factor of 2/4/8 and so on,
which take approximately 40 cycles. However,
these divisions can be replaced by right-shift
operations which would be performed in a single
cycle.

Function Calls
Another important consideration is function
calls. The C run-time manager must save/restore
the context information across the function calls.
The context information is pushed onto the stack
while calling a new function and is popped from
the stack when returning from the function call.
If frequent function calls are made to a relatively
smaller function, large overheads are required.
These overheads can be eliminated by replacing
such function calls with inline code.

The VisualDSP++ 3.5 compiler also provides
built-in versions of some C library functions. The
compiler immediately recognizes them and
replaces them with inline assembly code instead
of a function call. Inline assembly code is faster
than an average library routine, and it does not
incur the calling overhead.

Processor Built-In Functions
The VisualDSP++ compiler supports intrinsic
(built-in) functions that enable efficient use of
hardware resources. These functions are different

 a

Porting PC-Based MP3 Player Software to ADSP-21262 SHARC® Processors (EE-255) Page 5 of 7

from the built-in library functions which we
discussed above, in which the function call is
replaced by inline assembly. Rather, the
processor built-in functions provide a means to
use the processor's hardware efficiently.

The built-in functions can be used to:

(a) Access the System registers: Some intrinsic
functions provide efficient access to registers,
modes, and addresses not normally accessible
from C source. This can be achieved through
a set of functions defined in the “sysreg.h”
file. Examples include reading/writing
System registers and setting/clearing
particular System register bits.

(b) Instruct the compiler to use circular buffer
indexing. This is important for access to a
data array with a fixed offset between two
accesses. Decimation, filtering, and FFTs are
examples of algorithms that may utilize the
above function. Consider the following
example:

int m, jj;

float sum, COS[SIZE];

#define circindex __builtin_circindex

 for (m=0;m<N ; m++)

 {

 sum += COS [jj];

 jj = circindex (jj, MODIFY, SIZE);

 }

Listing 4. circindex Function for Circular Buffering

In the above example, the COS array is accessed
inside a loop. The circindex function instructs
the compiler to access COS using circular
buffering with Mx = modify and Lx = length.
However, if circindex is not specified in the
above example, the compiler may not implement
the accesses to COS with index registers. Instead,
it may use other calculations to calculate the
index for each access, which would consume
extra cycles.

Other Optimizations
C code that performs satisfactorily on a PC may
not be MIPS efficient on a processor. The MIPS
on the processor are constrained generally and
may require further optimizations specific to the
algorithms being used. For example, DCT
computations may be replaced by fast DCT
algorithms.

As discussed already, great benefits may be
achieved by using processor native instructions
in place of complex computations. We would
like to share the following example:

N=36;

for(p= 0;p<N; p++)

{

 sum = 0.0;

 for(m=0;m<N/2;m++)

 sum += in [m] *

COS[((2*p+1+N/2)*(2*m+1))%(4*36)];

 out [p] = sum * win [block_type]
[p];

}

Listing 5. An IDCT Loop

The above code section (taken from the MP3
algorithm) is used for the inverse DCT
computation.

The instruction in the innermost FOR loop uses
complex logic to calculate the index of a COS
table. In the particular algorithm, the FOR loop
instruction would execute 41472 (2x32x36x18)
times to process each audio frame. Using the
above code on ADSP-21262 processor in place
the algorithm takes 330 MIPS.

We have tried to use simple logic to index the
COS table in the above example. A “%” is not a
native operation for the processor. It would be
performed using a certain library function (C-
library) that would introduce additional

 a

Porting PC-Based MP3 Player Software to ADSP-21262 SHARC® Processors (EE-255) Page 6 of 7

overheads (due to the function call) each time the
index in the above code is calculated.

We tried to implement the index calculation logic
using the additions and comparisons. These
operations can be performed easily on the
processor. We can replace the earlier code with:

int start = 19 ;

int modify = 38 ;

N=36;

for (p= 0;p<N ;p++)

{

 int jj = start ;

 double temp1, temp2 ;

 sum = 0.0;

 for(m=0;m<N/2;m++)

 {

 sum += in [m] * COS [jj];

 jj = circindex (jj, modify, 144);

 }

 start += 2 ;

 modify += 4 ;

 if (modify > 144)

 {

 modify = modify - 144 ;

 }

 out [p] = sum * win [block type]
[p];

}

Listing 6. IDCT Loop with Optimizations

The above code section is functionally equivalent
to the earlier code example. Implementing the
above changes to the original code reduces the
MIPS count for the algorithm dramatically from
330 to 110.

Summary
Key guidelines that permit efficient use of
processor resources include: exploring DMA
capabilities, using parallel data fetches (from PM

and DM), exploiting the processor's SIMD
architecture, and using native instructions to
replace complex computations.

Table 2 shows the instruction count for various
functions after the optimization and the
performance improvement as a percentage of
initial count.

The Figure 3 depicts the optimization results
graphically.

Function Instruction
Count

Reduction in
Cycle Count

(%)

Huffman Decode 76655 6.8

De-quantize Sample 44822 81.3

Anti_alias 3117 27.4

Inverse MDCT 5196 90.1

Hybrid Synthesis 119348 90.1

Sub-band Synthesis 30345 83.8

Table 2. Final Instruction Count for Various Functions
and % Reduction in Cycle Count

The Figure 3 depicts the optimization results
graphically. The color bars represent various
functions (similar to the color in Table 2) versus
% reduction in the cycle count

Figure 3. Graphical Representation of Optimization
Results.

F

M C

P

 a

Porting PC-Based MP3 Player Software to ADSP-21262 SHARC® Processors (EE-255) Page 7 of 7

References
[1] VisualDSP++ 3.5 C/C++ Compiler and Library Manual for SHARC® Processors. Revision 4.0, January 2003.

Analog Devices, Inc.

Document History

Revision Description

Rev 1 – November 16, 2004
by Srinivas K.
and Kunal Singh

Initial Release

	Introduction
	Data I/O - PC versus SHARC
	Code Profiling
	Using DMA Engines
	Parallel Data Fetch and SIMD
	Native Instructions
	Function Calls
	Processor Built-In Functions
	Other Optimizations
	Summary
	References
	Document History

