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Digital signal processing or DSP
means the processing of ‘analog’ signals
using digital techniques — ie., digital
hardware and software.

It should perhaps be noted here that
any electrical signal is by nature an ana-
log signal, even if it represents a digital
‘1" or 0°. This can be understood if one
pictures what happens to a chain of 1’s
and 0's returned from beyond the orbit
of Jupiter, buried in cosmic noise: the
signal must be received, amplified, con-
verted and processed (digitally) to
reconstrt the original digital informa-
tion; but until that digital information
has been identified, the signal is to all
intents and purposes a purely analog
one.

While any digital processing of signals
that originate in the analog world, and
have at some point been converted into
digital form, would qualify for this
broad definition, the term DSP has
come to be used in a much more spe-
cific way. Nowadays, DSP is the the ap-
plication of fast, specialised hardware,
sophisticated algorithms and the appro-
priate software for the purpose of
manipulating large amounts of data as-
sociated with extracting and processing
analog-based information in essentially
real time.

The emergence of DSP hardware is
changing the role of analog-to-digital
conversion in today’s signal processing
systems. In early days, all processing of
a signal, with the goal of obtaining re-
sults with sufficient speed to be useful
in real time, was of necessity handled
by analog components. The principal
destinations for analog signals converted
to digital format, after substantial ana-
log processing, were off-line computa-
tion, data storage, and hard-copy tabu-
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lation, rather than real-time instrumen-
tation, computation, and control.

Now, however, system designers have
an incentive to perform the signal con-
version as early in the loop as possible
(see Fig.1). The reason for this is that
much or all of the required signal pro-
cessing can be handled by fast, flexible
digital components that allow high-per-
formance DSP routines to be imple-
mented more accurately, reliably, and
flexibly than with analog circuitry, yet,

in many cases, with sufficient speed to
interact in real time.

This article first reviews basic signal
processing tasks, giving emphasis to the
general role played by DSP. Two key
DSP algorithms are examined in some
detail - digital filters and spectral analy-
sis. The basic hardware required to per-
form DSP is described. Finally, some
applications that exemplify DSP’s ad-
vantages are reviewed.

DSP basics

Signal processing revolves around two
basic tasks - digital filtering and spectral
analysis. Filtering smoothes, removes
noise from, selects particular signal
components from, or predicts future
values of an incoming signal. A time-
domain signal can be interpreted- as a
weighted combination of purely sinusoi-
dal spectral components; spectral analy-
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Fig.1: As DSP technology has developed, designers have been able to convert
to digital earlier in the signal processing chain. '
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sis determines the weights correspond-
ing to each frequency in the spectrum.

Signal-processing applications span
many areas, including speech analysis
and synthesis, telecommunications, in-
strumentation, radar and sonar, and -
using multi-dimensional techniques -
graphics and imaging. For example, fil-
tering is used to minimize high-
frequency noise and the low-frequency
hum in telephone-line transmission.
Spectral analysis is used to determine
the format content of incoming speech
for recognition. Two-dimensional filter-
ing improves the clarity of a satellite
image.

Filtering and spectral analysis have
traditionally been implemented with
analog components. Filtering is carried
out by passing the signal through a cir-
cuit consisting of resistors, capacitors,
op-amps, and/or inductors; the precise
configuration of these components and
the relationship of the magnitudes of
their parameters determine the filter’s
characteristics. Multiple analog filters —
each passing energy in a narrow band -
can be cascaded for sharpness and
banked together to perform spectrum
analysis.

Analog-based signal processing has
numerous advantages, including low
component cost, the ability to handle
wide bandwidths in real time, the avail-
ability of pre-packaged modules and
ICs, and a large existing base of knowl-
edge. However, analog components in-
troduce noise at each stage; and filter
characteristics - requiring effort to tune
initially - are sensitive to the effects of
temperature and aging. In addition,
multi-stage filters pose subtle design
challenges. Because coefficients and
configurations — once established — tend
to be inflexible, signal-processing hard-
ware using analog parts is generally re-
stricted to performing a narrow, dedi-
cated task.

In response to the limitations of ana-
log-based processing, the digital pro-
cessing of signals has emerged as an al-
ternative. The next section demon-
strates how signal-processing tasks — in-
cluding filtering, spectral analysis, and a
host of others - can be carried out with
digital arithmetic operating on digitised
data.

Recent advances in VLSI (very large-
scale intergration) now make is feasible
to perform real-time digital signal pro-
cessing with just a handful of ICs. The
advantages conferred upon a system by
such DSP hardware are dramatic — sub-
stantially improved performance, stabil-
ity, and flexibility. Just as digital com-
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puters supplanted analog computers two
decades ago in general-purpose comput-
ing applications, DSP is strongly chal-
lenging analog circuit configurations in
real-time processing.

Our discussion of spectral analysis and
digital filtering will benefit from a brief
discussion of DSP nomenclature (there
is also a brief glossary at the end of this
article). Following Fig.2, an incoming
analog signal is digitised, with the sam-
pled data output points denoted x(i).
The index, i, corresponds to the discrete
sampling time. This sampled data is
stored in a buffer and operated on by
DSP hardware. The DSP algorithm
determines the sequence in which data
and coefficients are accessed and how
they are processed. In the cases below,
the computational outputs are spectral
weights or filtered sampled data.

Spectral analysis

Digital spectral analysis essentially de-
rives from the principle of Fourier
transformation. Without going into the
mathematics here, this is a mathemati-
cal technique of taking a signal’s time-
domain representation and resolving it
into its equivalent frequency-domain
spectral weights - called Fourier coeffi-
cients.

Since the basic Fourier equations link-
ing the time and frequency domains re-
quire continuous signals, they have only
indirect bearing on digital processing.
However under certain circumstances, a
sampled (digitised) signal can be related
faithfully to its Fourier coefficients
through the so-called discrete Fourier
transform (DFT).

Again we needn’t go into the maths,
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but what is most interesting from the
standpoint of DSP is that the DFT tech-
nique provides us with a means to esti-
mate spectral content by digitising an
incoming signal and simply performing a
series of multiply/accumulate opera-
tions. And this gives us an accurate pic-
ture provided that the signal is sampled
frequently enough (at a rate greater
than its highest frequency component),
and assuming that the signal is periodic.

To see qualitatively why the DFT
technique yields spectral information,
consider Fig.3. A time signal is superim-
posed on a spectral ‘template’ at various
frequencies.

In the first case, for frequency w1, the
input signal and the spectral template
have little relationship; as a result, the
positive products are more or less can-
celled out by negative products. The net
effect is that the summation of the
product between the two in the DFT
process indicates little spectral energy of
frequency w1 in the input signal.

In the second case, however, a rein-
forcing pattern emerges; the signal and
the template tend to be positive or
negative concurrently — producing a
positive product nearly everywhere.
Thus, the sum of the products will be a
large positive number, indicating that
the incoming signal has significant
energy of frequency, w2.

Unfortunately, the large number of
multiplications required by the DFT
process limits its use in real-time signal
processing. The computational complex-
ity of the DFT grows with the square of
the number of input points; to resolve a
signal of length N into N spectral com-
ponents N? complex multiplications or
4N? real multiplications. Given the large
number of input points needed to pro-
vide acceptable spectral resolution, the
computational requirements of the DFT
are prohibitive for most applications.

The fast Fourier-transform (FFT) al-
gorithm produces results identical to
those of the DFT, but reduces computa-
tion requirements by several orders of
magnitude. The FFT achieves its econo-
mies by exploiting computational
symmetries and redundancies that exist
in computing the DFT. The availability
of the FFT makes spectral analysis fea-
sible, at virtually real-time rates.

Fig.4 illustrates how an FFT resolves
a signal into its spectral components —
and the effect of FFT length on spectral
resolution. In all three cases, the same
input signal is examined. In the first
case, we perform a 64-point FFT on the
first 64 sample points; the second and
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third cases perform 256 and 1024-poi-
ntFFTs on the first 256 (1024) data
points. The differences observed in
spectral resolution underscore a key
principle — the longer the time period in
which a signal is observed, the sharper
the spectral resolution that can be at-
tained.

Bringing digital hardware to bear on a
spectral-analysis task has numerous ad-
vantages. With a long-enough window
of data, it can provide very precise
spectral resolution. Moreover, the sys-
tem can be flexibly programmed to vary
the FFT size dynamically, according to
the spectral resolution needed. Finally,
once data is digitised, it is possible to
perform additional DSP tasks, such as
spectrum averaging, to further improve
FFT performance.

Digital filtering

Digital filters have performance attri-
butes similar to those of analog filters —
ripple in the passband and attenuation
in the stopband. What distinguishes
digital filters is their ability to provide
arbitrarily high performance. For exam-
ple, the rolloff slope (i.e., the rate at
which the filter makes a transition from
the passband to the stopband) can be
made virtually as steep as is desired. In
general, it is straightforward to design a
digital filter that easily out-performs the
most complicated analog designs.

Without going into the maths in-
volved, digital filtering essentially in-
volves convolving, or adding together
on a continuous basis, the products of
various signal samples (representing the
signal at different points in time), and
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Fig.5: A finite impulse-response (FIR) filter visualised as a tapped delay line.
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Fig.6: The impulse response h(i) of an FIR filter as in Fig.5.

suitably selected weighting factors.

In the case of a Finite Impulse Re-
sponse or ‘FIR’ filter, these signal sam-
ples are all taken from before the filter
itself. In contrast, for an Infinite Im-
pulse Response or ‘IR’ filter, addi-
tional samples are taken from the out-
put of the filter - so-called ‘feedback’
terms.

FIR filters

An FIR filter can be viewed as a
tapped delay line (see Fig.5); the pa-
rameter, N, corresponds to the number
of taps of the FIR filter. The number of
taps tells us the number of multiply/ac-
cumulate operations required to com-
pute this convolution.

FOURIER TRANSFORM

TIME

x(t) =cos (2%f,t) + cos (2=f,t)

P
it Ny

a. Input signal, sum of two sine
waves at different frequencies.

> FREQUENCY

TWO FREQUENCY
X COMPONENTS

AN

5

fa f,

b. Spectrum of signalin (a).

B hin) - DISCRETE

t

c. Impulse response of desired fil-
ter, (sin t)/t function—transform of
(d).

h(t) - CONTINUOUS

|H(f)|

{i

1

)

f! ft: fz

d. Desired low-pass filter transfer
fl'mction.

y(n)=Xh(i)x(n—i)
y(t) = cos(2wf;t)

b L
i e

e. Time response of filtered sig-
nal, convolution of (a) and (c).

il Y(f) = H(f) X(f)

fa

f. Frequency response of filtered

signal, product of (b) and (d).

Fig.7: The

basics of low-pass filter design using the Discrete Fourier

Transform (DFT). The time domain is at left, frequency at right.
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The coefficients, h(i), represent the
impulse response of the FIR filter. As
Fig.6 demonstrates, an input of 1 at
time 0 (x(0) = 1), and zero at all other
times, results in output values equal to
h(i) for the periods i = 0,....#N - 1.
Note that the h(i) can be non-zero for
only a finite number of time periods,
hence the term ‘finite’ impulse re-
sponse.

Since they use no feedback, FIR fil-
ters are unconditionally stable.

FIR filters can best be understood in
the context of two fundamental relation-
ships. First, a filter’s time-domain im-
pulse response, h(i), and its frequency
response, H(f), are related via the
Fourier transform. Second (a key princi-
ple of DSP), multiplication in one do-
main is equivalent to convolution in the
conjugate domain.

With respect to FIR filters, this tells
us that multiplying the input spectrum
by the desired filter transfer function is
equivalent to convolving the input time-
function with the filter’s impulse re-
sponse in the time domain.

To further amplify the above point,
consider Fig.7, where (a) illustrates an
incoming signal that we wish to low-pass
filter. It consists of the sum of two sig-
nals at frequencies, fi and f. Since
there are just two frequencies present,
its spectrum looks like (b). We'd like to
design an FIR filter to filter out f2, leav-
ing just fi, as shown vs. time in (¢) and
frequency in (f).

An ideal low-pass filter is suggested in
(d); note that multiplying it by the input
spectrum in (b) will give the spectral
domain representation of a low-pass fil-
tered output, allowing fi to pass and
completely attenuating f2. Now, the
Fourier transform of (d)’s ideal filter is
the sinc function (sin x/x) in (c). Conse-
quently, if the input (a) is convolved
with a discretised sinc function, (c), we
can directly compute the filtered ouput
signal, as a function of time (e).

More generally, an FIR filter boils
down to simply convolving the digitised
input signal with the filter’s time-do-
main coefficients, h (i) — an action
equivalent to multiplying the frequency
representation of the input signal by the
filter’s transfer function.

Unfortunately, from the perspective
of practical implementation, Fig.7(c)’s
sinc function is infinite in duration. To
obtain a filter that can be implemented,
we must somehow truncate the number
of coefficients used to represent (c); this
can be carried out by discarding the
tails — or, more effectively — by multi-
plying the function by some window.
This truncation/windowing, however,
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makes it impossible to realize (d)’s ideal
low-pass filter transfer function, and rip-
ple and rolloff are necessarily intro-
duced (see Fig.9).

By taking an adequate number of taps
and properly choosing the coefficients,
an FIR filter can provide excellent dis-
crimination, as the response spectra
shown in Fig.8 illustrate, for various
numbers of taps. In general, the greater
the number of taps used in an FIR fil-
ter, the better the filter’s performance,
at the expense of reduced throughput.

In designing FIR filters, tradeoffs
must be made among several attributes
(i.e., ripple in the passband, ripple in
the stopband, width of the transition
band, phase distortion, and through-
put). These tradeoffs are reflected in
the number of coefficients used — and
their particular values. This selection
can be made directly in the time domain
(for example, to implement a pure time
delay or an N-point running average),
but more commonly is made employing
powerful and easy-to-use computer-
aided-design (CAD) techniques to
determine optimal parameter values for
the desired filter performance.

The highest-performance filters of
Fig.8 could not be matched by an ana-
log-based implementation. Moreover,
these digital filters are straightforward
to design and implement in hardware.

There are other advantages of digital
FIR filters that further increase their
desirability. Once designed, they are
stable; performance is insensitive to the
effects of temperature or aging. In addi-
tion, a key consideration is that the fil-
ter’s performance can be changed sim-
ply, just by modifying the number of
coefficients used and their values. For
instance, a simple software modification
would shift a filter’s performance from
(a)’s to (d)’s — with no change in hard-
ware, except that slightly more memory
is used.

lIR filters

Infinite Impulse-Response filters are
the other commonly used digital filter,
differing from FIR filters in one funda-
mental respect: feedback. Because of
feedback, the filter’s impulse response
can continue long after the initial im-
pulse — indeed, for an infinite duration.

The use of feedback allows an IIR fil-
ter to economize in the number of mul-
tiplications required to provide a given
filter performance. But this efficiency is
not without its costs. As in other recur-
sive systems, input perturbations can
‘ring’ indefinitely - in some cases caus-
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Fig.8: Comparison of FIR low-pass filters with 16, 32, 64 and 128 taps. The
frequency is normalised to the sampling frequency.

ing the filter to be unstable. Also, the
accumulated effects of fed-back round-
off noise can noticeably degrade the fil-
ter’s performance. Fig.9 plots an im-
pulse response function for an IIR filter
with a typical set of coefficients. In this
case, and in general, the presence of
feedback means that the impulse re-
sponse of an IIR filter never converges
to zero — may even diverge — hence infi-
nite impulse-response. However, as a
practical matter, noise, round-off error,
and limited resolution do result in effec-
tive convergence when simulating ana-
log filters that settle physically.

Even a simple single-time-constant
R-C analog filter will theoretically take
an infinite time to reach its asymptotic

steady-state condition, but in practice it
settles, for example, to 1 LSB of 32 bits
within 23 time constants - and so does
its [IR-filter equivalent.

Two principal IIR design techniques
exist. The first considers the transfer
functions of conventional analog filters,
such as the Butterworth, Chebyshev, or
Elliptic; a digital filter is then con-
tructed that provides the same impulse
response as its analog counterpart. The
second relies on computer-aided-design
techniques to arrive at an optimal IIR
implementation. In this context, ‘opti-
mal’ means that the number of terms
needed to meet a specified performance
specification is minimised.

An example that demonstrates the ef-
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1.0+

y(n) = x(n)+1.05 y(n—1) - 0.9 y(n-2)

x(0) = 1
x(n) =0, n#0

Fig.9: A portion of the impulse response of an infinite impulse-response (lIR)

filter.
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ficiency of an IIR implementation is a
comparison of an FIR and IIR imple-
mentation of a 70dB stopband attenua-
tion filter. To achieve this performance,
an FIR filter would require nearly three
times as many multiplications-per-sec-
ond as an IIR implementation. These
performance advantages, however, re-
quire tradeoffs to be made in other key
respects, as summarised in Table 1.

Other algorithms

DSP is not limited to FFTs and digital
filters. In fact, one of the prime advan-
tages of DSP is that, once the data is
digitised, fast digital hardware can per-
form a broad range of tasks.

Commonly used DSP routines include
modulation/demodulation  (heterodyn-
ing), waveform generation, correlation,
estimation, control, power spectrum cal-
culations, and multi-dimensional trans-
forms.

While a discussion of these areas
would take us far afield of this article’s
focus, their breadth points to an impor-
tant advantage of DSP - system flexibil-
ity. By converting signals early and in-
corporating fast multiply/accumulate
hardware to perform digital filtering
and/or spectral analysis, a system can
readily offer numerous enhancements.

DSP applications

DSP began as a specialised tech-
nology used in military applications.
With US government funding, a high-
speed integrated-circuit array multiplier
was developed and first offered com-
mercially in 1976. This multiplier
formed the heart of high-performance
radar, sonar, and missile-control sys-
tems.

Over time, however, the use of DSP
has spread from specialised military
niches into a broader set of industrial
and commercial markets, as Table 2
confirms. Two important uses -
modems and studio recording — are dis-
cussed below, primarily to illustrate how
DSP’s advantages benefit the applica-
tion.

A tremendous amount of information
is transmitted today over analog com-
munication links, such as telephone
lines. With the growing role of comput-
er-based systems, this information is in-
creasingly digital in nature (for exam-
ple, digital data and digitised voice
transmission). The challenge of trans-
mitting digital data over analog links at
high speeds, and reconstructing the re-
ceived data with high noise immunity,
thereby reducing communication costs,
is met by a modulator-demodulator
(modem).
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Fig.10: Frequency-shift keying (FSK) and quadrature phase-shift keying

(QPSK).

In transmitting digital data over ana-
log communication lines, a digital bit
pattern is represented by modulating
the phase, frequency, and/or amplitude
of an analog signal. Fig.10 shows a sim-
ple scheme, which involves changing the
frequency of the signal to denote a ‘0’
or ‘1’; this frequency-shift keying (FSK)
method can send 2000 bits/second over
a telephone line.

A more sophisticated encoding meth-
od, - quadrature phase-shift keying
(QPSK), modifies the phase of the sig-
nal and is capable of transmitting data

at four times the rate of simpler meth-
ods.

When a modem is sending informa-
tion, it encodes the digital data into the
corresponding analog waveform; in re-
ceiving mode, it decodes the waveform
and determines the bit pattern that was
transmitted. This latter mode is the
more difficult to implement.

If the transmission medium were
noiseless, a modem’s tasks would be
limited to simple encoding and decoding
- a relatively straightforward exercise.
However, a phone line is a noisy trans-

IIR | FIR

Performance/Throughput Higher

Ease of Design Easier

Filter Stability Sensitive Unconditional

Round-off Noise Sensitive Insensitive

TABLE 1: Comparing FIR and IIR filter characteristics.
PRINCIPAL DSP MARKETS

Instrumentation: Spectrum analyzers, vibration analyzers, mass
spectroscopy, chromatography

Audio: Studio recording, music synthesis, speech
recognition

Communications: Modems, transmultiplexers, vocoders, satellite
transmission, repeaters, voice storage and
forwarding systems

Computers & Arithmetic acceleration, servo controls for disk

Computer Peripherals: head positioning, array processors, engineering
workstations

Imaging: Medical, satellite, seismic, bandwidth
compression, digital television, machine vision

Graphics: CAD/CAM, computer animation and special
effects, solids modelling, video games, flight
simulators

Defense Electronics: Radar, sonar, missile/torpedo control, secure
communications

Control: Robotics, servo links, skid-eliminator adaptive
control, engine control.

TABLE 2: Applications developed to date for DSP.
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mission medium, corrupting the analog
waveform. The more sophisticated the
encoding scheme, the more disastrous
the effects of noise and channel distor-
tion. Therefore, a modem must effec-
tively compensate for, or equalise, this
channel distortion. To this end, high-
speed modems (4800 bits/second and
above) turn to DSP for high-perform-
ance data recovery, using digital FIR fil-
ters.

An additional complexity of tele-
phone-line transmission is that its distor-
tion pioperties change over time.
Therefore, a modem’s digital filter must
be able to adapt to changes in the envi-
ronment. This need to respond to a
changing environment underscores an-
other advantage of DSP - a digital fil-
ter’s characteristics can be modified sim-
ply by changing its coefficients. Coeffi-
cient updating in a modem is deter-
mined by the observed drift of a prop-
erty of the distortion in the system.

Aided by DSP. then, a modem can
make it possible for high-speed data
transmission to be implemented effec-
tively. As Fig.11 illustrates, the DSP is
the heart of a high-speed modem. The
processing required generally can be
handled by one digital multiplier, sur-
rounded by the appropriate support de-
vices (a program sequencer, an address
generator). Alternatively, depending on
the requirements of the modem, a sin-
gle-chip processor may adequately han-
dle all DSP requirements.

Studio recording

One of the most interesting applica-
tions of DSP is emerging in the audio
processing performed in recording stu-
dios. This processing starts after the ini-
tial recording of voices and instruments
in the studio; after a large number of
steps, it ends with the recorded version
that reaches the home stereo. Increas-
ingly, DSP is being used to handle all
intermediate steps.

The flow of activities in studio record-
ing is complex and varied. Generally,
multiple channels are used, with each
track dedicated to one or more sources
(instruments/voices). All channels need
not be recorded at the same time. Each
channel is subjected to extensive pro-
cessing, including gain control, filtering,
non-linear compression or expansion,
reverberation  adjustments, spectral
equalisation, and  special-effects en-
hancements. The contributing channels
are then mixed together to obtain a
final arrangement with the desired over-
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Fig.11: Least-mean-squares modem processing architecture.

all effect.

Traditionally, channel processing and
mixing were implemented entirely in the
analog realm — with numerous disadvan-
tages. Each channel’s information -
stored as an analog signal on magnetic
tape — degrades as the cutting, splicing,
and re-recording process progresses, un-
dermining the benefits of the process-
ing. The limited performance range
available with analog processing sets a
ceiling on the signal enhancement that
can be attained. Also, analog circuitry
can only handle one channel at a time:
multi-channel mixers are expensive and
difficult to control. Finally, if analog
processing hardware is used, overall
mixing flexibility can be achieved only
through hardware modifications. In
practice, this means that the mixing pro-
cess loses its ability to creatively explore
special effects.

Increasingly, audio processing is rely-
ing on digital techniques to improve
audio quality. The first step in this
transition was digital recording, which
became prevalent about seven years
ago. Audio signals are first converted to
digital form before being stored on
magnetic tape. Digital recording elimi-
nates several sources of degradation
that hamper analog recordings, includ-
ing the effects of non-linearities and
additive noise in the magnetic materials
used for recording, and wow and flutter
in the tape playback mechanism.

In studio mixing applications, how-
ever, digital recording does not elimi-
nate all complications. In the mixing
and enhancement process, information
is passed from one tape to another — re-
quiring D/A and A/D conversion pro-
cesses, a source of noise. These conver-
sions are no longer necessary if all pro-
cessing and mixing are handled with
DSP techniques.

In DSP-based studio recording sys-
tems (see Fig.12), signals are converted
to digital as early as possible. In fact,
some implementations place a remotely
controlled amplifier/converter at the
recording microphone. After conver-
sion, the audio processing is handled
digitally, with high performance and
flexibility. Gain factors are handled with
digital multiplication. Filtering and
equalisation can be handled with an IIR
filter that replicates the performance of
standard analog filters. Alternatively,
digital FIR filters can provide high-per-
formance linear-phase filters or complex
comb filters. Dynamic-range control is
casily included in the system by using a
multiplier for non-linear compression-
/expansion computations.

The traditional mixing process is also
casily implemented in a DSP-based sys-
tem. Digital channels to be mixed are
simply added together. Relative time
delay lags can be easily introduced into
the channel flows, allowing phase coher-
ence to be explored without adding ex-
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Fig.12: Block diagram of DSP applied to studio recording.
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pensive delay lines to the system. An
additional advantage is that the channel
interconnections — which have to be
hardwired in an analog processor — can
be easily reconfigured in a DSP system.

In addition to improving on tradi-
tional operations, a DSP studio record-
ing system opens up numerous new op-
tions. Unusual special effects are readily
included in the system. Reverberation
effects can be modelled, simulated, and
integrated into the final recording. An

signal forms the basis for frequency
-domain filters that provide optimal
equalisation. Overall system flexibility
allows the entire mixing system to be
dynamically configured - processing
steps can be re-ordered, mix groups and
subgroups re-specified, and effects such
as fading, equalisation, and compres-
sion/expansion included at any juncture.

Studio recording, then, follows the
pattern of other applications using DSP.
DSP techniques offer increased preci-

performed with analog circuits. Of
equal importance, DSP’s flexibility
paves the way for many new and crea-
tive processing steps. As in other areas,
the DSP is shifting the role of convert-
ers; accurate ADCs and DACs are used
in the system, but as close to the real-
world interface as possible. The signal
processing is conducted in the digital
realm.

(Adapted from ‘Analog-Digital Con-
version Handbook’, by permission of

FFT routine’s spectral analysis of the

sion for processing steps traditionally

Analog Devices, Inc.).

Glossary of DSP terms

Accumulator An arithmetic element that adds together,
or accumulates, a sequence of inputs. A DSP multiplier
with an accumulator  on-ship is called a
multiplier/accumulator (MAC).

Algorithm A DSP algorithm, such as the fast Fourier
transform, or a finite impulse-response filter, is a structured
set of instructions, and/or operations, tailored to
accomplish a signal-processing task. Each algorithm has a
well-defined structure; however, variations in algorithm
parameters, such as the number of input points or taps,
allow the same basic algorithm to perform different
functions.

ALU An arithmetic and logic unit, which performs
additions, subtractions, or logical operations (e.g., AND,
OR, XOR) on operand pairs.

Attenuation The damping-out, or suppression, of signal
content. Filters will attenuate the frequency content of a
signal that lies in the filter's stopband.

Barrel Shifter A device that accepts a digital number as
its input and — as a function of the controls — shifts the
number up or down, or rotates the word as though it were
placed on a barrel. A barrel shifter is used in a system for
many tasks, including scaling and normalisation.

Biquad A particularly simple recursive, or infinite
impulse-response (lIR), digital filter form, often used as a
building block for constructing more complicated recursive
filters. A biquadratic, or biquad, section uses the three
most recent input points and the two most recent output, or
feedback, values to compute each output point.

Block Floating Point A compromise between fixed-point
and floating-point arithmetic. Data grouped in “blocks” is
assumed to be normalised with a common exponent (but,
not being attached to the data words, the exponent need
not be explicitly processed with the data). In essence, the
process is carried out in fixed point, with its inherent speed
advantage.

Convolution In discrete computations, a mathematical
operation, defined as the summation, or integral, of a
product of two functions over a range of differences in the
independent variable. In the time domain, one function is
the impulse response, as a set of coefficients, h(i), over N
time intervals: the other is the input, f(n — i), as a function
of the differences between the time at the instant at which
the function is being evaluated, n, and the input at earlier
instants, determined by the variable delay, i, from 0 to N.
In DSP, the convolution of an input signal, x, with the
coefficients, h, results in the filtering of the input signal.

Correlation A mathematical operation that indicates the
degree to which two signals overlap. A high positive

correlation reflects two signals that closely track each
other. A negative correlation indicates that the two signals
are closely related, but out of phase by roughly 180°. If the
correlation is close to zero, the two signals are unrelated.

Digital Signal Processing DSP is a technology for
high-performance  signal processing that combines
algorithms and fast number-crunching digital hardware.

Discrete Fourier Transform The discrete Fourier
transform (DFT) is a DSP algorithm used to determine the

- Fourier coefficient corresponding to a particular frequency.

FFT An n-point fast Fourier transform (FFT) is
computationally equivalent to performing n DFT’s but, by
taking advantage of computational symmetries and
redundancies, can reduce the computational burden by
several orders of magnitude.

FIR Filter A finite impulse-response (FIR) filter is a
commonly used type of digital filter. Digitised samples of
the signal serve as inputs; each filtered output is computed
from a weighted average of a finite number of previous
inputs.

Fixed-Point Arithmetic Each number is represented in a
fixed arithmetic field of n bits, allowing integers in the
range 0 to 2" — 1, to be represented.

Floating-Point Arithmetic Each number consists of a
mantissa and an exponent, allowing wide dynamic range to
be accommodated in the numbering system.

IR Filter An infinite impulse-response (lIR) filter is a
commonly used type of digital filter. This recursive
structure accepts as inputs digitised samples of the signal;
each output point is computed on the basis of a weighted
average of past output — or feedback — terms as well as
past input values. An IIR filter is more efficient than its FIR
counterpart, but poses more challenging design issues.

MAC Multiplier/accumulator; see Accumulator.

Microcode A set of instruction control signals in a
program memory that govern the cycle-by-cycle operation
of the various devices in a building-block architecture.

Passband The frequency range over which a filter
passes, to within some tolerance, the incoming signal
content.

Pipeline An architectural structure that allows two or
more operations to be carried out simultaneously, like the
stages of an assembly line. While each basic operation
requires several cycles to complete, a later stage of one
operation is simultaneous with an earlier stage of another
operation. This structure allows the effective throughput
rate for each operation to be substantially increased.

Rolloff A measure of filter performance defined as the
rate-of-change of the filter's amplitude response with
respect to frequency over a transition band.

Stopband The frequency range over which a filter
attenuates, to within some tolerance, the incoming signal
content.
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