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1.  Introduction

The skills required to predict the dynamic range of a combined Analog-to-Digital converter (ADC) and Dig-
ital-to-Analog converter (DAC) system, as well as determine the noise requirements for the analog input
and output stages, should be considered essential for an audio systems designer. The techniques re-
quired are relatively basic in that they are generally covered in the first analog circuit analysis class in
most engineering programs. However, applying these techniques to the conversion processes often gen-
erates some level of confusion. This discussion will detail the steps required to apply these techniques
and determine this critical system performance parameter. 

  

Figure 1. Conversion System Block Diagram

The ADC and DAC system, Figure 1, contains four primary noise sources that must be considered. These
include the analog input buffer, ADC, DAC and the analog output buffer/ filter stage. Noise generated in
each of these stages adds as the “square root of the sum of the squares” as shown below. This funda-
mental relationship will be used throughout this discussion.

The analysis requires several initial assumptions and setting of limits. 

1) The bandwidth is set to 20 kHz. This constraint is purely for convenience and allows the use of a com-
mon converter data sheet specification. The results can easily be scaled to other bandwidths as long
as assumption #2 remains valid.

2) The spectral content of the noise is “white”. This assumes that the contribution of 1/f noise is negligible
and the noise sources within the converters remain “white” to the upper limit of the analysis. A word
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of warning, the spectral noise content of digital-to-analog converters often do not retain this charac-
teristic at bandwidths well beyond 20 kHz when operated at 96 kHz or 192 kHz sample rates.

3) The noise contribution of the analog input and output stages are negligible. This assumption simplifies
the initial analysis but requires further investigation to ensure accuracy. 

2.  Combined ADC and DAC Dynamic Range Calculation

2.1  Converter Equivalent Noise Calculation

Dynamic Range (DR) is a specification that can be found in any ADC or DAC data sheet. This specification
is defined as the ratio of the RMS voltage of a full-scale analog input (Vfsadc) or output (Vfsdac) sine wave
to the RMS noise voltage of the converter over a 20 kHz bandwidth. DR is generally specified in dB and
the equation for dynamic range is shown below. Notice that there are three variables in this equation,
where the DR and Vfs are common data sheet specifications. The equation can be easily rearranged to
allow the calculation of the equivalent RMS noise voltage (Vn ) of the converter.

  

  

However, adjustments to the data sheet Dynamic Range and full-scale input/output specifications are of-
ten required prior to the calculation. 

1) Dynamic Range specifications are often A-weighted and the equivalent noise calculation requires the
use of un-weighted numbers. Fortunately, A-weighted specifications can easily be converted to an ap-
proximate unweighted specification. A conservative estimate can be determined by simply degrading
the A-weighted data sheet specification by 3 dB.

2) The full scale input or output voltage specifications in converter data sheets are commonly represent-
ed as either volts peak-to-peak, volts peak or RMS. The full scale input or output voltage must be con-
verted to a RMS value for this calculation to be valid.

2.2  Conversion System Gain 

Another requirement is that the noise sources within the system must be referenced to the same system
node. Assume that the ADC and DAC system operates as a single block with analog input and analog
output. Due to the differences in the conversion processes and the corresponding differences in the ana-
log input voltage and the analog output voltage, the block has either gain or attenuation. The system must
be modeled to reflect this gain with the gain coefficient (K), as shown in Figure 2. 
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Figure 2.  Effective Conversion System Gain

2.3  Equivalent System Noise Calculation

The output referred system noise voltage (Vnsys) can be calculated using the expressions for the gain co-
efficient, equivalent ADC and DAC noise voltages.

 

Where:  

  

Following substitution and simplification:
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2.4  System Dynamic Range Calculation

The un-weighted system dynamic range (in dB) can be calculated using the equation for the equivalent
system noise voltage. Conversion to A-weighting requires the addition of 3 dB to the un-weighted number.

 Substituting and simplifying the equation yields;

A-weighted DRsys = unweighted DRsys + 3 dB 

3.   Converter and Buffer Noise Analysis

One of the initial assumptions was that the buffer noise was negligible in relation to the converter noise.
Of the assumptions during the initial analysis, this has the greatest potential of being invalid. Though this
assumption proves to be acceptable for many applications and converter products, it becomes question-
able as converter dynamic range improves. 
The calculation of the equivalent noise voltages for the ADC input buffers and DAC output buffers / filters
is beyond the scope of this paper. However, care needs to be taken to ensure that the converter and buffer
noise sources are referred to the appropriate system node. The converters themselves can be considered
unity gain devices and their noise can be referred to either the input or output of the converter. It’s gener-
ally best to refer the ADC buffer noise to the input of the ADC. In the case of the DAC, it is most convenient
to refer the noise of the DAC and buffer to the output of the buffer. 
To illustrate the technique let's take a look at the combination of an input buffer and ADC, Figure 3. The
combined converter + buffer noise equation is shown below, assuming the buffer noise is referred to the
input of the ADC. The equivalent converter noise voltage can be calculated as previously shown.

 

Figure 3.  Input Buffer and ADC Block Diagram
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3.1  Generalized Noise Error

It is very informative to create a generalized noise relationship and a “rule-of-thumb” design goal such that
the noise contribution of the buffer can be considered negligible. Taking the total noise equation, and di-
viding each of the contributing noise sources by the converter noise as shown below can easily accom-
plish this. Converting the normalized noise to dB, creates a very informative relationship in that the
deviation from 0 dB can now interpreted as the normalized error function. 

 

 

Figure 4 shows the normalized noise error as a function of ratio of buffer to converter noise. The X-axis
shows the ratio and the Y-axis displays the deviation from 0 dB. Notice that as the ratio approaches 1,
where the buffer noise is equivalent to the converter noise, the error is 3 dB. The graph also indicates that
an error of approximately 1 dB is introduced when the noise of the buffer noise is 1/2 that of the converter.
Figure 5 shows the previous normalized noise error with a change in the scaling of the X-axis and Y-axis.
Notice that at the point where buffer noise is 10% that of the converter noise, the error is approximately
0.05 dB. This error can probably be considered negligible for even the most demanding of applications. It
is also convenient that a ratio of 0.1 is equivalent to a buffer noise voltage that is 20 dB below the converter
noise voltage. This indicates that a conservative and convenient “rule-of-thumb” design goal is for the buff-
er noise to be 20 dB below that of the converter. However, the ultimate decision on the minimum required
buffer noise is based on systems performance and cost requirements and may differ from this “rule-of-
thumb”.
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Figure 4.  Normalized Noise Error - Wide View
 

Figure 5.  Normalized Noise Error - Zoomed View
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3.1.1  Illustrative  Noise Budget Calculation

Let's calculate the required buffer noise for the CS5381 to meet the assumption of negligible noise con-
tribution using the “rule-of-thumb” design goal. The equivalent noise of the CS5381 can be calculated as
previously shown using the relevant data sheet specifications, where the un-weighted Dynamic Range is
117 dB and the full-scale differential input is 2 Vrms. This calculation shows that the equivalent noise for
the CS5381 is 2.83 µV. Based on the “rule-of-thumb” noise requirement, the buffer noise should be 20 dB
below the equivalent converter noise, or 0.283 µV. 

It is informative and enlightning to compare this noise voltage to the equivalent noise generated by a re-
sistor at room temperature (25 degrees C).  The following is the equation used to calculate the noise for
a resistor.

Where: 

- k = 1.38 x 10-23 Joules / degree (Boltzman's Constant)
- T = Absolute temperature of the resistor
- B = effective bandwidth (20 kHz for this example)
- R = resistance value

Solving this equation for the resistance and inserting the buffer noise voltage design goal indicates that
the noise contribution of the buffer must be equal to or less than the equivalent noise of a 243 ohm resis-
tor! It's apparent that in the case of high-dynamic range converters, the noise contribution of the input and
output buffers cannot be assumed to be negligible. Low noise design techniques for the analog buffers
must be employed to achieve the full performance capabilities of leading edge converters.

3.2  Combined Converter and Buffer Dynamic Range from a different perspective

It is interesting to look at this relationship from the perspective of the deviation from ideal as the converter
dynamic range increases and the buffer noise remains constant. This has been a relatively common oc-
currence over the past few years as systems designers have been assigned the goal of updating an ex-
isting product by increasing the system dynamic range. The obvious solution is to replace the existing
converters with higher dynamic range converters. Unfortunately, the assumption is often made that the
noise contribution of the existing buffer design is negligible, which often leads to disappointing results and
subsequent redesign.

Figure 6 displays the results of this situation with a hypothetical D/A and filter design. The X-axis of the
graph indicates the converter dynamic range and the Y-axis indicates the dynamic range of the combined
filter / buffer and D/A converter. The upper plot indicates the ideal dynamic range where the buffer noise
is zero. The remaining plots indicate the degradation in performance with a fixed buffer noise contribution
for four different converter full-scale output voltages. Notice that, for this example, the deviation from ideal
for the converters with dynamic ranges in the 100 to 105 dB range is minimal. However, as converter per-
formance exceeds 105 dB the deviation becomes significant. 

Vnresistor
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Figure 6. System vs. DAC Dynamic Range - 10K Filter
 

Figure 7. System vs. DAC Dynamic Range - 1K Filter
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Figure 7 displays a similar series of plots where the filter/ buffer circuit has been redesigned to scale the
resistors to 10% of the previous values. Notice the improvements in the deviation from the ideal. With
these impedance changes, the deviation from the ideal remains minimal up to approximately 110 dB.

4.   Conclusion

It is a relatively straightforward process to calculate and predict the system dynamic range for any com-
bination of analog-to-digital and digital-to-analog converter, as well as the maximum allowable analog
buffer and filter noise to achieve these targets. The difficulty is designing low noise analog buffers and
filters that meet the requirements of today’s leading edge converters. The combination of high-dynamic
range and the limited full-scale signal amplitudes typical of today’s converters create a challenging envi-
roment for the systems designer. The first steps are to recognize and understand the challenge.
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