AN-131 APPLICATION NOTE

ONE TECHNOLOGY WAY . P.O. BOX 9106 . NORWOOD, MASSACHUSETTS 02062-9106 . 617/329-4700

A Two-Channel VCA Level (Volume) Control Circuit

The dual-channel voltage-controlled amplifier (VCA) level control circuit describes a useful application of the SSM-2122 dual VCA, SSM-2134 low noise op amp, and PMI's OP-215BP JFET/bipolar op amp. This circuit is very handy when extremely close gain matching of a stereo audio source is desired, such as in ON-AIR and production audio consoles.

The design features a balanced input buffer amplifier and VCA driven by a level shifting amplifier which is controlled by a single $10k\Omega$ linear potentiometer. Additionally, there are fully adjustable and independent gain limit and maximum attenuation trim controls. The VCA circuit has a nominal attenuation range greater than 95dB and has input overdrive protection. The signal-to-noise ratio exceeds 100dB with a gain of 10dB, and headroom of 32dB. The amplitude varies less than $\pm 0.1 dB$ over the frequency range 20Hz to 20kHz. Typical THD and IMD are less than 0.005% and 0.02%, respectively.

As shown, the circuit includes two line-level inputs designed for a -10 dBu input signal level. The SSM-2134 (U $_2$ and U $_4$) input buffer amplifiers can be connected for balanced or unbalanced inputs with inverting or noninverting inputs. The input loading impedance is $10 k\Omega$ unbalanced and $20 k\Omega$ balanced. The input buffer amplifier also limits step function slewing voltages from entering following stages. Other input levels can be accommodated by adjusting the feedback resistor $R_{\rm F2}$. For example: for a nominal input level of 0dBu, $R_{\rm F2}$ should be changed to $3.16 k\Omega$, or for a nominal input level of +10dBu, $R_{\rm F2}$ changed to $1 k\Omega$ to provide the optimal current drive to the VCA. $C_{\rm F}$ should also be changed to 68pF and 220pF, respectively, for both U $_2$ and U $_3$.

For other input levels, R_{F2} can be calculated: $\frac{10 + dBu}{10 + dBu}$

ies less than
$$\pm 0.1$$
dB over Typical THD and IMD are $R_{F2} = 10 \times 10^3 \times EXP \left(\frac{10 + dBu}{-20}\right)$ tively.

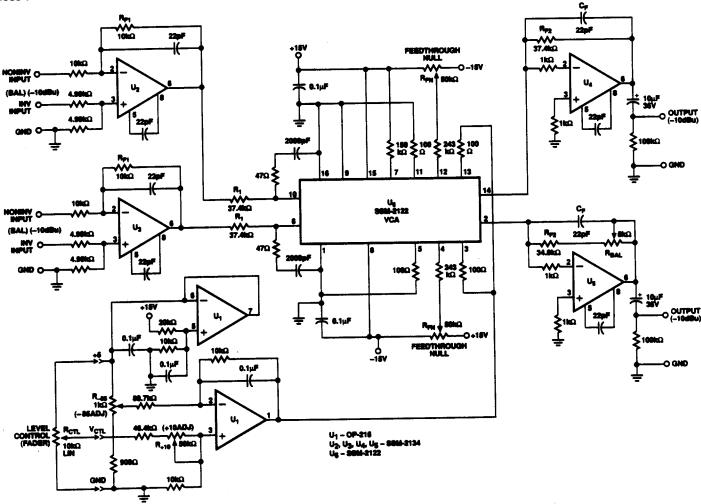


FIGURE 1: Two-Channel VCA Level Control

The SSM-2122 has a current-in and current-out structure. The input current is set by resistor $\rm R_1$ and the virtual ground input of the SSM-2122. Similarly the transimpedance amplifier at the output converts the output current into a voltage. All devices in this design operate on $\pm 15 \rm V_{DC}$ power supply rails. The 37.4k Ω VCA input and output resistors optimize its dynamic range and minimize distortion. The SSM-2122 is a monolithic device, so the VCA gains remain uniform over a wide change in ambient temperature.

The SSM-2122 has two gain control ports that have a sensitivity of -6 mV/dB. 0.0 volts at the gain control ports will yield 0dB overall gain; +60 mV produces +10 dB gain and -0.513V corresponds to a -85 dB attenuation. The feedthrough trim null controls $R_{\rm FN}$ are not imperative for most applications. However, for very high performance requirements they will reduce attenuation control voltage feedthrough to less than 750 μV. To adjust the null trim controls $R_{\rm FN}$ inject a 100 Hz sinewave into the control port through a $1 k\Omega$ resistor and a 100 μF, 10V capacitor, and set the signal generator to 0.5 V $_{\rm RMS}$. The control ports of U $_{\rm g}$ are pins 3 and 13. Adjust the level control $R_{\rm CTL}$ (fader) for 0dB gain, with the signal inputs shorted, then adjust $R_{\rm FN}$ for minimum 100 Hz signal at the outputs.

The output amplifier(s) $\rm U_4$ and $\rm U_5$ are virtual ground connected current-to-voltage converters. The 37.4k Ω feedback resistors set the circuit voltage gain to 0dB with zero volts applied to the VCA control ports. Variable resistor $\rm R_{BAL}$ is used to balance the signal path gain of the two audio circuits. With the circuit gain set to 0dB and a test signal applied to the inputs, $\rm R_{BAL}$ is adjusted for equal output levels.

The VCA provides 10dB of additional gain at maximum level setting (+60mV at the VCA control ports). The THD is extremely low within the characteristic gain range of +10dB to -20dB.

The VCA control circuit is designed around U₁, the high input impedance OP-215 dual op amp. One half of U₁ is used to develop the 5V reference voltage for the level control element.

This is a fail-safe design – with no voltage applied or an open connection at terminal $V_{\rm CTL}$, the gain will descend to –85dB. Level control trimming is as follows: with the fader control set to minimum (0V), the trim control R_{-85} is adjusted for maximum attenuation of –85dB or –0.513 $V_{\rm DC}$ at pin 1 of U_1 . Then with the fader set to its maximum (5V), trim control R_{+10} is adjusted for maximum circuit gain of +10dB or +60mV. Since there is no interaction when adjusting R_{+10} for +10dB gain, the setting for R_{-85} will remain unaffected. Other max-attenuation values can be used. R_{-85} has an attenuation range of –45dB(270mV) to –93dB (560mV).

TABLE 1: Circuit Performance Specifications

Input Voltage (Nominal for -10dBu Out)	-10dBu or 245mV _{RMS}
Input Impedance, Unbalanced	10kΩ
Imput Impedance, Balanced	20kΩ
Headroom (Nominal for -10dBu In &Out) 32dB
Feedthrough, Trimmed	<750μV
Gain Control Range (Nominal)	+10dB to -85dB
Gain Control Voltage (+10dB to -85dB)	5V _{DC} to 0V _{DC}
Frequency Response (20Hz to 20kHz)	±0.1dB
S/N Ratio @ 10dB Gain	100dB
THD + Noise (20Hz to 20kHz, +22dBu)	0.005%
IMD (SMPTE 60Hz & 4kHz, 4:1, +22dBu	0.02%
Output Voltage Siew Rate	6V/μs
Output Voltage (1kΩ Load)	+22dBu or 10V _{RMS}
Output Impedance	<10Ω