Programmable Volume Control

The 'Programmable Volume Control' circuit in November issue is alright, but the same effect can be achraved by using a 10 -way thumbwheel switch in place of the BCD type The thumbwheel switch can take the place of the transistor switches directly. This will eliminate IC 7442, ten transistors, one zener diode. 15 resistors. a PCB and a number of interconnecting wires.
P. MARATHEY

Bombay
u 'Programmable Volume Control' is really a very interesting idea, but it has the following limitations
(a) Thumbwheel switcli is required to control the volume;
(b) It has to memorise the truth table,
(c) We cannot see the visual indication of the volume; and
(d) 5 V regulated power supply is required

These problems can be solved with an add 1 tional facifity such as a mute switch or we can say fast set to ' 0 ' volume. Only two push-to-on type switches are required (as shown in Fig.)
high output impedance.
Also, I object strongly to the use of npr bipolar transistors as the switching elements The audio signal at the collecters of Ti to T10 would be an AC signal However, an upn transistor would conduct only when the collector is at a positive voltage with respect to the emitter. This means that the positive half cycles of the audio signal would be attenuated while the negative half cyctes would be passed on unattenuated, thus resulting in severe distortion of the output signal Even when the collector is positive, a transistor needs saturation voltage of several tens of miflivolts before any sigrificant conduction begins. This also means a non-tineal attenuation of the input signat A linear characteristic is only possible through an FET. although it is considerably more expensive than an non transistor

1 also falf to understand how a value of 47 k could be used for R11 with a sifpply vultage of 9 V . The current through the 47 k resistor would be insufficient to bias the zener diode. let afone the circuit R11 may be changed to

to control the volume.
We can mount the programmable volume control on front panel with visual Indication
A.S. BAJWA Kapurthala ${ }^{1}$ I I am sorry to mention that the standard of EFY has come down manly due to the publication of half-baked circuits like this one.

The input to the amplifler is directly taken from the output of the preamplifier. If theoutput of the preamplifler has a suificlently low output impedance, the signal would hardly get attenuated since the circuit effectively comes only In parallel to the preamplifier's output. The clrcuit would work only with a fow quallty preamplifier which has a relatively

270 ohms to keep the zener current at a reasonable level.

R. SHANKAR

 MadrasThe author, Mr Bldyut Chakraborty, replies:
The method described by J.P. Marathey will surely perform the same function but the disadvantage of using a 10 -way switch alone is that it produces switching nose. Thus audible noise will be generated from the speaker while changing switch positions.
Mr A.S Bajwa has indeed suggester a good modification to my circuit idea. Now one can easily instaf it inside a radio. TV, cassette recorder, amplifier or any other audio equipment. However, the circuit described by me is
easy to interface with a microcomputer kit.
I ain grateful to Mr R. Shankar for his keen observation of my cucuit idea. At the same time I disregard the charge that the standard of EFY has come down due to pubtication of the circuit The circuit has surely got sonio novelty vatue and this type of circuit has rarely appeared in EFY. Moreover. the circuit has inspired several people to think of .ew circuit ideas.
In the origunal circuit dagram sent by rne, there was a resistance in series with the input coupling capacitor which has been ornitted in the published circuit Had this resistance been in the circuit, the first pioblem pointed out by $\mathrm{Mr} R$ Shankat could have been avoided
Again. the value of R1t has been wrongly published in the text as 47 kilohms, in the originat manuscript. Its value was 47 ohms
Regarding Mr Shankar s second problem. 1 would say that the output of the circuit is assumed to be directly coupled witl the amplifier's inpul stage and from thele thes circuit derives DC; voltaye to keep the tiansisturs in the operating state th: orghout an $A C$ sig. nal But if one wishes to use a coupliny capacitor at the output. one must provide a separ ate blasing circult to keep the collector voltage of the transistors reasonably above grouris

Since transistors have been used as switch1 ing elements in the circuit, there alwas exists the problem of non-lineailty, but that is haidly audible Une may use $+E T$ switchess to get rid of this problem buit the circuil will surely become costliel

Correct Your Hourly Chime

1 am regular reader of FFY magazine since 1980 Recently I have added the liourly chime circuit. which was piblished in May 1985 issue, to my digital clock

There is one serious misfake in the PCB layout. Pin number 4 of IC 7404 is wrongly connected to pin number 8 of the same IC. which is the output of the unused iriverter gate, and which is always in 0 state since its input is open. After disconnecting this wrong ccnnection the circuit started working satisfactorly.
T.K Thyagarajan Bombay

Electronic Auto Dipper

Mr Hindocha's circuit in Sept. '85 issue works beautifully, but only after the following modifications in the lamp circuit.
The power supply should be fed into the moving contact of the relay. The N / C contact should then be conirected with the main beam filament of the N/O contact with the dipper beam filament of each head lamp In Mr Hindocha's circuit there would be no power supply available to lamp L1 when the relay is energised to make the N/O contact.

