designideas CLASSICS

Originally published in the September 4, 1986, issue of EDN

AGC circuit uses an analog multiplier

Steve Lubs, Department of Defense, Washington, DC

In the AGC circuit of Fig 1, a 4-quadrant analog multiplier (IC₁), an amplifier stage (IC₂), an active, full-wave rectifier (D₁, D₂, R₄-R₇, and IC₃), and an integrator (IC₄) accomplish automatic gain control of V_{IN} 's amplitude variations in the audiofrequency range.

The multiplier's output is $-V_{IN}V_Y/10$, where V_Y is a negative voltage generated by the integrator IC₄. Together, the integrator and the rectifier extract the dc component (V_Y) of V_{OUT} for use as a feedback signal to the multiplier. The integrator sums signal current from the rectifier and control current from potentiometer $R_{\rm 9},$ which lets you adjust $V_{\rm OUT}$'s signal level.

Circuit analysis yields the frequencyresponse **equation**

$$V_{OUT} = \frac{K_1 A V_C}{10 R C_3} \left(\frac{1}{s + \frac{10A}{R C_3}} \right)$$

or, in the time domain,

$$V_{OUT} = \left(\frac{K_1 A V_C}{10 R C_3}\right) exp\left(-\frac{10 A t}{R C_3}\right).$$

In both equations, K_1 is the gain of amplifier IC₂, A is the peak amplitude of V_{N} , and R is the resistance between

the integrator input and the rectifier output. (For this circuit, R equals R_6 in parallel with R_7 .)

This AGC circuit is suitable for controlling the long-term variations of amplitude within a limited range. It doesn't respond uniformly over a wide dynamic range, however, because the time response is inversely proportional to input-signal amplitude.EDN

