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PREFACE

The operational amplifier is responsible for a dramatic and continuing
revolution in our approach to analog system design. The availability of
high performance, inexpensive devices influences the entire spectrum of
circuits and systems, ranging from simple, mass-produced circuits to highly
sophisticated equipment designed for complex data collection or processing
operations. At one end of this spectrum, modern operational amplifiers
have lowered cost and improved performance; at the other end, they allow
us to design and implement systems that were previously too complex for
consideration.

An appreciation of the importance of this component, gained primarily
through research rather than academic experience, prompted me in 1969
to start a course at M.I.T. focusing on the operational amplifier. Initially
the course, structured as part of an elective sequence in active devices,
concentrated on the circuit techniques needed to realize operational ampli-
fiers and on the application of these versatile elements.

As the course evolved, it became apparent that the operational ampli-
fier had a value beyond that of a circuit component; it was also an excellent
instructional vehicle. This device supplied a reason for studying a collection
of analytic and design techniques that were necessary for a thorough under-
standing of operational amplifiers and were also important to the general
area of active-circuit design. For example, if we study direct-coupled ampli-
fiers in detail, with proper attention given to transistor-parameter variation
with temperature, to loading, and to passive-component peculiarities, we
can improve our approach to the design of a large class of circuits depen-
dent on these concepts and also better appreciate operational amplifiers.
Similarly, the use of an active load to increase dramatically the voltage
gain of a stage is a design technique that has widespread applicability. The
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integrated-circuit fabrication and design methods responsible for the
economical realization of modern operational amplifiers are the same as
those used for other linear integrated circuits and also influence the design
of many modern discrete-component circuits.

Chapters 7 to 10 reflect the dual role of the operational-amplifier circuit.
The presentation is in greater detail than necessary if our only objective is
to understand how an operational amplifier functions. However, the depth
of the presentation encourages the transfer of this information to other
circuit-design problems.

A course based on circuit-design techniques and some applications
material was taught for two years. During this period, it became clear that
in order to provide the background necessary for the optimum use of
operational amplifiers in challenging applications, it was necessary to teach
material on classical feedback concepts. These concepts explain the evolu-
tion of the topology used for modern amplifiers, suggest configurations that
should be used to obtain specific closed-loop transfer functions, and indi-
cate the way to improve the dynamics of operational-amplifier connections.

The linear-system theory course that has become an important part of
most engineering educational programs, while providing valuable back-
ground, usually does not develop the necessary facility with techniques for
the analysis and synthesis of feedback systems. When courses are offered in
feedback, they normally use servomechanisms for their examples. Although
this material can be transferred to a circuits context, the initial assimilation
of these ideas is simplified when instruction is specifically tailored to the
intended field of application.

Chapters 2 to 6 and Chapter 13 present the techniques necessary to
model, analyze, and design electronic feedback systems. As with the circuit-
related material, the detail is greater than the minimum necessary for a
background in the design of connections that use operational amplifiers.
This detail is justifiable because I use the operational amplifier as a vehicle
for presenting concepts valuable for the general area of electronic circuit
and system design.

The material included here has been used as the basis for two rather
different versions of the M.I.T. course mentioned earlier. One of these
concentrates on circuits and applications, using material from Chapters 7
to 10. Some application material is included in the examples in these
chapters, and further applications from Chapters 11 and 12 are included as
time permits. Some of the elementary feedback concepts necessary to
appreciate modern operational-amplifier topologies are also discussed in
this version.

The second variation uses the feedback material in Chapters 2 to 6 and
Chapter 13 as its central theme. A brief discussion of the topology used



Preface ix

for modern operational amplifiers, such as that presented in portions of

Chapters 8 and 10, is included in this option. The applications introduced
as examples of feedback connections are augmented with topics selected
from Chapters 11 and 12.

A laboratory has been included as an integral part of both options. In the

circuits variation, students investigate specific circuits such as direct-

coupled amplifiers and high-gain stages, and conclude their laboratory
experience by designing, building, and testing a simple operational ampli-
fier. In the feedback version, connections of operational amplifiers are

used to verify the behavior of linear and nonlinear feedback systems, to
compare time-domain and frequency-domain performance indices, and to
investigate stability.

We have found it helpful to have ready access to some kind of compu-

tational facilities, particularly when teaching the feedback material. The

programs made available to the students reduce the manual effort required

to draw the various plots and to factor polynomials when exact singularity
locations are important.

Both versions of the course have been taught at least twice from notes

essentially identical to the book. The student population consisted pri-
marily of juniors and seniors, with occasional graduate students. The neces-

sary background includes an appreciation of active-circuit concepts such
as that provided in Electronic Principles by P. E. Gray and C. L. Searle

(Wiley, New York, 1969), Chapters 1 to 14. An abbreviated circuits
preparation is acceptable for the feedback version of the course. Although

a detailed linear-systems background stressing formal operational calculus

and related topics is not essential, familiarity with concepts such as pole-
zero diagrams and elementary relationships between the time and the
frequency domain is necessary.

Some of the more advanced applications in Chapters 11 and 12 have
been included in a graduate course in analog and analog/digital instru-

mentation. The success with this material suggests a third possible varia-
tion of the course that stresses applications, with feedback and circuit
concepts added as necessary to clarify the applications. I have not yet had

the opportunity to structure an entire course in this way.

It is a pleasure to acknowledge several of the many individuals who

contributed directly or indirectly to this book. High on the list are three

teachers and colleagues, Dr. F. Williams Sarles, Jr., Professor Campbell L.

Searle, and Professor Leonard A. Gould, who are largely responsible for

my own understanding and appreciation of the presented material.

Two students, Jeffrey T. Millman and Samuel H. Maslak, devoted sub-

stantial effort to reviewing and improving the book.
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CHAPTER I 

BACKGROUND AND
 
OBJECTIVES
 

1.1 INTRODUCTION 

An operational amplifier is a high-gain direct-coupled amplifier that is 
normally used in feedback connections. If the amplifier characteristics are 
satisfactory, the transfer function of the amplifier with feedback can often 
be controlled primarily by the stable and well-known values of passive 
feedback elements. 

The term operational amplifier evolved from original applications in 
analog computation where these circuits were used to perform various 
mathematical operations such as summation and integration. Because of 
the performance and economic advantages of available units, present 
applications extend far beyond the original ones, and modern operational 
amplifiers are used as general purpose analog data-processing elements. 

High-quality operational amplifiers' were available in the early 1950s. 
These amplifiers were generally committed to use with analog computers 
and were not used with the flexibility of modern units. The range of opera­
tional-amplifier usage began to expand toward the present spectrum of 
applications in the early 1960s as various manufacturers developed modu­
lar, solid-state circuits. These amplifiers were smaller, much more rugged, 
less expensive, and had less demanding power-supply requirements than 
their predecessors. A variety of these discrete-component circuits are cur­
rently available, and their performance characteristics are spectacular when 
compared with older units. 

A quantum jump in usage occurred in the late 1960s, as monolithic 
integrated-circuit amplifiers with respectable performance characteristics 
evolved. While certain performance characteristics of these units still do 
not compare with those of the better discrete-component circuits, the inte­

grated types have an undeniable cost advantage, with several designs 

available at prices of approximately $0.50. This availability frequently 
justifies the replacement of two- or three-transistor circuits with operational 

1 An excellent description of the technology of this era is available in G. A. Korn and 
T. M. Korn, Electronic Analog Computers, 2nd Ed., McGraw-Hill, New York, 1956. 
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amplifiers on economic grounds alone, independent of associated perform­
ance advantages. As processing and designs improve, the integrated circuit 
will invade more areas once considered exclusively the domain of the 
discrete design, and it is probable that the days of the discrete-component 
circuit, except for specials with limited production requirements, are 
numbered. 

There are several reasons for pursuing a detailed study of operational 
amplifiers. We must discuss both the theoretical and the practical aspects 
of these versatile devices rather than simply listing a representative sample 
of their applications. Since virtually all operational-amplifier connections 
involve some form of feedback, a thorough understanding of this process 
is central to the intelligent application of the devices. While partially under­
stood rules of thumb may suffice for routine requirements, this design 
method fails as performance objectives approach the maximum possible 
use from the amplifier in question. 

Similarly, an appreciation of the internal structure and function of opera­
tional amplifiers is imperative for the serious user, since such information 
is necessary to determine various limitations and to indicate how a unit 
may be modified (via, for example, appropriate connections to its com­
pensation terminals) or connected for optimum performance in a given 
application. The modern analog circuit designer thus needs to understand 
the internal function of an operational amplifier (even though he may 
never design one) for much the same reason that his counterpart of 10 years 
ago required a knowledge of semiconductor physics. Furthermore, this 
is an area where good design practice has evolved to a remarkable degree, 
and many of the circuit techniques that are described in following chapters 
can be applied to other types of electronic circuit and system design. 

1.2 	 THE CLOSED-LOOP GAIN OF AN OPERATIONAL
 
AMPLIFIER
 

As mentioned in the introduction, most operational-amplifier connec­

tions involve feedback. Therefore the user is normally interested in deter­

mining the closed-loop gain or closed-loop transferfunctionof the amplifier, 

which results when feedback is included. As we shall see, this quantity can 

be made primarily dependent on the characteristics of the feedback ele­

ments in many cases of interest. 

A prerequisite for the material presented in the remainder of this book 

is the ability to determine the gain of the amplifier-feedback network com­
bination in simple connections. The techniques used to evaluate closed-loop 

gain are outlined in this section. 
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Vb 

Figure 1.1 Symbol for an operational amplifier. 

1.2.1 Closed-Loop Gain Calculation
 

The symbol used to designate an operational amplifier is shown in Fig.
 
1.1. The amplifier shown has a differential input and a single output. The 
input terminals marked - and + are called the inverting and the non-
inverting input terminals respectively. The implied linear-region relationship 
among input and output variables2 is 

V, = a(V, - Vb) (1.1) 

The quantity a in this equation is the open-loop gain or open-loop transfer 
function of the amplifier. (Note that a gain of a is assumed, even if it is not 
explicitly indicated inside the amplifier symbol.) The dynamics normally 
associated with this transfer function are frequently emphasized by writ­
ing a(s). 

It is also necessary to provide operating power to the operational ampli­
fier via power-supply terminals. Many operational amplifiers use balanced 
(equal positive and negative) supply voltages. The various signals are 
usually referenced to the common ground connection of these power sup­

2 The notation used to designate system variables consists of a symbol and a subscript. 
This combination serves not only as a label, but also to identify the nature of the quantity 
as follows: 

Total instantaneous variables: 
lower-case symbols with upper-case subscripts. 

Quiescent or operating-point variables: 
upper-case symbols with upper-case subscripts. 

Incremental instantaneous variables: 
lower-case symbols with lower-case subscripts. 

Complex amplitudes or Laplace transforms of incremental variables: 
upper-case symbols with lower-case subscripts. 

Using this notation we would write v1 = V, + vi, indicating that the instantaneous value of 
vi consists of a quiescent plus an incremental component. The transform of vi is Vi. The 
notation Vi(s) is often used to reinforce the fact that Vi is a function of the complex vari­
able s. 
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plies. The power connections are normally not included in diagrams in­
tended only to indicate relationships among signal variables, since elimi­
nating these connections simplifies the diagram. 

Although operational amplifiers are used in a myriad of configurations, 
many applications are variations of either the inverting connection (Fig. 
1.2a) or the noninverting connection (Fig. 1.2b). These connections com­
bine the amplifier with impedances that provide feedback. 

The closed-loop transfer function is calculated as follows for the invert­
ing connection. Because of the reference polarity chosen for the inter­
mediate variable V., 

V, = -a V, (1.2) 

z 
2 

z, 

+ \ a Vo 0 

K. 
Vl 

(a) 

V0 

Vi 

-I 
(b) 

Figure 1.2 Operational-amplifier connections. (a) Inverting. (b) Noninverting. 
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where it has been assumed that the output voltage of the amplifier is not 
modified by the loading of the Z1-Z2 network. If the input impedance of the 
amplifier itself is high enough so that the Z 1 -Z 2 network is not loaded 
significantly, the voltage V, is 

Z2 Z1 
V, = 2 Vi + V" (1.3) 

(Z1 + Z2) (Z1 + Z2) 

Combining Eqns. 1.2 and 1.3 yields 

aZs aZ1 
V, = - ( V, (1.4)V0 

(Z1 + Z2) (Z1 + Z2) 

or, solving for the closed-loop gain, 

Vo -aZ 2/(Z 1 + Z 2) 

Vi 1 + [aZ1 /(Z 1 + Z 2)] 

The condition that is necessary to have the closed-loop gain depend 
primarily on the characteristics of the Zi-Z2 network rather than on the 
performance of the amplifier itself is easily determined from Eqn. 1.5. At 
any frequency w where the inequality la(jo)Z 1(jw)/[Z1(jo) + Z 2(jO)] >> 1 
is satisfied, Eqn. 1.5 reduces to 

V0(jw) Z2(jo)
 

Vi(jco) Z1(jo)
 

The closed-loop gain calculation for the noninverting connection is simi­
lar. If we assume negligible loading at the amplifier input and output, 

V, = a(V- V,) = aVi - aZ) V0 (1.7) 
(Z1 + Z2) 

or 

aV0 V, a (1.8) 
- 1 + [aZ1 /(Z 1 + Z 2)] 

This expression reduces to 

V(jo) Zi(jW) + Z2(jO) 

Vi(jco) Z1(jo) 

when ja(jo)Z1(jo)/[Z1(jo) + Z 2(jw)]| >> 1. 

The quantity 

L aZi (1.10)
Z1 + Z2 
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is the loop transmission for either of the connections of Fig. 1.2. The loop 
transmission is of fundamental importance in any feedback system because 
it influences virtually all closed-loop parameters of the system. For ex­
ample, the preceding discussion shows that if the magnitude of loop trans­
mission is large, the closed-loop gain of either the inverting or the non-
inverting amplifier connection becomes virtually independent of a. This 
relationship is valuable, since the passive feedback components that deter­
mine closed-loop gain for large loop-transmission magnitude are normally 
considerably more stable with time and environmental changes than is the 
open-loop gain a. 

The loop transmission can be determined by setting the inputs of a feed­
back system to zero and breaking the signal path at any point inside the 
feedback loop.' The loop transmission is the ratio of the signal returned by 
the loop to a test applied at the point where the loop is opened. Figure 1.3 
indicates one way to determine the loop transmission for the connections 
of Fig. 1.2. Note that the topology shown is common to both the inverting 
and the noninverting connection when input points are grounded. 

It is important to emphasize the difference between the loop transmission, 
which is dependent on properties of both the feedback elements and the 
operational amplifier, and the open-loop gain of the operational amplifier 
itself. 

1.2.2 The Ideal Closed-Loop Gain 

Detailed gain calculations similar to those of the last section are always 
possible for operational-amplifier connections. However, operational ampli­
fiers are frequently used in feedback connections where loop characteristics 
are such that the closed-loop gain is determined primarily by the feedback 
elements. Therefore, approximations that indicate the idealclosed-loop gain 
or the gain that results with perfect amplifier characteristics simplify the 
analysis or design of many practical connections. 

It is possible to calculate the ideal closed-loop gain assuming only two 
conditions (in addition to the implied condition that the amplifier-feedback 
network combination is stable4) are satisfied. 

1. A negligibly small differential voltage applied between the two input 
terminals of the amplifier is sufficient to produce any desired output 
voltage. 

3There are practical difficulties, such as insuring that the various elements in the loop 
remain in their linear operating regions and that loading is maintained. These difficulties 
complicate the determination of the loop transmission in physical systems. Therefore, the 
technique described here should be considered a conceptual experiment. Methods that are 
useful for actual hardware are introduced in later sections. 

4Stability is discussed in detail in Chapter 4. 
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Z Z 
2 

Input set to zero
 
if inverting connection
 

*:_ Input set to zero if 
Test generator noninverting connection 

Figure 1.3 Loop transmission for connections of Fig. 1.2. Loop transmission is 
Vr/Vt = -a Z1 /(Z 1 + Z 2). 

2. The current required at either amplifier terminal is negligibly small. 

The use of these assumptions to calculate the ideal closed-loop gain is 
first illustrated for the inverting amplifier connection (Fig. 1.2a). Since the 
noninverting amplifier input terminal is grounded in this connection, condi­
tion 1 implies that 

V,, 0 (1.11) 

Kirchhoff's current law combined with condition 2 shows that 

I. + Ib ~ 0 (1.12) 

With Eqn. 1.11 satisfied, the currents I, and I are readily determined in 
terms of the input and output voltages. 

Vai 
(1.13)

Z1 

Va 
b (1.14)Z2 

Combining Eqns. 1.12, 1.13, and 1.14 and solving for the ratio of V, to Vi 
yields the ideal closed-loop gain 

V. Z2V- (1.15) 
Vi Z1 

The technique used to determine the ideal closed-loop gain is called the 
virtual-groundmethod when applied to the inverting connection, since in 
this case the inverting input terminal of the operational amplifier is as­
sumed to be at ground potential. 
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The noninverting amplifier (Fig. 1.2b) provides a second example of 
ideal-gain determination. Condition 2 insures that the voltage V,, is not 
influenced by current at the inverting input. Thus, 

Z1V1 ~ (1.16)V0Zi + Z 2 

Since condition 1 requires equality between Ve, and Vi, the ideal closed-
loop gain is 

Vo Z1 + Z2
0 = Z Z(1.17) 

Vi Z1 

The conditions can be used to determine ideal values for characteristics 
other than gain. Consider, for example, the input impedance of the two 
amplifier connections shown in Fig. 1.2. In Fig. 1.2a, the inverting input 
terminal and, consequently, the right-hand end of impedance Z 1, is at 
ground potential if the amplifier characteristics are ideal. Thus the input 
impedance seen by the driving source is simply Z1. The input source is 
connected directly to the noninverting input of the operational amplifier 
in the topology of Fig. 1.2b. If the amplifier satisfies condition 2 and has 
negligible input current required at this terminal, the impedance loading 
the signal source will be very high. The noninverting connection is often used 
as a buffer amplifier for this reason. 

The two conditions used to determine the ideal closed-loop gain are 
deceptively simple in that a complex combination of amplifier characteris­
tics are required to insure satisfaction of these conditions. Consider the 
first condition. High open-loop voltage gain at anticipated operating fre­
quencies is necessary but not sufficient to guarantee this condition. Note 
that gain at the frequency of interest is necessary, while the high open-loop 
gain specified by the manufacturer is normally measured at d-c. This speci­
fication is somewhat misleading, since the gain may start to decrease at a 

frequency on the order of one hertz or less. 

In addition to high open-loop gain, the amplifier must have low voltage 

offset5 referred to the input to satisfy the first condition. This quantity, 

defined as the voltage that must be applied between the amplifier input 

terminals to make the output voltage zero, usually arises because of mis­

matches between various amplifier components. 

Surprisingly, the incremental input impedance of an operational ampli­

fier often has relatively little effect on its input current, since the voltage 

that appears across this impedance is very low if condition 1 is satisfied. 

I Offset and other problems with d-c amplifiers are discussed in Chapter 7. 
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A more important contribution to input current often results from the bias 
current that must be supplied to the amplifier input transistors. 

Many of the design techniques that are used in an attempt to combine the 
two conditions necessary to approach the ideal gain are described in sub­
sequent sections. 

The reason that the satisfaction of the two conditions introduced earlier 
guarantees that the actual closed-loop gain of the amplifier approaches the 
ideal value is because of the negative feedback associated with operational-
amplifier connections. Assume, for example, that the actual voltage out of 
the inverting-amplifier connection shown in Fig. 1.2a is more positive than 
the value predicted by the ideal-gain relationship for a particular input 
signal level. In this case, the voltage V0 will be positive, and this positive 
voltage applied to the inverting input terminal of the amplifier drives the 
output voltage negative until equilibrium is reached. This reasoning shows 
that it is actually the negative feedback that forces the voltage between 
the two input terminals to be very small. 

Alternatively, consider the situation that results if positive feedback is 
used by interchanging the connections to the two input terminals of the 

zi1 

+1 /~ 

Vi,? 

Iz2 
0 

Vi 2 
S -p1
0 

ZiN 

iN 

V1 N 

Figure 1.4 Summing amplifier. 
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amplifier. In this case, the voltage V0 is again zero when V and Vi are 
related by the ideal closed-loop gain expression. However, the resulting 
equilibrium is unstable, and a small perturbation from the ideal output 
voltage results in this voltage being driven further from the ideal value 
until the amplifier saturates. The ideal gain is not achieved in this case in 
spite of perfect amplifier characteristics because the connection is unstable. 
As we shall see, negative feedback connections can also be unstable. The 
ideal gain of these unstable systems is meaningless because they oscillate, 
producing an output signal that is often nearly independent of the input 
signal. 

1.2.3 	 Examples 

The technique introduced in the last section can be used to determine the 
ideal closed-loop transfer function of any operational-amplifier connec­
tion. The summing amplifier shown in Fig. 1.4 illustrates the use of this 
technique for a connection slightly more complex than the two basic 
amplifiers discussed earlier. 

Since the inverting input terminal of the amplifier is a virtual ground, the 
currents can be determined as 

Vnl1I1 = 

Z1 

1i2 =Vi 2
2 

liN ~ 	 VN 
Z i N 

if = 
=V	 0 

(1.18)
Zf 

These currents must sum to zero in the absence of significant current at the 
inverting input terminal of the amplifier. Thus 

Iil + I + - - - + IiN + If 	 -92 

Combining Eqns. 1.18 and 1.19 shows that 

Zf Zf Zf
V0 - - V n2 - -Vi- ViN (1.20) 

Zul Z2 ZiN 
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We see that this amplifier, which is an extension of the basic inverting-
amplifier connection, provides an output that is the weighted sum of several 
input voltages. 

Summation is one of the "operations" that operational amplifiers per­
form in analog computation. A subsequent development (Section 12.3) will 
show that if the operations of gain, summation, and integration are com­
bined, an electrical network that satisfies any linear, ordinary differential 
equation can be constructed. This technique is the basis for analog com­
putation. 

Integrators required for analog computation or for any other application 
can be constructed by using an operational amplifier in the inverting con­
nection (Fig. 1.2a) and making impedance Z 2 a capacitor C and impedance 
Z1 a resistor R. In this case, Eqn. 1.15 shows that the ideal closrd-loop 
transfer function is 

VJ(s) Z 2(s) 1 1.1 
Vi(s) Z1(s) RCs 

so that the connection functions as an inverting integrator. 
It is also possible to construct noninverting integrators using an opera­

tional amplifier connected as shown in Fig. 1.5. This topology precedes a 
noninverting amplifier with a low-pass filter. The ideal transfer function 
from the noninverting input of the amplifier to its output is (see Eqn. 1.17) 

V0(s) _ RCs + 1 (1.22) 

Va(S) RCs 

Since the conditions for an ideal operational amplifier preclude input cur-

R, 

0 + 

C, V V0 

r 
C 

Figure 1.5 Noninverting integrator. 
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Figure 1.6 Log circuit. 

rent, the transfer function from Vi to V, can be calculated with no loading, 
and in this case 

V.(s) 1 1.23) 
Vi(s) R1Cis + 1 

Combining Eqns. 1.22 and 1.23 shows that the ideal closed-loop gain is 

V0(s) = 1 1 FRCs + 11 (1.24) 
Vi(s) R1C1 s + I RCs _ 

If the two time constants in Eqn. 1.24 are made equal, noninverting inte­
gration results. 

The comparison between the two integrator connections hints at the 
possibility of realizing most functions via either an inverting or a non-
inverting connection. Practical considerations often recommend one ap­
proach in preference to the other. For example, the noninverting integrator 
requires more external components than does the inverting version. This 
difference is important because the high-quality capacitors required for 
accurate integration are often larger and more expensive than the opera­
tional amplifier that is used. 

The examples considered up to now have involved only linear elements, 
at least if it is assumed that the operational amplifier remains in its linear 

operating region. Operational amplifiers are also frequently used in inten­
tionally nonlinear connections. One possibility is the circuit shown in Fig. 
1.6.6 It is assumed that the diode current-voltage relationship is 

iD = IS(eqvD/kT - 1) (1.25) 

6 Note that the notation for the variables used in this case combines lower-case variables 

with upper-case subscripts, indicating the total instantaneous signals necessary to describe 

the anticipated nonlinear relationships. 
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where Is is a constant dependent on diode construction, q is the charge 
of an electron, k is Boltzmann's constant, and T is the absolute temperature. 

If the voltage at the inverting input of the amplifier is negligibly small, 
the diode voltage is equal to the output voltage. If the input current is 
negligibly small, the diode current and the current iR sum to zero. Thus, 
if these two conditions are satisfied, 

- R = Is(evolkT - 1) (1.26)
R 

Consider operation with a positive input voltage. The maximum negative 
value of the diode current is limited to -Is. If vI/R > Is, the current 
through the reverse-biased diode cannot balance the current IR.Accordingly, 
the amplifier output voltage is driven negative until the amplifier saturates. 
In this case, the feedback loop cannot keep the voltage at the inverting 
amplifier input near ground because of the limited current that the diode 
can conduct in the reverse direction. The problem is clearly not with the 
amplifier, since no solution exists to Eqn. 1.26 for sufficiently positive 
values of vr. 

This problem does not exist with negative values for vi. If the magnitude 
of iR is considerably larger than Is (typical values for Is are less than 10-1 
A), Eqn. 1.26 reduces to 

- R~ Isero~kT (1.27)
R 

or 

kT - Vr 
vo 1- In (1.28) 

q \R1s 

Thus the circuit provides an output voltage proportional to the log of the 
magnitude of the input voltage for negative inputs. 

1.3 OVERVIEW 

The operational amplifier is a powerful, multifaceted analog data-proc­
essing element, and the optimum exploitation of this versatile building 
block requires a background in several different areas. The primary objec­
tive of this book is to help the reader apply operational amplifiers to his 
own problems. While the use of a "handbook" approach that basically 
tabulates a number of configurations that others have found useful is 
attractive because of its simplicity, this approach has definite limitations. 
Superior results are invariably obtained when the designer tailors the circuit 
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he uses to his own specific, detailed requirements, and to the particular 
operational amplifier he chooses. 

A balanced presentation that combines practical circuit and system design 
concepts with applicable theory is essential background for the type of 
creative approach that results in optimum operational-amplifier systems. 
The following chapters provide the necessary concepts. A second advan­
tage of this presentation is that many of the techniques are readily applied 
to a wide spectrum of circuit and system design problems, and the material 
is structured to encourage this type of transfer. 

Feedback is central to virtually all operational-amplifier applications, 
and a thorough understanding of this important topic is necessary in any 
challenging design situation. Chapters 2 through 6 are devoted to feedback 
concepts, with emphasis placed on examples drawn from operational-
amplifier connections. However, the presentation in these chapters is kept 
general enough to allow its application to a wide variety of feedback sys­
tems. Topics covered include modeling, a detailed study of the advantages 
and limitations of feedback, determination of responses, stability, and com­
pensation techniques intended to improve stability. Simple methods for the 
analysis of certain types of nonlinear systems are also included. This in-
depth approach is included at least in part because I am convinced that a 
detailed understanding of feedback is the single most important pre­
requisite to successful electronic circuit and system design. 

Several interesting and widely applicable circuit-design techniques are 
used to realize operational amplifiers. The design of operational-amplifier 
circuits is complicated by the requirement of obtaining gain at zero fre­
quency with low drift and input current. Chapter 7 discusses the design 
of the necessary d-c amplifiers. The implications of topology on the dy­
namics of operational-amplifier circuits are discussed in Chapter 8. The 
design of the high-gain stages used in most modern operational amplifiers 
and the factors which influence output-stage performance are also included. 
Chapter 9 illustrates how circuit design techniques and feedback-system 
concepts are combined in an illustrative operational-amplifier circuit. 

The factors influencing the design of the modern integrated-circuit opera­
tional amplifiers that have dramatically increased amplifier usage are dis­
cussed in Chapter 10. Several examples of representative present-day de­
signs are included. 

A variety of operational-amplifier applications are sprinkled throughout 
the first 10 chapters to illustrate important concepts. Chapters 11 and 12 
focus on further applications, with major emphasis given to clarifying im­
portant techniques and topologies rather than concentrating on minor 
details that are highly dependent on the specifics of a given application and 
the amplifier used. 
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Chapter 13 is devoted to the problem of compensating operational ampli­
fiers for optimum dynamic performance in a variety of applications. Dis­
cussion of this material is deferred until the final chapter because only then 
is the feedback, circuit, and application background necessary to fully 
appreciate the subtleties of compensating modern operational amplifiers 
available. Compensation is probably the single most important aspect of 
effectively applying operational amplifiers, and often represents the differ­
ence between inadequate and superlative performance. Several examples 
of the way in which compensation influences the performance of a repre­
sentative integrated-circuit operational amplifier are used to reinforce the 
theoretical discussion included in this chapter. 

PROBLEMS 

P1.1 
Design a circuit using a single operational amplifier that provides an 

ideal input-output relationship 

V, = -Vn 1 - 2V,2 - 3Vi3 

Keep the values of all resistors used between 10 and 100 kU. 
Determine the loop transmission (assuming no loading) for your design. 

P1.2 
Note that it is possible to provide an ideal input-output relationship 

V, = V 1 + 2Vi + 3Vi3 

by following the design for Problem 1.1 with a unity-gain inverter. Find a 
more efficient design that produces this relationship using only a single 
operational amplifier. 

P1.3 
An operational amplifier is connected to provide an inverting gain with 

an ideal value of 10. At low frequencies, the open-loop gain of the ampli­
fier is frequency independent and equal to ao. Assuming that the only source 
of error is the finite value of open-loop gain, how large should ao be so that 
the actual closed-loop gain of the amplifier differs from its ideal value by 
less than 0.1 %? 

P1.4 
Design a single-amplifier connection that provides the ideal input-output 

relationship 

Vo = -100f (vil + v 2) dt 
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Vi 

10 k&2 

(a) 

10 k92 

10 kW 

10 k2 ++
Vi 2 + 

Vg, 10 k2 

(b) 

Figure 1.7 Differential-amplifier connections. 

Keep the values of all resistors you use between 10 and 100 k2. 

P1.5 
Design a single-amplifier connection that provides the ideal input-output 

relationship 

V,= +100f (vnl + vi2) dt 

using only resistor values between 10 and 100 kU. Determine the loop trans­
mission of your configuration, assuming negligible loading. 

P1.6 
Determine the ideal input-output relationships for the two connections 

shown in Fig. 1.7. 
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1 M 2 1 M2V 
-

Vi - 2 pF 1pF 1 pF 

0.5 MS2 

Figure 1.8 Two-pole system. 

P1.7 
Determine the ideal input-output transfer function for the operational-

amplifier connection shown in Fig. 1.8. Estimate the value of open-loop 
gain required such that the actual closed-loop gain of the circuit approaches 
its ideal value at an input frequency of 0.01 radian per second. You may 
neglect loading. 

P1.8 
Assume that the operational-amplifier connection shown in Fig. 1.9 

satisfies the two conditions stated in Section 1.2.2. Use these conditions to 
determine the output resistance of the connection (i.e., the resistance seen 
by the load). 

V + >7 

vi 

R 

Figure 1.9 Circuit with controlled output resistance. 
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ic 

10 kn B 

VvoOB' 

Figure 1.10 Log circuit. 

P1.9 
Determine the ideal input-output transfer relationship for the circuit 

shown in Fig. 1.10. Assume that transistor terminal variables are related as 

ic = 10-"e40VBE 

where ic is expressed in amperes and VBE is expressed in volts. 

P1.10 
Plot the ideal input-output characteristics for the two circuits shown 

in Fig. 1.11. In part a, assume that the diode variables are related by 
4 0iD = 10-1 3 e V, where iD is expressed in amperes and VD is expressed 

in volts. In part b, assume that iD = 0, VD < 0, and VD = 0, iD > 0. 

P1.11 
We have concentrated on operational-amplifier connections involving 

negative feedback. However, several useful connections, such as that 
shown in Fig. 1.12, use positive feedback around an amplifier. Assume that 
the linear-region open-loop gain of the amplifier is very high, but that its 
output voltage is limited to ±10 volts because of saturation of the ampli­

fier output stage. Approximate and plot the output signal for the circuit 
shown in Fig. 1.12 using these assumptions. 

P1.12 
Design an operational-amplifier circuit that provides an ideal input-

output relationship of the form 

vo = KevI/K2 

where K 1 and K 2 are constants dependent on parameter values used in 
your design. 
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Figure 1.11 Nonlinear circuits. 
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Figure 1.12 Schmitt trigger. 
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CHAPTER II
 

PROPERTIES AND MODELING
 
OF FEEDBACK SYSTEMS
 

2.1 INTRODUCTION 

A control system is a system that regulates an output variable with the 
objective of producing a given relationship between it and an input variable 
or of maintaining the output at a fixed value. In a feedback control system, 
at least part of the information used to change the output variable is 
derived from measurements performed on the output variable itself. This 
type of closed-loop control is often used in preference to open-loop control 

(where the system does not use output-variable information to influence 
its output) since feedback can reduce the sensitivity of the system to ex­
ternally applied disturbances and to changes in system parameters. 
Familiar examples of feedback control systems include residential heating 
systems, most high-fidelity audio amplifiers, and the iris-retina combina­
tion that regulates light entering the eye. 

There are a variety of textbooks1 available that provide detailed treat­
ment on servomechanisms, or feedback control systems where at least one 
of the variables is a mechanical quantity. The emphasis in this presentation 
is on feedback amplifiers in general, with particular attention given to 
feedback connections which include operational amplifiers. 

The operational amplifier is a component that is used almost exclusively 
in feedback connections; therefore a detailed knowledge of the behavior of 
feedback systems is necessary to obtain maximum performance from these 
amplifiers. For example, the open-loop transfer function of many opera­
tional amplifiers can be easily and predictably modified by means of external 

I G. S. Brown and D. P. Cambell, Principlesof Servomechanisms, Wiley, New York, 1948; 
J. G. Truxal, Automatic Feedback ControlSystem Synthesis, McGraw-Hill, New York, 1955; 
H. Chestnut and R. W. Mayer, Servomechanisms and Regulating System Design, Vol. 1, 
2nd Ed., Wiley, New York, 1959; R. N. Clark, Introduction to Automatic Control Systems, 
Wiley, New York, 1962; J. J. D'Azzo and C. H. Houpis, Feedback Control System Analysis 
and Synthesis, 2nd Ed., McGraw-Hill, New York, 1966; B. C. Kuo, Automatic Control 
Systems, 2nd Ed., Prentice-Hall, Englewood Cliffs, New Jersey, 1967; K. Ogata, Modern 
Control Engineering,Prentice-Hall, Englewood Cliffs, New Jersey, 1970. 
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Disturbance 

Input ErrOutput 
vaibl Comparator ErrAmplifier i vral 

Measuring or 
feedback element 

Figure 2.1 A typical feedback system. 

components. The choice of the open-loop transfer function used for a 
particular application must be based on feedback principles. 

2.2 SYMBOLOGY 

Elements common to many electronic feedback systems are shown in 
Fig. 2.1. The input signal is applied directly to a comparator. The output 
signal is determined and possibly operated upon by a feedback element. 
The difference between the input signal and the modified output signal is 
determined by the comparator and is a measure of the error or amount by 
which the output differs from its desired value. An amplifier drives the out­
put in such a way as to reduce the magnitude of the error signal. The system 
output may also be influenced by disturbances that affect the amplifier or 
other elements. 

We shall find it convenient to illustrate the relationships among variables 
in a feedback connection, such as that shown in Fig. 2.1, by means of block 
diagrams.A block diagram includes three types of elements. 

1. A line represents a variable, with an arrow on the line indicating the 
direction of information flow. A line may split, indicating that a single 
variable is supplied to two or more portions of the system. 

2. A block operates on an input supplied to it to provide an output. 
3. Variables are added algebraically at a summation point drawn as 

follows: 

x x-y 

y 
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Disturbance, Vd 

Input 3+ Error, V, a +Output 
Vi V. 

Amplifier 

Feedback
 
signal, 
 Vj Feedback 

element 

Figure 2.2 Block diagram for the system of Fig. 2.1. 

One possible representation for the system of Fig. 2.1, assuming that 
the input, output, and disturbance are voltages, is shown in block-diagram 
form in Fig. 2.2. (The voltages are all assumed to be measured with respect 
to references or grounds that are not shown.) The block diagram implies a 
specific set of relationships among system variables, including: 

1. The error is the difference between the input signal and the feedback 
signal, or Ve = Vi - Vf. 

2. The output is the sum of the disturbance and the amplified error 
signal, or V, = Vd + aVe. 

3. The feedback signal is obtained by operating on the output signal with 
the feedback element, or Vf = fV. 

The three relationships can be combined and solved for the output in 
terms of the input and the disturbance, yielding 

aV, Vd 
V0 = V + Vd(2.1)

1+ af 1+ af 

2.3 ADVANTAGES OF FEEDBACK 

There is a frequent tendency on the part of the uninitiated to associate 
almost magical properties to feedback. Closer examination shows that 
many assumed benefits of feedback are illusory. The principal advantage 
is that feedback enables us to reduce the sensitivity of a system to changes 
in gain of certain elements. This reduction in sensitivity is obtained only in 
exchange for an increase in the magnitude of the gain of one or more of the 
elements in the system. 

In some cases it is also possible to reduce the effects of disturbances 
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applied to the system. We shall see that this moderation can always, at 
least conceptually, be accomplished without feedback, although the feedback 
approach is frequently a more practical solution. The limitations of this 
technique preclude reduction of such quantities as noise or drift at the 
input of an amplifier; thus feedback does not provide a method for detect­
ing signals that cannot be detected by other means. 

Feedback provides a convenient method of modifying the input and 
output impedance of amplifiers, although as with disturbance reduction, it 
is at least conceptually possible to obtain similar results without feedback. 

2.3.1 Effect of Feedback on Changes in Open-Loop Gain 

As mentioned above, the principal advantage of feedback systems com­
pared with open-loop systems is that feedback provides a method for re­
ducing the sensitivity of the system to changes in the gain of certain ele­
ments. This advantage can be illustrated using the block diagram of Fig. 
2.2. If the disturbance is assumed to be zero, the closed-loop gain for the 
system is 

a AV0 
- = A (2.2)Vj 1 + af 

(We will frequently use the capital letter A to denote closed-loop gain, 
while the lower-case a is normally reserved for a forward-path gain.) 

The quantity af is the negative of the loop transmission for this system. 
The loop transmission is determined by setting all external inputs (and dis­
turbances) to zero, breaking the system at any point inside the loop, and 
determining the ratio of the signal returned by the system to an applied 
test input.2 If the system is a negativefeedbacksystem, the loop transmission 
is negative. The negative sign on the summing point input that is included 
in the loop shown in Fig. 2.2 indicates that the feedback is negative for this 
system if a andf have the same sign. Alternatively, the inversion necessary 
for negative feedback might be supplied by either the amplifier or the feed­
back element. 

Equation 2.2 shows that negative feedback lowers the magnitude of the 
gain of an amplifier since asf is increased from zero, the magnitude of the 
closed-loop gain decreases if a and f have this same sign. The result is 
general and can be used as a test for negative feedback. 

It is also possible to design systems with positive feedback. Such systems 
are not as useful for our purposes and are not considered in detail. 

The closed-loop gain expression shows that as the loop-transmission 
magnitude becomes large compared to unity, the closed-loop gain ap­

2 An example of this type of calculation is given in Section 2.4.1. 
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proaches the value 1/f. The significance of this relationship is as follows. 
The amplifier will normally include active elements whose characteristics 
vary as a function of age and operating conditions. This uncertainty may be 
unavoidable in that active elements are not available with the stability re­
quired for a given application, or it may be introduced as a compromise in 
return for economic or other advantages. 

Conversely, the feedback network normally attenuates signals, and thus 
can frequently be constructed using only passive components. Fortunately, 
passive components with stable, precisely known values are readily avail­
able. If the magnitude of the loop transmission is sufficiently high, the 
closed-loop gain becomes dependent primarily on the characteristics of 
the feedback network. 

This feature can be emphasized by calculating the fractional change in 
closed-loop gain d(V,/ Vj)/(V 0/ Vj) caused by a given fractional change in 
amplifier forward-path gain da/a, with the result 

d(V0 /Vi) = da ( 1 (2.3) 
(V./Vi) a 1 + afi 

Equation 2.3 shows that changes in the magnitude of a can be attenuated 
to insignificant levels if af is sufficiently large. The quantity 1 + af that 
relates changes in forward-path gain to changes in closed-loop gain is 
frequently called the desensitivity of a feedback system. Figure 2.3 illustrates 
this desensitization process by comparing two amplifier connections in­
tended to give an input-output gain of 10. Clearly the input-output gain is 
identically equal to a in Fig. 2.3a, and thus has the same fractional change 
in gain as does a. Equations 2.2 and 2.3 show that the closed-loop gain for 
the system of Fig. 2.3b is approximately 9.9, and that the fractional change 
in closed-loop gain is less than 1%.of the fractional change in the forward-
path gain of this system. 

The desensitivity characteristic of the feedback process is obtained only 
in exchange for excess gain provided in the system. Returning to the ex­
ample involving Fig. 2.2, we see that the closed-loop gain for the system is 
a/(1 + af), while the forward-path gain provided by the amplifier is a. 
The desensitivity is identically equal to the ratio of the forward-path gain 
to closed-loop gain. Feedback connections are unique in their ability to 
automatically trade excess gain for desensitivity. 

It is important to underline the fact that changes in the gain of the feed­
back element have direct influence on the closed-loop gain of the system, 
and we therefore conclude that it is necessary to observe or measure the 
output variable of a feedback system accurately in order to realize the 
advantages of feedback. 
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Vi a = 10 V 

(a) 

-V0 

(b) 

Figure 2.3 Amplifier connections for a gain of ten. (a) Open loop. (b) Closed loop. 

2.3.2 Effect of Feedback on Nonlinearities 

Because feedback reduces the sensitivity of a system to changes in open-
loop gain, it can often moderate the effects of nonlinearities. Figure 2.4 
illustrates this process. The forward path in this connection consists of an 
amplifier with a gain of 1000 followed by a nonlinear element that might 
be an idealized representation of the transfer characteristics of a power 
output stage. The transfer characteristics of the nonlinear element show 
these four distinct regions: 

1. A deadzone, where the output remains zero until the input magnitude 
exceeds 1 volt. This region models the crossover distortion associated with 
many types of power amplifiers. 

2. A linear region, where the incremental gain of the element is one. 
3. A region of soft limiting, where the incremental gain of the element 

is lowered to 0.1. 



27 Advantages of Feedback 

4. A region of hard limiting or saturation where the incremental gain of 
the element is zero. 

The performance of the system can be determined by recognizing that, 
since the nonlinear element is piecewise linear, all transfer relationships must 
be piecewise linear. The values of all the variables at a breakpoint can be 
found by an iterative process. Assume, for example, that the variables 
associated with the nonlinear element are such that this element is at its 
breakpoint connecting a slope of zero to a slope of +1. This condition only 
occurs for VA = 1 and VB = 0. If VB 0 = 0, the signal VF must be zero, 

O 3since VF = 0.1 vo. Similarly, with VA = 1, VE = 0VA = 30-'. Since the 
relationships at the summing point imply VE = VI - VF, or v = VE + VF, 

vr must equal 10-1. The values of variables at all other breakpoints can be 
found by similar reasoning. Results are summarized in Table 2.1. 

Table 2.1 Values of Variables at Breakpoints for System of Fig. 2.4 

Vi VE = VI - VF VA = 103VE VB = VO VF = 0.1V0 

<-0.258 v,+0.250 103 
V+ 250 -2.5 -0.25 

-0.258 -0.008 -8 -2.5 -0.25 
-0.203 -0.003 -3 -2 -0.2 
-10-3 -10-3 -1 0 0 

10-3 10-3 1 0 0 
0.203 0.003 3 2 0.2 
0.258 0.008 8 2.5 0.25 

> 0.258 v - 0.250 103V1 - 250 2.5 0.25 

The input-output transfer relationship for the system shown in Fig. 2.4c 
is generated from values included in Table 2.1. The transfer relationship 
can also be found by using the incremental forward gain, or 1000 times the 
incremental gain of the nonlinear element, as the value for a in Eqn. 2.2. 
If the magnitude of signal VA is less than 1volt, a is zero, and the incremental 
closed-loop gain of the system is also zero. If VA is between 1 and 3 volts, 
a is 101, so the incremental closed-loop gain is 9.9. Similarly, the incre­
mental closed-loop gain is 9.1 for 3 < vA < 8. 

Note from Fig. 2.4c that feedback dramatically reduces the width of the 

deadzone and the change in gain as the output stage soft limits. Once the 
amplifier saturates, the incremental loop transmission becomes zero, and 
as a result feedback cannot improve performance in this region. 
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Figure 2.4 The effects of feedback on a nonlinearity. (a) System. (b) Transfer 
characteristics of the nonlinear element. (c) System transfer characteristics (closed 
loop). (Not to scale.) (d) Waveforms for vjQ) a unit ramp. (Not to scale.) 
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Figure 2.4-Continued 

Figure 2.4d provides insight into the operation of the circuit by compar­

ing the output of the system and the voltage VA for a unit ramp input. The 

output remains a good approximation to the input until saturation is 

reached. The signal into the nonlinear element is "predistorted" by feedback 

in such a way as to force the output from this element to be nearly linear. 

The technique of employing feedback to reduce the effects of nonlinear 

elements on system performance is a powerful and widely used method 

that evolves directly from the desensitivity to gain changes provided by 

feedback. In some applications, feedback is used to counteract the un­

avoidable nonlinearities associated with active elements. In other applica­

tions, feedback is used to maintain performance when nonlinearities result 

from economic compromises. Consider the power amplifier that provided 
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the motivation for the previous example. The designs for linear power-
handling stages are complex and expensive because compensation for the 
base-to-emitter voltages of the transistors and variations of gain with 
operating point must be included. Economic advantages normally result if 
linearity of the power-handling stage is reduced and low-power voltage-gain 
stages (possibly in the form of an operational amplifier) are added prior .to 
the output stage so that feedback can be used to restore system linearity. 

While this section has highlighted the use of feedback to reduce the 
effects of nonlinearities associated with the forward-gain element of a sys­
tem, feedback can also be used to produce nonlinearities with well-con­
trolled characteristics. If the feedback element in a system with large loop 
transmission is nonlinear, the output of the system becomes approximately 
vo = f/'(vr). Here f- 1 is the inverse of the feedback-element transfer rela­
tionship, in the sense thatf-1 [f(V)] = V. For example, transistors or diodes 
with exponential characteristics can be used as feedback elements around 
an operational amplifier to provide a logarithmic closed-loop transfer 
relationship. 

2.3.3 Disturbances in Feedback Systems 

Feedback provides a method for reducing the sensitivity of a system to 
certain kinds of disturbances. This advantage is illustrated in Fig. 2.5. 
Three different sources of disturbances are applied to this system. The 
disturbance Vdi enters the system at the same point as the system input, and 
might represent the noise associated with the input stage of an amplifier. 
Disturbance Vd2 enters the system at an intermediate point, and might 
represent a disturbance from the hum associated with the poorly filtered 
voltage often used to power an amplifier output stage. Disturbance Vd3 enters 
at the amplifier output and might represent changing load characteristics. 

Vd Vd3d 2 

a, : a2 V0 

Figure 2.5 Feedback system illustrating effects of disturbances. 
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The reader should convince himself that the block diagram of Fig. 2.5 
implies that the output voltage is related to input and disturbances as 

aia2 [(Vi + Vdl) + (Vd 2 /ai) + (Vd 3/aia2)] (2.4) 
1 + aia2f 

Equation 2.4 shows that the disturbance Vdl is not attenuated relative to 
the input signal. This result is expected since Vi and Vdi enter the system 
at the same point, and reflects the fact that feedback cannot improve quan­
tities such as the noise figure of an amplifier. The disturbances that enter 
the amplifier at other points are attenuated relative to the input signal by 
amounts equal to the forward-path gains between the input and the points 
where the disturbances are applied. 

It is important to emphasize that the forward-path gain preceding the 

disturbance, rather than the feedback, results in the relative attenuation of 
the disturbance. This feature is illustrated in Fig. 2.6. This open-loop sys­
tem, which follows the forward path of Fig. 2.5 with an attenuator, yields 
the same output as the feedback system of Fig. 2.5. The feedback system is 
nearly always the more practical approach, since the open-loop system 
requires large signals, with attendant problems of saturation and power 
dissipation, at the input to the attenuator. Conversely, the feedback realiza­
tion constrains system variables to more realistic levels. 

2.3.4 Summary 

This section has shown how feedback can be used to desensitize a system 
to changes in component values or to externally applied disturbances. This 
desensitivity can only be obtained in return for increases in the gains of 
various components of the system. There are numerous situations where 
this type of trade is advantageous. For example, it may be possible to 
replace a costly, linear output stage in a high-fidelity audio amplifier with 
a cheaper unit and compensate for this change by adding an inexpensive 
stage of low-level amplification. 

The input and output impedances of amplifiers are also modified by feed­
back. For example, if the output variable that is fed back is a voltage, the 

Vd1 Vd2 d3 

+ + + 
ViI 1 a2 1I+a.a-f V0 

Figure 2.6 Open-loop system illustrating effects of disturbances. 



32 Properties and Modeling of Feedback Systems 

feedback tends to stabilize the value of this voltage and reduce its depend­
ence on disturbing load currents, implying that the feedback results in 
lower output impedance. Alternatively, if the information fed back is pro­
portional to output current, the feedback raises the output impedance. 
Similarly, feedback can limit input voltage or current applied to an ampli­
fier, resulting in low or high input impedance respectively. A quantitative 
discussion of this effect is reserved for Section 2.5. 

A word of caution is in order to moderate the impression that perform­
ance improvements always accompany increases in loop-transmission 
magnitude. Unfortunately, the loop transmission of a system cannot be 
increased without limit, since sufficiently high gain invariably causes a sys­
tem to become unstable. A stable system is defined as one for which a 
bounded output is produced in response to a bounded input. Conversely, 
an unstable system exhibits runaway or oscillatory behavior in response to 
a bounded input. Instability occurs in high-gain systems because small 
errors give rise to large corrective action. The propagation of signals around 
the loop is delayed by the dynamics of the elements in the loop, and as a 
consequence high-gain systems tend to overcorrect. When this overcorrec­
tion produces an error larger than the initiating error, the.system is unstable. 

This important aspect of the feedback problem did not appear in this 
section since the dynamics associated with various elements have been ig­
nored. The problem of stability will be investigated in detail in Chapter 4. 

2.4 BLOCK DIAGRAMS 

A block diagram is a graphical method of representing the relationships 
among variables in a system. The symbols used to form a block diagram 
were introduced in Section 2.2. Advantages of this representation include 
the insight into system operation that it often provides, its clear indication 
of various feedback loops, and the simplification it affords to determining 
the transfer functions that relate input and.output variables of the system. 
The discussion in this section is limited to linear, time-invariant systems, 
with the enumeration of certain techniques useful for the analysis of non­
linear systems reserved for Chapter 6. 

2.4.1 Forming the Block Diagram 

Just as there are many complete sets of equations that can be written 
to describe the relationships among variables in a system, so there are many 
possible block diagrams that can be used to represent a particular system. 
The choice of block diagram should be made on the basis of the insight it 
lends to operation and the ease with which required transfer functions can 
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be evaluated. The following systematic method is useful for circuits where 
all variables of interest are node voltages. 

1. Determine the node voltages of interest. The selected number of 
voltages does not have to be equal to the total number of nodes in the circuit, 
but it must be possible to write a complete, independent set of equations 
using the selected voltages. One line (which may split into two or more 
branches in the final block diagram) will represent each of these variables, 
and these lines may be drawn as isolated segments. 

2. Determine each of the selected node voltages as a weighted sum of 
the other selected voltages and any inputs or disturbances that may be 
applied to the circuit. This determination requires a set of equations of the 
form 

V, = anV + E b.E. (2.5) 
n/j m 

where Vk is the kth node voltage and Ek is the kth input or disturbance. 
3. The variable V is generated as the output of a summing point in the 

block diagram. The inputs to the summing point come from all other vari­
ables, inputs, and disturbances- via blocks with transmissions that are the 
a's and b's in Eqn. 2.5. Some of the blocks may have transmissions of zero, 
and these blocks and corresponding summing-point inputs can be elimi­
nated. 

The set of equations required in Step 2 can be determined by writing 
node equations for the complete circuit and solving the equation written 
about the jth node for V in terms of all other variables. If a certain node 
voltage Vk is not required in the final block diagram, the equation relating 
Vk to other system voltages is used to eliminate Vk from all other members 
of the set of equations. While this degree of formality is often unnecessary, 
it always yields a correct block diagram, and should be used if the desired 
diagram cannot easily be obtained by other methods. 

As an example of block diagram construction by this formal approach, 
consider the common-emitter amplifier shown in Fig. 2.7a. (Elements used 
for bias have been eliminated for simplicity.) The corresponding small-
signal equivalent circuit is obtained by substituting a hybrid-pi3 model for 
the transistor and is shown in Fig. 2.7b. Node equations are 4 

3The hybrid-pi model will be used exclusively for the analysis of bipolar transistors 
operating in the linear region. The reader who is unfamiliar with the development or use 
of this model is referred to P. E. Gray and C. L. Searle, Electronic Principles:Physics, 
Models, and Circuits,Wiley, New York, 1969. 

4 G's and R's (or g's and r's) are used to identify corresponding conductances and re­
sistances, while Y's and Z's (or y's and z's) are used to identify corresponding admittances 
and impedances. Thus for example, GA =I IRA and zb = I /yb. 
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GsVi = (Gs + g.) Va - g. Vb (2.6) 

0 = -g V + [(g + gr) + (C, + C,)s] V - C's V 

0 = (g - CMS) Vb + (GL + Cys)Vo 

If the desired block diagram includes all three node voltages, Eqn. 2.6 
is arranged so that each member of the set is solved for the voltage at the 
node about which the member was written. Thus, 

V. = 9X Vb + Gs Vi (2.7) 
ga ga 

Vb = 9X V. + CISVo 
Yb Yb 

V1 = (CMs - g.) Vb
 

Yo
 

Where 

ga = Gs + gx 

Yb = [(gx + g,) + (CA + C,)s] 

yo = GL + CyS 

The block diagram shown in Fig. 2.7c follows directly from this set of 
equations. 

Figure 2.8 is the basis for an example that is more typical of our intended 
use of block diagrams. A simple operational-amplifier medel is shown con­
nected as a noninverting amplifier. It is assumed that the variables of 
interest are the voltages Vb and V,. The voltage V, can be related to the 
other selected voltage, Vb, and the input voltage, Vi, by superposition. 

with Vi = 0, 

V0 = -aVb (2.8) 
while with Vb = 0, 

V = a Vi (2.9) 

The equation relating V0 to other selected voltages and inputs is simply the 
superposition of the responses represented by Eqns. 2.8 and 2.9, or 

V, = aVi - aVb (2.10) 

The voltage Vb is independent of Vi and is related to asV0 

V = z V (2.11)
Z + Z2 
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-- o + Vc 

RL 

V. 
R + 

+1 
Vi 

(a) 

RS r, CA 

(+ 6+ 

Vi V. Vb rr C, gm b RL 

(b) 

G + a. + Vb C,,s - M 

ZC Cb So 

(c) 

Figure 2.7 Common-emitter amplifier. (a) Circuit. (b) Incremental equivalent 
circuit. (c) Block diagram. 

Equations 2.10 and 2.11 are readily combined to form the block diagram 
shown in Fig. 2.8b. 

It is possible to form a block diagram that provides somewhat greater 
insight into the operation of the circuit by replacing Eqn. 2.10 by the pair 
of equations 

V. = Vi - Vb (2.12) 
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and 

V, = aV. (2.13) 

Note that the original set of equations were not written including Va, since 
Va, Vb, and Vi form a Kirchhoff loop and thus cannot all be included in an 
independent set of equations. 

The alternate block diagram shown in Fig. 2.8c is obtained from Eqns. 
2.11, 2.12, and 2.13. In this block diagram it is clear that the summing point 
models the function provided by the differential input of the operational 
amplifier. This same block diagram would have evolved had and V,V0 
been initially selected as the amplifier voltages of interest. 

The loop transmission for any system represented as a block diagram can 
always be determined by setting all inputs and disturbances to zero, break­
ing the block diagram at any point inside the loop, and finding the signal 
returned by the loop in response to an applied test signal. One possible 
point to break the loop is illustrated in Fig. 2.8c. With Vi = 0, it is evident 
that 

V0 -aZ 1
-1 = , (2.14)

Vt Z1 + Z2 

The same result is obtained for the loop transmission if the loop in Fig. 2.8c 
is broken elsewhere, or if the loop in Fig. 2.8b is broken at any point. 

Figure 2.9 is the basis for a slightly more involved example. Here a-fairly 
detailed operational-amplifier model, which includes input and output im­
pedances, is shown connected as an inverting amplifier. A disturbing current 
generator is included, and this generator can be used to determine the 
closed-loop output impedance of the amplifier Vo/Id. 

It is assumed that the amplifier voltages of interest are V, and V0 . The 
equation relating V, to the other voltage of interest V0, the input Vi, and 
the disturbance Id, is obtained by superposition (allowing all other signals 
to be nonzero one at a time and superposing results) as in the preceding 
example. The reader should verify the results 

Va = Vi + Zi 1 Vo (2.15)
Z1 + Zi 1Z 2 Z2 + Zi 1 Z1 

and 

-aZ2 + Z,
V, = Z 2+Z 0 V + (Zo 11 Z 2)Id (2.16) 

The block diagram of Fig. 2.9b follows directly from Eqns. 2.15 and 2.16. 



aV, 

V. V. 

+ 0­V 
~ + 

z2 

-+ 
V. 

VY 

1I 
Z2 

(a) 

Vi 

(b) 

V 

Possible point 
to break loop 
to determine loop 
transmission 

(c) 

Figure 2.8 Noninverting amplifier. (a) Circuit. (b) Block diagram. (c) Alternative 
block diagram. 
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2 Z2 -a2 + Z +
V Z Z+ 
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i 

|1ZZ1 , 
Z2 + Z\ Z, 
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Figure 2.9 Inverting amplifier. (a) Circuit. (b) Block diagram. 

2.4.2 Block-Diagram Manipulations 

There are a number of ways that block diagrams can be restructured or 

reordered while maintaining the correct gain expression between an input or 

disturbance and an output. These modified block diagrams could be ob­

tained directly by rearranging the equations used to form the block diagram 

or by using other system variables in the equations. Equivalences that can 

be used to modify block diagrams are shown in Fig. 2.10. 
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It is necessary to be able to find the transfer functions relating outputs 
to inputs and disturbances or the relations among other system variables 
from the block diagram of the system. These transfer functions can always 
be found by appropriately applying various equivalences of Fig. 2.10 until 
a single-loop system is obtained. The transfer function can then be deter­
mined by loop reduction (Fig. 2. 10h). Alternatively, once the block diagram 
has been reduced to a single loop, important system quantities are evident. 
The loop transmission as well as the closed-loop gain approached for large 
loop-transmission magnitude can both be found by inspection. 

Figure 2.11 illustrates the use of equivalences to reduce the block diagram 
of the common-emitter amplifier previously shown as Fig. 2.7c. Figure 2.1 la 
is identical to Fig. 2.7c, with the exceptions that a line has been replaced 
with a unity-gain block (see Fig. 2. 1Oa) and an intermediate variable Vc has 
been defined. These changes clarify the transformation from Fig. 2.1 la to 
2.1 lb, which is made as follows. The transfer function from Vc to Vb is 
determined using the equivalance of Fig. 2.1Oh, recognizing that the feed­
back path for this loop is the product of the transfer functions of blocks 
1 and 2. The transfer function Vb/ V is included in the remaining loop, and 
the transfer function of block 1 links V, to Vb. 

The equivalences of Figs. 2.10b and 2.10h using the identification of 
transfer functions shown in Fig. 2.11b (unfortunately, as a diagram is re­
duced, the complexities of the transfer functions of residual blocks increase) 
are used to determine the overall transfer function indicated in Fig. 2.11 c. 

The inverting-amplifier connection (Fig. 2.9) is used as another example 
of block-diagram reduction. The transfer function relating V, to Vi in 
Fig. 2.9b can be reduced to single-loop form by absorbing the left-hand 
block in this diagram (equivalence in Fig. 2.1Od). Figure 2.12 shows the 
result of this absorption after simplifying the feedback path algebraically, 
eliminating the disturbing input, and using the equivalence of Fig. 2.10e to 
introduce an inversion at the summing point. The gain of this system ap­
proaches the reciprocal of the feedback path for large loop transmission; 
thus the ideal closed-loop gain is 

V. Z2V- (2.17) 
Vi Z1 

The forward gain for this system is 

V., Zi |1Z 2 -- aZ + Zo 
Ye _Z1 + Zi Z2_ L_ Z2 + Zo 

=[ Zi 1\ Z2_ ' -- aZ2 ~ Zi 11Z2_ Zo 2.8 
Z1 + Zi \\ Z2 _Z2 + Zo _Z1 + Zi |1 Z21 _Z2 + Zol 
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V. V.a a +b Vb 

(c) 
V. a V+ 

bb 
+ 

a y 

a 

(d) 

Vb 

V' VCVe 
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Figure 2.10 Block-diagram equivalences. (a) Unity gain of line. (b) Cascading. 
(c) Summation. (d) Absorption. (e) Negation. (f) Branching. (g) Factoring. (h) Loop 
reduction. 
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Figure 2.10-Continued 

The final term on the right-hand side of Eqn. 2.18 reflects the fact that 
some fraction of the input signal is coupled directly to the output via the 
feedback network, even if the amplifier voltage gain a is zero. Since the 
impedances included in this term are generally resistive or capacitive, the 
magnitude of this coupling term will be less than one at all frequencies. 
Similarly, the component of loop transmission attributable to this direct 
path, determined by setting a = 0 and opening the loop is 

Vf Z1 Zi '' Z2Ve a=0 |_Z2 Z1 + Zi Z2 
Z _

Z o 

= + (2.19)
_ZiZ1 + ZiZ2 + Z1Z2_ _Z2 + Zo_ 

and will be less than one in magnitude at all frequencies when the im­
pedances involved are resistive or capacitive. 



V 	 V 

V 
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b d 

9a 

(b) 

V. 3 bcd v1 - ce 

Figure 2.11 Simplification of common-emitter block diagram. (a) Original block diagram. (b) After 
eliminating loop generating Vb. (c) Reduction to single block. 
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Z1 

(Break loop here
 
to determine loop transmission
 

Figure 2.12 Reduced diagram for inverting amplifier. 

If the loop-transmission magnitude of the operational-amplifier connec­
tion is large compared to one, the component attributable to direct coupling 
through the feedback network (Eqn. 2.19) must be insignificant. Conse­

quently, the forward-path gain of the system can be approximated as 

V. [ -aZ 2 z 2 (2.20) 
V Z 2+ Z. Z1 + Zi 1|Z2 _ 

in this case. The corresponding loop transmission becomes 

V- -aZj ] ] (2.21) 
Ve LZ2+Z Z 1 + Zi |\ Z2 

It is frequently found that the loop-transmission term involving direct 
coupling through the feedback network can be neglected in practical 
operational-amplifier connections, reflecting the reasonable hypothesis that 
the dominant gain mechanism is the amplifier rather than the passive 
network. While this approximation normally yields excellent results at 
frequencies where the amplifier gain is large, there are systems where sta­
bility calculations are incorrect when the approximation is used. The reason 
is that stability depends largely on the behavior of the loop transmission 
at frequencies where its magnitude is close to one, and the gain of the 
amplifier may not dominate at these frequencies. 

2.4.3 The Closed-Loop Gain 

It is always possibl to determine the gain that relates any signal in a 
block diagram to an input or a disturbance by manipulating the block 
diagram until a single path connects the two quantities of interest. Alter­
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natively, it is possible to use a method developed by Mason 5 to calculate 
gains directly from an unreduced block diagram. 

In order to determine the gain between an input or disturbance and any 
other points in the diagram, it is necessary to identify two topological 
features of a block diagram. A path is a continuous succession of blocks, 
lines, and summation points that connect the input and signal of interest 
and along which no element is encountered more than once. Lines may 
be traversed only in the direction of information flow (with the arrow). It 
is possible in general to have more than one path connecting an input to an 
output or other signal of interest. The path gain is a product of the gains 
of all elements in a path. A loop is a closed succession of blocks, lines, and 
summation points traversed with the arrows, along which no element is 
encountered more than once per cycle. The loop gain is the product of gains 
of all elements in a loop. It is necessary to include the inversions indicated 
by negative signs at summation points when calculating path or loop gains. 

The general expression for the gain or transmission of a block diagram is 

E Pa - E Lb + E LeLd - LeLfL, +-­
T _ a x b c,d e, ,g (2.22)

1- Lh + ELiL1 - Z LjLiLm + -­
h ij k,l,rn 

The numerator of the gain expression is the sum of the gains of all paths 
connecting the input and the signal of interest, with each path gain scaled 
by a cofactor. The first sum in a cofactor includes the gains of all loops that 
do not touch (share a common block or summation point with) the path; 
the second sum includes all possible products of loop gains for loops that 
do not touch the path or each other taken two at a time; the third sum in­
cludes all possible triple products of loop gains for loops that do not touch 
the path or each other; etc. 

The denominator of the gain expression is called the determinant or 
characteristicequation of the block diagram, and is identically equal to one 
minus the loop transmission of the complete block diagram. The first sum 
in the characteristic equation includes all loop gains; the second all possible 
products of the gains of nontouching loops taken two at a time; etc. 

Two examples will serve to clarify the evaluation of the gain expression. 
Figure 2.13 provides the first example. In order to apply Mason's gain 
formula for the transmission V0/ Vi, the paths and loops are identified and 
their gains are evaluated. The results are: 

P1 = ace 

S. J. Mason and H. J. Zimmermann, Electronic Circuits,Signals, and Systems, Wiley, 
New York, 1960, Chapter 4, "Linear Signal-Flow Graphs." 
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= agP2 

= -hP3 

L1 = -ab 

L2 = cd 

L 3 = -ef 

L4 = -acei 

The topology of Fig. 2.13 shows that path P1 shares common blocks with 
and therefore touches all loops. Path P 2 does not touch loops L 2 or L3, while 
path P3 does not touch any loops. Similarly, loops L 1, L2, and L3 do not 
touch each other, but all touch loop L 4. Equation 2.22 evaluated for this 
system becomes 

P1 + P2 (1 -L2 - L3 + L 2L 3) 

V. + P3(1 -L 1 - L 2 - 3L - L4 + L1L2 + L 2L +LL 3 1-L L 2L3 ) 

Vi 1 - L1 - L 2 - 3L - L4 + L1L2 + L 2L + LL3 - LL 2L 

(2.23) 

A second example of block-diagram reduction and some reinforcement 
of the techniques used to describe a system in block-diagram form is pro­
vided by the set of algebraic equations 

X + Y + Z =6 (2.24) 

X+ Y-Z=0 

2X + 3Y + Z= 11 

Figure 2.13 Block diagram for gain-expression example. 
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In order to represent this set of equations in block-diagram form, the three 
equations are rewritten 

X- Y - Z + 6 (2.25) 

Y= -X +Z 
Z= -2X-3Y +11 

This set of equations is shown in block-diagram form in Fig. 2.14. If we 
use the identification of loops in this figure, loop gains are 

Li = 1 

L2 = -3 

L3 = -3 

L4 = 2 

= 2L 5 

Since all loops touch, the determinant of any gain expression for this sys­
tem is 

1 -	 L1 - L 2 - L3 - L 4 - L5 = 2 (2.26) 

(This value is of course identically equal to the determinant of the coeffi­
cients of Eqn. 2.24.) 

Assume that the value of X is required. The block diagram shows one 
path with a transmission of +1 connecting the excitation with a value of 
6 to X. This path does not touch L2. There are also two paths (roughly 
paralleling L3 and L,) with transmissions of - 1 connecting the excitation 
with a value of 11 to X. These paths touch all loops. Linearity allows us 
to combine the X responses related to the two excitations, with the result 
that 

6[1 - (-3)] - 11 - 11 	 (2.27)
2 

The reader should verify that this method yields the values Y = 2 and 
Z = 3 for the other two dependent variables. 

2.5 	 EFFECTS OF FEEDBACK ON INPUT AND
 
OUTPUT IMPEDANCE
 

The gain-stabilizing and linearizing effects of feedback have been de­
scribed earlier in this chapter. Feedback also has important effects on the 
input and output impedances of an amplifier, with the type of modification 
dependent on the topology of the amplifier-feedback network combination. 
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Figure 2.14 Block diagram of Eqn. 2.25. 
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(a) 

Feedback to 
input Current-sampling 

resistor 

(b) 

Figure 2.15 Two possible output topologies. (a) Feedback of load-voltage infor­
mation. (b) Feedback of load-current information. 

Figure 2.15 shows how feedback might be arranged to return information 
about either the voltage applied to the load or the current flow through it. 
It is clear from physical arguments that these two output topologies must 
alter the impedance facing the load in different ways. If the information fed 
back to the input concerns the output voltage, the feedback tends to reduce 
changes in output voltage caused by disturbances (changes in load current), 
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thus implying that the output impedance of the amplifier shown in Fig. 
2.15a is reduced by feedback. Alternatively, if information about load 
current is fed back, changes in output current caused by disturbances 
(changes in load voltage) are reduced, showing that this type of feedback 
raises output impedance. 

Two possible input topologies are shown in Fig. 2.16. In Fig. 2.16a, the 
input signal is applied in series with the differential input of the amplifier. If 
the amplifier characteristics are satisfactory, we are assured that any re­
quired output signal level can be achieved with a small amplifier input 
current. Thus the current required from the input-signal source will be 
small, implying high input impedance. The topology shown in Fig. 2.16b 
reduces input impedance, since only a small voltage appears across the 
parallel input-signal and amplifier-input connection. 

The amount by which feedback scales input and output impedances is 
directly related to the loop transmission, as shown by the following example. 
An operational amplifier connected for high input and high output resis­
tances is shown in Fig. 2.17. The input resistance for this topology is simply 
the ratio Vi/I 1 . Output resistance is determined by including a voltage 
source in series with the load resistor and calculating the ratio of the change 
in the voltage of this source to the resulting change in load current, Vi/I. 
If it is assumed that the components of I and the current through the 
sampling resistor Rs attributable to 1i are negligible (implying that the 

Input + 

Feedback from output 

(a) 

Feedback from output 

Input ­

(b) 

Figure 2.16 Two possible input topologies. (a) Input signal applied in series with 
amplifier input. (b) Input signal applied in parallel with amplifier input. 
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RL 

Figure 2.17 Amplifier with high input and output resistances. 

amplifier, rather than a passive network, provides system gain) and that 
R >> Rs, the following equations apply. 

V. = Vi - RsIj (2.28) 

aVa + V1
I, = a+R+ (2.29)

R,, + RL + RS 

Ii = - (2.30)
R i 

These equations are represented in block-diagram form in Fig. 2.18. This 
block diagram verifies the anticipated result that, since the input voltage is 
compared with the output current sampled via resistor Rs, the ideal trans-
conductance (ratio of I, to Vj) is simply equal to Gs. The input resistance is 
evaluated by noting that 

I, 11 
V - I 1 [R(2.31) 1 
Vi Rin Ri{Il + [aRs/1(R,, + RL + Rs)]} 
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Vi ............... R , + R L + RS
 

Figure 2.18 Block diagram for amplifier of Fig. 2.17. 

or 

Ri. = R I + aRs (2.32) 
R. + RL + Rs) 

The output resistance is determined from' 

I, = I - (2.33)
V, Rout (R, + RL + Rs){ 1 + [aRs/(R. + RL + Rs)]} 

yielding 

Rout = (Ro + RL + RS) + aRs (2.34)
R,, + RL + Rs) 

The essential features of Eqns. 2.32 and 2.34 are the following. If the 

system has no feedback (e.g., if a = 0), the input and output resistances 

become 

R'i. = R (2.35) 

and 

R'out = R. + RL + Rs (2.36) 

Feedback increases both of these quantities by a factor of 1 + [aRs/ 

(R + RL + Rs)], where -aRs/(R + RL + Rs) is recognized as the loop 

transmission. Thus we see that the resistances in this example are increased 

by the same factor (one minus the loop transmission) as the desensitivity 

6 Note that the output resistance in this example is calculated by including a voltage 
source in series with the load resistor. This approach is used to emphasize that the loop 
transmission that determines output resistance is influenced by RL. An alternative develop­
ment might evaluate the resistance facing the load by replacing RL with a test generator. 
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increase attributable to feedback. The result is general, so that input or 
output impedances can always be calculated for the topologies shown in 
Figs. 2.15 or 2.16 by finding the impedance of interest with no feedback 
and scaling it (up or down according to topology) by a factor of one minus 
the loop transmission. 

While feedback offers a convenient method for controlling amplifier input 
or output impedances, comparable (and in certain cases, superior) results 
are at least conceptually possible without the use of feedback. Consider, 
for example, Fig. 2.19, which shows three ways to connect an operational 
amplifier for high input impedance and unity voltage gain. 

The follower connection of Fig. 2.19a provides a voltage gain 

V 1=+ a (2.37)
Vi I + a 

or approximately unity for large values of a. The relationship between input 
impedance and loop transmission discussed earlier in this section shows that 
the input impedance for this connection is 

Vi 
, Zi(1 + a) (2.38)

Ii 

The connection shown in Fig. 2.19b precedes the amplifier with an im­
pedance that, in conjunction with the input impedance of the amplifier, 
attenuates the input signal by a factor of 1/(1 + a). This attenuation com­
bines with the voltage gain of the amplifier itself to provide a composite 
voltage gain identical to that of the follower connection. Similarly, the 
series impedance of the attenuator input element adds to the input im­
pedance of the amplifier itself so that the input impedance of the combina­
tion is identical to that of the follower. 

The use of an ideal transformer as impedance-modifying element can 
lead to improved input impedance compared to the feedback approach. 
With a transformer turns ratio of (a + 1): 1, the overall voltage gain of the 
transformer-amplifier combination is the same as that of the follower 
connection, while the input impedance is 

Vi 
a)2- Zi(l + (2.39) 

This value greatly exceeds the value obtained with the follower for large 
amplifier voltage gain. 

The purpose of the above example is certainly not to imply that atten­
uators or transformers should be used in preference to feedback to modify 
impedance levels. The practical disadvantages associated with the two 



Vi 

(a) 

aZ 

vi 

r V, 

(b) 

V 

Ideal transformer
 
turns ratio = (a + 1):1
 

(c) 

Figure 2.19 Unity-gain amplifiers. (a) Follower connection. (b) Amplifier with 
input attenuator. (c) Amplifier with input transformer. 
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former approaches, such as the noise accentuation that accompanies large 
input-signal attenuation and the limited frequency response characteristic 
of transformers, often preclude their use. The example does, however, 
serve to illustrate that it is really the power gain of the amplifier, rather 
than the use of feedback, that leads to the impedance scaling. We can 
further emphasize this point by noting that the input impedance of the 
amplifier connection can be increased without limit by following it with a 
step-up transformer and increasing the voltage attenuation of either the 
network or the transformer that precedes the amplifier so that the overall 
gain is one. This observation is a reflection of the fact that the amplifier 
alone provides infinite power gain since it has zero output impedance. 

One rather philosophical way to accept this reality concerning impedance 
scaling is to realize that feedback is most frequently used because of its 
fundamental advantage of reducing the sensitivity of a system to changes 
in the gain of its forward-path element. The advantages of impedance 
scaling can be obtained in addition to desensitivity simply by choosing an 
appropriate topology. 

PROBLEMS 

P2.1 
Figure 2.20 shows a block diagram for a linear feedback system. Write 

a complete, independent set of equations for the relationships implied by 
this diagram. Solve your set of equations to determine the input-to-output 
gain of the system. 

P2.2 
Determine how the fractional change in closed-loop gain 

d(V/Vi) 

V./ Vi 

is related to fractional changes in ai, a2, and f for the system shown in 
Fig. 2.21. 

P2.3 
Plot the closed-loop transfer characteristics for the nonlinear system 

shown in Fig. 2.22. 

P2.4 
The complementary emitter-follower connection shown in Fig. 2.23 is a 

simple unity-voltage-gain stage that has a power gain approximately equal 
to the current gain of the transistors used. It has nonlinear transfer charac­
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Vt 

Figure 2.20 Two-loop feedback system. 

V V. 

Figure 2.21 Feedback system with parallel forward paths. 

teristics, since it is necessary to apply approximately 0.6 volts to the base­
to-emitter junction of a silicon transistor in order to initiate conduction. 

(a) 	Approximate the input-output transfer characteristics for the emitter-
follower stage. 

(b) 	 Design a circuit that combines this power stage with an operational 
amplifier and any necessary passive components in order to provide 
a closed-loop gain with an ideal value of +5. 

(c) 	 Approximate the actual input-output characteristics of your feedback 
circuit assuming that the open-loop gain of the operational amplifier 
is 101. 

P2.5 
(a) 	Determine the incremental gain v0/vi for Vr = 0.5 and 1.25 for the 

system shown in Fig. 2.24. 
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VI 1000 	 v0 

vB 	 Nonfinear A 

(a) 

t 
VB 

-1 

1V A 

(b) 

Figure 2.22 Nonlinear feedback system. (a) System. (b) Transfer characteristics 

for nonlinear element. 

(b) 	 Estimate the signal VA for vr, a unit ramp [vr(t) = 0, t < 0, = t, 

t > 0]. 
(c) 	 For vr = 0, determine the amplitude of the sinusoidal component 

of vo. 

P2.6 
Determine V, as a function of Vii and Vi for the feedback system shown 

in Fig. 2.25. 

P2.7 
Draw a block diagram that relates output voltage to input voltage for an 

emitter follower. You may assume that the transistor remains linear, and 
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+ VC 

0; 

vo v 

-VC 

Figure 2.23 Complementary emitter follower. 

use a hybrid-pi model for the device. Include elements r,, r2, C., and C, 
in addition to the dependent generator, in your model. Reduce the block 
diagram to a single input-output transfer function. 

P2.8 

Draw a block diagram that relates V, to Vi for the noninverting connec­
tion shown in Fig. 2.26. Also use block-diagram techniques to determine 
the impedance at the output, assuming that Zi is very large. 

P2.9 

A negative-feedback system used to rotate a roof-top antenna is shown 
in Fig. 2.27a. 

The total inertia of the output member (antenna, motor armature, and 
pot wiper) is 2 kg -m2 . The motor can be modeled as a resistor in series with 
a speed-dependent voltage generator (Fig. 2.27b). 

The torque provided by the motor that accelerates the total output-mem­
ber inertia is 10 N-m per ampere of I,. The polarity of the motor de­
pendent generator is such that it tends to reduce the value of I, as the motor 

accelerates so that I, becomes zero for a motor shaft velocity equal to 
Vm/10 radians per second. 

Draw a block diagram that relates 0, to 6j. You may include as many 
intermediate variables as you wish, but be sure to include Vm and I, in your 

diagram. Find the transfer function 60/6i. 
Modify your diagram to include an output disturbance applied to the 
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VN = sin 377t 

VI .vo 

Signal limited to ± 30 volts 

(a) 

15­

B >­

(b) 

Figure 2.24 Nonlinear system. (a) System. (b) Transfer characteristics for nonlinear 
element. 

antenna by wind. Calculate the angular error that results from a 1 N-m 
disturbance. 

P2.10 
Draw a block diagram for this set of equations: 

W+X =3 

x+Y =5 

Y+Z=7 
2W+X+ Y+Z= 11 



V 

Vi2 

Figure 2.25 Linear block diagram. 

l
VV 
 V
 

ZL 

Figure 2.26 Noninverting amplifier. 
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Antenna
 

Motor
 
(housing fixed)
 

Input C Output shaft angle
applied ' 
to poten­
tiometer Potentiometer coupled 

to antenna and motor 
shaft.

Error signal =
 
10 volts/radian (0,-0,)
 

(a) 

RA = 5 ohms 

Vm '4 
10 volts/radian/sec X motor speed 

(b) 

Figure 2.27 Antenna rotator System. (a) System configuration. (b) Model for motor. 

Use the block-diagram reduction equation (Eqn. 2.22) to determine the 
values of the four dependent variables. 

P2.11 
The connection shown in Fig. 2.28 feeds back information about both 

load current and load voltage to the amplifier input. Draw a block dia­
gram that allows you to calculate the output resistance V/Id. 

You may assume that R >> Rs and that the load can be modeled as a 

resistor RL. What is the output resistance for very large a? 

P2.12 

An operational amplifier connected to provide an adjustable output 

resistance is shown in Fig. 2.29. Find a Thevenin-equivalent circuit facing 
the load as a function of the potentiometer setting a. You may assume that 
the resistance R is very large and that the operational amplifier has ideal 
characteristics. 



vI 

AAA + ­

, "vv_v 
Load 

Figure 2.28 Operational-amplifier connection with controlled output resistance. 

V. 

F .aLoad uu 
.- (- a) R 

IRS 

Figure 2.29 Circuit with adjustable output resistance. 
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CHAPTER III 

LINEAR SYSTEM RESPONSE
 

3.1 OBJECTIVES 

The output produced by an operational amplifier (or any other dynamic 
system) in response to a particular type or class of inputs normally pro­
vides the most important characterization of the system. The purpose of 
this chapter is to develop the analytic tools necessary to determine the re­
sponse of a system to a specified input. 

While it is always possible to determine the response of a linear system 
to a given input exactly, we shall frequently find that greater insight into 
the design process results when a system response is approximated by the 
known response of a simpler configuration. For example, when designing 
a low-level preamplifier intended for audio signals, we might be interested 
in keeping the frequency response of the amplifier within i 5% of its mid-
band value over a particular bandwidth. If it is possible to approximate the 
amplifier as a two- or three-pole system, the necessary constraints on pole 
location are relatively straightforward. Similarly, if an oscilloscope vertical 
amplifier is to be designed, a required specification might be that the over­
shoot of the amplifier output in response to a step input be less than 3 % 
of its final value. Again, simple constraints result if the system transfer 
function can be approximated by three or fewer poles. 

The advantages of approximating the transfer functions of linear systems 
can only be appreciated with the aid of examples. The LM301A integrated-
circuit operational amplifier' has 13 transistors included-in its signal-trans­
mission path. Since each transistor can be modeled as having two capaci­
tors, the transfer function of the amplifier must include 26 poles. Even this 
estimate is optimistic, since there is distributed capacitance, comparable to 
transistor capacitances, associated with all of the other components in the 
signal path. 

Fortunately, experimental measurements of performance can save us 
from the conclusion that this amplifier is analytically intractable. Figure 
3.la shows the LM301A connected as a unity-gain inverter. Figures 3.1b 
and 3.lc show the output of this amplifier with the input a -50-mV step 

1This amplifier is described in Section 10.4.1. 
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4.7 kn 

4.7 k 

V F -+ V 
LM301 A 0 -

Compensating 
capacitor 

(a) 

20 mV 

(b) 2 AsK 

Figure 3.1 Step responses of inverting amplifier. (a) Connection. (b) Step response 

with 220-pF compensating capacitor. (c) Step response with 12-pF compensating 

capacitor. 

for two different values of compensating capacitor.2 The responses of an 

R-C network and an R-L-C network when excited with +50-mV steps 

supplied from the same generator used to obtain the previous transients 

are shown in Figs. 3.2a and 3.2b, respectively. The network transfer func­

tions are 
V0(s) 1 
Vi(s) 2.5 X 10- 6 s + I 
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20 mV 

(c) 0.5 yAs 

Figure 3.1-Continued 

for the response shown in Fig. 3.2a and 

V0(s) 1 1 
2Vi(s) 2.5 X 104 s + 7 X 10- 8s + I 

for that shown in Fig. 3.2b. We conclude that there are many applications 
where the first- and second-order transfer functions of Eqns. 3.1 and 3.2 
adequately model the closed-loop transfer function of the LM301A when 
connected and compensated as shown in Fig. 3.1. 

This same type of modeling process can also be used to approximate the 
open-loop transfer function of the operational amplifier itself. Assume that 
the input impedance of the LM301A is large compared to 4.7 ki and that 
its output impedance is small compared to this value at frequencies of 
interest. The closed-loop transfer function for the connection shown in 
Fig. 3.1 is then 

V0(s) -a(s) 
Vi(s) 2 + a(s) 

2 Compensation is a process by which the response of a system can be modified advan­
tageously, and is described in detail in subsequent sections. 



20 mV 

T 

(a) 2 S 

20 mV 

(b) 0.5 /s 

Figure 3.2 Step responses for first- and second-order networks. (a) Step response 
for V.(s)/Vi(s) = ]/(2.5 X 10- 6s + 1). (b) Step response for V(s)/Vi(s) = 

S2 81/(2.5 X 10 14 + 7 X 10 s + 1). 
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where a(s) is the unloaded open-loop transfer function of the amplifier. 
Substituting approximate values for closed-loop gain (the negatives of 
Eqns. 3.1 and 3.2) into Eqn. 3.3 and solving for a(s) yields 

a~) 8 X 105 
a(s) 8X(3.4) 

and 

2.8 X 107 
a(s) 2. 0 (3.5)s(3.5 X 10- 7 s + 1) 

as approximate open-loop gains for the amplifier when compensated with 
220-pF and 12-pF capacitors, respectively. We shall see that these approxi­
mate values are quite accurate at frequencies where the magnitude of the 
loop transmission is near unity. 

3.2 LAPLACE TRANSFORMS3 

Laplace Transforms offer a method for solving any linear, time-invariant 
differential equation, and thus can be used to evaluate the response of a 
linear system to an arbitrary input. Since it is assumed that most readers 
have had some contact with this subject, and since we do not intend to 
use this method as our primary analytic tool, the exposure presented here 
is brief and directed mainly toward introducing notation and definitions 
that will be used later. 

3.2.1 Definitions and Properties 

The Laplace transform of a time functionf(t) is defined as 

2[f(t)] A F(s) A f f(t)e-" dt (3.6) 

where s is a complex variable o + jw. The inverse Laplace transform of the 
complex function F(s) is 

-1[F(s)]A f(t) A F(s)e" ds (3.7)
2.rj ,1-J Fs d 

A complete discussion is presented in M. F. Gardner and J. L. Barnes, Transientsin 
LinearSystems, Wiley, New York, 1942. 

In this section we temporarily suspend the variable and subscript notation used else­
where and conform to tradition by using a lower-case variable to signify a time function 
and the corresponding capital for its transform. 
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The direct-inverse transform pair is unique4 so that 

2-12[ftt)] =f (t (3.8) 

iff(t) = 0, t < 0, and if f f(t) | e- dt is finite for some real value of a1. 

A number of theorems useful for the analysis of dynamic systems can 
be developed from the definitions of the direct and inverse transforms for 
functions that satisfy the conditions of Eqn. 3.8. The more important of 
these theorems include the following. 

1. Linearity
 
2[af(t) + bg(t)] = [aF(s) + bG(s)]
 

where a and b are constants. 

2. Differentiation 

Ldf(t) sF(s) - lim f(t)
dt =-.0+ 

(The limit is taken by approaching t = 0 from positive t.) 

3. 	Integration
 

2 [ f(T) d-] F(s)
 

4. Convolution 

2 [f tf(r)g(t - r) d] = [ ff(t - r)g(r) dr] = F(s)G(s) 

5. 	Time shift
 
2[f(t - r)] = F(s)e-"
 

if f(t - r) = 0 for (t 	 - r) < 0, where r is a positive constant. 

6. Time scale 

1 Fs]
2[f(at)] = F -­

a a 

where a is a positive constant. 

7. Initialvalue 
lim f(t) lim sF(s) 
t-0+ 8-.co 

4 There are three additional constraints called the Direchlet conditions that are satisfied 

for all signals of physical origin. The interested reader is referred to Gardner and Barnes. 
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8. Final value 

limf (t) = lim sF(s) 
J-oo 8-0 

Theorem 4 is particularly valuable for the analysis of linear systems,
since it shows that the Laplace transform of a system output is the prod­
uct of the transform of the input signal and the transform of the impulse 
response of the system. 

3.2.2 Transforms of Common Functions 

The defining integrals can always be used to convert from a time func­
tion to its transform or vice versa. In practice, tabulated values are fre­
quently used for convenience, and many mathematical or engineering ref­
erencesI contain extensive lists of time functions and corresponding Laplace 
transforms. A short list of Laplace transforms is presented in Table 3.1. 

The time functions corresponding to ratios of polynomials in s that are 
not listed in the table can be evaluated by means of a partialfraction ex­
pansion. The function of interest is written in the form 

F(s) = p(s) _ p(s)
q(s) (s + s1 )(s + s2) . . . (s + s.) 

It is assumed that the order of the numerator polynomial is less than that 
of the denominator. If all of the roots of the denominator polynomial are 
first order (i.e., s, / si, i # j), 

F(s) = (3.10) 
k=1 S + sk 

where 

Ak = lim [(s + sk)F(s)] (3.11) 
k 

If one or more roots of the denominator polynomial are multiple roots, 
they contribute terms of the form 

"ZBkk- BsI~k 
+ (3.12)

k1(S Si) k 

See, for example, A. Erdeyli (Editor) Tables of Integral Transforms, Vol. 1, Bateman 
Manuscript Project, McGraw-Hill, New York, 1954 and R. E. Boly and G. L. Tuve, 
(Editors), Handbook of Tables for Applied Engineering Science, The Chemical Rubber 
Company, Cleveland, 1970. 
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Table 3.1 Laplace Transform Pairs
 

f(t), t > 0
F(s) 

[f(t) = 0, t < 0] 

1	 Unit impulse uo(t) 

1	 Unit step u-1 (t) 

S2	 [f(t) = 1, t > 0] 

1	 Unit ramp u- 2(t)
 

[f(t) = t, t > 0]
 

1	 tn 

s+1a	 n! 

e-at 
s + a1
 

1 tn
 
Se-at 

(s + a)"+1	 (n)! 

1 
1 - e-t/ 

s(rs + 1 

e-a sin wt
(s + a)2 + W2 

s + a e-a cos Wt 
(s + a)2 + W22 

1 on
 
2 e-t-wn(sin 1 - -2 t), < 1
 s2/, + 2 s/n + 1 1 - 2 

1 
1 - sin coV/1 - 2 t + tan-' 2,2s(s 2 /O,,2 + s/Wn + 1) 

where m is the order of the multiple root located at s = -si. The B's are 
determined from the relationship 

Bk = lim	 [(s + si)-F(s)]} (3.13)
k)! ds--k8 (m( ­
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Because of the linearity property of Laplace transforms, it is possible to 
find the time function f(t) by summing the contributions of all components 
of F(s). 

The properties of Laplace transforms listed earlier can often be used to 
determine the transform of time functions not listed in the table. The rec­
tangular pulse shown in Fig. 3.3 provides one example of this technique. 
The pulse (Fig. 3.3a) can be decomposed into two steps, one with an 
amplitude of +A starting at t = ti, summed with a second step of ampli­

tl t 
2 

t 3P, 

(a) 

f(t) 

A 

0 tl 

-A -------­

(b) 

Figure 3.3 Rectangular pulse. (a) Signal. (b) Signal decomposed in two steps. 
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sin wt, 0 < t < , 0 otherwise 

(a) 

f(t) 

sin wt, t > 0 sin w(t -), (t -)> 0 

01 

11 

(b) 

Figure 3.4 Sinusoidal pulse. (a) Signal. (b) Signal decomposed into two sinusoids. 

(c) First derivative of signal. (d) Second derivative of signal. 

tude - A starting at t = t 2 . Theorems 1 and 5 combined with the transform 
of a unit step from Table 3.1 show that the transform of a step with ampli­
tude A that starts at t = ti is (A/s)e-I,. Similarly, the transform of the 
second component is -(A/s)e- . Superposition insures that the transform 
of f(t) is the sum of these two functions, or 

F(s) = (e- t - e-s2) (3.14) 
S 

The sinusoidal pulse shown in Fig. 3.4 is used as a second example. 

One approach is to represent the single pulse as the sum of two sinusoids 
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f'(t) 

w cos wt, 0 < t < , 0 otherwise 

0 

(c)
 

ft 
f"1(t) 

Impulse of area o 

0 
t al. 

-W 2 sin cot, 0 < t < 1, 0 otherwise 

(d) 
Figure 3.4--Continued 

exactly as was done for the rectangular pulse. Table 3.1 shows that 
the transform of a unit-amplitude sinusoid starting at time t = 0 is 
w/(s2 ± w2). Summing transforms of the components shown in Fig. 3. 4b 
yields 

F(s) = 2 2 [I+e- ] (3.15) 
s2 + O 

An alternative approach involves differentiating f(t) twice. The derivative 
of f(t), f'(t), is shown in Fig. 3.4c. Since f(0) = 0, theorem 2 shows that 

2[f'(t)] = sF(s) (3.16) 
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The second derivative of f(t) is shown in Fig. 3.4d. Application of theorem 
2 to this function 6 leads to 

2[f"(t)] = s2[f'(t)] - lim f'(t) = s 2F(s) - w (3.17) 
t- 0+ 

However, Fig. 3.4d indicates that 

f"(t) = -W 2f(t) + wuo t - -) (3.18) 

Thus 
= -C 2F(s) + we--(/w) (3.19) 

Combining Eqns. 3.17 and 3.19 yields 

s2F(s) - o = --C2F(s) + coe-('Iw) (3.20) 

Equation 3.20 is solved for F(s) with the result that 

F(s) = + [1 + e-(/w>] (3.21)
s 2 + W2 

Note that this development, in contrast to the one involving superposition, 
does not rely on knowledge of the transform of a sinusoid, and can even 
be used to determine this transform. 

3.2.3 Examples of the Use of Transforms 

Laplace transforms offer a convenient method for the solution of linear, 
time-invariant differential equations, since they replace the integration and 
differentiation required to solve these equations in the time domain by 
algebraic manipulation. As an example, consider the differential equation 

d2x dx 
+ 3 + 2x = e-I t > 0 (3.22)

dt 2 dt 

subject to the initial conditions 

dx 
x(0+) = 2 (0+) = 0 

dt 

The transform of both sides of Eqn. 3.22 is taken using theorem 2 (applied 
twice in the case of the second derivative) and Table 3.1 to determine the 
Laplace transform of e- . 

s2X(s) - sx(0+) -
dx 

(0+) + 3sX(s) - 3x(0+) + 2X(s) - (3.23)
dt s + 1 

6The portion of this expression involving lim t-0+could be eliminated if a second im­
pulse wuo(t) were included in f "(t). 
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5 
0 

(s) = 
(s + 1)(0.7 X 10-6S + 1) 

Figure 3.5 Unity-gain follower. 

Collecting terms and solving for X(s) yields 

2s2 + 8s + 7 
(s + 1)2(s + 2) 

Equations 3.10 and 3.12 show that since there is one first-order root and 
one second-order root, 

A1 B1 B2
X(S) = A + B, + B2(3.25)(s + 2) (s + 1) (s + 1)2 

The coefficients are evaluated with the aid of Eqns. 3.11 and 3.13, with 
the result that 

--1 3 1 
X(S) = + + (3.26)

s + 2 s + I (s + 1)2 

The inverse transform of X(s), evaluated with the aid of Table 3.1, is 

te tx(t) = -e-21 + 3e- + (3.27) 

The operational amplifier connected as a unity-gain noninverting ampli­
fier (Fig. 3.5) is used as a second example illustrating Laplace techniques. 
If we assume loading is negligible, 

VJ(s) a(s) 7 X 105 

Vi(s) I + a(s) (s + 1)(0.7 X 10- 6s + 1) + 7 X 101 

10-12s 2 + 1.4 X 10- 6 s + 1 (3.28) 

If the input signal is a unit step so that Vi(s) is 1/s, 

V 6(s) = 2 
I 

s(10-12s + 1.4 X 10-6s + 1) 

s[s2/(10 6)2 + 2(0.7)s/106 + 1] (3.29) 
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The final term in Eqn. 3.29 shows that the quadratic portion of the ex­
pression has a natural frequency w, = 106 and a damping ratio = 0.7. 
The corresponding time function is determined from Table 3.1, with the 
result 

)-07104t 

f(t) = 1 -
( 

sin (0.7 X 106 
t + 450) (3.30)

0.7 

3.3 TRANSIENT RESPONSE 

The transientresponse of an element or system is its output as a function 
of time following the application of a specified input. The test signal chosen 
to excite the transient response of the system may be either an input that 
is anticipated in normal operation, or it may be a mathematical abstrac­
tion selected because of the insight it lends to system behavior. Commonly 
used test signals include the impulse and time integrals of this function. 

3.3.1 Selection of Test Inputs 

The mathematics of linear systems insures that the same system infor­
mation is obtainable independent of the test input used, since the transfer 
function of a system is clearly independent of inputs applied to the system. 
In practice, however, we frequently find that certain aspects of system per­
formance are most easily evaluated by selecting the test input to accentuate 
features of interest. 

For example, we might attempt to evaluate the d-c gain of an operational 
amplifier with feedback by exciting it with an impulse and measuring the 
net area under the impulse response of the amplifier. This approach is 
mathematically sound, as shown by the following development. Assume 
that the closed-loop transfer function of the amplifier is G(s) and that the 
corresponding impulse response [the inverse transform of G(s)] is g(t). 
The properties of Laplace transforms show that 

f 0 g(t) dt = - G(s) (3.31)
S 

The final value theorem applied to this function indicates that the net area 
under impulse response is 

lim g(t) dt = lim s - G(s) = G(0) (3.32) 
t-.c o s-,0 

Unfortunately, this technique involves experimental pitfalls. The first of 
these is the choice of the time function used to approximate an impulse. 
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In order for a finite-duration pulse to approximate an impulse satisfactorily, 
it is necessary to have' 

t sm I (3.33) 

where t, is the width of the pulse and sm is the frequency of the pole of G(s) 
that is located furthest from the origin. 

It may be difficult to find a pulse generator that produces pulses narrow 
enough to test high-frequency amplifiers. Furthermore, the narrow pulse 
frequently leads to a small-amplitude output with attendant measurement 
problems. Even if a satisfactory impulse response is obtained, the tedious 
task of integrating this response (possibly by counting boxes under the 
output display on an oscilloscope) remains. It should be evident that a 
far more accurate and direct measurement of d-c gain is possible if a con­
stant input is applied to the amplifier. 

Alternatively, high-frequency components of the system response are not 
excited significantly if slowly time-varying inputs are applied as test inputs. 
In fact, systems may have high-frequency poles close to the imaginary axis 
in the s-plane, and thus border on instability; yet they exhibit well-behaved 
outputs when tested with slowly-varying inputs. 

For systems that have neither a zero-frequency pole nor a zero in their 
transfer function, the step response often provides the most meaningful 
evaluation of performance. The d-c gain can be obtained directly by 
measuring the final value of the response to a unit step, while the initial 
discontinuity characteristic of a step excites high-frequency poles in the 
system transfer function. Adequate approximations to an ideal step are 
provided by rectangular pulses with risetimes 

t, << s (3.34) 

(sm as defined earlier) and widths 

t >> - (3.35) 

where s, is the frequency of the pole in the transfer function located closest 
to the origin. Pulse generators with risetimes under I ns are available, and 
these generators can provide useful information about amplifiers with 
bandwidths on the order of 100 MHz. 

I While this statement is true in general, if only the d-c gain of the system is required, 
any pulse can be used. An extension of the above development shows that the area under 
the response to any unit-area input is identical to the area under the impulse response. 
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3.3.2 Approximating Transient Responses 

Examples in Section 3.1 indicated that in some cases it is possible to 
approximate the transient response of a complex system by using that of 
a much simpler system. This type of approximation is possible whenever 
the transfer function of interest is dominated by one or two poles. 

Consider an amplifier with a transfer function 

aom (rzis + 1) 
V =(s) n > m, all r > 0 (3.36)
Vt(s) T (rpjs + 1) 

j= 1 

The response of this system to a unit-step input is 

F1 V0(s) 1 
v0 t) = 2--1 -I- a. + $ Aket!Tpk (3.37) 

s V(s) k=1 

The A's obtained from Eqn. 3.11 after slight rearrangement are 

H -z +1
 

A - + ) (3.38)
 

T#k3*/c 

Assume thatTri >> all other r's. In this case, which corresponds to one pole 
in the system transfer function being much closer to the origin than all 
other singularities, Eqn. 3.38 can be used to show that A1 ~ ao and all 
other A's - 0 so that 

v,(t) ~ ao(l - e-/rPi) (3.39) 

This single-exponential transient response is shown in Fig. 3.6. Experience 
shows that the single-pole response is a good approximation to the actual 
response if remote singularities are a factor of five further from the origin 
than the dominant pole. 

The approximate result given above holds even if some of the remote 
singularities occur in complex conjugate pairs, providing that the pairs are 
located at much greater distances from the origin in the s plane than the 
dominant pole. However, if the real part of the complex pair is not more 
negative than the location of the dominant pole, small-amplitude, high-
frequency damped sinusoids may persist after the dominant transient is 
completed. 
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Figure 3.6 Step response of first-order system. 

Another common singularity pattern includes a complex pair of poles 
much closer to the origin in the s plane than all other poles and zeros. An 
argument similar to that given above shows that the transfer function of an 
amplifier with this type of singularity pattern can be approximated by the 
complex pair alone, and can be written in the standard form 

V0(s) a0V-(S)- a,(3.40)
Vs(s) s2/,W 2 + 2 s/w, + 1 

The equation parameters w,, and are called the naturalfrequency(expressed 
in radians per second) and the damping ratio, respectively. The physical 
significance of these parameters is indicated in the s-plane plot shown as 
Fig. 3.7. The relative pole locations shown in this diagram correspond to 
the underdamped case ( < 1). Two other possibilities are the critically 
damped pair ( = 1) where the two poles coincide on the real axis and the 
overdampedcase ( > 1) where the two poles are separated on the real axis. 
The denominator polynomial can be factored into two roots with real 
coefficients for the later two cases and, as a result, the form shown in Eqn. 
3.40 is normally not used. The output provided by the amplifier described 
by Eqn. 3.40 in response to a unit step is (from Table 3.1). 

vO(t) = ao 1 - 1 e'n t sin (.1 - 2 t + <p)] (3.41) 

where 

D= tan-'y'V.- 2] 
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Figure 3.7 s-plane plot of complex pole pair. 

Figure 3.8 is a plot of v0(t) as a function of normalized time wat for various 
values of damping ratio. Smaller damping ratios, corresponding to com­
plex pole pairs with the poles nearer the imaginary axis, are associated with 
step responses having a greater degree of overshoot. 

The transient responses of third- and higher-order systems are not as 

easily categorized as those of first- and second-order systems since more 
parameters are required to differentiate among the various possibilities. 
The situation is simplified if the relative pole positions fall into certain 
patterns. One class of transfer functions of interest are the Butterworth 
filters. These transfer functions are also called maximally flat because of 
properties of their frequency responses (see Section 3.4). The step responses 
of Butterworth filters also exhibit fairly low overshoot, and because of 

these properties feedback amplifiers are at times compensated so that their 
closed-loop poles form a Butterworth configuration. 

The poles of an nth-order Butterworth filter are located on a circle cen­

tered at the origin of the s-plane. For n even, the poles make angles [ 
(2k + 1) 90 0/n with the negative real axis, where k takes all possible in­
tegral values from 0 to (n/2) - 1. For n odd, one pole is located on the 

negative real axis, while others make angles of -k (180 0 /n) with the nega­

tive real axis where k takes integral values from 1 to (n/2) - (1/2). Thus, 

for example, a first-order Butterworth filter has a single pole located at 

s = - on. The second-order Butterworth filter has its poles located I45* 
from the negative real axis, corresponding to a damping ratio of 0.707. 
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Figure 3.8 Step responses of second-order system. 

The transfer functions for third- and fourth-order Butterworth filters are 

BAS) = s3/W,3 + 2s2/co 2 + 2s/w + 1 (3.42) 

and 

B4(s) = 	s4/w, 4 + 2.61s 3/w, 3 + 3.42s2/o 2 + 2.61s/w. + 1 (3.43) 

respectively. Plots of the pole locations of these functions are shown in 
Fig. 3.9. The transient outputs of these filters in response to unit steps are 
shown in Fig. 3.10. 

3.4 FREQUENCY RESPONSE 

The frequency response of an element or system is a measure of its 
steady-state performance under conditions of sinusoidal excitation. In 
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Figure 3.10 Step responses for third- and fourth-order Butterworth filters. 

steady state, the output of a linear element excited with a sinusoid at a 
frequency w (expressed in radians per second) is purely sinusoidal at fre­
quency w. The frequency response is expressed as a gain or magnitude 
M(w) that is the ratio of the amplitude of the output to the input sinusoid 
and a phase angle 4(co) that is the relative angle between the output and 
input sinusoids. The phase angle is positive if the output leads the input. 
The two components that comprise the frequency response of a system 
with a transfer function G(s) are given by 

M(co) = I G(jeo) (3.44a) 

$(w) = 4G(j) tan- Im[G(jw)] (3.44b)
Re[G(jo)] 

It is frequently necessary to determine the frequency response of a sys­
tem with a transfer function that is a ratio of polynomials in s. One pos­
sible method is to evaluate the frequency response by substituting jW for s 
at all frequencies of interest, but this method is cumbersome, particularly 
for high-order polynomials. An alternative approach is to present the in­
formation concerning the frequency response graphically, as described 
below. 

18 
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The transfer function is first factored so that both the numerator and 
denominator consist of products of first- and second-order terms with real 
coefficients. The function can then be written in the general form 

a, s2 2 is
G(s) (Ths + 1) 2 + s 

S' first- complex Wni Oni 
order zero 

Lzeros .J Lpairs 

X H 
2 

(3.45) 
first- (rjS + 1) complex (S

2
/ nk + 2kS/Wnk + 1)

order pole 
Lpoles . L-pairs 

While several methods such as Lin's method' are available for factoring 
polynomials, this operation can be tedious unless machine computation is 
employed, particularly when the order of the polynomial is large. Fortu­
nately, in many cases of interest the polynomials are either of low order 
or are available from the system equations in factored form. 

Since G(jo) is a function of a complex variable, its angle $(w) is the sum 
of the angles of the constituent terms. Similarly, its magnitude M(w) is the 
product of the magnitudes of the components. Furthermore, if the magni­
tudes of the components are plotted on a logarithmic scale, the log of M 
is given by the sum of the logs corresponding to the individual com­
ponents.I 

Plotting is simplified by recognizing that only four types of terms are 
possible in the representation of Eqn. 3.45: 

1. Constants, ao. 
2. Single- or multiple-order differentiations or integrations, sn, where n 

can be positive (differentiations) or negative (integrations). 
3. First-order terms (TS + 1), or its reciprocal. 

2 2 24. Complex conjugate pairs s , + s/wn + 1, or its reciprocal. 

8 S. N. Lin, "A Method of Successive Approximations of Evaluating the Real and Com­

plex Roots of Cubic and Higher-Order Equations," J. Math. Phys., Vol. 20, No. 3, August, 
1941, pp. 231-242. 

9The decibel, equal to 20 logio [magnitude] is often used for these manipulations. This 

usage is technically correct only if voltage gains or current gains between portions of a 
circuit with identical impedance levels are considered. The issue is further confused when 
the decibel is used indiscriminately to express dimensioned quantities such as transcon­
ductances. We shall normally reserve this type of presentation for loop-transmission 
manipulations (the loop transmission of any feedback system must be dimensionless), and 
simply plot signal ratios on logarithmic coordinates. 
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It is particularly convenient to represent each of these possible terms as 
a plot of M (on a logarithmic magnitude scale) and $ (expressed in degrees) 
as a function of o (expressed in radians per second) plotted on a logarith­
mic frequency axis. A logarithmic frequency axis is used because it provides 
adequate resolution in cases where the frequency range of interest is wide 
and because the relative shape of a particular response curve on the log 
axis does not change as it is frequency scaled. The magnitude and angle of 
any rational function can then be determined by adding the magnitudes 
and angles of its components. This representation of the frequency response 
of a system or element is called a Bode plot. 

The magnitude of a term ao is simply a frequency-independent constant, 
with an angle equal to 00 or 1800 depending on whether the sign of ao is 
positive or negative, respectively. 

Both differentiations and integrations are possible in feedback systems. 
For example, a first-order high-pass filter has a single zero at the origin 
and, thus, its voltage transfer ratio includes a factor s. A motor (frequently 
used in mechanical feedback systems) includes a factor 1/s in the transfer 
function that relates mechanical shaft angle to applied motor voltage, since 
a constant input voltage causes unlimited shaft rotation. Similarly, various 
types of phase detectors are examples of purely electronic elements that 
have a pole at the origin in their transfer functions. This pole results be­
cause the voltage out of such a circuit is proportional to the phase-angle 
difference between two input signals, and this angle is equal to the integral 
of the frequency difference between the two signals. We shall also see that 
it is often convenient to approximate the transfer function of an amplifier 
with high d-c gain and a single low-frequency pole as an integration. 

The magnitude of a term s- is equal to w-, a function that passes through 
1 at w = I and has a slope of n on logarithmic coordinates. The angle of 
this function is n X 900 at all frequencies. 

The magnitude of a first order pole 1/(rs + 1) is 

M = 1 (3.46) 

while the angle of this function is 

$ = -tan-rw (3.47) 

The magnitude and angle for the first-order pole are plotted as a function 
of normalized frequency in Fig. 3.11. An essential feature of the magnitude 
function is that it can be approximated by two straight lines, one lying 
along the M = 1 line and the other with a slope of - 1, which intersect at 
c = 1/r. (This frequency is called the cornerfrequency.) The maximum 
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Figure 3.11 Frequency response of first-order system. 

departure of the actual curves from the asymptotic representation is a 
factor of 0.707 and occurs at the corner frequency. The magnitude and 
angle for a first-order zero are obtained by inverting the curves shown for 
the pole, so that the magnitude approaches an asymptotic slope of +1 
beyond the corner frequency, while the angle changes from 0 to + 900. 

The magnitude for a complex-conjugate pole pair 

I
 
s2/Wn2 + 2 s/wn + 1
 

is 

4 22 ( 2 )2 (3.48) 

on2 n 

with the corresponding angle 

= -tan-' (3.49)
1 - W2/Wn2 

These functions are shown in Bode-plot form as a parametric family of 

curves plotted against normalized frequency w/n in Fig. 3.12. Note that 
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Figure 3.12 Frequency response of second-order system. (a) Magnitude. (b) Angle. 
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the asymptotic approximation to the magnitude is reasonably accurate 
providing that the damping ratio exceeds 0.25. The corresponding curves 
for a complex-conjugate zero are obtained by inverting the curves shown 
in Fig. 3.12. 

It was stated in Section 3.3.2 that feedback amplifiers are occasionally 
adjusted to have Butterworth responses. The frequency responses for third-
and fourth-order Butterworth filters are shown in Bode-plot form in Fig. 
3.13. Note that there is no peaking in the frequency response of these 
maximally-flat transfer functions. We also see from Fig. 3.12 that the damp­
ing ratio of 0.707, corresponding to the two-pole Butterworth configuration, 
divides the second-order responses that peak from those which do not. The 
reader should recall that the flatness of the Butterworth response refers to 
its frequency response, and that the step responses of all Butterworth filters 
exhibit overshoot. 

The value associated with Bode plots stems in large part from the ease 
with which the plot for a complex system can be obtained. The overall 
system transfer function can be obtained by the following procedure. 
First, the magnitude and phase curves corresponding to all the terms in­
cluded in the transfer function of interest are plotted. When the first- and 
second-order curves (Figs. 3.11 and 3.12) are used, they are located along 
the frequency axis so that their corner frequencies correspond to those of 
the represented factors. Once these curves have been plotted, the magnitude 
of the complete transfer function at any frequency is obtained by adding 
the linear distances from unity magnitude of all components at the fre­
quency of interest. The same type of graphical addition can be used to ob­
tain the complete phase curve. Dividers, or similar aids, can be used to per­
form the graphical addition. 

In practice, the asymptotic magnitude curve is usually sketched by draw­
ing a series of intersecting straight lines with appropriate slope changes at 
intersections. Corrections to the asymptotic curve can be added in the 
vicinity of singularities if necessary. 

The information contained in a Bode plot can also be presented as a 
gain-phase plot, which is a more convenient representation for some op­
erations. Rectangular coordinates are used, with the ordinate representing 
the magnitude (on a logarithmic scale) and the abscissa representing the 
phase angle in degrees. Frequency expressed in radians per second is a 
parameter along the gain-phase curve. Gain-phase plots are frequently 
drawn by transferring data from a Bode plot. 

The transfer function 

107(l0-4s + 1)
Giks) = s(0.Ols + 1) (s2/10" + 2(0.2)s/106 + 1) (3.50) 
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Figure 3.13 Frequency response of third- and fourth-order Butterworth filters. 
(a) Magnitude. (b) Angle. 
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A 
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Figure 3.14 Bode plot of 10((a)12 6 Individual 
s(0.01s + 1)(s 2/10 + 2(0.2)s /10 + 1). ()Idvda 

factors. (b) Bode plot. 

is used to illustrate construction of Bode and gain-phase plots. This func­

tion includes these five factors: 

1. A constant 107. 
2. A single integration. 
3. A first-order pole with a time constant of 0.01 second, corresponding 

to a corner frequency of 100 radians per second. 
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Figure 3.14-Continued 

4. A first-order zero with a time constant of 10-4 seconds, corresponding 
to a corner frequency of 104 radians per second. 

5. A complex-conjugate pole pair with a natural frequency of 106
 
radians per second and a damping ratio of 0.2.
 

The individual factors are shown in Bode-plot form on a common fre­
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quency scale in Fig. 3.14a. These factors are combined to yield the Bode 
plot for the complete transfer function in Fig. 3.14b. The same information 
is presented in gain-phase form in Fig. 3.15. 

3.5 	 RELATIONSHIPS BETWEEN TRANSIENT RESPONSE
 
AND FREQUENCY RESPONSE
 

It is clear that either the impulse response (or the response to any other 
transient input) of a linear system or its frequency response completely 
characterize the system. In many cases experimental measurements on a 
closed-loop system are most easily made by applying a transient input. 
We may, however, be interested in certain aspects of the frequency response 
of the system such as its bandwidth defined as the frequency where its gain 
drops to 0.707 of the midfrequency value. 

Since either the transient response or the frequency response completely 
characterize the system, it should be possible to determine performance in 
one domain from measurements made in the other. Unfortunately, since 
the measured transient response does not provide an equation for this 
response, Laplace techniques cannot be used directly unless the time re­
sponse is first approximated analytically as a function of time. This section 
lists several approximate relationships between transient response and fre­
quency response that can be used to estimate one performance measure 
from the other. The approximations are based on the properties of first-
and second-order systems. 

It is assumed that the feedback path for the system under study is fre­
quency independent and has a magnitude of unity. A system with a fre­
quency-independent feedback path fo can be manipulated as shown in Fig. 
3.16 to yield a scaled, unity-feedback system. The approximations given 
are valid for the transfer function Va!/Vi, and V, can be determined by 
scaling values for V0 by 1/fo. 

It is also assumed that the magnitude of the d-c loop transmission is very 
large so that the closed-loop gain is nearly one at d-c. It is further assumed 
that the singularity closest to the origin in the s plane is either a pole or a 
complex pair of poles, and that the number of poles of the function exceeds 
the number of zeros. If these assumptions are satisfied, many practical 
systems have time domain-frequency domain relationships similar to those 
of first- or second-order systems. 

The parameters we shall use to describe the transient response and the 
frequency response of a system include the following. 

(a) Rise time t,. The time required for the step response to go from 10 
to 90 % of final value. 
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Figure 3.16 System topology for approximate relationships. (a) System with 
frequency-independent feedback path. (b) System represented in scaled, unity-
feedback form. 

(b) The maximum value of the step response P0 . 

(c) The time at which Po occurs t,. 
(d) Settling time t,. The time after which the system step response re­

mains within 2 % of final value. 

(e) The error coefficient ei. (See Section 3.6.) This coefficient is equal 

to the time delay between the output and the input when the system has 

reached steady-state conditions with a ramp as its input. 

(f) The bandwidth in radians per second wh or hertz fh (fh = Wch/ 2 r). 

The frequency at which the response of the system is 0.707 of its low-

frequency value. 

(g) The maximum magnitude of the frequency response M,. 

(h) The frequency at which M, occurs w,. 
These definitions are illustrated in Fig. 3.17. 
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For a first-order system with V(s)/Vi(s) = l/(rs + 1), the relationships 
are 

2.2 = 0.35 (3.51) 
t,.=2.2T (351 

Wh fh 

PO = M,= 1 (3.52) 

t, = oo (3.53) 

ta = 4r (3.54) 

ei = r (3.55) 

W, = 0 (3.56) 

For a second-order system with V,(s)/Vi(s) = 1/(s 2/,, 2 + 2 s/w, + 1) 

and 6 A cos-'r (see Fig. 3.7) the relationships are 

2.2 0.35 (357 
W h fh 

P0 = 1 + exp = 1 + e-sane (3.58)
V1 - ( 

t7 - (3.59) 
Wn #1-2 ~on sin6
 

4 4
 
t, ~ =(3.60)

o cos 

i= =2 cos (3.61) 
Wn (on 

1 _ 1 
M, - sI < 0.707, 6 > 45' (3.62)

2 1_2 sin 20 

, = co V1 - 2 2 = w, V-cos 26 < 0.707, 6 > 450 (3.63) 

Wh = fn(l-22 N2 -4 2+ 4 ) 12(3.64) 

If a system step response or frequency response is similar to that of an 

approximating system (see Figs. 3.6, 3.8, 3.11, and 3.12) measurements of 
tr, Po, and t, permit estimation of wh, w,, and M, or vice versa. The steady-

state error in response to a unit ramp can be estimated from either set of 

measurements. 
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Figure 3.17 Parameters used to describe transient and frequency responses. 
(a) Unit-step response. (b) Frequency response. (c) Ramp response. 
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One final comment concerning the quality of the relationship between 
0.707 bandwidth and 10 to 90% step risetime (Eqns. 3.51 and 3.57) is in 
order. For virtually any system that satisfies the original assumptions, in­
dependent of the order or relative stability of the system, the product trfh 

is within a few percent of 0.35. This relationship is so accurate that it really 
isn't worth measuringfh if the step response can be more easily determined. 

3.6 ERROR COEFFICIENTS 

The response of a linear system to certain types of transient inputs may 
be difficult or impossible to determine by Laplace techniques, either be­
cause the transform of the transient is cumbersome to evaluate or because 
the transient violates the conditions necessary for its transform to exist. 
For example, consider the angle that a radar antenna makes with a fixed 
reference while tracking an aircraft, as shown in Fig. 3.18. The pointing 
angle determined from the geometry is 

= tan-' t (3.65) 

Line of flight 

Aircraft 
velocity = v 

Radar 
antenna ,0 

Length = I 

Figure 3.18 Radar antenna tracking an airplane. 
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assuming that 6 = 0 at t = 0. This function is not transformable using our 
form of the Laplace transform, since it is nonzero for negative time and 
since no amount of time shift makes it zero for negative time. The expansion 
introduced in this section provides a convenient method for evaluating 
the performance of systems excited by transient inputs, such as Eqn. 3.65, 
for which all derivatives exist at all times. 

3.6.1 The Error Series 

Consider a system, initially at rest and driven by a single input, with a 
transfer function G(s). Furthermore, assume that G(s) can be expanded in 
a power series in s, or that 

g2s
2G(s) = go + gis + + + (3.66) 

If the system is excited by an input vi(t), the output signal as a function of 
time is 

v,(t) = 2-1[G(s)Vj(s)] 
= 2'[goVi(s) + gisVi(s) + g2s

2 Vt(s) + +] (3.67) 

If Eqn. 3.66 is inverse transformed term by term, and the differentiation 
property of Laplace transforms is used to simplify the result, we see that8 

dvi~t)d 2 v1(t)~ 
v0(t) = gov(t) + g1 di + g 2 +---+ + (3.68)

dt dts 

The complete series yields the correct value for v,(t) in cases where the func­
tion v1(t) and all its derivatives exist at all times. 

In practice, the method is normally used to evaluate the error (or dif­
ference between ideal and actual output) that results for a specified input. 
If Eqn. 3.68 is rewritten using the error e(t) as the dependent parameter, 
the resultant series 

dvi(t) dsv__t) 

e(t) = eovi(t) + ei di + e2 + + (3.69)dt dt2 

is called an error series, and the e's on the right-hand side of this equation 
are called errorcoefficients. 

The error coefficients can be obtained by two equivalent expansion 
methods. A formal mathematical approach shows that 

1 dk ye(s) (3.70) 
k! dsk LV(s) _1=o 

8A mathematically satisfying development is given in G. C. Newton, Jr., L. A. Gould, 
and J. F. Kaiser, Analytical Design of LinearFeedback Controls, Wiley, New York, 1957, 
Appendix C. An expression that bounds the error when the series is truncated is also 
given in this reference. 



99 Error Coefficients 

where Ve(s)/ Vi(s) is the input-to-error transfer function for the system. 
Alternatively, synthetic division can be used to write the input-to-error 
transfer function as a series in ascending powers of s. The coefficient of 
the sk term in this series is ek. 

While the formal mathematics require that the complete series be used to 
determine the error, the series converges rapidly in cases of practical in­
terest where the error is small compared to the input signal. (Note that if 
the error is the same order of magnitude as the input signal in a unity-
feedback system, comparable results can be obtained by turning off the 
system.) Thus in reasonable applications, a few terms of the error series 

normally suffice. Furthermore, the requirement that all derivatives of the 

input signal exist can be usually relaxed if we are interested in errors at times 

separated from the times of discontinuities by at least the settling time of 
the system. (See Section 3.5 for a definition of settling time.) 

3.6.2 Examples 

Some important properties of feedback amplifiers can be illustrated by 
applying error-coefficient analysis methods to the inverting-amplifier con­
nection shown in Fig. 3.19a. A block diagram obtained by assuming neg­
ligible loading at the input and output of the amplifier is shown in Fig. 
3.19b. An error signal is generated in this diagram by comparing the actual 

output of the amplifier with the ideal value, - Vi. The input-to-error trans­
fer function from this block diagram is 

Ve(S) = - 1 
Vi(s) 1 + a(s)/2 

Operational amplifiers are frequently designed to have an approximately 
single-pole open-loop transfer function, implying 

a(s) _ ao (3.72) 
rs + 1 

The error coefficients assuming this value for a(s) are easily evaluated by 
means of synthetic division since 

Ve(S) - -2 - 2rs 

Vi(s) I + ao/2(rs + 1) ao + 2 + 2rs 

2 2r 2
 

ao+ 2 ao + 2( ao+ 2)
 

+ 4T2 (1 - s 2' + .+ (3.73)
(ao + 2)2 ao + 2) 
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Vi 

(b) 

Figure 3.19 Unity-gain inverter. (a) Connection. (b) Block diagram including 
error signal. 

If a0 , the amplifier d-c gain, is large, the error coefficients are 

2 
-e0 a0 

2r 

a0 

4r2 
e2a 

a002 
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(-
2 )'"r 

n = n > 1 (3.74) 
aon 

The error coefficients are easily interpreted in terms of the loop transmis­
sion of the amplifier-feedback network combination in this example. The 
magnitude of the zero-order error coefficient is equal to the reciprocal of the 
d-c loop transmission. The first-order error-coefficient magnitude is equal 
to the reciprocal of the frequency (in radians per second) at which the loop 
transmission is unity, while the magnitude of each subsequent higher-order 
error coefficient is attenuated by a factor equal to this frequency. These 
results reinforce the conclusion that feedback-amplifier errors are reduced 
by large loop transmissions and unity-gain frequencies. 

If this amplifier is excited with a ramp vi(t) = Rt, the error after any 
start-up transient has died out is 

dvi(t) 2Rt 2Rr
ve(t) = eovi(t) + ei dt + - . - (3.75)

dt ao ao 

Because the maximum input-signal level is limited by linearity considera­
tions, (the voltage Rt must be less than the voltage at which the amplifier 
saturates) the second term in the error series frequently dominates, and in 
these cases the error is 

Ve(t) - 2R (3.76) 
ao 

implying the actual ramp response of the amplifier lags behind the ideal 
output by an amount equal to the slope of the ramp divided by the unity­
loop-transmission frequency. The ramp response of the amplifier, assuming 
that the error series is dominated by the ei term, is compared with the 
ramp response of a system using an infinite-gain amplifier in Fig. 3.20. 
The steady-state ramp error, introduced earlier in Eqns. 3.55 and 3.61 and 
illustrated in Fig. 3.17c, is evident in this figure. 

One further observation lends insight into the operation of this type of 
system. If the relative magnitudes of the input signal and its derivatives are 
constrained so that the first-order (or higher) terms in the error series domi­
nate, the open-loop transfer function of the amplifier can be approximated 
as an integration. 

a(s) - - (3.77) 
TS 
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f
 
v"(t) 

2RT
Actual v0,(t) = -Rt +a 

t ­

Delay = =e 
a0 

Ideal v,(t) = -Rt 

Figure 3.20 Ideal and actual ramp responses. 

In order for the output of an amplifier with this type of open-loop gain 
to be a ramp, it is necessary to have a constant error signal applied to the 
amplifier input. 

Pursuing this line of reasoning further shows how the open-loop transfer 
function of the amplifier should be chosen to reduce ramp error. Error is 
clearly reduced if the quantity ao/r is increased, but such an increase re­
quires a corresponding increase in the unity-loop-gain frequency. Unfor­
tunately oscillations result for sufficiently high unity-gain frequencies. Al­
ternatively, consider the result if the amplifier open-loop transfer function 
approximates a double integration 

a(s) ~ o( + (3.78) 

(The zero is necessary to insure stability. See Chapter 4.) The reader should 
verify that both eo and ei are zero for an amplifier with this open-loop 
transfer function, implying that the steady-state ramp error is zero. Further 
manipulation shows that if the amplifier open-loop transfer function in­
cludes an nth order integration, the error coefficients eo through e,_ 1 are 
zero. 
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Figure 3.21 Sample-and-hold circuit. 

The use of error coefficients to analyze systems excited by pulse signals 

is illustrated with the aid of the sample-and-hold circuit shown in Fig. 

3.21. This circuit consists of a buffer amplifier followed by a switch and 

capacitor. In practice the switch is frequently realized with a field-effect 
transistor, and the 100-9 resistor models the on resistance of the transistor. 
When the switch is closed, the capacitor is charged toward the voltage vr 

through the switch resistance. If the switch is opened at a time tA, the volt­

age vo(t) should ideally maintain the value VI(tA) for all time greater than 

tA. The buffer amplifier is included so that the capacitor charging current 
is supplied by the amplifier rather than the signal source. A second buffer 
amplifier is often included following the capacitor to isolate it from loads, 
but this second amplifier is not required for the present example. 

There are a variety of effects that degrade the performance of a sample-

and-hold circuit. One important source of error stems from the fact that 
vo(t) is generally not equal to v1(t) unless vr(t) is time invariant because of 

the dynamics of the buffer amplifier and the switch-capacitor combination. 
Thus an incorrect value is held when the switch is opened. 

Error coefficients can be used to predict the magnitude of this tracking 
error as a function of the input signal and the system dynamics. For 
purposes of illustration, it is assumed that the buffer amplifier has a single-
pole transfer function such that 

V(S) (3.79)
Vi(s) 10- 6 s + 1 

Since the time constant associated with the switch-capacitor combination 

is also 1 ys, the input-to-output transfer function with the switch closed 

(in which case the system is linear, time-invariant) is 

V0(s) __ 1 
Vt(S) = 1 ) (3.80)
Vi(s) (10-Is + 1)2 
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With the switch closed the output is ideally equal to the input, and thus 
the input-to-error transfer function is 

2Ve(S) V0(s) 10-1 s + 2 X 10-6s
 

Vi(s) Vi(s) (10-6s + 1)2 (3.81)
 

The first three error coefficients associated with Eqn. 3.81, obtained by 
means of synthetic division, are 

eo = 0 

ei = 2 X 10-1 sec 	 (3.82) 

e2 = -3 X 10-" sec 2 

Sample-and-hold circuits are frequently used to process pulses such as 
radar echos after these signals have passed through several amplifier stages. 
In many cases the pulse following amplification can be well approximated 
by a Gaussian signal, and for this reason a signal 

v(t) = e-( 
10 

100/
2

) 	 (3.83) 

is 	used as a test input. 
The first two derivatives of vi(t) are 

dv(t) = -1010te( I0 102 /2 ) (3.84)
dt 

and 

d2 v;(t)
0	 10 2 0 10 2d t - - e101 t /

2
) + 10202e-( 2/) (3.85)

dts 

The maximum magnitude of dvi/dt is 6.07 X 104 volts per second occurring 
at t = ± 10-1 seconds, and the maximum magnitude of d 2vi/dt2 is 1010 

volts per second squared at t = 0. If the first error coefficient is used to 
estimate error, we find that a tracking error of approximately 0.12 volt 
(12% of the peak-signal amplitude) is predicted if the switch is opened at 
t = : 10- seconds. The error series converges rapidly in this case, with 
its second term contributing a maximum error of 0.03 volt at t = 0. 

PROBLEMS 

P3.1 
An operational amplifier is connected to provide a noninverting gain of 

10. The small-signal step response of the connection is approximately first 
order with a 0 to 63 % risetime of 1 4s. Estimate the quantity a(s) for the 
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amplifier, assuming that loading at the amplifier input and output is in­
significant. 

P3.2 
The transfer function of a linear system is 

1 
A(s) = (s2 + 0.5s + 1)(0.s+ 1) 

Determine the step response of this system. Estimate (do not calculate ex­
actly) the percentage overshoot of this system in response to step excitation. 

P3.3 
Use the properties of Laplace transforms to evaluate the transform of 

the triangular pulse signal shown in Fig. 3.22. 

P3.4 
Use the properties of Laplace transforms to evaluate the transform of the 

pulse signal shown in Fig. 3.23. 

P3.5 
The response of a certain linear system is approximately second order, 

with a d-c gain of one. Measured performance shows that the peak value 
of the response to a unit step is 1.38 and that the time for the step response 
to first pass through one is 0.5 yis. Determine second-order parameters 
that can be used to model the system. Also estimate the peak value of the 
output that results when a unit impulse is applied to the input of the sys­
tem and the time required for the system impulse response to first return 
to zero. Estimate the quantities M, and fh for this system. 

P3.6 
A high-fidelity audio amplifier has a transfer function 

100s 
A (s) =)S(0.05s + 1)(s 2 /4 X 1010 + s/2ooX 100 + 1)(0.5 X 106 s + 1) 

1 - -- ­~*----
f(t) 

01 t t1I , 

Figure 3.22 Triangular pulse. 
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f(t) 

f(t) = 1 - cos t, 0 < t < 27r, 
0 otherwise 

o1 211 

t 

Figure 3.23 Raised cosine pulse. 

Plot this transfer function in both Bode and gain-phase form. Recognize 

that the high- and low-frequency singularities of this amplifier are widely 

spaced and use this fact to estimate the following quantities when the 

amplifier is excited with a 10-mV step. 

(a) The peak value of the output signal. 

(b) The time at which the peak value occurs. 

(c) The time required for the output to go from 2 to 18 V. 

(d) The time until the output droops to 7.4 V. 

P3.7 
An oscilloscope vertical amplifier can be modeled as having a transfer 

function equal to A o/(10-9s + 1)5. Estimate the 10 to 90% rise time of 

the output voltage when the amplifier is excited with a step-input signal. 

P3.8 
An asymptotic plot of the measured open-loop frequency response of 

an operational amplifier is shown in Fig. 3.24a. The amplifier is connected 

as shown in Fig. 3.24b. (You may neglect loading.) Show that lower values 

of a result in more heavily damped responses. Determine the value of a 

that results in the closed-loop step response of the amplifier having an 

overshoot of 20 % of final value. What is the 10 to 90 % rise time in response 

to a step for this value of a? 

P3.9 
A feedback system has a forward gain a(s) = K/s(rs + 1) and a feed­

back gain f = 1. Determine conditions on K and r so that eo and e2 are 
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Figure 3.24 Inverting amplifier. (a) Amplifier open-loop response. (b) Connection. 

both zero. What is the steady-state error in response to a unit ramp for 
this system? 

P3.10 
An operational amplifier connected as a unity-gain noninverting amplifier 

is excited with an input signal 

vi(t) = 5 tan- 1 105t 

Estimate the error between the actual and ideal outputs assuming that the 
open-loop transfer function can be approximated as indicated below. 
(Note that these transfer functions all have identical values for unity-gain 
frequency.) 

(a) a(s) = 107/s 
(b) a(s) = 10"'(10-6 s + 1)/s 2 

(c) a(s) = 101 (10- 6 s + 1)2 /s 3 
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bo + b,s +--+ bas"­

+ Ve 
VI 

Figure 3.25 System with feedforward path. 

P3.11 
The system shown in Fig. 3.25 uses a feedforward path to reduce errors. 

How should the b's be chosen to reduce error coefficients eo through e, to 
zero? Can you think of any practical disadvantages to this scheme? 



CHAPTER IV 

STABILITY
 

4.1 THE STABILITY PROBLEM 

The discussion of feedback systems presented up to this point has tacitly 

assumed that the systems under study were stable.A stable system is defined 
in general as one which produces a bounded output in response to any 

bounded input. Thus stability implies that 

I vo(t) dt < M < o (4.1) 

for any input such that 

f vr(t) dt < N < o (4.2) 

If we limit our consideration to linear systems, stability is independent of 

the input signal, and the sufficient and necessary condition for stability is 

that all poles of system transfer function lie in the left half of the s plane. 

This condition follows directly from Eqn. 4.1, since any right-half-plane 

poles contribute terms to the output that grow exponentially with time and 

thus are unbounded. Note that this definition implies that a system with poles 
on the imaginary axis is unstable, since its output is not bounded unless its 
input is rather carefully chosen. 

The origin of the stability problem can be described in intuitively appeal­
ing through nonrigorous terms as follows. If a feedback system detects an 

error between the actual and desired outputs, it attempts to reduce this 
error to zero. However, changes in the error signal that result from correc­
tive action do not occur instantaneously because of time delays around the 

loop. In a high-gain system, these delays can cause a tendency to over­

correct. If the magnitude of the overcorrection exceeds the magnitude of 

the initial error, instability results. Signal amplitudes grow exponentially 

until some nonlinearity limits further growth, at which time the system 

either saturates or oscillates in a constant-amplitude fashion called a limit 

cycle.' The feedback system designer must always temper his desire to 

1The effect of nonlinearities on the steady-state amplitude reached by an unstable system 
is investigated in Chapter 6. 
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vi (s) :+a(s) Vo (S) 

Ff(s) ­

Figure 4.1 Block diagram of single-loop amplifier. 

provide a large magnitude and a high unity-gain frequency for the loop 
transmission with the certain knowledge that sufficiently high values for 
these quantities invariably lead to instability. 

As a specific example of a system with potentially unstable behavior, con­
sider a simple single-loop system of the type shown in Fig. 4.1, with 

ao 
a(s) = (s -- (4.3) 

and 

f(s) 1 (4.4) 

The loop transmission for this system is 

- ao 
- a(s)f(s) = (4.5)

(s +1) 
or for sinusoidal excitation, 

-a 0-a0 
- a(jco)f(jo') = =a a (4.6)

(jw + I )I -jw - 3w2 + 3jc + 11 

If we evaluate Eqn. 4.6 at w = V3, we find that 

- a(j13)f(j3) = -" (4.7) 

If the quantity ao is chosen equal to 8, the system has a real, positive loop 

transmission with a magnitude of one for sinusoidal excitation at three 
radians per second. 

We might suspect that a system with a loop transmission of +1 is 
capable of oscillation, and this suspician can be confirmed by examining 
the closed-loop transfer function of the system with ao = 8. In this case, 

A a(s) 8
 

1 + a(s)f(s) sa + 3s2 + 3s + 9
 

8 
s 3(4.8)

(s + 3) (s + j-\1) (s -j5 
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This transfer function has a negative, real-axis pole and a pair of poles 

located on the imaginary axis at s = =E jV3. An argument based on the 

properties of partial-fraction expansions (see Section 3.2.2) shows that the 

response of this system to many common (bounded) transient signals 

includes a constant-amplitude sinusoidal component. 

Further increases in low-frequency loop-transmission magnitude move 

the pole pair into the right-half plane. For example, if we combine the 

forward-path transfer function 

64 
a(s) = (s + l), (4.9) 

with unity feedback, the resultant closed-loop transfer function is 

64 
A(s) =­

(s + 3S2 + 3s + 65 

64 

(s + 5) (s - I + j20) (s - 1 - j2/3) (4.10) 

With this value for ao, the system transient response will include a sinusoidal 

component with an exponentially growing envelope. 

If the dynamics associated with the loop transmission remain fixed, the 

system will be stable only for values of ao less than 8. This stability is 

achieved at the expense of desensitivity. If a value of ao = I is used so that 

a(s)f(s) = ( (4.11) 
(s + 1), 

we find all closed-loop poles are in the left-half plane, since 

A(s)=S + 3s2 + 3s + 2 

(412 
(s + 2) (s + 0.5 + jV3/2) (s + 0.5 - jV3/2) (4.12) 

in this case. 
In certain limited cases, a binary answer to the stability question is 

sufficient. Normally, however, we shall be interested in more quantitative 

information concerning the "degree" of stability of a feedback system. 

Frequently used measures of relative stability include the peak magnitude 

of the frequency response, the fractional overshoot in response to a step 

input, the damping ratio associated with the dominant pole pair, or the 

variation of a certain parameter that can be tolerated without causing 

absolute instability. Any of the measures of relative stability mentioned 

above can be found by direct calculations involving the system transfer 
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function. While such determinations are practical with the aid of machine 
computation, insight into system operation is frequently obscured if this 
process is used. The techniques described in this chapter are intended not 
only to provide answers to questions concerning stability, but also (and 
more important) to indicate how to improve the performance of unsatis­
factory systems. 

4.2 THE ROUTH CRITERION 

The Routh test is a mathematical method that can be used to determine 
the number of zeros of a polynomial with positive real parts. If the test 
is applied to the denominator polynomial of a transfer function (also 
called the characteristicequation) the absence of any right-half-plane zeros 
of the characteristic equation guarantees system stability. One computa­
tional advantage of the Routh test is that it is not necessary to factor the 
polynomial to apply the test. 

4.2.1 Evaluation of Stability 

The test is described for a polynomial of the form 

P(s) = aos + a1s" 1 + - - + a,is + an (4.13) 

A necessary but not sufficient condition for all the zeros of Eqn. 4.13 to 
have negative real parts is that all the a's be present and that they all have 
the same sign. If this necessary condition is satisfied, an array of numbers 
is generated from the a's as follows. (This example is for n even. For n 
odd, an terminates the second row.) 

ao a 2 a 4 . . an-2 a 

ai a3 a5 . . a, 1 0 

aia2 - aoa3 = aia4 - aoa5 aan - -ao .0 b 0 
ai ai ai 

bia3 - aib2 bia5 - aib3 0 0 

b1 b1 

cib2 -­ bic d . . . . 0 0 

cl 

0 0 . . 0 0 

(4.14) 
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As the array develops, progressively more elements of each row become 
zero, until only the first element of the n + 1 row is nonzero. The total 
number of sign changes in the first column is then equal to the number of 
zeros of the original polynomial that lie in the right-half plane. 

The use of the Routh criterion is illustrated using the polynomial 

P(s) = s4 + 9s3 + 14s 2 + 266s + 260 (4.15) 

Since all coefficients are real and positive, the necessary condition for all 

roots of Eqn. 4.15 to have negative real parts is satisfied. The array is 

1 14 260 
9 266 0 

9 X 14 - 1 X 266 140 9 X 260 - 1 X 0 = 0260
 
9 9 9
 

(sign change) 

-(140/9) X 266 - 9 X 260 2915 0 0 
-(140/9) 7 

(sign change) 

(2915/7) X 260 - [-(140/9) X 0] = 260 00 
2915/7 (4.16) 

The two sign changes in the first column indicate two right-half-plane 
zeros. This result can be verified by factoring the original polynomial, 
showing that 

s4 + 9s3 + 14s 2 + 266s + 260 = (s - 1+j5)(s - 1 - j5)(s + 1) (s + 10) 
(4.17) 

A second example is provided by the polynomial 

P(s) = s 4 + 13s3 + 58s 2 + 306s + 260 (4.18) 

The corresponding array is 

1 58 260 

13 306 0 

13 X 58-1 X306 448 13 X 260 - 1 X 0 = 260 
0
 

13 13 13
 

(448/13) X 306 - 13 x 260 _ 23287
 
0 0
 

448/13 112
 

(23287/112) X 260 - (448/13) X 0= 260
 
0 0
 

23287/112 
(4.19) 
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Factoring verifies the result that there are no right-half-plane zeros for 
this polynomial, since 

s4 + 13s3 + 58s2 + 306s + 260 

= (s + 1 + j5) (s + 1 - j5) (s + 1) (s + 10) (4.20) 

Two kinds of difficulties can occur when applying the Routh test. It is 
possible that the first element in one row of the array is zero. In this case, 
the original polynomial is multiplied by s + a, where a is any positive real 
number, and the test is repeated. This procedure is illustrated using the 
polynomial 

P(s) = s5+ s4 + 10s + 10s2 + 20s + 5 (4.21) 

The first element of the third row of the array is zero. 

1 10 	 20 

1 10 	 5 

0 15 0 (4.22) 

The difficulty is resolved by multiplying Eqn. 4.21 by s + 1, yielding 

P'(s) = sI + 2sI + 1is 4 + 20s3 + 30s 2 + 25s + 5 (4.23) 

The array for Eqn. 4.23 is
 

1 11 30 5
 

2 20 25 0
 

1 17.5 5 0 

-15 15 0 0 

-18.5 5 0 0 

10.95 	 0 0 0 

5 0 0 0 (4.24) 

Since multiplication by s + 1did not add any right-half-plane zeros to Eqn. 
4.21, we conclude that the two right-half-plane zeros indicated by the array 
of Eqn. 4.24 must be contained in the original polynomial. 

The second possibility is that an entire row becomes zero. This condition 
indicates that there is a pair of roots on the imaginary axis, a pair of real 
roots located symmetrically with respect to the origin, or both kinds of 
pairs in the original polynomial. The terms in the row above the all-zero 
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row are used as coefficients of an equation in even powers of s called the 
auxiliaryequation.The zeros of this equation are the pairs mentioned above. 
The auxiliary equation can be differentiated with respect to s, and the 
resultant coefficients are used in place of the all-zero row to continue the 
array. This type of difficulty is illustrated with the polynomial 

P(s) = s 4 + 11s 3 + 11s2 + 11s + 10 = (s + j) (s - j) (s + 1) (s + 10) 

(4.25) 

The array is 

I 11 10 

11 11 0 

10 10 0 

0 0 0 (4.26) 

The auxiliary equation is 

Q(s) = 1Os 2 + 10 (4.27) 

The roots of the equation are the two imaginary zeros of Eqn. 4.25. 
Differentiating Eqn. 4.27 and using the nonzero coefficient to replace the 
first element of row 4 of Eqn. 4.26 yields a new array. 

1 11 10 

11 11 0 

10 10 0 

20 0 0 

10 0 0 

(4.28) 

The absence of sign changes in the array verifies that the original poly­
nomial has no zeros in the right-half plane. 

Note that, while there are no closed-loop poles in the right-half plane, 
a system with a characteristic equation given by Eqn. 4.25 is unstable by 
our definition since it has a pair of poles on the imaginary axis. Examining 
only the left-hand column of the Routh array only identifies the number 
of right-half-plane zeros of the tested polynomial. Imaginary-axis zeros 
can be found by the manipulations involving the auxiliary equation. 
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Figure 4.2 Block diagram of phase-shift oscillator. 

4.2.2 Use as a Design Aid 

The Routh criterion is most frequently used to determine the stability 
of a feedback system. In certain cases, however, more quantitative design 
information is obtainable, as illustrated by the following examples. 

A phase-shift oscillator can be constructed by applying sufficient negative 

feedback around a network that has three or more poles. If an amplifier 
with frequency-independent gain is combined with a network with three 
coincident poles, the block diagram for the resultant system is as shown in 

Fig. 4.2. The value of ao necessary to sustain oscillations can be determined 

by Routh analysis.2 

Stability investigations for Fig. 4.2 are complicated by the fact that the 
oscillator has no input; thus we cannot use the poles of an input-to-output 
transfer function to determine stability. We should note that the stability 
of a linear system is a property of the system itself and is thus independent 
of input signals that may be applied to it. Any unstable physical system will 
demonstrate its instability with no input, since runaway behavior will be 

stimulated by always present noise. Even in a purely mathematical linear 

system, stability is determined by the location of the closed-loop poles, and 
these locations are clearly input independent. 

The analysis of the oscillator is initiated by recalling that the charac­

teristic equation of any feedback system is one minus its loop transmission. 

Therefore 

ao 
P(s) = I + (T (4.29)

(rS +1) 

In this and other calculations involving the characteristic equation, it is 

possible to clear fractions since the location of the zeros are not altered 

2 The Routh test applied to this example offers computational advantages compared to 
the direct factoring used for a similar transfer function in the example of Section 4.1. 
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by this operation. After clearing fractions and identifying coefficients, the 
Routh array is 

3
T 3r 

372 + ao 

(8 - ao)r 0 

3 

1 + ao 0 (4.30) 

Assuming T is positive, roots with positive real parts occur for ao < -1 
(one right-half-plane zero) and for ao > +8 (two right-half-plane zeros). 
Laplace analysis indicates that generation of a constant-amplitude sinu­
soidal oscillation requires a pole pair on the imaginary axis. In practice, 
a complex pole pair is located slightly to the right of the imaginary axis. An 
intentionally introduced nonlinearity can then be used to limit the ampli­
tude of the oscillation (see Section 6.3.3). Thus, a practical oscillator circuit 
is obtained with ao > 8. 

The frequency of oscillation with ao = 8 can be determined by examining 
the array with this value for ao. Under these conditions the third row be­
comes all zero. The auxiliary equation is 

Q(s) = 3rs2 + 9 (4.31) 

and the equation has zeros at s = E j3/T, indicating oscillation at 

\/3/r radians per second for ao = 8. 
As a second example of the type of design information that can be ob­

tained via Routh analysis, consider an operational amplifier with an open-
loop transfer function 

a(s) = (4.32)
(s + 1) (10- 6 s + 1) (104s + 1) 

It is assumed that this amplifier is connected as a unity-gain noninverting 
amplifier, and we wish to determine the range of values of ao for which all 
closed-loop poles have real parts more negative than -2 X 100 sec- 1. This 
condition on closed-loop pole location implies that any pulse response of 
the system will decay at least as fast as Ke-2xi0o after the exciting pulse 
returns to zero. The constant K is dependent on conditions at the time the 
input becomes zero. 

The characteristic equation for the amplifier is (after dropping insig­
nificant terms) 

6 2P(s) = 10-"s + 1.1 X 10- s + s+ 1 + ao (4.33) 
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In order to determine the range of ao for which all zeros of this charac­
teristic equation have real parts more negative than -2 X 101 sec-1, it is 
only necessary to make a change of variable in Eqn. 4.33 and apply Routh's 
criterion to the modified equation. In particular, application of the Routh 
test to a polynomial obtained by substituting 

=s + c (4.34) 

will determine the number of zeros of the original polynomial with real 
parts more positive than -c, since this substitution shifts singularities in 
the splane to the right by an amount c as they are mapped into the Xplane. 
If the indicated substitution is made with c = 2 X 10- sec-1, Eqn. 4.33 
becomes 

P(X) = 10-13 X3 + 10- 6X2 + 0.57X - 1.57 X 105 + ao (4.35) 

The Routh array is 

10-13 0.57 

10-6 -1.57 X 105 + ao 

0.59 - 10-- ao 0 

-1.57 X 101 + ao 0 (4.36) 

This array shows that Eqn. 4.33 has one zero with a real part more positive 
than -2 x 105 sec-1 for ao < 1.57 X 105, and has two zeros to the right of 
the dividing line for ao > 5.9 X 106. Accordingly, all zeros have real parts 
more negative than -2 X 101 sec- 1 only for 

1.57 X 105 < ao < 5.9 X 100 (4.37) 

4.3 ROOT-LOCUS TECHNIQUES 

A single-loop feedback amplifier is shown in the block diagram of Fig. 
4.1. The closed-loop transfer function for this amplifier is 

Vo(s) A(s) = a(s) 
Vi(s) 1 + a(s)f(s) 

Root-locus techniques provide a method for finding the poles of the closed-
loop transfer function A(s) [or equivalently the zeros of 1 + a(s)f(s)] given 
the poles and zeros of a(s)f(s) and the d-c loop-transmission magnitude 
aofo.3 Notice that since the quantity aofo must appear in one or more terms 

3If the loop transmission has one or more zeros at the origin so that its d-c magnitude 
is zero, the closed-loop poles are found from the midband value of af. 
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of the characteristic equation, the locations of the poles of A(s) must depend 
on aofo. A root-locus diagram consists of a collection of branches or loci in 
the s plane that indicate how the locations of the poles of A(s) change as 
aofo varies. 

The root-locus diagram provides useful information concerning the 
performance of a feedback system since the relative stability of any linear 

system is uniquely determined by its close-loop pole locations. We shall 
find that approximate root-locus diagrams are easily and rapidly sketched, 
and that they provide readily interpreted insight into how the closed-loop 
performance of a system responds to changes in its loop transmission. We 
shall also see that root-locus techniques can be combined with simple 
algebraic methods to yield exact answers in certain cases. 

4.3.1 Forming the Diagram 

A simple example that illustrates several important features of root-
locus techniques is provided by the system shown in Fig. 4.1 with a feedback 
transfer function f of unity and a forward transfer function 

a(s) = a(4.39) 
(ras + 1) (rbs + 1) 

The corresponding closed-loop transfer function is 

a(s)
A(S= a(s) 

__ao 

(4-40)S 

1 + a(s)f(s) TaT2 + (ra + rb)s + (1 + ao) 

The closed-loop poles can be determined by factoring the characteristic 
equation of A(s), yielding 

2 
] (T. + Tb) + \/(ra +Tb) - 4(1 + ao)T.arb (4.41a) 

2 
= Ta-b 

S -(ra + Tb) - V(Ta2 + Tb) 
2 - 4(1 + ao)rab (4.41b)

2 - T b 

The root-locus diagram in Fig. 4.3 is drawn with the aid of Eqn. 4.41. The 

important features of this diagram include the following. 

(a) The loop-transmission pole locations are shown. (Loop-transmission 
zeros are also indicated if they are present.) 

(b) The poles of A(s) coincide with loop-transmission poles for ao = 0. 
(c) As ao increases, the locations of the poles of A(s) change along the 

loci as shown. Arrows indicate the direction of changes that result for 

increasing ao. 
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Figure 4.3 Root-locus diagram for second-order system. 

(d) The two poles coincide at the arithmetic mean of the loop-trans­
mission pole locations for zero radicand in Eqn. 4.41, or for 

ao = -T)2-1 (4.42) 

(e) For increases in ao beyond the value of Eqn. 4.42, the closed-loop 
pole pair is complex with constant real part and a damping ratio that is a 
monotonic decreasing function of ao. Consequently, co increases with in­
creasing ao in this range. 

Certain important features of system behavior are evident from the 
diagram. For example, the system does not become unstable for any posi­
tive value of ao. However, the relative stability decreases as ao increases 
beyond the value indicated in Eqn. 4.42. 
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It is always possible to draw a root-locus diagram by directly factoring 
the characteristic equation of the system under study as in the preceding 
example. Unfortunately, the effort involved in factoring higher-order poly­
nomials makes machine computation mandatory for all but the simplest 
systems. We shall see that it is possible to approximate the root-locus dia­
grams and thus retain the insight often lost with machine computation 
when absolute accuracy is not required. 

The key to developing the rules used to approximate the loci is to realize 
that closed-loop poles occur only at zeros of the characteristic equation or 
at frequencies si such that' 

1 + a(si)f(si) = 0 (4.43a) 

or 

a(si)f(si) = -1 (4.43b) 

Thus, if the point si is a point on a branch of the root-locus diagram, the 
two conditions 

a(si)f(si) = 1 (4.44a) 

and 

2 a(si)f(si) = (2n + 1) 1800 (4.44b) 

where n is any integer, must be satisfied. The angle condition is the more 
important of these two constraints for purposes of forming a root-locus 
diagram. The reason is that since we plot the loci as aofo is varied, it is 
possible to find a value for a aofo that satisfies the magnitude condition at 
any point in the s plane where the angle condition is satisfied. 

By concentrating primarily on the angle condition, we are able to formu­
late a set of rules that greatly simplify root-locus-diagram construction 
compared with brute-force factoring of the characteristic equation. Here 
are some of the rules we shall use. 

1. The number of branches of the diagram is equal to the number of 
poles of a(s)f(s). Each branch starts at a pole of a(s)f(s) for small values of 
aofo and approaches a zero of a(s)f(s) either in the finite s plane or at 
infinity for large values of aofo. The starting and ending points are demon­
strated by considering 

a(s)f(s) = aofog(s) (4.45) 

where g(s) contains the frequency-dependent portion of the loop trans­

4It is assumed throughout that the system under study is a negative feedback system with 
the topology shown in Fig. 4.1. 
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Figure 4.4 Loci on real axis. 

mission and the value of g(O) A go is unity. Rearranging Eqn. 4.44 and 

using this notation yields 

1 
(4.46)g(si) ­

a Ofo 

at any point si on a branch of the root-locus diagram. Thus for small values 

of aofo, Ig(si) must be large, implying that the point si is close to a pole of 

g(s). Conversely, a large value of aofo requires proximity to a zero of g(s). 

2. Branches of the diagram lie on the real axis to the left of an odd 

number of real-axis poles and zeros of a(s)f(s).5 This rule follows directly 

from Eqn. 4.44b as illustrated in Fig. 4.4. Each real-axis zero of a(s)f(s) to 

the right of si adds 1800 to the angle of a(si)f(si) while each real-axis pole 

to the right of si subtracts 1800 from the angle. Real-axis singularities to the 

left of point si do not influence the angle of a(si)f(si). Similarly, since com­

plex singularities must always occur in conjugate pairs, the net angle con­

' Special care is necessary for systems with right-half-plane open-loop singularities. See 

Section 4.3.3. 
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tribution from these singularities is zero. This rule is thus sufficient to satisfy 
Eqn. 4.44b. We are further guaranteed that branches must exist on all 
segments of the real axis to the left of an odd number of singularities of 

a(s)f(s), since there is some value of aofo that will exactly satisfy Eqn. 4.44a 
at every point on these segments, and the satisfaction of Eqns. 4.44a and 
4.44b is both necessary and sufficient for the existence of a pole of A(s). 

3. The two separate branches of the diagram that must exist between 
pairs of poles or pairs of zeros on segments of the real axis that satisfy rule 2 

must at some point depart from or enter the real axis at right angles to it. 

Frequently the precise break-away point is not required in order to sketch 
the loci to acceptable accuracy. If it is necessary to have an exact location, 
it can be shown that the break-away points are the solutions of the equation 

d[g(s)]
ds = 0 (4.47)
ds 

for systems without coincident singularities. 
4. If the number of poles of a(s)f(s) exceeds the number of zeros of this 

function by two or more, the average distance of the poles of A(s) from the 

imaginary axis is independent of aofo. This rule evolves from a property of 
algebraic polynomials. Consider a polynomial 

P(s) = (ais + aisi) (a2s + a2s2) (a3s + a3s 3 ) . . . (ans + a.s.) 

= (aa 2 ... a) (s +s) (s + s2) (s + s3) - - - (S + S,) 

+ (Si + S2 + S3 + - - - + sn)sn-1= (aia2 -.-.an) [sn 

+ . . - + SiS2S3 . . - sn] (4.48) 

From the final expression of Eqn. 4.48, we see that the ratio of the co­
efficients of the sn-1 term and the sn term (denoted as -ns) is 

-ns = S1 + S2 + S3 + -. + sn (4.49) 

Since imaginary components of terms on the right-hand side of Eqn. 4.49 

must occur in conjugate pairs and thus cancel, the quantity 

s - (S-S) +S 2 ±S3+ (4.50) 
n 

is the average distance of the roots of P(s) from the imaginary axis. In 

order to apply Eqn. 4.50 to the characteristic equation of a feedback 
system, assume that 

p(s)
a(s)f(s) = aofo q(s) (4.51) 

q(s) 
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Then 

A(s) - 1a(s) a(s) a(s)q(s)
1 + a(s)f(s) 1 + aofo[p(s)/q(s)] q(s) + aofop(s) 

If the order of q(s) exceeds that of p(s) by two or more, the ratio of the co­
efficients of the two highest-order terms of the characteristic equation of 
A(s) is independent of aofo, and thus the average distance of the poles of 
A(s) from the imaginary axis is a constant. 

5. For large values of aofo, P - Z branches approach infinity, where 
P and Z are the number of poles and finite-plane zeros of a(s)f(s), respec­
tively. These branches approach asymptotes that make angles with the 
real axis given by 

(2n + 1) 1800 
P - Z(4.53) 

In Eqn. 4.53, n assumes all integer values from 0 to P - Z - 1. The 
asymptotes all intersect the real axis at a point 

I real parts of poles of a(s)f(s) - I real parts ofzeros of a(s)f(s) 
P - Z 

The proof of this rule is left to Problem P4.4. 
6. Near a complex pole of a(s)f(s), the angle of a branch with respect to 

the pole is 

Op= 180 + 2 4 z - Z 4 p (4.54) 

where 2 4 z is the sum of the angles of vectors drawn from all the zeros 
of a(s)f(s) to the complex pole in question and I 4 p is the sum of the 
angles of vectors drawn from all other poles of a(s)f(s) to the complex pole. 
Similarly, the angle a branch makes with a loop-transmission zero in the 
vicinity of the zero is 

6, = 180 - 2 4 z + Z 4 p (4.55) 

These conditions follow directly from Eqn. 4.44b. 
7. If the singularities of a(s)f(s) include a group much nearer the origin 

than all other singularities of a(s)f(s), the higher-frequency singularities can 
be ignored when determining loci in the vicinity of the origin. Figure 4.5 
illustrates this situation. It is assumed that the point si is on a branch if the 
high-frequency singularities are ignored, and thus the angle of the low-
frequency portion of a(s)f(s) evaluated at s = si must be (2n + 1) 180. 
The geometry shows that the angular contribution attributable to remote 
singularities such as that indicated as 61 is small. (The two angles from a re­
mote complex-conjugate pair also sum to a small angle.) Small changes in the 
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location of si that can cause relatively large changes in the angle (e.g., 62) 

from low-frequency singularities offset the contribution from remote 

singularities, implying that ignoring the remote singularities results in in­

significant changes in the root-locus diagram in the vicinity of the low-

frequency singularities. Furthermore, all closed-loop pole locations will lie 

relatively close to their starting points for low and moderate values of aofo. 

Since the discussion of Section 3.3.2 shows that A(s) will be dominated by 
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its lowest-frequency poles, the higher-frequency singularities of a(s)f(s) can 
be ignored when we are interested in the performance of the system for low 
and moderate values of afo. 

8. The value of aofo required to make a closed-loop pole lie at the point 
si on a branch of the root-locus diagram is 

aofo = 1 (4.56)
1g(sOI 

where g(s) is defined in rule 1. This rule is required to satisfy Eqn. 4.44a. 

4.3.2 Examples 

The root-locus diagram shown in Fig. 4.3 can be developed using the 
rules given above rather than by factoring the denominator of the closed-
loop transfer function. The general behavior of the two branches on the 
real axis is determined using rules 2 and 3. While the break-away point 
can be found from Eqn. 4.47, it is easier to use either rule 4 or rule 5 to 
establish off-axis behavior. Since the average distance of the closed-loop 
poles from the imaginary axis must remain constant for this system [the 
number of poles of a(s)f(s) is two greater than the number of its zeros], the 
branches must move parallel to the imaginary axis after they leave the real 
axis. Furthermore, the average distance must be identical to that for aofo = 0, 
and thus the segment parallel to the imaginary axis must be located at 
- [(1/r) + (1/r)]. Rule 5 gives the same result, since it shows that the 
two branches must approach vertical asymptotes that intersect the real axis 
at -}[(1/4) + (1/Tb)]. 

More interesting root-locus diagrams result for systems with more loop-
transmission singularities. For example, the transfer function of an ampli­
fier with three common-emitter stages normally has three poles at moderate 
frequencies and three additional poles at considerably higher frequencies. 
Rule 7 indicates that the three high-frequency poles can be ignored if this 
type of amplifier is used in a feedback connection with moderate values of 
d-c loop transmission. If it is assumed that frequency-independent negative 
feedback is applied around the three-stage amplifier, a representative af 
product could be' 

a(s)f(s) = (4.57)
(s + 1) (0.5s + 1) (O.ls + 1) 

' The corresponding pole locations at - 1, -2, and -10 sec-1 are unrealistically low 
for most amplifiers. These values result, however, if the transfer function for an amplifier 
with poles at - 106, -- 2 X 106, and - 107 sec- 1is normalized using the microsecond rather 
than the second as the basic time unit. Such frequency scaling will often be used since it 
eliminates some of the unwieldy powers of 10 from our calculations. 
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The root-locus diagram for this system is shown in Fig. 4.6. Rule 2 
determines the diagram on the real axis, while rule 5 establishes the asymp­
totes. Rule 4 can be used to estimate the branches off the real axis, since 
the branches corresponding to the two lower-frequency poles must move 
to the right to balance the branch going left from the high-frequency pole. 
The break-away point can be determined from Eqn. 4.47, with 

d[g(s)] _ -[0.15s2 + 1.3s + 1.6] 
ds [(s + 1) (0.5s + 1) (0.ls + 1)]2 

Zeros of Eqn. 4.58 are at -- 7.2 sec-1 and -1.47 sec-1. The higher-frequency 
location is meaningless for this problem, and in fact corresponds to a break­
away point which results if positive feedback is applied around the ampli­
fier. Note that the break-away point can be accurately estimated using 
rule 7. If the relatively higher-frequency pole at 10 sec-1 is ignored, a 
break-away point at - 1.5 sec-1 results for the remaining two-pole transfer 
function. 

Algebraic manipulations can be used to obtain more quantitative infor­
mation about the system. Figure 4.6 shows that the system becomes un­
stable as two poles move into the right-half plane for sufficiently large 
values of aofo. The value of aofo that moves the pair of closed-loop poles 
onto the imaginary axis is found by applying Routh's criterion to the 
characteristic equation of the system, which is (after clearing fractions) 

P(s) = (s + 1) (0.5s + 1) (0.ls + 1) + aofo (4.59) 

= 0.05s' + 0.65s2 + 1.6s + 1 + aofo 

The Routh array is 

0.05 1.6 

0.65 1 + aofo (4.60) 

0 (0.99 - 0.05aofo) 00.65 

1 + aofo 0 

Two sign reversals indicating instability occur for aofo > 19.8. With this 
value of aofo, the auxiliary equation is 

Q(s) = 0.65s2 + 20.8 (4.61) 

The roots of this equation indicate that the poles cross the imaginary axis 
at s = d-j(5.65). 

http:d-j(5.65
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Figure 4.6 Root-locus diagram for third-order system. 

It is also possible to determine values for aofo that result in specified 

closed-loop pole configurations. This type of calculation is illustrated by 

finding the value of aofo required to provide a damping ratio of 0.5, corre­

sponding to complex-pair poles located 60' from the real axis. The magni­

tude of the ratio of the imaginary part to the real part of the pole location 

for a pole pair with = 0.5 is V3. Thus the characteristic equation for this 

system, when the damping ratio of the complex pole pair is 0.5, is 

P'(s) = (s + -y)(s + 0 + j00#) (s + 0 - j050) 

= s' + (y + 20)s2 + 2(y + 20)s + 4 702 (4.62) 

where -y is the location of the real-axis pole. 
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The parameters are determined by multiplying Eqn. 4.59 by 20 (to make 
the coefficient of the s3 term unity) and equating the new equation to P'(s). 

s' + 13s 2 + 32s + 20(1 + aofo) 
2= s3 + (y + 20)s2 + 20(-y + 20)s + 4 -y3 (4.63) 

Equation 4.63 is easily solved for -y,0, and aofo, with the results 

= 10.54 

#3= 1.23 

aofo = 2.2 (4.64) 

Several features of the system are evident from this analysis. Since the 
complex pair is located at s = -1.23 (1 ±j\3) when the real-axis pole is 
located at s = - 10.54, a two-pole approximation based on the pair should 
accurately model the transient or frequency response of the system. The 
relatively low desensitivity 1 + aofo = 3.2 results if the damping ratio of 
the complex pair is made 0.5, and any increase in desensitivity will result 
in poorer damping. The earlier analysis shows that attempts to increase 
desensitivity beyond 20.8 result in instability. 

Note that since there was only one degree of freedom (the value of aofo) 
existed in our calculations, only one feature of the closed-loop pole pattern 
could be controlled. It is not possible to force arbitrary values for more than 
one of the three quantities defining the closed-loop pole locations ( and W, 
for the pair and the location of the real pole) unless more degrees of design 
freedom are allowed. 

Another example of root-locus diagram construction is shown in Fig. 
4.7, the diagram for 

a(s)f(s) = aofo(4.65) 
(s + 1) (s2/8 + s/2 + 1) 

Rule 5 establishes the asymptotes, while rule 6 is used to determine the loci 
near the complex poles. The value of aofo for which the complex pair of poles 
enters the right-half plane and the frequency at which they cross the 
imaginary axis are found by Routh's criterion. The reader should verify that 
these poles cross the imaginary axis at s = ±j2V3 for aofo = 6.5. 

The root-locus diagram for a system with 

a(s)f(s) = aofo(0.5s + 1) (4.66)
s(s + 1) 

is shown in Fig. 4.8. Rule 2 indicates that branches are on the real axis 
between the two loop-transmission poles and to the left of the zero. The 

http:aofo(0.5s
http:aofo(4.65
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points of departure from and reentry to the real axis are obtained by solving 

d ~(0.5s + 1)1~ = (4.67) 
ds L s(s + 1) 

yielding s -2 -A V . 

4.3.3 	 Systems With Right-Half-Plane Loop-Transmission
 
Singularities
 

It is necessary to be particularly careful about the sign of the loop trans­
mission when root-locus diagrams are drawn for systems with right-half­
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plane loop-transmission singularities. Some systems that are unstable with­
out feedback have one or more loop-transmission poles in the right-half 
plane. For example, a large rocket does not become aerodynamically stable 
until it reaches a certain critical speed, and would tip over shortly after 
lift off if the thrust were not vectored by means of a feedback system. It 
can be shown that the transfer function of the rocket alone includes a real-
axis right-half-plane pole. 

A more familiar example arises from a single-stage common-emitter 
amplifier. The transfer function of this type of amplifier includes a pole at 
moderate frequency, a second pole at high frequency, and a high-frequency 
right-half-plane zero that reflects the signal fed forward from input to 
output through the collector-to-base capacitance of the transistor. A repre­
sentative af product for this type of amplifier with frequency-independent 
feedback applied around it is 

aofo(-10-8 s + 1)
a(s)f(s) = ( 1) s + 1) (4.68)

(10-Is + 1) (s + 1) 

The singularities for this amplifier are shown in Fig. 4.9. If the root-locus 
rules are applied blindly, we conclude that the low-frequency pole moves 
to the right, and enters the right-half plane for d-c loop-transmission 
magnitudes in excess of one. Fortunately, experimental evidence refutes 

http:aofo(O.5s
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this result. The difficulty stems from the sign of the low-frequency gain. It 
has been assumed throughout this discussion that loop transmission is 
negative at low frequency so that the system has negative feedback. The 
rules were developed assuming the topology shown in Fig. 4.1 where nega­
tive feedback results when ao and fo have the same sign. If we consider 
positive feedback systems, Eqn. 4.44b must be changed to 

4 a(si)f(si) = n 3600 (4.69) 

where n is any integer, and rules evolved from the angle condition must be 
appropriately modified. For example, rule 2 is changed to "branches lie on 
the real axis to the left of an even number of real-axis singularities for 
positive feedback systems." 

The singularity pattern shown in Fig. 4.9 corresponds to a transfer 
function 

a'(s)f'(S) = aofo(10-3s - 1) - -aofo(-10-as + 1) (4.70)
(10- 3 s + 1) (s + 1) (10-as + 1) (s + 1) 

because the vector from the zero to s = 0 has an angle of 1800. The sign 
reversal associated with the zero when plotted in the s plane diagram has 
changed the sign of the d-c loop transmission compared with that of Eqn. 
4.68. One way to reverse the effects of this sign change is to substitute Eqn. 
4.69 for Eqn. 4.44b and modify all angle-dependent rules accordingly. 
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A far simpler technique that works equally well for amplifiers with the 
right-half plane zeros located at high frequencies is to ignore these zeros 
when forming the root-locus diagram. Since elimination of these zeros 
eliminates associated sign reversals, no modification of the rules is neces­
sary. Rule 7 insures that the diagram is not changed for moderate magni­
tudes of loop transmission by ignoring the high-frequency zeros. 

4.3.4 Location of Closed-Loop Zeros 

A root-locus diagram indicates the location of the closed-loop poles of 
a feedback system. In addition to the stability information provided by the 
pole locations, we may need the locations of the closed-loop zeros to 
determine some aspects of system performance. 

The method used to determine the closed-loop zeros is developed with 
the aid of Fig. 4.10. Part a of this figure shows the block diagram for a 
single-loop feedback system. The diagram of Fig. 4.10b has the same input-
output transfer function as that of Fig. 4.10a, but has been modified so that 

KoVi 

(a) 

V. 
V.Vi 

(b) 

Figure 4.10 System used to determine closed-loop zeros. (a) Single-loop feedback 
system. (b) Modified block diagram. 
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the feedback path inside the loop has unity gain. We first consider the 
closed-loop transfer function 

V(s) a(s)f(s) 
Vi(s) 1 + a(s)f(s) 

A root-locus diagram gives the pole locations for this closed-loop trans­
fer function directly, since the diagram indicates the frequencies at which 
the denominator of Eqn. 4.71 is zero. The zeros of Eqn. 4.71 coincide with 
the zeros of the transfer function a(s)f(s). However, from Fig. 4.10b, 

A() V,,(s) V"(s) V"(s) V"(s) (472 
VI _Vi(s)] _V-W) _V]) fs 

Thus in addition to the singularities associated with Eqn. 4.71, A(s) has 
poles at poles of 1/f(s), or equivalently at zeros off(s), and has zeros at 
poles off(s). The additional poles of Eqn. 4.72 cancel the zeros off(s) in 
Eqn. 4.71, with the net result that A(s) has zeros at zeros of a(s) and at 
poles off(s). It is important to recognize that the zeros of A(s) are inde­
pendent of aofo. 

An alternative approach is to recognize that zeros of A(s) occur at zeros 
of the numerator of this function and at frequencies where the denominator 
becomes infinite while the numerator remains finite. The later condition is 
satisfied at poles off(s), since this term is included in the denominator of 
A(s) but not in its numerator. 

Note that the singularities of A(s) are particularly easy to determine if 
the feedback path is frequency independent. In this case, (as always) 
closed-loop poles are obtained directly from the root-locus diagram. The 
zeros of a(s), which are the only zeros plotted in the diagram when f(s) = fo, 
are also the zeros of A(s). 

These concepts are illustrated by means of two examples of frequency-
selective feedback amplifiers. Amplifiers of this type can be constructed by 
combining twin-T networks with operational amplifiers. A twin-T network 
can have a voltage transfer function that includes complex zeros with posi­
tive, negative, or zero real parts. It is assumed that a twin-T with a voltage-
transfer ratio7 

s 2 +1 
T(S) = (4.73)

s2 + 2s + 1 
is available. 

I The transfer function of a twin-T network includes a third real-axis zero, as well as a 
third pole. Furthermore, none of the poles coincide. The departure from reality repre­
sented by Eqn. 4.73 simplifies the following development without significantly changing the 
conclusions. The reader who is interested in the transfer function of this type of network 
is referred to J. E. Gibson and F. B. Tuteur, ControlSystem Components, McGraw-Hill, 
New York, 1958, Section 1.26. 
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Vi s
2 

+2s+1 vOa0 

Figure 4.11 Rejection amplifier. 

Figures 4.11 and 4.12 show two ways of combining this network with an 
amplifier that is assumed to have constant gain ao at frequencies of interest. 
Since both of these systems have the same loop transmission, they have 
identical root-locus diagrams as shown in Fig. 4.13. The closed-loop poles 
leave the real axis for any finite value of ao and approach the j-axis zeros 
along circular arcs. The closed-loop pole location for one particular value 
of ao is also indicated in this figure. 

The rejection amplifier (Fig. 4.11) is considered first. Since the connection 
has a frequency-independent feedback path, its closed-loop zeros are the 
two shown in the root-locus diagram. If the signal Vi is a constant-ampli­
tude sinusoid, the effects of the closed-loop poles and zeros very nearly 
cancel except at frequencies close to one radian per second. The closed-loop 
frequency response is indicated in Fig. 4.14a. As ao is increased, the distance 
between the closed-loop poles and zeros becomes smaller. Thus the band of 
frequencies over which the poles and zeros do not cancel becomes narrower, 
implying a sharper notch, as ao is increased. 

The bandpass amplifier combines the poles from the root-locus diagram 
with a second-order closed-loop zero at s = - 1, corresponding to the pole 
pair off(s). The closed-loop transfer function has no other zeros, since a(s) 
has no zeros in this connection. The frequency response for this amplifier is 
shown in Fig. 4.14b. In this case the amplifier becomes more selective and 
provides higher gain at one radian per second as ao increases, since the 
damping ratio of the complex pole pair decreases. 

vi aov 

Figure 4.12 Bandpass amplifier. 
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f
 

s plane 

XrX 

-1 Location of 
poles for 
a0 = a, 
at s = -0, jW1 

Figure 4.13 Root-locus diagram for systems of Figs. 4.11 and 4.12. 

4.3.5 Root Contours 

The root-locus method allows us to determine how the locations of the 
closed-loop poles of a feedback system change as the magnitude of the low-
frequency loop transmission is varied. There are many systems where 
relative stability as a function of some parameter other than gain is required. 
We shall see, for example, that the location of an open-loop singularity in 
the transfer function of an operational amplifier is frequently varied to 
compensate the amplifier and thus improve its performance in a given 
application. Root-locus techniques could be used to plot a family of root-
locus diagrams corresponding to various values for a system parameter 
other than gain. It is also possible to extend root-locus concepts so that the 
variation in closed-loop pole location as a function of some single param­
eter other than gain is determined for a fixed value of aofo. The generalized 
root-locus diagram that results from this extension is called a root-contour 

diagram. 
In order to see how the root contours are constructed, we recall that the 

characteristic equation for a negative feedback system can be written in the 

form 

P(s) = q(s) + aofop(s) (4.74) 

where it is assumed that 

a(s)f(s) = 
p(s)

aofo q(S) 
q(s) 
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1 

I A(jw)l 

Increasing ao 

w -b­1 rad/sec 

(a) 

i
IA(jw) 

1 rad/sec 

(b) 

Figure 4.14. Frequency responses for selective amplifiers. (a) Rejection amplifier. 
(b) Bandpass amplifier. 

If the aofo product is constant, but some other system parameter r varies, 
the characteristic equation can be rewritten 

P(s) = q'(s) + rp'(s) (4.75) 

All of the terms that multiply r are included in p'(s) in Eqn. 4.75, so that 
q'(s) and p'(s) are both independent of T. The root-contour diagram as a 
function of r can then be drawn by applying the construction rules to a 
singularity pattern that has poles at zeros of q'(s) and zeros at zeros of p'(s). 

An operational amplifier connected as a unity-gain follower is used to 
illustrate the construction of a root-contour diagram. This connection has 
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unity feedback, and it is assumed that the amplifier open-loop transfer 
function is 

1)a(s) = 101(rs + (4.76) 
(S + 1)2 

The characteristic equation after clearing fractions is 

P(s) = s2 + 2s + (106 + 1) + T16s (4.77) 

Identifying terms in accordance with Eqn. 4.75 results in 

p'(s) = 10's (4.78a) 

2q'(s) = S2 + 2s + 106 + 1 ~ s + 2s + 106 (4.78b) 

Thus the singularity pattern used to form the root contours has a zero at 
the origin and complex poles at s = - 1 ± jlj0. The root-contour diagram 
is shown in Fig. 4.15. Rule 8 is used to find the value of Tnecessary to locate 

i 

Arrows indicate direction -1 + j1000
of increasing r 

s plane 

Pole 
for i 

locations 
= 0.707 

at -500\/- (11j) 

-1 a -­

-1 -j1000
 

Figure 4.15 Root-contour diagram for p'(s)/q'(s) = 106s/(s2 + 2s + 106).
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the complex pole pair 450 from the negative real axis corresponding to a 
damping ratio of 0.707. From Eqn. 4.56, the required value is 

q'(s) I 

p'(S) = - 50 0 \ 2 (1+j) 

s 2 + 2s + 106| X 10-3 (4.79) 
610 s = -500\/2 (1+j) 

4.4 STABILITY BASED ON FREQUENCY RESPONSE 

The Routh criterion and root-locus methods provide information con­
cerning the stability of a feedback system starting with either the charac­
teristic equation or the loop-transmission singularities of the system. Thus 
both of these techniques require that the system loop transmission be 
expressible as a ratio of polynomials in s. There are two possible difficulties. 
The system may include elements with transfer functions that cannot be 
expressed as a ratio of finite polynomials. A familiar example of this type of 
element is the pure time delay of r seconds with a transfer function e-s-. A 
second possibility is that the available information about the system con­
sists of an experimentally determined frequency response. Approximating 
the measured data in a form suitable for Routh or root-locus analysis may 
not be practical. 

The methods described in this section evaluate the stability of a feedback 
system starting from its loop transmission as a function of frequency. The 
only required data are the magnitude and angle of this transmission, and it 
is not necessary that these data be presented as analytic expressions. As a 
result, stability can be determined directly from experimental results. 

4.4.1 The Nyquist Criterion 

It is necessary to develop a method for determining absolute and relative 
stability information for feedback systems based on the variation of their 
loop transmissions with frequency. The topology of Fig. 4.1 is assumed. If 
there is some frequency c at which 

a(jo)f(jw) - (4.80) 

the loop transmission is + 1 at this frequency. It is evident that the system 
can then oscillate at the frequency co, since it can in effect supply its own 
driving signal without an externally applied input. This kind of intuitive 
argument fails in many cases of practical interest. For example, a system 
with a loop transmission of +10 at some frequency may or may not be 
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stable depending on the loop-transmission values at other frequencies. The 
Nyquist criterion can be used to resolve this and other stability questions. 

The test determines if there are any values of s with positive real parts for 
which a(s)f(s) = - 1. If this condition is satisfied, the characteristic equa­
tion of the system has a right-half-plane zero implying instability. In order 
to use the Nyquist criterion, the function a(s)f(s) is evaluated as s takes on 
values along the contour shown in the s-plane plot of Fig. 4.16. The contour 
includes a segment of the imaginary axis and is closed with a large semi­
circle of radius R that lies in the right half of the s plane. The values of 
a(s)f(s) as s varies along the indicated contour are plotted in gain-phase 
form in an af plane. A possible af-plane plot is shown in Fig. 4.17. The 
symmetry about the 0' line in the af plane is characteristic of all such plots 
since Im[a(jco)f(jo)] = - Im[a(-jw)f(-jo)]. 

Our objective is to determine if there are any values of s that lie in the 
shaded region of Fig. 4.16 for which a(s)f(s) = - 1. This determination is 
simplified by recognizing that the transformation involved maps closed 
contours in the s plane into closed contours in the af plane. Furthermore, 

s = 0 + jR 

s plane 

s =Re .* {> 0 > 
ao 2along this path 

2 

Starting point 
s = 0 + j0+ 

a -­

s = 0 + j0­

s = 0 - jR 

Figure 4.16 Contour Used to evaluate a(s)f(s). 
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Value for s = 0 + j0+ 

Value for s = +jR Value for s = -jR 

Figure 4.17 Plot of a(s)f(s) as s varies along contour of Fig. 4.16. 

all values of s that lie on one side of a contour in the s plane must map to 
values of afthat lie on one side of the corresponding contour in the afplane. 
The - 1 points are clearly indicated in the af-plane plot. Thus the only 
remaining task is to determine if the shaded region in Fig. 4.16 maps to the 
inside or to the outside of the contour in Fig. 4.17. If it maps to the inside, 
there are two values of s in the right-half plane for which a(s)f(s) = -1, 
and the system is unstable. 

The form of the af-plane plot and corresponding regions of the two plots 
are easily determined from a(s)f(s) as illustrated in the following examples. 
Figure 4.18 indicates the general shape of the s-plane and af-plane plots for 

a(s)f(s) - (4.81)
(s + 1) (0.1s + 1) (0.01s + 1) 

Note that the magnitude of af in this example is 103 and its angle is zero 
at s = 0. As s takes on values approaching +jR, the angle of af changes 
from 0' toward -270', and its magnitude decreases. These relationships 
are readily obtained from the usual vector manipulations in the s plane. 
For a sufficiently large value of R, the magnitude of af is arbitrarily small, 



+jR 

s plane 

-100 -10 -1 a Do­

(a) -jR 

Values corresponding 
to detour 

+90* +180* +27(f 

4. [a(jro)fw)] af plane 

Value for Value for 
s = +jR s = -jR 
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Figure 4.18 Nyquist test for a(s)f(s) = 103/[(s + 1)(O.1s + 1)(0.01s + 1)). 
(a) s-plane plot. (b) af-plane plot. 

142 



143 Stability Based on Frequency Response 

and its angle is nearly - 2700. As s assumes values in the right-half plane 
along a semicircle of radius R, the magnitude of af remains constant (for R 
much greater than the distance of any singularities of af from the origin), 
and its angle changes from -270* to 0* as s goes from +jR to +R. The 
remainder of the af-plane plot must be symmetric about the 0* line. 

In order to show that the two shaded regions correspond to each other, 
a small detour from the contour in the s plane is made at s = 0 as indi­
cated in Fig. 4.18a. As s assumes real positive values, the magnitude of 
a(s)f(s)decreases, since the distance from the point on the test detour to each 
of the poles increases. Thus the detour produces values in the afplane that 
lie in the shaded region. While we shall normally use a test detour to deter­
mine corresponding regions in the two planes, the angular relationships 
indicated in this example are general ones. Because of the way axes are 
chosen in the two planes, right-hand turns in one plane map to left-hand 
turns in the other. A consequence of this reversal is illustrated in Fig. 4.18. 
Note that if we follow the contour in the s plane in the direction of the 
arrows, the shaded region is to our right. The angle reversal places the 
corresponding region in the af plane to the left when its boundary is fol­
lowed in the direction of the arrows. 

Since the two - 1 points lie in the shaded region of the af plane, there 
are two values of s in the right-half plane for which a(s)f(s) = - 1 and the 
system is unstable. Note that if aofo is reduced, the contour in the af plane 
slides downward and for sufficiently small values of aofo the system is stable. 
A geometric development or the Routh criterion shows that the system is 
stable for positive values of aofo smaller than 122.21. 

Contours with the general shape shown in Fig. 4.19 result if a zero is 
added at the origin changing a(s)f(s) to 

a(s)f(s) = 10s(4.82) 
(s+ 1) (0.Is + 1) (0.01s + 1) 

In order to avoid angle and magnitude uncertainties that result if the s-plane 
contour passes through a singularity, a small-radius circular arc is used to 
avoid the zero. Two test detours on the s-plane contour are shown. As the 
first is followed, the magnitude of af increases since the dominant effect 
is that of leaving the zero. As the second test detour is followed, the magni­
tude of af increases since this detour approaches three poles and only one 
zero. The location of the shaded region in the afplane indicates that the - 1 
points remain outside this region for all positive values of ao and, therefore, 
the system is stable for any amount of negative feedback. 

The Nyquist test can also be used for systems that have one or more loop-
transmission poles in the right-half plane and thus are unstable without 

http:10s(4.82
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Figure 4.19 Nyquist test for a(s)f(s) = 10s/[(s + 1)(O.1s + 1)(0.01s + 1)]. 

(a) s-plane plot. (b) af-plane plot. 
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feedback. An example of this type of system results for 

a(s)f(s) = ao (4.83)
S - 1 

with s-plane and af-plane plots shown in Figs. 4.20a and 4.20b. The line 
indicated by + marks in the af-plane plot is an attempt to show that for 
this system the angle must be continuous as s changes from jO- to j0+. In 
order to preserve this necessary continuity, we must realize that + 1800 and 
- 1800 are identical angles, and conceive of the af plane as a cylinder 

joined at the h 1800 lines. This concept is made somewhat less disturbing 
by using polar coordinates for the af-plane plot as shown in Fig. 4.20c. Here 
the -1 point appears only once. The use of the test detour shows that 
values of s in the right-half plane map outside of a circle that extends from 
0 to -ao as shown in Fig. 4.20c. The location of the - 1point in either af­
plane plot shows that the system is stable only for ao > 1. 

Note that the - 1points in the afplane corresponding to angles of 1180' 
collapse to one point when the af cylinder necessary for the Nyquist con­
struction for this example is formed. This feature and the nature of the af 
contour show that when ao is less than one, there is only one value of s for 
which a(s)f(s) = - 1. Thus this system has a single closed-loop pole on the 
positive real axis for values of ao that result in instability. 

This system indicates another type of difficulty that can be encountered 
with systems that have right-half-plane loop-transmission singularities. The 
angle of a(j)f(jo) is 1800 at low frequencies, implying that the system 
actually has positive feedback at these frequencies. (Recall the additional 
inversion included at the summation point in our standard representation.) 
The s-plane representation (Fig. 4.20a) is consistent since it indicates an 
angle of 1800 for s = 0. Thus no procedural modification of the type de­
scribed in Section 4.3.3 is necessary in this case. 

4.4.2 Interpretation of Bode Plots 

A Bode plot does not contain the information concerning values of af 
as the contour in the s plane is closed, which is necessary to apply the 
Nyquist test. Experience shows that the easiest way to determine stability 
from a Bode plot of an arbitrary loop transmission is to roughly sketch a 
complete af-plane plot and apply the Nyquist test as described in Section 
4.4.1. For many systems of practical interest, however, it is possible to 
circumvent this step and use the Bode information directly. 

The following two rules evolve from the Nyquist test for systems that 
have negative feedback at low or mid frequencies and that have no right-
half-plane singularities in their loop transmission. 
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Figure 4.20 Nyquist test for a(s)f(s) = ao/(s - 1). (a) s-plane plot. (b) af-plane 
plot. (c) af-plane plot (polar coordinates). 
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(C) 

Figure 4.20-Continued 

1. If the magnitude of af is 1 at only one frequency, the system is stable 
if the angle of af is between + 1800 and - 1800 at the unity-gain frequency. 

2. If the angle of af passes through +180 or - 1800 at only one fre­
quency, the system is stable if the magnitude of af is less than 1 at this 
frequency. 

Information concerning the relative stability of a feedback system can 
also be determined from a Bode plot for the following reason. The values 
of s for which af = - 1 are the closed-loop pole locations of a feedback 
system. The Nyquist test exploits this relationship in order to determine 
the absolute stability of a system. If the system is stable, but a pair of - l's 
of afoccur for values of s close to the imaginary axis, the system must have 
a pair of closed-loop poles with a small damping ratio. 

The quantities shown in Fig. 4.21 provide a useful estimation of the 
proximity of - l's of af to the imaginary axis and thus indicate relative 
stability. The phase margin is the difference between the angle of af and 
- 1800 at the frequency where the magnitude of af is 1. A phase margin 
of 00 indicates closed-loop poles on the imaignary axis, and therefore the 
phase margin is a measure of the additional negative phase shift at the 
unity-magnitude frequency that will cause instability. Similarly, the gain 
margin is the amount of gain increase required to make the magnitude of af 
unity at the frequency where the angle of af is - 1800, and represents the 
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Figure 4.21 Loop-transmission quantities. 

amount of increase in aofo required to cause instability. The frequency at 
which the magnitude of af is unity is called the unity-gainfrequency or the 
crossoverfrequency. This parameter characterizes the relative frequency re­
sponse or speed of the time response of the system. 

A particularly valuable feature of analysis based on the loop-transmission 
characteristics of a system is that the gain margin and the phase margin, 
quantities that are quickly and easily determined using Bode techniques, 
give surprisingly good indications of the relative stability of a feedback 
system. It is generally found that gain margins of three or more combined 
with phase margins between 30 and 60' result in desirable trade-offs be­
tween bandwidth or rise time and relative stability. The smaller values for 
gain and phase margin correspond to lower relative stability and are avoided 



149 Stability Based on Frequency Response 

if small overshoot in response to a step or small frequency-response peaking 
is necessary or if there is the possibility of severe changes in parameter 
values. 

The closed-loop bandwidth and rise time are almost directly related to 
the unity-gain frequency for systems with equal gain and phase margins. 
Thus any changes that increase the unity-gain frequency while maintaining 
constant values for gain and phase margins tend to increase closed-loop 
bandwidth and decrease closed-loop rise time. 

Certain relationships between these three quantities and the correspond­
ing closed-loop performance are given in the following section. Prior to 
presenting these relationships, it is emphasized that the simplicity and 
excellence of results associated with frequency-response analysis makes this 
method a frequently used one, particularly during the initial design phase. 
Once a tentative design based on these concepts is determined, more de­
tailed information, such as the exact location of closed-loop singularities 
or the transient response of the system may be investigated, frequently 
with the aid of machine computation. 

4.4.3 	 Closed-Loop Performance in Terms of
 
Loop-Transmission Parameters
 

The quantity a(j)f(jw) can generally be quickly and accurately obtained 
in Bode-plot form. The effects of system-parameter changes on the loop 
transmission are also easily determined. Thus approximate relationships 
between the loop transmission and closed-loop performance provide a 
useful and powerful basis for feedback-system design. 

The input-output relationship for a system of the type illustrated in 
Fig. 4.1Oa is 

V0(s) _ a(s)
A(s= a(s) 	 (4.84)

Vi(s) 1 + a(s)f(s) 

If the system is stable, the closed-loop transfer function of the system can 
be approximated for limiting values of loop transmission as 

A(jo) 	 ~- a(jw)f(jw) >> 1 (4.85a) 

A(jw) a(jw) Ia(jw)f(je) < 1 (4.85b) 

One objective in the design of feedback systems is to insure that the 
approximation of Eqn. 4.85a is valid at all frequencies of interest, so that 
the system closed-loop gain is controlled by the feedback element. The 
approximation of Eqn. 4.85b is relatively unimportant, since the system is 
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effective operating without feedback in this case. While we normally do not 
expect to have the system provide precisely controlled closed-loop gain at 
frequencies where the magnitude of the loop transmission is close to one, 
the discussion of Section 4.4.2 shows that the relative stability of a system 
is largely determined by its performance in this frequency range. 

The Nichols chart shown in Fig. 4.22 provides a convenient method of 
evaluating the closed-loop gain of a feedback system from its loop trans-
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mission, and is particularly valuable when neither of the limiting approxi­
mations of Eqn. 4.85 is valid. This chart relates G/(1 + G) to G where G 
is any complex number. In order to use the chart, the value of G is located 
on the rectangular gain-phase coordinates. The angle and magnitude of 
G/(1 + G) are than read directly from the curved coordinates that intersect 
the value of G selected. 

The gain-phase coordinates shown in Fig. 4.22 cover the complete 00 to 
-360* range in angle and a ratio of 106 in magnitude. This magnitude range 
is unnecessary, since the approximations of Eqn. 4.85 are usually valid 
when the loop-transmission magnitude exceeds 10 or is less than 0.1. 
Similarly, the range of angles of greatest interest is that which surrounds 
the -1800 value and which includes anticipated phase margins. The 
Nichols chart shown in Fig. 4.23 is expanded to provide greater resolution 
in the region where it will normally be used. 

One effective way to view the Nichols chart is as a three-dimensional 
surface, with the height of the surface proportional to the magnitude of the 
closed-loop transfer function corresponding to the loop-transmission 
parameters that define the point of interest. This visualization shows a 
"mountain" (with a peak of infinite height) where the loop transmission 
is +1. 

The Nichols chart can be used directly for any unity-gain feedback sys­
tem. The transformation indicated in Fig. 4.10b shows that the chart can 
be used for arbitrary single-loop systems by observing that 

A(jw) = a(jw) [ a(jo)f(j I) ~1 ] (4.86)
1 + a(jo)f(jo) 1 + a(jw)f(jj).f(jo)_ 

The closed-loop frequency response is determined by multiplying the factor 
a(jw)f(j)/[1 + a(jw)f(jo)] obtained via the Nichols chart by I/f(j) using 
Bode techniques. 

One quantity of interest for feedback systems with frequency-independent 
feedback paths is the peak magnitude M, equal to the ratio of the maxi­
mum magnitude of A(jw) to its low-frequency magnitude (see Section 3.5). 
A large value for M, indicates a relatively less stable system, since it shows 
that there is some frequency for which the characteristic equation approaches 
zero and thus that there is a pair of closed-loop poles near the imaginary 
axis at approximately the peaking frequency. Feedback amplifiers are 
frequently designed to have M,'s between 1.1 and 1.5. Lower values for 
MP imply greater relative stability, while higher values indicate that 
stability has been compromised in order to obtain a larger low-frequency 
loop transmission and a higher crossover frequency. 

The value of M, for a particular system can be easily determined from 
the Nichols chart. Furthermore, the chart can be used to evaluate the 
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effects of variations in loop transmission on M,. One frequently used 
manipulation determines the relationship between M, and aofo for a system 
with fixed loop-transmission singularities. The quantity a(jW)f(jW)/aofo is 
first plotted on gain-phase coordinates using the same scale as the Nichols 
chart. If this plot is made on tracing paper, it can be aligned with the 
Nichols chart and slid up or down to illustrate the effects of different values 
of aofo. The closed-loop transfer function is obtained directly from the 
Nichols chart by evaluating A(jw) at various frequencies, while the highest 
magnitude curve of the Nichols chart touched by a(jw)f(jw) for a particular 
value of aofo indicates the corresponding M. 

Figure 4.24 shows this construction for a system with f = 1 and 

a(s) = a(4.87)
(s + 1) (0.1s + 1) 

The values of ao for the three loop transmissions are 8.5, 22, and 50. The 
corresponding M,'s are 1, 1.4, and 2, respectively. 

While the Nichols chart is normally used to determine the closed-loop 
function from the loop transmission, it is possible to use it to go the other 
way; that is, to determine a(j)f(jo) from A(jw). This transformation is 

occasionally useful for the analysis of systems for which only closed-loop 
measurements are practical. The transformation yields good results when 
the magnitude of a(j)f(jw) is close to one. Furthermore,the approximation 
of Eqn. 4.85b shows tha A(jw) - a(jw) when the magnitude of the loop 
transmission is small. However, Eqn. 4.85a indicates that A(jw) is essen­
tially independent of the loop transmission when the loop-transmission 
magnitude is large. Examination of the Nichols chart confirms this result 
since it shows that very small changes in the closed-loop magnitude or 
angle translate to very large changes in the loop transmission for large loop-
transmission magnitudes. Thus even small errors in the measurement of 
A(jw) preclude estimation of large values for a(jo)f(jw) with any accuracy. 

The relative stability of a feedback system and many other important 
characteristics of its closed-loop response are largely determined by the 
behavior of its loop transmission at frequencies where the magnitude of 
this quantity is close to unity. The approximations presented below relate 
closed-loop quantities defined in Section 3.5 to the loop-transmission 
properties defined in Section 4.4.2. These approximations are useful for 

predicting closed-loop response, comparing the performance of various 
systems, and estimating the effects of changes in loop transmission on 

closed-loop performance. 
The assumptions used in Section 3.5, in particular that f is one at all 
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frequencies, that ao is large, and that the lowest frequency singularity of 
a(s) is a pole, are assumed here. Under these conditions, 

M, ~ sin 1kmn (4.88) 

where $m.is the phase margin. The considerations that lead to this approxi­
mation are illustrated in Fig. 4.25. This figure shows several closed-loop­
magnitude curves in the vicinity of M, = 1.4 and assumes that the system 
phase margin is 45*. Since the point G = 1, 4 G = -135* must exist 
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Figure 4.25 M, for several systems with 450 of phase margin. 



156 Stability 

for a system with a 450 phase margin, there is no possible way that M, can 
be less than approximately 1.3, and the loop-transmission gain-phase curve 
must be quite specifically constrained for M, just to equal this value. 
If it is assumed that the magnitude and angle of G are linearly related, the 
linear constructions included in Fig. 4.25 show that M, cannot exceed 
approximately 1.5 unless the gain margin is very small. Well-behaved sys­
tems are actually most likely to have a gain-phase curve that provides an 
extended region of approximate tangency to the M, = 1.4 curve for a 
phase margin of 450. Similar arguments hold for other values of phase 
margin, and the approximation of Eqn. 4.88 represents a good fit to the 
relationship between phase margin and corresponding M,. 

Two other approximations relate the system transient response to its 
crossover frequency we. 

0.6 2.2 
-- < tr < - (4.89) 
wc (Jc 

The shorter values of rise time correspond to lower values of phase margin. 

4 
t, > - (4.90)

COc 

The limit is approached only for systems with large phase margins. 
We shall see that the open-loop transfer function of many operational 

amplifiers includes one pole at low frequencies and a second pole in the 
vicinity of the unity-gain frequency of the amplifier. If the system dynamics 
are dominated by these two poles, the damping ratio and natural frequency 
of a second-order system that approximates the actual closed-loop system 
can be obtained from Bode-plot parameters of a system with a frequency-
independent feedback path using the curves shown in Fig. 4.26a. The curves 
shown in Fig. 4.26b relate peak overshoot and M, for a second-order system 
to damping ratio and are derived using Eqns. 3.58 and 3.62. While the 
relationships of Fig. 4.26a are strictly valid only for a system with two widely 
spaced poles in its loop transmission, they provide an accurate approxima­
tion providing two conditions are satisfied. 

1. The system loop-transmission magnitude falls off as l1w at frequencies 
between one decade below crossover and the next higher frequency singu­
larity. 

2. Additional negative phase shift is provided in the vicinity of the cross­
over frequency by other components of the loop transmission. 

The value of these curves is that they provide a way to determine an 
approximating second-order system from either phase margin, M, or peak 
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Figure 4.26a Closed-loop quantities from loop-transmission parameters for system 
with two widely spaced poles. Damping ratio and natural frequency as a function 
of phase margin and crossover frequency. 

overshoot of a complex system. The validity of this approach stems from 
the fact that most systems must be dominated by one or two poles in the 
vicinity of the crossover frequency in order to yield acceptable performance. 
Examples illustrating the use of these approximations are included in later 
sections. We shall see that transient responses based on the approximation 
are virtually indistinguishable from those of the actual system in many 
cases of interest. 
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Figure 4.26b Po and M, versus damping ratio for second-order system. 

The first significant error coefficient for a system with unity feedback can 
also be determined directly from its Bode plot. If the loop transmission 
includes a wide range of frequencies below the crossover frequency where 
its magnitude is equal to k/wn, the error coefficients eo through e..- are 
negligible and e. equals 1/k. 

PROBLEMS
 
P4.1
 
Find the number of right-half-plane zeros of the polynomial 

P(s) = s1 + s 4 + 3s' + 4s2 + s + 2 
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P4.2 
A phase-shift oscillator is constructed with a loop transmission 

ao--=L(s) 
1)4(r-S + 

Use the Routh condition to determine the value of ao that places a pair of 
closed-loop poles on the imaginary axis. Also determine the location of the 
poles. Use this information to factor the characteristic equation of the 
system, thus finding the location of all four closed-loop poles for the critical 
value of ao. 

P4.3 
Describe how the Routh test can be modified to determine the real parts 

of all singularities in a polynomial. Also explain why this modification is 
usually of little value as a computational aid to factoring the polynomial. 

P4.4 
Prove the root-locus construction rule that establishes the angle and 

intersection of branch asymptotes with the real axis. 

P4.5 
Sketch root-locus diagrams for the loop-transmission singularity pattern 

shown in Fig. 4.27. Evaluate part c for moderate values of aofo, and part d 
for both moderate and very large values of aofo. 

P4.6 
Consider two systems, both with f = 1. One of these systems has a 

forward-path transfer function 

a(s) = ao(O.5s + 1) 
(s + 1) (0.01s + 1) (0.51s + 1) 

while the second system has 

ao(O.51s + 1)a'(S) = 
(s + 1) (0.01s + 1) (0.5s + 1) 

Common sense dictates that the closed-loop transfer functions of these 

systems should be very nearly identical and, furthermore, that both should 
be similar to a system with 

a"(s) =a 
(s + 1) (0.01s + 1) 

[The closely spaced pole-zero doublets in a(s) and a'(s) should effectively 

cancel out.] Use root-locus diagrams to show that the closed-loop responses 
are, in fact, similar. 
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Figure 4.27 Loop-transmission singularity patterns. 

P4.7 
An operational amplifier has an open-loop transfer function 

106
a(s) = (0.ls + 1) (10-6s + 1)2 

This amplifier is combined with two resistors in a noninverting-amplifier 
configuration. Neglecting loading, determine the value of closed-loop gain 
that results when the damping ratio of the complex closed-loop pole pair 
is 0.5. 

P4.8 
An operational amplifier has an open-loop transfer function 

105 
a(s) = 10 + 

(rS + 1) (10-6S + 1) 

The quantity T can be adjusted by changing the amplifier compensation. 
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Use root-contour techniques to determine a value of r that results in a 
closed-loop damping ratio of 0.707 when the amplifier is connected as a 
unity-gain inverter. 

P4.9 
A feedback system that includes a time delay has a loop transmission 

aoe-0.013L~)L(s) = a- 0 l
(s + 1) 

Use the Nyquist test to determine the maximum value of ao for stable 
operation. What value of ao should be selected to limit M, to a factor of 
1.4? (You may assume that the feedback path of the system is frequency 
independent.) 

P4.10 
We have been investigating the stability of feedback systems that are 

generally low pass in nature, since the transfer functions of most opera­
tional-amplifier connections fall in this category. However, stability prob­
lems also arise in high-pass systems. For example, a-c coupled feedback 
amplifiers designed for use at audio frequencies sometimes display a low-
frequency instability called "motor-boating." Use the Nyquist test to 
demonstrate the possibility of this type of instability for an amplifier with 
a loop transmission 

L(s) - aosa 
(s + 1) (0.ls + 1)2 

Also show the potentially unstable behavior using root-locus methods. 
For what range of values of ao is the amplifier stable? 

P4.11 
Develop a modification of the Nyquist test that enables you to determine 

if a feedback system has any closed-loop poles with a damping ratio of less 
than 0.707. Illustrate your test by forming the modified Nyquist diagram 
for a system with a(s) = ao/(s + 1) 

2 , f(s) = 1. For what value of ao does 
the damping ratio of the closed-loop pole pair equal 0.707? Verify your 
answer by factoring the characteristic equation for this value of ao. 

P4.12 
The open-loop transfer function of an operational amplifier is 

1050
a(s) = 
(0.s + 1) (10-s + 1)2 

Determine the gain margin, phase margin, crossover frequency, and M, 
for this amplifier when used in a feedback connection withf = 1. Also find 
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the value off that results in an M, of 1.1. What are the values of phase and 
gain margin and crossover frequency with this value forf? 

P4.13 
A feedback system is constructed with 

a(s) = 106(0.Ols + 1)2 
(s + 1)3 

and an adjustable, frequency-independent value forf.Asf is increased from 
zero, it is observed that the system is stable for very small values off, then 
becomes unstable, and eventually returns to stable behavior for sufficiently 
high values of f. Explain this performance using Nyquist and root-locus 
analysis. Use the Routh criterion to determine the two borderline values 
for f. 

P4.14 
An operational amplifier with a frequency-independent feedback path 

exhibits 40% overshoot and 10 to 90% rise time of 0.5 ps in response to a 

step input. Estimate the phase margin and crossover frequency of the feed­
back connection, assuming that its performance is dominated by two 
widely separated loop-transmission poles. 

P4.15 
Consider a feedback system with 

=a(s) 
a 0 

s[(s2/2) + s + 1] 

and f(s) = 1. 
Show that by appropriate choice of ao, the closed-loop poles of the system 

can be placed in a third-order Butterworth pattern. Find the crossover 
frequency and the phase margin of the loop transmission when ao is selected 
for the closed-loop Butterworth response. Use these quantities in conjunc­
tion with Fig. 4.26 to find the damping ratio and natural frequency of a 

second-order system that can be used to approximate the transient response 
of the third-order Butterworth filter. Compare the peak overshoot and rise 

time of the approximating system in response to a step with those of the 

Butterworth response (Fig. 3.10). Note that, even though this system is con­

siderably different from that used to develop Fig. 4.26, the approximation 
predicts time-domain parameters with fair accuracy. 
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CHAPTER V 

COMPENSATION
 

5.1 OBJECTIVES 

The discussion up to this point has focused on methods used to analyze 

the performance of a feedback system with a given set of parameters. The 

results of such analysis frequently show that the performance of the feed­

back system is unacceptable for a given application because of such defi­

ciencies as low desensitivity, slow speed of response, or poor relative sta­

bility. The process of modifying the system to improve performance is 

called compensation. 

Compensation usually reduces to a trial-and-error procedure, with the 

experience of the designer frequently playing a major role in the eventual 

outcome. One normally assumes a particular form of compensation and 

then evaluates the performance of the system to see if objectives have been 

met. If the performance remains inadequate, alternate methods of com­

pensation are tried until either objectives are met, or it becomes evident that 

they cannot be achieved. 
The type of compensation that can be used in a specific application is 

usually highly dependent on the components that form the system. The 

general principles that guide the compensation process will be described 

in this chapter. Most of these ideas will be reviewed and reinforced in later 

chapters after representative amplifier topologies and applications have 

been introduced. 

5.2 SERIES COMPENSATION 

One way to change the performance of a feedback system is to alter the 

transfer function of either its forward-gain path or its feedback path. This 

technique of modifying a series element in a single-loop system is called 

series compensation. The changes may involve the d-c gain of an element 

or its dynamics or both. 

5.2.1 Adjusting the D-C Gain 

One conceptually straightforward modification that can be made to the 

loop transmission is to vary its d-c or midband value aofo. This modifica­
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tion has a direct effect on low-frequency desensitivity, since we have seen 
that the attenuation to changes in forward-path gain provided by feedback 
is equal to 1 + aofo. 

The closed-loop dynamics are also dependent on the magnitude of the 
low-frequency loop transmission. The example involving Fig. 4.6 showed 
how root-locus methods are used to determine the relationship between 
aofo and the damping ratio of a dominant pole pair. A second approach 
to the control of closed-loop dynamics by adjusting aofo for a specific value 
of MP was used in the example involving Fig. 4.24. 

An assumption common to both of these previous examples was that the 
value of aofo could be selected without altering the singularities included 
in the loop transmission. For certain types of feedback systems independ­
ence of the d-c magnitude and the dynamics of the loop transmission is 
realistic. The dynamics of servomechanisms, for example, are generally 
dominated by mechanical components with bandwidths of less than 100 Hz. 
A portion of the d-c loop transmission of a servomechanism is often pro­
vided by an electronic amplifier, and these amplifiers can provide frequency-
independent gain into the high kilohertz or megahertz range. Changing the 
amplifier gain changes the value of aofo but leaves the dynamics associated 
with the loop transmission virtually unaltered. 

This type of independence is frequently absent in operational amplifiers. 
In order to increase gain, stages may have to be added, producing signifi­
cant changes in dynamics. Lowering the gain of an amplifying stage may 
also change dynamics because, for example, of a relationship between the 
input capacitance and voltage gain of a common-emitter amplifier. A further 
practical difficulty arises in that there is generally no predictable way to 
change the d-c open-loop gain of available discrete- or integrated-circuit 
operational amplifiers from the available terminals. 

An alternative approach involves modification of the d-c loop trans­
mission by means of the feedback network connected around the amplifier. 
The connection of Fig. 5.la illustrates one possibility. The block diagram 
for this amplifier, assuming negligible loading at either input or output, is 
shown in part b of this figure, while the block diagram after reduction to 
unity-feedback form is shown in part c. If the shunt resistance R from the 
inverting input to ground is an open circuit, the d-c value of the loop 
transmission is completely determined by ao and the ideal closed-loop gain 
-R 2/R 1 . However, inclusion of R provides an additional degree of free­
dom so that the d-c loop transmission and the ideal gain can be changed 
independently. 

This technique is illustrated for a unity-gain inverter (R1 = R2) and 

106 
a(s) = (5.1)

(s + 1)(10-3s + 1) 
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R+ 
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Vi RR1| R2R2 -a(s) V 

Ri~~ 1R || R 

R2 + R11 R, 

(b) 

Ri~s R2 + RR 

(c) 

Figure 5.1 Inverter. (a) Circuit. (b) Block diagram. (c) Block diagram reduced to 

unity-feedback form. 

A Bode plot of this transfer function is shown in Fig. 5.2. If R is an open 

circuit, the magnitude of the loop transmission is one at approximately 

2.15 X 10 radians per second, since the magnitude of a(s) at this frequency 
is equal to the factor of two attenuation provided by the R-R 2 network. 
The phase margin of the system is 25*, and Fig. 4.26a shows that the closed-

loop damping ratio is 0.22. Since Fig. 4.26 was generated assuming this 

type of loop transmission, it yields exact results in this case. If the resistor 
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R is made equal to 0.2R 1 , the loop-transmission unity-gain frequency is 

lowered to 10 radians per second by the factor-of-seven attenuation pro­

vided by the network, and phase margin and damping ratio are increased 

to 450 and 0.42, respectively. One penalty paid for this type of attenuation 

at the input terminals of the amplifier is that the voltage offset and noise 

at the output of the amplifier are increased for a given offset and noise at 

the amplifier input terminals (see Problem P5.2). 

5.2.2 Creating a Dominant Pole 

Elementary considerations show that a single-pole loop transmission 

results in a stable system for any amount of negative feedback, and that 

the closed-loop bandwidth of such a system increases with increasing aofo. 

Similarly, if the loop transmission in the vicinity of the unity-gain frequency 

is dominated by one pole, ample phase margin is easily obtained. Because 
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of the ease of stabilizing approximately single-pole systems, many types of 

compensation essentially reduce to making one pole dominate the loop 

transmission. 
One brute-force method for making one pole dominate the loop trans­

mission of an amplifier is simply to connect a capacitor from a node in the 

signal path to ground. If a large enough capacitor is used, the gain of the 

amplifier will drop below one at a frequency where other amplifier poles 

can be ignored. The obvious disadvantage of this approach to compensation 

is that it may drastically reduce the closed-loop bandwidth of the system. 

A feedback system designed to hold the value of its output constant 

independent of disturbances is called a regulator. Since the output need 

not track a rapidly varying input, closed-loop bandwidth is an unimportant 

parameter. If a dominant pole is included in the output portion of a regu­

lator, the low-pass characteristics of this pole may actually improve system 

performance by attenuating disturbances even in the absence of feedback. 

One possible type of voltage regulator is shown in simplified form in 

Fig. 5.3. An operational amplifier is used to compare the output voltage 

with a fixed reference. The operational amplifier drives a series regulator 

stage that consists of a transistor with an emitter resistor. The series regu­

lator isolates the output of the circuit from an unregulated source of 

voltage. The load includes a parallel resistor-capacitor combination and a 

disturbing current source. The current source is included for purposes of 

analysis and will be used to determine the degree to which the circuit rejects 

load-current changes. The dominant pole in the system is assumed to occur 

because of the load, and it is further assumed that the operational amplifier 

and series transistor contribute no dynamics at frequencies where the loop-

transmission magnitude exceeds one. 

The block diagram of Fig. 5.3b models the regulator if it is assumed that 

the common-base current gain of the transistor is one and that the resistor 

R is large compared to the reciprocal of the transistor transconductance. 

This diagram verifies the single-pole nature of the system loop transmission. 

As mentioned earlier, the objective of the circuitry is to minimize changes 

in load voltage that result from changes in the disturbing current and the 

unregulated voltage. The disturbance-to-output closed-loop transfer func­

tions that indicate how well the regulator achieves this objective are 

R ao V1 V, Rl= o- _(5.2)
 
Id RCLs/ao + (1 + RlaoRL)
 

and 

V, 1 a0 
(5).3_)Vu RCLslao+ (l + RlaoRL) 
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Figure 5.3 Voltage regulator. (a) Circuit. (b) Block diagram. 

If sinusoidal disturbances are considered, the magnitude of either dis­

turbance-to-output transfer function is a maximum at d-c, and decreases 

with increasing frequency because of the low-pass characteristics of the 

load. Increasing CL improves performance, since it lowers the frequency 

at which the disturbance is attenuated significantly compared to its d-c 

value. If it is assumed that arbitrary loads can be connected to the regu­
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Figure 5.4 Effect of changing load parameters on the Bode plot of a voltage 

regulator. 

lator (which is the usual situation, if, for example, this circuit is used as a 

laboratory power supply), the values of RL and CL must be considered 

variable. The minimum value of CL can be constrained by including a ca­

pacitor with the regulation circuitry. The load-capacitor value increases as 

external loads are connected to the regulator because of the decoupling 

capacitors usually associated with these loads. Similarly, RL decreases with 

increasing load to some minimum value determined by loading limitations. 

The compensation provided by the pole at the output of the regulator 

maintains stability as RL and CL change, as illustrated in the Bode plot of 

Fig. 5.4. (The negative of the loop transmission for this plot is aoRL/ 

R(RLCLS + 1), determined directly from Fig. 5.3b.) Note that the unity-

gain frequency can be limited by constraining the maximum value of the 

ao/RCL ratio, and thus crossover can be forced before other system ele­

ments affect dynamics. The phase margin of the system remains close to 

900 as RL and CL vary over wide limits. 

5.2.3 Lead and Lag Compensation 

If the designer is free to modify the dynamics of the loop transmission 

as well as its low-frequency magnitude, he has considerably more control 
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over the closed-loop performance of the system. The rather simple modi­
fication of making a single pole dominate has already been discussed. 

The types of changes that can be made to the dynamics of the loop trans­
mission are constrained, even in purely mathematical systems. It is tempt­
ing to think that systems could be improved, for example, by adding posi­
tive phase shift to the loop transmission without changing its magnitude 
characteristics. This modification would clearly improve the phase margin 
of a system. Unfortunately, the magnitude and angle characteristics of 
physically realizable transfer functions are not independent, and transfer 
functions that provide positive phase shift also have a magnitude that 
increases with increasing frequency. The magnitude increase may result 
in a higher system crossover frequency, and the additional negative phase 
shift that results from other elements in the loop may negate hoped-for 
advantages. 

The way that series compensation is implemented and the types of com­
pensating transfer functions that can be obtained in practical systems are 
even further constrained by the hardware realities of the feedback system 
being compensated. The designer of a servomechanism normally has a 
wide variety of compensating transfer functions available to him, since the 
electrical networks and amplifiers usually used to compensate servomech­
anisms have virtually unlimited bandwidth relative to the mechanical por­
tions of the system. Conversely, we should remember that the choices of 
the feedback-amplifier designer are more restricted because the ways that 
the transfer function of an amplifier can be changed, particularly near its 
unity-gain frequency where transistor bandwidth limitations dominate per­
formance, are often severely constrained. 

Two distinct types of transfer functions are normally used for the series 
compensation of feedback systems, and these types can either be used sep­
arately or can be combined in one system. A lead transferfunction can be 
realized with the network shown in Fig. 5.5. The transfer function of this 
network is 

V6(s) 1 ~aTS + 11
 
Vi(s) a L rs + 1 _
 

where a = (R1 + R 2)/R 2 and r (R1 || R 2)C. As the name implies, this 
network provides positive or leading phase shift of the output signal rela­
tive to the input signal at all frequencies. Lead-network parameters are 
usually selected to locate its singularities near the crossover frequency of 
the system being compensated. The positive phase shift of the network 
then improves the phase margin of the system. In many cases, the lead net­
work has negligible effect on the magnitude characteristics of the compen­
sated system at or below the crossover frequency, since we shall see that a 
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Figure 5.5 Lead network. 

lead network provides substantial phase shift before its magnitude increases 

significantly. 
The lag network shown in Fig. 5.6 has the transfer function 

V0(s) _ rS + 1
 

Vi(s) ars + 1
 

where a = (R 1 + R 2)/R 2 and r = R 2C. The singularities of this type of 

network are usually located well below crossover in order to reduce the 

crossover frequency of a system so that the negative phase shift associated 

with other elements in the system is reduced at the unity-gain frequency. 

This effect is possible because of the attenuation of the lag network at 

frequencies above both its singularities. 
The maximum magnitude of the phase angle associated with either of 

these transfer functions is 

= ~max (5.6)sin-' [ 

AA 

+ R+ 

Vi (s) R2 V (s) 

r_.C 

Figure 5.6 Lag network. 
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and this magnitude occurs at the geometric mean of the frequencies of the 
two singularities. The gain of either network at its maximum-phase-shift 
frequency is 1/9a5. 

The magnitudes and angles of lead transfer functions for a values of 
5, 10, and 20, are shown in Bode-plot form in Fig. 5.7. Figure 5.8 shows 
corresponding curves for lag transfer functions. The corner frequencies for 
the poles of the plotted functions are normalized to one in these figures. 

As mentioned earlier, an important feature of the lead transfer function 
is that it provides substantial positive phase shift over a range of frequencies 
below its zero location without a significant increase in magnitude. The 
reason stems from a basic property of real-axis singularities. At frequencies 
below the zero location, this singularity dominates the lead transfer func­
tion, so 

V6(s) 1-- - (ars + 1) (5.7)
Vi(s) a 

The magnitude and angle of this function are 

M = [V/I + (arCO)2] (5.8a) 
a 

= tan-'arw (5.8b) 

At a small fraction of the zero location, arw <K 1, so 

M +(a)2 (5.9a)
a 1 2 

$ ~ arW (5.9b) 

Since the angle increases linearly with frequency in this region while the 
magnitude increases quadratically, the angle change is relatively larger at 
a given frequency. The same sort of reasoning applies even if the zero is 
located at or slightly below crossover. Figure 5.7 shows that the positive 
phase shift of a lead transfer function with a reasonable value of a is ap­
proximately 40' at its zero location, while the magnitude increase is only a 
factor of 1.4. Much of this advantage is lost at frequencies beyond the geo­
metric mean of the singularities, since the positive phase shift decreases 
beyond this frequency, while the magnitude continues to increase. 

We should recognize that an isolated zero can be used in place of a lead 
transfer function, and that this type of transfer function actually has phase-
shift characteristics superior to those of the zero-pole pair. However, the 
unlimited high-frequency gain implied by an isolated zero is clearly un­
achievable, at least at sufficiently high frequencies. Thus the form of the 
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lead transfer function introduced earlier reflects the realities of physical 
systems. 

The important feature of the lag transfer function illustrated in Fig. 5.8 
is that at frequencies well above the zero location, it provides a magnitude 
attenuation equal to the ratio of the two singularity locations and negligible 
phase shift. It can thus be used to reduce the magnitude of the loop trans­
mission without significantly adding to the negative phase shift of this 
transmission at moderate frequencies. 

5.2.4 Example 

Lead and lag networks were originally developed for use in servomech­
anisms, and provide a powerful means for compensation when their singu­
larities can be located arbitrarily with respect to other system poles and 
when independent adjustment of the low-frequency loop-transmission mag­
nitude is possible. Even without this flexibility, which is usually absent with 
operational-amplifier circuits, lead or lag compensation can provide effec­
tive control of closed-loop performance in certain configurations. As an 
example, consider the noninverting gain-of-ten amplifier connection shown 
in Fig. 5.9. It is assumed that the input admittance and output impedance 
of the operational amplifier are small. The open-loop transfer function of 
the operational amplifier is' 

5 X 105 
a(s) - 0 (5.10)

(s + 1)(10- 4s + 1)(10- 5 s + 1) 

and it is assumed that the user cannot alter this function. When connected 
as shown in Fig. 5.9 the value of f is 0.1, and thus the negative of the loop 
transmission is 

a(s)f(s) - X 1 ) (5.11) 
(s + I1)(10-4S + 1)(10--5S + 1) 

1While an analytic expression is used for a(s) in this example, the reader should realize 

that the open-loop transfer function of an operational amplifier will generally not be 

available in this form. Note, however, that an experimentally determined Bode plot is 

completely acceptable for all of the required manipulations, and that this information can 

always be determined. 
The general characteristics of the assumed open-loop transfer function are typical of 

many operational amplifiers, in that this quantity is dominated by a single pole at low 

frequencies. At frequencies closer to the unity-gain frequency, additional negative phase 

shift results from effects related to transistor limitations. As we shall see in later sections, 

these effects constrain the ultimate performance capabilities of the amplifier. 
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Figure 5.9 Gain-of-ten amplifier. 

The closed-loop gain is 

V0(s) (s) a(s) 
Vi(s) 1 + a(s)f(s) 

10 

2 X 10-"s3 + 2.2 X 10-9 s2 + 2 X 10s + I (5.12) 

A Bode plot of Eqn. 5.11 (Fig. 5.10) shows that the system crossover 
frequency is 2.1 X 104 radians per second, its phase margin is 130, and the 
gain margin is 2. 

While the problem statement precludes altering a(s), we can introduce a 
lead transfer function into the loop transmission by including a capacitor 
across the upper resistor in the feedback network. The topology is shown 
in Fig. 5.1 la, with a block diagram shown in Fig. 5.1 lb. The negative of 
the loop transmission for the system is 

a'(S)f'(S) = 5 X 104(9RCs + 1)
(s + 1)(10- 4s + 1)(10- 5s + 1)(0.9RCs + 1) 

Several considerations influence the selection of the R-C product that 
locates the singularities of the lead network. As mentioned earlier, the ob­
jective of a lead network is to provide positive phase shift in the vicinity 
of the crossover frequency, and maximum positive phase shift from the 
network results if crossover occurs at the geometric mean of the zero-pole 
pair. However, the network singularities and the crossover frequently can­
not be adjusted independently for this system, since if the zero of the lead 
network is located at a frequency below about 3 X 104 radians per second, 
the crossover frequency increases. An increase in crossover frequency in­
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Figure 5.10 Bode plot for uncompensated grain-of-ten amplifier. af = 5 X 104/ 
[(s + 1)(10- 4s + 1)(10- 5s + 1)]. 

creases the negative phase shift of the amplifier at this frequency, offsetting 
in part the positive phase shift of the network. A related consideration in­
volves the effect of the lead network on the ideal closed-loop gain of the 
amplifier since the network is introduced in the feedback path and the ideal 
gain is reciprocally related to the feedback transfer function. If the lead-
network zero is located at a low frequency, a low-frequency closed-loop 
pole that reduces the closed-loop bandwidth of the system results. 

A reasonable compromise in this case is to locate the zero of the lead 
network near the unity-gain frequency, in an attempt to obtain positive 
phase shift from the network without a significant increase in the crossover 
frequency. The choice RC = 4.44 X 10-6 seconds locates the zero at 2.5 X 
104 radians per second. A Bode plot of Eqn. 5.13 for this value of RC is 

shown in Fig. 5.12. The unity-gain frequency is increased slightly to 2.5 X 
104 radians per second, while the phase margin is increased to the respect­
able value of 47'. Gain margin is 14. 

A lag transfer function can be introduced into the forward path of the 

amplifier by shunting a series resistor-capacitor network between its input 

terminals as shown in Fig. 5.13a. Note that the same loop transmission 
could be obtained by shunting the R-valued resistor with the R-C network, 
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Figure 5.11 Gain-of-ten amplifier with lead network in feedback path. (a) Circuit. 
(b) Block diagram. 

since both the bottom end of the R-valued resistor and the noninverting 
input of the amplifier are connected to incrementally grounded points. If 
this later option were used, the R-C network would introduce the lag 
transfer function into the feedback path of the topology. Consequently, 
the ideal closed-loop transfer function would include the reciprocal of the 
lag function. Since the singularities of lag networks are generally located 
at low frequencies, the closed-loop transfer function could be adversely 
influenced at frequencies of interest. (See Problem P5.7.) 

V 
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Figure 5.12 Bode plot for lead-compensated gain-of-ten amplifier. a']' = 

5 X 104(4 X 10- 5s + 1)/[(s + 1)(10- 4s + 1)(10-5s + 1)(4 X 10- 6s + 1)]. 

The system block diagram for the topology of Fig. 5.13a is shown in 
Fig. 5.13b. In this case, the lag transfer function appears in both the feed­
back path and a forward path outside the loop. The block diagram can 
be rearranged as shown in Fig. 5.13c; and this final diagram shows that 
including the R 1-C network between amplifier inputs leaves the ideal closed-
loop gain unchanged. The negative of the loop transmission for Fig. 5.13c is 

a"(s)f"(s) = 0.1 (Ts + 1) a(s) (5.14) 
(ars + 1) 

where 
R1 + 0.9R 

a - R, 0 and r = RiC 
R1 

As mentioned earlier, the singularities of a lag transfer function are gen­
erally located well below the system crossover frequency so that the lag 
network does not deteriorate phase margin significantly. A frequently used 
rule of thumb suggests locating the zero of the lag network at one-tenth of 
the crossover frequency that results following compensation, since this 
value yields a maximum negative phase contribution of 5.7' from the net­
work at crossover. We also, rather arbitrarily, decide to choose the lag-net­
work parameters to yield a phase margin of approximately 47', the same 
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Figure 5.13 Gain-of-ten amplifier with lag compensation. (a) Circuit. (b) Block 
diagram. (c) Block diagram following rearrangement. 
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value as that of the system compensated with a lead network. The Bode 
plot of the system without compensation, Fig. 5.10, aids in selecting lag-
network parameters. This plot indicates an uncompensated phase angle of 
- 128* and an uncompensated magnitude of 6.2 at a frequency of 6.7 X 101 
radians per second. If the value of 6.2 is the chosen high-frequency attenu­
ation a of the lag network, the compensated crossover frequency will be 
6.7 X 103 radians per second. The 50 of negative phase shift anticipated 
from a properly located lag network combines with the - 1280 of phase 
shift of the system prior to compensation to yield a compensated phase 
margin of 47*. The zero of the lag network is located at 6.7 X 102 radians 
per second, a factor 10 below crossover. These design objectives are met 
with R1 = 0.173R and R1C = 1.5 X 10-3 seconds. With these values, the 
negative of the loop transmission is 

a"(S)f(S) =5 X 104(l.5 X 10- 3 s + 1)
(s + 1)(10- 4s + 1)(10- 5s + 1)(9.3 X 10-as + 1) 

This transfer function, plotted in Fig. 5.14, indicates predicted values 
for crossover frequency and phase margin. The gain margin is 15. 

Two other modifications of the loop transmission result in Bode plots 
that are similar to that of the lag-compensated system in the vicinity of the 
crossover frequency. One possibility is to lower the value of aofo by a 
factor of 6.2 (see Section 5.2.1). The required reduction can be accomplished 
by simply using the shunt-resistor value determined for lag compensation 
directly across the input terminals of the operational amplifier. This modi­
fication results in the same crossover frequency as that of the lag-compen­
sated amplifier, and has several degrees more phase margin since it does not 
have the slight negative phase shift associated with the lag network at 
crossover. Unfortunately, the lowered aofo results in a lower value for de-
sensitivity compared with that of the lag-compensated amplifier at all fre­
quencies below the zero of the network. 

A second possibility is to move the lowest-frequency pole of the loop 
transmission back by a factor of 6.2. This modification might be made to 
the amplifier itself, or could be accomplished by appropriate selection of 
lag-network components. The effect on parameters in the vicinity of cross­
over is essentially identical to that of reducing aofo. Desensitivity is retained 
at d-c with this method, but is lowered at intermediate frequencies compared 
to that provided by lag compensation. These two approaches to compen­
sating the amplifier described here are investigated in detail in Problem 
P5.8. 

The discussion of series compensation up to this point has focused on 
the use of the frequency-domain concepts of phase margin, gain margin, 
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Figure 5.14 Bode plot for lag compensated gain-of-ten amplifier. a"f" = 

5 X 104(1.5 X 10- 3s + 1)/[(s + 1)(10- 4s + 1)(10- s + 1)(9.3 X 10-as + 1)]. 

and crossover frequency to determine compensating-network parameters. 
Root-locus methods cannot be used directly since the value of aofo is not 
varied to effect compensation. However, the root-locus sketches for the 
uncompensated, lead-compensated, and lag-compensated systems shown 
in Fig. 5.15 do lend a degree of insight into system behavior. (There is 
significant distortion in these sketches, since it is not convenient to present 
sketches accurately where the singularities are located several decades 
apart.) 

The root-locus diagram of Fig. 5.15a illustrates the change in closed-loop 
pole location as a function of aofo for the uncompensated system. Adding 
the lead network (Fig. 5.15b) shifts the dominant branches to the left and, 
thus, improves the damping ratio of this pair of poles for a given value 
of aofo. 

The effect of lag compensation is somewhat more subtle. The root-locus 
diagram of Fig. 5.15c is virtually identical to that of Fig. 5.15a except in 
the immediate vicinity of the lag-network singularity pair. However, a gain 
calculation using rule 8 (Section 4.3.1) shows that the value of aofo required 
to reach a given damping ratio for the dominant pair is higher by approxi­
mately a factor of a when the lag network is included. 
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Figure 5.15 Root-locus diagrams illustrating compensation of gain-of-ten ampli­
fier. (a) Uncompensated. (b) Lead compensated. (c) Lag compensated. 
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Root contours can also be used to show the effects of varying a single 
parameter of either the lead or the lag network. This design approach is 
explored in Problems P5.9 and P5.10. 

5.2.5 Evaluation of the Effects of Compensation 

There are several ways to demonstrate the improvement in performance 
provided by compensation. Since the parameters of the compensating trans­
fer function are usually determined with the aid of loop-transmission Bode 
plots, one simple way to evaluate various types of compensation is to com­
pare the desensitivity obtained from them. The considerations used to de­
termine lead- and lag-compensation parameters for an operational ampli­
fier connected to provide a gain of 10 were described in detail in Section 
5.2.4. The resulting loop transmissions, repeated here for convenience, are 

a'(sTf'(S) = 5 X 104(4 X 105 s + 1)
(s + 1)(10- 4 s + 1)(10- 5s + 1)(4 X 10--6s 1) 

and 

a"(S)f"(S) 5 X 104(l.5 X 10- 3 s + 1)

(s + 1)(10-4 s + 1)(10-5 s + 1)(9.3 X 10- 3 s + 1)
 

for the lead- and lag-compensated cases, respectively. The phase-margin 
obtained by either method is approximately 47*. 

It was mentioned that the stability of the uncompensated amplifier 
could be improved by either lowering a0fo by a factor of 6.2, resulting in 

i 18.1 X 101 
(s -+ 1)(10-4 s + 1)(10- s + 1) (5.18) 

or by lowering the location of the first pole by the same factor, yielding 

= 5 X 104 (5.19)a""(s)f""(s) = 
(6.2 s + 1)(10-4 s + 1)(10-- S + 1) 

Either of these approaches results in a crossover frequency identical to 
that of the lag-compensated system and a phase margin of approxi­
mately 520. 

The magnitude portions of the loop transmissions for these four cases are 
compared in Fig. 5.16. The relative desensitivities that are achieved at 
various frequencies, as well as the relative crossover frequencies, are 
evident in this figure. 

An alternative way to evaluate various compensation techniques is to 
compare the error coefficients that are obtained using them. This approach 
is explored in Problem P5.11. As expected, systems with greater desensi­
tivity generally also have smaller-magnitude error coefficients. 
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Figure 5.16 Effects of various types of compensation on loop-transmission mag­
nitude. 

The discussion of compensation up to now has focused on the use of 
Bode plots, since this is usually the quickest way to find compensating 
parameters. However, design objectives are frequently stated in terms of 
transient response, and the inexperienced designer often feels an act of 
faith is required to accept the principle that systems with properly chosen 
values for phase margin, gain margin, and crossover frequency will produce 
satisfactory transient responses. The step responses shown in Fig. 5.17 are 
offered as an aid to establishing this necessary faith. 

Figure 5.17a shows the step response of the gain-of-ten amplifier with­
out compensation. The large peak overshoot and poor damping of the 
ringing reflect the low phase margin of the system. The overshoot and 
damping for the lead compensated, lag compensated, and reduced aofc 
cases (Figs. 5.17b, 5.17c, and 5.17d, respectively) are significantly improved, 
as anticipated in view of the much higher phase margins of these connec­
tions. The step response obtained by lowering the frequency of the first 
pole in the loop is not shown, since it is indistinguishable from Fig. 5.17d. 

Certain features of these step responses are evident from the figures. 
The peak overshoot exhibited by the amplifier with reduced aofo is slightly 
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Figure 5.17 Response of gain-of-ten amplifier to an 80-mV step. (a) No compen­
sation. (b) Lead compensated. (c) Lag compensated. (d) Lowered aefo. (e) Lead 
compensation in forward path. (f) Second-order approximation to (c). 
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less than that of the amplifier with lag compensation, reflecting slightly 

higher phase margin. Similarly, the rise time of lag-compensated amplifier 
is very slightly faster, again reflecting the influence of relative phase margin 
on the performance of these two systems with identical crossover fre­
quencies. The smaller peak overshoot of the lead-compensated system does 
not imply greater relative stability for this amplifier, but rather occurs be­

cause of the influence of the lead network in the feedback path on the ideal 
closed-loop gain. 

Figure 5.17e shows the step response that results if lead compensation 
is provided in the forward path rather than in the feedback path. Thus the 

loop transmission for this transient response is identical to that of Fig. 
5.17b (Eqn. 5.16), but the feedback path for the system illustrated in Fig. 

5.17e is frequency independent. While forward-path lead compensation 

was prohibited by the problem statement of the earlier examples, Fig. 
5.17e provides a more realistic indication of relative stability than does 

Fig. 5.17b, since Fig. 5.17e is obtained from a system with a frequency-

independent ideal gain. The difference between these two systems with 
identical loop transmissions arises because of differences in the closed-loop 
zero locations (see Section 4.3.4). 

The peak overshoot and relative damping of Figs. 5.17c and 5.17e are 

virtually identical, demonstrating that, at least for this example, equal 

values of phase margin result in equal relative stability for the lead- and 

lag-compensated systems. The rise time of Fig. 5.17e is approximately one-
quarter that of Fig. 5.17c, and this ratio is virtually identical to the ratio of 

the crossover frequencies of the two amplifiers. 
The step response of Fig. 5.17f is that of a second-order system with 

= 0.45 and co = 8.5 X 103 radians per second. These values were ob­

tained using Fig. 4.26a to determine a second-order approximating system 

to the lag-compensated amplifier. The similarity of Figs. 5.17c and 5.17f 
is another example of the accuracy that is frequently obtained when com­

plex systems are approximated by first- or second-order ones. The loop 

transmission for the lag-compensated system (Eqn. 5.17) includes^ four 

poles and one zero. However, this quantity has only a single-pole roll off 

between 6.7 X 102 radians per second and the crossover frequency, with a 

second pole in the vicinity of crossover. It can thus be well approximated 

as a system with two widely separated poles, the model from which Fig. 

4.26 was developed. 

5.2.6 Related Considerations 

Several additional comments concerning the relative benefits of different 

series compensation methods are in order. The evaluation of performance 



192 Compensation 

in the previous example seems to imply advantages for lead compensation. 
The lead-compensated amplifier appears superior if desensitivity at various 
frequencies, error-coefficient magnitude, or speed of transient response is 
used as the indicator of performance. Furthermore, if the lead transfer 
function is included in the feedback path, the amplifier exhibits better-
damped transient responses than can be obtained from other types of com­
pensation selected to yield equivalent phase margin. The advantages asso­
ciated with lead compensation primarily reflect the higher value for cross­
over frequency and the correspondingly higher closed-loop bandwidth that 
is frequently possible with this method. It should be emphasized, however, 
that bandwidth in excess of requirements usually deteriorates overall per­
formance. Larger bandwidth increases the noise susceptibility of an ampli­
fier and frequently leads to greater stability problems because of stray in­
ductance or capacitance. 

Lead compensation usually aggravates the stability problem if the loop 
also includes elements that provide large negative phase shift over a wide 
frequency range without a corresponding magnitude attenuation. (While 
the constraints of physical realizability preclude elements that provide 
positive phase shift without an amplitude increase, the less useful converse 
described above occurs with distressing frequency.) For example, consider 
a system that combines a frequency-independent gain in a loop with a 
r-second time delay such as that provided by a delay line. The negative of 
the loop transmission for this system is 

a(s)f(s) = aoe-8 (5.20) 

The time delay is an element that has a gain magnitude of one at all fre­
quencies and a negative phase shift that is linearly related to frequency. 
The Nyquist diagram (Fig. 5.18) for this system shows that it is unstable 
for ao > 1. The use of lead compensation compounds the problem, since 
the positive phase shift of the lead network cannot counteract the unlimited 
negative phase shift of the time delay, while the magnitude increase of the 
lead function further lowers the maximum low frequency desensitivity 
consistent with stable operation. 

The correct approach is to use a dominant pole to decrease the magni­
tude of the loop transmission before the phase shift of time delay becomes 
excessive. The limiting case of an integrator (pole at the origin) works 
well, and this modification results in 

ao (5e-")a(s)f(s) = (5.21) 
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Figure 5.18 Nyquist test for a(s)f(s) = aoe-8'. 

The desensitivity of this function is infinite at d-c. The reader should con­
vince himself that the system is absolutely stable for any positive value of 

ao < sr/ 2 r, and that at least 450 of phase margin is obtained with positive 

ao < r/ 4r. 
The use of lag compensation introduces a type of error that compromises 

its value in some applications. If the step response of a lag-compensated 
amplifier is examined in sufficient detail, it is often found to include a long 
time-constant, small-amplitude "tail," which may increase inordinately the 
time required to settle to a small fraction of final value. Similarly, while 
the error coefficient ei may be quite small, the time required for the ramp 
error to reach its steady-state value may seem incompatible with the ampli­
fier crossover frequency. 

As an aid to understanding this problem, consider a system with f(s) = 1 
and 

a(s) = 1000(0.ls + 1) (5.22)
s(s + 1) 

This transfer function is an idealized representation of a system that com­
bines a single dominant pole with lag compensation to improve desensi­

http:1000(0.ls
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tivity. The zero of the lag network is located a factor of 10 below the cross­
over frequency. The closed-loop transfer function is 

a(s) (O.ls + 1) 
21 + a(s)f(s) 10- 3s + 0.101s + 1 

(O.s + 1) 
(0.09s + 1)(0.011s + 1) 

The response of this system to a unit step is easily evaluated via Laplace 
techniques, with the result 

v0(t) = 1 - 1.12 6e-110011 + 0.126e-1 0-09  (5.24) 

This step response reaches 10% of final value in 0.02 second, a reasonable 
value in view of the 100 radian per second crossover frequency of the sys­
tem. However, the time required to reach 1% of final value is 0.23 second 
because of the final term in Eqn. 5.24. Note that if a(s) is changed to 100/s, 
a transfer function with the same unity-gain frequency as Eqn. 5.22 and 
less gain magnitude at all frequencies below 10 radians per second, the 
time required for the system step response to reach 1% of final value is 
approximately 0.05 second. 

The root-locus diagram for the system (Fig. 5.19) clarifies the situation. 
The system has a closed-loop zero with a corner frequency at 10 radians 
per second since the zero shown in the diagram is a forward-path singu­
larity. The feedback forces one closed-loop pole close to this zero. The 
resultant closely spaced pole-zero doublet adds a long-time-constant tail 

I",
t

Closed-loop pole 
locations for ao = 1000 s plane 

-90 ;I­a 

Figure 5.19 Root-locus diagram for a(s)f(s) = ao(0.1s + 1)/[s(s + 1)]. 
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to the otherwise well-behaved system transient response. The reader should 
recall that it is precisely this type of doublet that deteriorates the step re­
sponse of a poorly compensated oscilloscope probe. Since linear system 
relationships require that the ramp response be the integral of the step 
response, the time required for the ramp error to reach final value is simi­
larly delayed. 

Similar calculations show that as the lag transfer function is moved 
further below crossover, the amplitude of the tail decreases, but its time 
constant increases. We conclude that while lag compensation is a powerful 
technique for improving desensitivity, it must be used with care when the 
time required for the step response to settle to a small fraction of its final 
value or the time required for the ramp error to reach final value is con­
strained. 

It should be emphasized that a closed-loop pole will generally be located 
close to any open-loop zero with a break frequency below the crossover 
frequency. Thus the type of tail associated with lag compensation can also 
result with, for example, lead compensation that often includes a zero below 
crossover. The performance difference results because the zero and the 
closed-loop pole that approaches it to form a doublet are usually located 

Table 5.1 Comparison of Series-Compensating Methods 

Type Special Considerations Advantages Disadvantages 

Reduced aof Simplicity. Lowest desensitivity. 

Create 
dominant 
pole 

Lower the frequency 
of the existing 
dominant pole if 
possible. 
Locate at the output 
of a regulator. 

Can improve noise 
immunity of system. 
Usually the type of 
choise for a regulator. 

Lowers bandwidth. 

Lag Locate well below 
crossover frequency. 

Better desensitivity 
than either of above. 

May add undesirable 
"tail" to transient 
response. 

Lead Locate zero near 
crossover frequency. 

Greatest desensitivity. 
Lowest error coeffi-
cients. 

Increases sensitivity 
to noise. 
Cannot be used with 

Fastest transient fixed elements that 
response. contribute excessive 

negative phase shift. 
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close to the crossover frequency for lead compensation. Thus the decay 
time of the resultant tail, which is determined by the closed-loop pole in 
question, does not greatly lengthen the settling time of the system. 

It is difficult to develop generalized rules concerning compensation, since 
the proper approach is highly dependent on the fixed elements included in 
the loop, on the types of inputs anticipated, on the performance criterion 
chosen, and on numerous other factors. In spite of this reservation, Table 
5.1 is an attempt to summarize the most important features of the four types 
of series compensation described in this section. 

5.3 FEEDBACK COMPENSATION 

Series compensation is accomplished by adding a cascaded element to a 
single-loop feedback system. Feedback compensation is implemented by 
adding a feedback element which creates a two-loop system. One possible 
topology is illustrated in Fig. 5.20. The closed-loop transfer function for 
this system is 

V0 aia2/(1 + a2 f 2) (5.25) 
V I + aia2fi/(1+ a2f 2) 

A series-compensated system with a feedback element identical to the 
major-loop feedback element of Fig. 5.20 is shown in Fig. 5.21. The two 
feedback elements are identical since it is assumed that the same ideal 
closed-loop transfer function is required from the two systems. The closed-
loop transfer function for the series-compensated system is 

V0 a 3a4 
(5.26)Va I aaa4 f1 

The closed-loop transfer functions of the feedback- and series-compen­
sated systems will be equal if f2 is selected so that 

a (5.27a)
(1 +a1a

a
2 
2f 2)a4 

or 

f2 =aa -- (5.27b)2 a3a4 
a 2a3 a 4 

The above analysis suggests that one way to select appropriate feedback 
compensation is first to determine the series compensation that yields ac­

ceptable performance and then convert to equivalent feedback compensa­
tion. In practice, this approach is normally not used, but rather the series 

compensation is determined to exploit potential advantages of this method. 
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Vi ala2 V 

Inner or minor loop 

Break loop here to f2 4 
determine loop transmission 

Compensating 
feedback 
element 

Vb f 

Outer or major loop 

Figure 5.20 Topology for feedback compensation. 

We shall see that if an operational amplifier is designed to accept feedback 

compensation, the use of this technique often results in performance su­

perior to that which can be achieved with series compensation. The fre­

quent advantage of feedback compensation is not a consequence of any 

error in the mathematics that led to the equivalence of Eqn. 5.27 but in­

stead is a result of practical factors that do not enter into these calcula­

tions. For example, the compensating network required to obtain specified 

closed-loop performance is often easier to determine and implement and 

may be less sensitive to variations in other amplifier parameters in the case 

of a feedback-compensated amplifier. Similarly, problems associated with 

nonlinearities and noise are often accentuated by series compensation, 

yet may actually be reduced by feedback compensation. 

a3 4 i o 

Figure 5.21 Series-compensated system. 
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The approach to finding the type of feedback compensation that should 
be used in a given application is to consider the negative of the loop trans­
mission for the system of Fig. 5.20. This quantity is 

Vb a2 
- aifi (5.28)

V. I + a2f2 

If the inner loop is stable (i.e., if 1 + a2f 2 has no zeros in the right half 
of the s plane), then 

Vb(jo) _ai(jw)fi(jo)V ) ai(wlfi ) |a 2(jo)f 2(jO) >>1 (5.29a) 
Va(jo) f2(jo) 

and 
VUCO) a1(jo)fi(jco)a2(jo) |a 2(jo)f (jw) I << I (5.29b)2 

V.(jo) 

In practice, system parameters are frequently selected so that the mag­
nitude of the transmission of the minor loop is large at frequencies where 
the magnitude of the major loop transmission is close to one. The approxi­
mation of Eqn. 5.29a can then be used to determine a value for f2 that 
insures stability for the system. 

A simple example of feedback compensation is provided by the opera­
tional-amplifier model shown in Fig. 5.22a. The model is an idealization of a 
common amplifier topology that will be investigated in detail in subsequent 
sections. The amplifier modeled includes a first stage with wide bandwidth 
compared to the rest of the circuit driving into a second stage that has 
relatively low input impedance and that dominates the uncompensated dy­
namics of the amplifier. The compensation is provided by a two-port net­
work that is connected around the second stage and that forms a minor 
loop. This network is constrained to be passive. A block diagram for the 
amplifier is shown in Fig. 5.22b. The quantity Ye is the short-circuit transfer 
admittance of the compensating network, I/ V,. 2 

If no compensation is used, the open-loop transfer function for the ampli­
fier is 

V0(s) 106 
(5.30)

Vi(s) (10- 3 s + 1)2 

If a wire is connected from the output of the amplifier back to its input, 
creating a major loop with f = 1, the phase margin of the resultant system 
is approximately 0.120. 

2The convention used to define Ye is at variance with normal two-port notation, which 
would change the reference direction for I,,. This form is used since it results in fewer minus 
signs in subsequent equations. 
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+ 	 V 
Vi 	 1-3 lt 109 volt
 

volt (10-3s + 1)2 amp a
II, 
(a) 

i--- 10-3 + a-1s0+129 

.	 v. 

(b) 

Figure 5.22 Operational amplifier. (a) Model. (b) Block diagram. 

When feedback compensation is included, the block diagram shows that 
the amplifier transfer function is 

V0(s) -- 106/(10-3s + 1)2 
Vi(s) 1 + 109 Ye/(10-l 3 s + 1)2 

One way to improve the phase margin of this amplifier when used in a 
feedback connection is to make V,(s)/Vj(s) dominated by a single pole. 
Equation 5.31 shows that 

V0(jW) -10-3 109 Y(f)
when - >> 1 (5.32)

Vi(jo) Ye(jw) 	 (10-3jW + 1)2 

If a single capacitor C is used for the compensating network, Yc = Cs 
and 

V0(jW) -10-3 	 (533 
Vi(jw) jWC 
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for all frequencies such that 

106 CjW 

(10--jW + 1)2 

The exact expression for the amplifier open-loop transfer function with 
this compensation is 

V0(s) - 106/(10-s + 1)2 

Va(s) 1 + 109Cs/(10-s + 1)2 

-106 
6 2ci- s + (2 X 10~ + 109C)s + 1 (5.34) 

If an 840-pF capacitor is used for C, the transfer function becomes 

V0(s) - 106
 
Vi(s) (0.84s + 1)(1.19 X 10-Is + 1)
 

and a phase margin of at least 450 is assured for frequency-independent 
feedback with any magnitude less than one applied around the amplifier. 
With this value of compensating feedback element, 

V0(jo) 1.19 X 106 10-3 10-1 
- _ - = -(5.36)

Vi(jo) j = Cio Yc(jw) 

at any frequency between 1.19 radians per second and 0.84 X 106 radians 
per second. The two bounding frequencies are those at which the magni­
tude of the compensating loop transmission is one. The essential point is 
that minor-loop feedback controls the transfer function of the amplifier 
over nearly six decades of frequency. We also note that even though a 
dominant pole has been created by means of feedback compensation, the 
unity-gain frequency of the compensated amplifier (approximately 8 X 101 
radians per second) remains close to the uncompensated value of 106 

radians per second. 
Feedback compensation is a powerful and frequently used compensating 

technique for modern operational amplifiers. Several examples of this type 
of compensation will be provided after the circuit topologies of representa­
tive amplifiers have been described. 

PROBLEMS 

P5.1 
An operational amplifier has an open-loop transfer function 

2 X 105 

(0.1s + 1)(10-Is + 1)2 
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Design a connection that uses this amplifier to provide an ideal gain of 
- 10. Include provision to lower the magnitude of the loop transmission 
so that the overshoot in response to a unit step is 10%. You may use the 
curves of Fig. 4.26 as an aid to determining the required attenuation. 

P5.2 
An operational amplifier is connected as shown in Fig. 5.23a. The value 

of a is adjusted to control the stability of the connection. Assume that 
noise associated with the amplifier can be modeled as shown in Fig. 5.23b. 
Evaluate the noise at the amplifier output as a function of a, neglecting 
loading at the input and the output of the amplifier. Note that an increase 
in the noise at the amplifier output implies a decrease in signal-to-noise 
ratio, since the gain from input to output is essentially independent of a. 

P5.3 
A certain feedback amplifier can be modeled as shown in Fig. 5.24. 

You may assume that the operational amplifier included in this diagram 
is ideal. Select a value for the capacitor C that results in a system phase 
margin of 450. 

R 

R 

aRyi 

(a) 

En 

(b) 

Figure 5.23 Evaluation of noise at the output of an inverting amplifier. (a) Inverter 
connection. (b) Method for modeling noise at amplifier input. 
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C 

10 kn 

0"s + 1) (10-7 S + 1) ~ 
+(10-6 

Power stage 

10 kn 

Figure 5.24 Feedback system with dominant pole. 

P5.4 
A speed-control system combines a high-power operational amplifier in 

a loop with a motor and a tachometer as shown in Fig. 5.25. The tach­
ometer provides a voltage proportional to output shaft velocity, and this 
voltage is used as the feedback signal to effect speed control. 

(a) 	Draw a block diagram for this system that includes the effects of the 
disturbing torque. 

(b) 	Determine compensating component values (R and C) as a function of 

JL so that the system loop transmission is - 100/s. 
(c) 	 Show that, with this type of loop transmission, the steady-state output 

velocity is independent of any constant load torque. 
(d) 	 Use an error-coefficient analysis to show that the system is less sensi­

tive to time-varying disturbing torques when larger values of JL are 
used. Assume that R and C are changed with JL to maintain the loop 
transmission indicated in part b. 

P5.5 
Show that the network illustrated in Fig. 5.26 can be used to combine 

a lag transfer function with a lead transfer function located at a higher 

frequency. Determine network parameters that will result in the transfer 
function 

VI(s) (0.1s + 1)(10-2s + 1)
 
Vi(s) (s + 1)(10-as + 1)
 

P5.6
 
The loop transmission of a feedback system can be approximated as 

106 
L(s) ­ 2 
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.L kg-m 

100 k92 

Voltage from 
tachometer = 0.01 volts/rad/sec X 92 

(a) 

'a 

1 92 

+ 	 Voltage = 0.1 volts/rad/sec X 2, 

Motor torque = 0.1 newton - meter 
- per amp of I. 

I 	 (b) 

Figure 5.25 Speed-control system. (a) System diagram. (b) Motor model. 

in the vicinity of the unity-gain frequency. Assume that a lead transfer 

function (Eqn. 5.4) with a value of a = 10 can be added to the loop trans­

mission. How should the transfer function be located to maximize phase 

margin? What values of phase margin and crossover frequency result? 

P5.7 
Use a block diagram to show that a lag transfer function can be intro­

duced into the loop transmission of the gain-of-ten amplifier (Fig. 5.9) by 

shunting the R-valued resistor with an appropriate network. 

(a) 	 Choose network parameters so that the system loop transmission is 

given by Eqn. 5.15. 
(b) 	Find the closed-loop transfer function and plot the closed-loop step 

response for the gain-of-ten amplifier using values found in part a, 

assuming that the operational-amplifiercharacteristicsare ideal. 

(c) 	 Estimate the closed-loop step response for this connection assuming 

that the amplifier open-loop transfer function is as given by Eqn. 5.10. 

(d) 	 Compare the performance of the lag-compensated system developed 

in this problem with that shown in Fig. 5.13 considering both the sta­
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C, 

VWV 

Ri 

V 	 2 

C2 

Figure 5.26 Lag-Lead network. 

bility and the ideal closed-loop transfer function of the two con­

nections. 

P5.8 
It was mentioned in Section 5.2.4 that alternative compensation possi­

bilities for the gain-of-ten amplifier include lowering the magnitude of the 

loop transmission at all frequencies by a factor of 6.2 and lowering the 

location of the lowest-frequency pole in the loop transfer function by a 

factor of 6.2 by selecting appropriate lag-network parameters. 

(a) 	 Determine topologies and component values to implement both of 

these compensation schemes. 
(b) 	 Draw loop-transmission Bode plots for these two methods of compensa­

tion. 
(c) 	 Compare the relative stability produced by these methods with that 

provided by the lag compensation described in Section 5.2.4. 

P5.9 
The negative of the loop transmission for the lead-compensated gain-of­

ten amplifier described in Section 5.2.4 is 

5 X 104(1Ors + 1)
a(s)f(s) = ­

(s + 1)(10- 4s + 1)(10-s + 1)(rs + 1) 

where r is determined by the resistor and capacitor values used in the feed­

back network (see Eqn. 5.13). Use root contours to evaluate the stability 

of the gain-of-ten amplifier as a function of the parameter T. Find the value 

of r that maximizes the damping ratio of the dominant pole pair. Note. 

Since it is necessary to factor third- and fourth-order polynomials in order 

to complete this problem, the use of machine computation is suggested. 

Numerical calculations are also suggested to evaluate the maximum damp­

ing ratio. 
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P5.10 
The negative of the loop transmission for the lag-compensated amplifier 

is 

5 X 104(rs + 1) 

a(s)f(s) = (s + 1)(10- 4s + 1)(10-s + 1)(aTS + 1) 

It was shown in Section 5.2.4 that reasonable stability results for a = 6.2 

and a value of r that locates the lag-function zero a factor of 10 below cross­

over. Use root contours to evaluate stability as a function of the zero lo­

cation (1/r) for a = 6.2. The note concerning the advisability of machine 

computation mentioned in Problem P5.9 applies to this calculation as well. 

P5.11 
Determine the first three error coefficients for the four loop transmissions 

of the gain-of-ten amplifier described by Eqns. 5.16 through 5.19. Assume 

that the lead compensation is obtained in the feedback path (see Section 

5.2.4) while all other compensations can be considered to be located in the 

forward path. 

P5.12 
A feedback system includes a factor 

(s2 /1 2 ) - (s/2) + 1 

(s2/12) + (s/2) + 1 

in its loop transmission. 
Assume that you have complete freedom in the choice of d-c loop-trans­

mission magnitude and the selection of additional singularities in the loop 

transmission. Determine the type of compensation that will maximize the 

desensitivity of this system. 

P5.13 
Calculate the .settling time (to 1 % of final value for a step input) for the 

gain-of-ten amplifier with lag compensation (Eqn. 5.15). Contrast this 

value with that of a first-order system with an identical crossover frequency. 

P5.14 
A model for an operational amplifier using minor-loop compensation 

is shown in block-diagram form in Fig. 5.27. 

(a) 	 Assume that the series compensating element has a transfer function 

ac(s) = 1. Find values for b and r such that a major loop formed by 

feeding V0 directly back to Vi will have a crossover frequency of 101 

radians per second, approximately 550 of phase margin, and maximum 

desensitivity at frequencies below crossover subject to these constraints. 



206 Compensation 

V, 3 x 10-3 a,(s) 	 - UU y,V 

bs2 
rs + 

Figure 5.27 Operational-amplifier model. 

Draw an open-loop Bode plot for the amplifier with these values for 
b and r. 

(b) 	 Now assume that b = 0. Can you find a value for ac(s) that results in 
the same asymptotic open-loop magnitude characteristics as you ob­
tained in part a, subject to the constraint that I ac(jw) < 1 for.all w? 

P5.15 
This problem includes a laboratory portion that can be performed with 

commonly available test equipment and that will give you experience com­
pensating a system with well-defined dynamics. The experimental vehicle 
is the circuit shown in Fig. 5.28, which gives quite repeatable operational­
amplifier-like characteristics. The suggested experiments use the configura­
tion at relatively low frequencies, so that the inevitable stray circuit ele­
ments have little effect on the measured performance. 

The dynamics of the circuit should first be standardized. Connect it as 
an inverting amplifier as shown in Fig. 5.29. 

Select the capacitor C connected between pins 1 and 8 of the LM301A 
so that the configuration is just on the verge of instability. An estimated 
value should be around 5000 pF. Please remember that the amplifier reacts 
very poorly (usually by dying) if pins 1 or 5 are shorted to almost any po­
tential. 

Note. The assumptions required for linear analysis are severely compro­
mised if the peak-to-peak magnitude of the input signal exceeds approxi­
mately 50 mV. It is also necessary to have the driving source impedance 
low in this and other connections. A resistive divider attenuating the 
signal-generator output and located close to the amplifier is suggested. 

After this standardization, it is claimed that if the loads applied to the 
amplifier are much higher than the output impedance of the network in­
volving the 0.15 AF capacitor, etc., we can approximate a(s) as 

5 X 104 
a(s) ~ 

(s -+-1)(10 3 s + 1)(10 4 s + 1) 



-15 V 

2 k92 4.3 k2 
Differential -o Output 

input 

0.15 pF 

Note. This complete circuit will be denoted as 

0 

a(s) 

in the following figures. 

Figure 5.28 Amplifier with controlled dynamics. Pin numbers are for TO-99 and 
minidip packages. 

220 k2 

v 
Vi 

Figure 5.29 Inverting configuration. 
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220 k n 

22 kS2 

Figure 5.30 Inverting gain-of-ten amplifier. 

for purposes of stability analysis. This transfer function is not unique and, 
in general, functions of the form 

X I'r
a(s) =5 

(rs + 1)(10-s + 1)(10-4S + 1) 

will yield equivalent results in your analysis providing r >> 1o-3 seconds. 
Supply a convincing argument why the above family of transfer functions 

properly represents the operational amplifier that you have just brought to 
the verge of oscillation. Note that simply showing the two given expressions 
are equivalent is not sufficient. You must show why they can be used to 
analyze the standardized circuit. 

Use a Bode plot to determine the phase margin of the connection shown 
in Fig. 5.30 when the standardized amplifier is used. Predict a value for 
M, based on the phase margin, and compare your prediction with mea­
sured results. 

You are to compensate the system to improve its phase margin to 60* 
by reducing aofo and by using lag and lead compensating techniques. You 
may not change the value of C or elements in the network connected to the 
output of the LM301A, nor load the network unreasonably to implement 
compensation. 

Analytically determine the topology and element values you will use for 
each of the three forms of compensation. It may not be possible to meet the 
phase-margin objective using lead compensation alone; if you find this to 
be the case, you may reduce aofo slightly so that the design goal can be 
achieved. 

Compensate the amplifier in the laboratory and convince yourself that 
the step responses you measure are reasonable for systems with 60' of 
phase margin. Also correlate the rise times of the responses with your pre­
dicted values for crossover frequencies. 



CHAPTER VI 

NONLINEAR SYSTEMS
 

6.1 INTRODUCTION 

The techniques discussed up to this point have all been developed for 
the analysis of linear systems. While the computational advantages of the 
assumption of linearity are legion, this assumption is often unrealistic, 
since virtually all physical systems are nonlinear when examined in suffi­
cient detail. In addition to systems where the nonlinearity represents an 
undesired effect, there are many systems that are intentionally designed 
for or to exploit nonlinear performance characteristics. 

Analytic difficulties arise because most'of the methods we have learned 
are dependent on the principle of superposition, and nonlinear systems 
violate this condition. Time-domain methods such as convolution and fre­
quency-domain methods based on transforms usually cannot be applied 
directly to nonlinear systems. Similarly, the blocks in a nonlinear block 
diagram cannot be shuffled with impunity. The absolute stability question 
may no longer have a binary answer, since nonlinear systems can be stable 
for certain classes of inputs and unstable for others. 

The difficulty of effectively handling nonlinear differential equations is 
evidenced by the fact that the few equations we know how to solve are often 
named for the solvers. While considerable present and past research has 
been devoted to this area, it is clear that much work remains to be done. 
For many nonlinear systems the only methods that yield useful results in­
volve experimental evaluation or machine computation. 

This chapter describes two methods that can be used to determine the 
response or stability of certain types of nonlinear systems. The methods, 
while certainly not suited to the analysis of general nonlinear systems, are 
relatively easy to apply to many physical systems. Since they represent 
straightforward extensions of previously studied linear techniques, the in­
sight characteristic of linear-system analysis is often retained. 

6.2 LINEARIZATION 

One direct and powerful method for the analysis of nonlinear systems 
involves approximation of the actual system by a linear one. If the approxi­

209 
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mating system is correctly chosen, it accurately predicts the behavior of the 
actual system over some restricted range of signal levels. 

This technique of linearization based on a tangent approximation to a 
nonlinear relationship is familiar to electrical engineers, since it is used to 
model many electronic devices. For example, the bipolar transistor is a 
highly nonlinear element. In order to develop a linear-region model such 
as the hybrid-pi model to predict the circuit behavior of this device, the 
relationships between base-to-emitter voltage and collector and base cur­
rent are linearized. Similarly, if the dynamic performance of the transistor 
is of interest, linearized capacitances that relate incremental changes in 
stored charge to incremental changes in terminal voltages are included in 
the model. 

6.2.1 The Approximating Function 

The tangent approximation is based on the use of a Taylor's series esti­
mation of the function of interest. In general, it is assumed that the output 
variable of an element is a function of N input variables 

vo = F(v 11, v12 , . . . , VIN) 	 (6.1) 

The output variable is expressed for small variation vi,, Vi 2 , ... , viN about 
input-variable operating points V11, Vr 2 , . . . , VIN by noting that 

VO = Vo + v. = F(V1 1 , V 1 2, VIN) 

N VO 
+ 	 I Vii 

(=VIj Vn1,V 12,...,VIN 

1 N g2 
+ E vikVil --. + (6.2)

aVka V11, V2!k,= I VI1 1 2,..VIN 

(Recall that the variable and subscript notation used indicates that vo is a 
total variable, Vo is its operating-point value, and v0 its incremental com­
ponent.) 

The expansion of Eqn. 6.2 is valid at any operating point where the 
derivatives exist. 

Since the various derivatives are assumed bounded, the function can be 
adequately approximated by the first-order terms over some restricted 
range of inputs. Thus 

VO + vo - F(V1 1, V1 2, . . . , VIN) i (.3 
j-i a VIj VI, V12, VIN 
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Vi 2 1 -'I 3I1IaV2 PbVO 

Vi N--3-1 W I N V I, , VI2 --.-VIN 

N V ­

Figure 6.1 Linearized block diagram. 

The constant terms in Eqn. 6.3 are substracted out, leaving 

N~VO vij (6.4) 
j-i 0 V1 I V11, V12,- VIN 

Equation 6.4 can be used to develop linear-system equations that relate 
incremental rather than total variables and that approximate the incre­
mental behavior of the actual system over some restricted range of opera­

tion. A block diagram of the relationships implied by Eqn. 6.4 is shown in 

Fig. 6.1. 

6.2.2 Analysis of an Analog Divider 

Certain types of signal-processing operations require that the ratio of 

two analog variables be determined, and this function can be performed 

by a divider. Division is frequently accomplished by applying feedback 
around an analog multiplier, and several commercially available multi­

pliers can be converted to dividers by making appropriate jumpered con­

nections to the output amplifier included in these units. A possible divider 

connection of this type is shown in Fig. 6.2a. 

The multiplier scale factor shown in this figure is commonly used since 

it provides a full-scale output of 10 volts for two 10-volt input signals. It 



R 

VA 

R 

VD 

Multiplier 

V vB VC 
D 10 

VB 

VCc 

Va 

T 

a 

N 

+ 1-a(s) 

+. 

(a) 

vv 

10 

VB 

10O 1-0 

Figure 6.2 
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Analog divider. (a) Circuit. (b) Linearized block diagram. 
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is assumed that the multiplying element itself has no dynamics and thus 
the speed of response of the system is determined by the operational 
amplifier. 

The ideal relationship between input and output variables can easily be 
determined using the virtual-ground method. If the current at the inverting 
input of the amplifier is small and if the magnitude of the loop transmission 
is high enough so that the voltage at this terminal is negligible, the circuit 

relationships are 

VA+ VD 0 (6.5) 

and 

VD 
VBVC

=-(6*6)
10 

VBVO 

10 

Solving Eqns. 6.5 and 6.6 for vo in terms of VA and VB yields 

o 	 = OVA (6.7) 
VB 

System dynamics are determined by linearizing the multiplying-element 
characteristics. Applying Eqn. 6.3 to the variables of Eqn. 6.6 shows that 

VC 68VD+Vd B VBVc VCVb 
10 	 10 10 

The incremental portion of this equation is 

VBVc 	 VCVb 
vd - + 	 (6.9)

10 	 10 

This relationship combined with other circuit constraints (assuming the 

operational amplifier has infinite input impedance and zero output im­

pedance) is used to develop the incremental block diagram shown in Fig. 
6.2b. 

The incremental dependence of V on V,, assuming that VB is constant, 

is 
V0(s) _ - a(s)/2 (6.10) 
Va(s) 1 + VBa(s)120 

If the operational-amplifier transfer function is approximately single pole 

so that 

a(s) ao 	 (6.11) 
rS + 1 
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and ao is very large, Eqn. 6.10 reduces to 

V/0(s) -10/'VBV"S) - 0' (6.12)
V0(s) (20r Vaao)s + I 

Several features are evident from this transfer function. First, if VB is 
negative, the system is unstable. Second, the incremental step response of 
the system is first order, with a time constant of 2

0r VBao seconds. These 
features indicate two of the many ways that nonlinearities can affect the 
performance of a system. The stability of the circuit depends on an input-
signal level. Furthermore, if VB is positive, the transient response of the 
circuit becomes faster with increasing VB, since the loop transmission de­
pends on the value of this input. 

6.2.3 A Magnetic-Suspension System 

An electromechanical system that provides a second example of linear­
ized analysis is illustrated in Fig. 6.3. The purpose of the system is to sus­
pend an iron ball in the field of an electromagnet. Only vertical motion of 
the ball is considered. 

In order to suspend the ball it is necessary to cancel the downward gravi­
tational force on the ball with an upward force produced by the magnet. 
It is clear that stabilization with constant current is impossible, since while 
a value of XB for which there is no net force on the ball exists, a small 
deviation from this position changes the magnetic force in such a way as 
to accelerate the ball further from equilibrium. This effect can be cancelled 
by appropriately controlling the magnet current as a function of measured 
ball position. 

For certain geometries and with appropriate choice of the reference 
position for XB, the magnetic force fM exerted on the ball in an upward 
direction is 

f = Ci2 
fl 2 (6.13) 

XB 

where C is a constant. 
Assuming incremental changes Xb and im about operating-point values 

XB and IM, respectively, 

CI2CIM
fM=FMfm -- 2 2 m -CI3 Xb 

B Bi 

+ higher-order terms (6.14) 
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Figure 6.3 Magnetic-suspension system. 

The equation of motion of the ball is 

Md'xB 
(6.15)

dt2 - fi= Mg 

where g is the acceleration of gravity. Equilibrium or operating-point 
values are selected so that 

Mg -	 (6.16) 
X'B 

When we combine Eqns. 6.14 and 6.15 and assume operation about the 
equilibrium point, the linearized relationship among incremental variables 
becomes 

M d2xb 2CI 2CI . 
(6.17)

dt2 - X3 x=- - XB . 

Equation 6.17 is transformed and rearranged as 

s2 Xb(s) s + s XB 
-- 1 1 - IM Im(s) (6.18)

2 - Xb(s) = Xb(s) 

where k2 = 2C4m/ MXB. 
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1, (s) 

Figure 6.4 Linearized block diagram for system of Fig. 6.3. 

Feedback is applied to the system by making im a linear function of Xb, or 

Im(s) = a(s)Xb(s) (6.19) 

Equations 6.18 and 6.19 are used to draw the linearized block diagram 
shown in Fig. 6.4. [The input If,(s) is used as a test input later in the 
analysis.] 

The loop transmission for this system 

a(s) XB 

L(s) = - (6.20) 

+1) - ) 

contains a pole in the right-half plane that reflects the fact that the system 

is unstable in the absence of feedback. A naive attempt at stabilization for 

this type of system involves cancellation of the right-half-plane pole with 

a zero of a(s). While such cancellation works when the singularities in 

question are in the left-half plane, it is doomed to failure in this case. 

Although the pole could seemingly be removed from the loop transmission 

by this method,' consider the closed-loop transfer function that relates Xb 
to a disturbance Ij. 

I Component tolerances preclude exact cancellation in any but a mathematical system. 
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If a(s) is selected as a'(s)(s/k - 1), this transfer function is 

- XB Ji 

Xb(s) (s/k + 1)(s/k - 1) 
(6.21)

I'(s) a'(s) XB IM 
I+s/k + I 

Equation 6.21 contains a right-half-plane pole implying exponentially grow­
ing responses for Xb even though this growth is not observed as a change 
in i,. 

A satisfactory method for compensating the system can be determined 
by considering the root-locus diagrams shown in Fig. 6.5. Figure 6.5a is 
the diagram for frequency-independent feedback with a(s) = ao. As ao is 
increased, the two poles come together and branch out along the imaginary 
axis. This diagram shows that it is possible to remove the closed-loop pole 
from the right-half plane if ao is appropriately chosen. However, the poles 
cannot be moved into the left-half plane, and thus the system exhibits un­
dampened oscillatory responses. The system can be stabilized by including 
a lead transfer function in a(s). It is possible to move all closed-loop poles 
to the left-half plane for any lead-network parameters coupled with a suf­
ficiently high value of ao. Figure 6.5b illustrates the root trajectories for 
one possible choice of lead-network singularities. 

6.3 DESCRIBING FUNCTIONS 

Describing functions provide a method for the analysis of nonlinear sys­
tems that is closely related to the linear-system techniques involving Bode 
or gain-phase plots. It is possible to use this type of analysis to determine 
if limit cycles (constant-amplitude periodic oscillations) are possible for a 
given system. It is also possible to use describing functions to predict the 
response of certain nonlinear systems to purely sinusoidal excitation, al­
though this topic is not covered here.2 Unfortunately, since the frequency 
response and transient response of nonlinear systems are not directly re­
lated, the determination of transient response is not possible via describing 
functions. 

6.3.1 The Derivation of the Describing Function 

A describing function describes the behavior of a nonlinear element for 
purely sinusoidal excitation. Thus the input signal applied to the nonlinear 

2 G. J. Thaler and M. P. Pastel, Analysis and Design of Nonlinear Feedback Control 

Systems, McGraw-Hill, New York, 1962. 
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Figure 6.5 Root-locus diagrams for magnetic-suspension system. (a) Uncom­
pensated. (b) With lead compensation. 

element to determine its describing function is 

vr = E sin wt (6.22) 

If the nonlinearity does not rectify the input (produce a d-c output) and 
does not introduce subharmonics, the output of the nonlinear element can 
be expanded in a Fourier series of the form 

vo = A1(E, w) cos wt + B 1(E, co) sin wt + A 2(E, o) cos 2 wt 

+ B2(E, o) sin 2wt + - + (6.23) 
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The describing function for the nonlinear element is defined as 

IVA2(E, ) + B2(E, t) A1(E, c)
GD(E, ) 4 tan-B 1 (E, ) (6.24) 

The describing-function characterization of a nonlinear element parallels 
the transfer-function characterization of a linear element. If the transfer 
function of a linear element is evaluated for s = jo, the magnitude of re­
sulting function of a complex variable is the ratio of the amplitudes of the 
output and input signals when the element is excited with a sinusoid at a fre­
quency co. Similarly, the angle of the function is the phase angle between 
the output and input signals under sinusoidal steady-state conditions. For 
linear elements these quantities must be independent of the amplitude of 
excitation. 

The describing function indicates the relative amplitude and phase angle 
of thefundamentalcomponent of the output of a nonlinear element when the 
element is excited with a sinusoid. In contrast to the case with linear ele­
ments, these quantities can be dependent on the amplitude as well as the 
frequency of the excitation. 

Two examples illustrate the derivation of the describing function for 
nonlinear elements. Figure 6.6 shows the transfer characteristics of a satu­
rating nonlinearity together with input and output waveforms for sinusoidal 
excitation. Since the transfer characteristics for this element are not de­
pendent on the dynamics of the input signal, it is clear that the describing 
function must be frequency independent. 

If the input amplitude E is less than EM, 

0 = Kyr (6.25) 

In this case, 

GD = K 4 0 E < E (6.26) 

For E > E, the output signal over the interval 0< at< r is 

vo = K 0 < wt < a or r - a < wt < r (6.27a) 

vo = KEu1 a < wt < r - a (6.27b) 

where 

a = sin-1 
E 
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(a) 

Figure 6.6 Relationships for a saturating nonlinearity. (a) Transfer characteristics 
for saturating element. (b) Input and output waveforms for sinusoidal excitation. 

The coefficients A1 and B 1 are in this case, 

A1 - KE sin wt coswt dt + - KE. cos wt dt 

+ J KE sin wt cos wt dwt = 0 (6.28) 

2r ra2­

B1 = fKE sins cot dcot + - KE sin cot dwt 

2 i 
+ - KE sin 2 wt dwt 

2KEF~. 1 EM EM 
- sn- + E 1 - ( ) (6.29) 

7r _ E E 7
Using Eqn. 6.24, we obtain 

GD(E) = K 4 0' E < EAI (6.30a) 

2K n 
GD(E) = .~ (sin'IR + R \f -- K) 4 0 E > EM (6.30b) 

where R = EM/E. 

The transfer characteristics of an element with hysteresis, such as a 
Schmitt trigger or a relay, are shown in Fig. 6.7a. The memory associated 
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Figure 6.6-Continued 

with this type of element produces a phase shift between the fundamental 
component of the output and the input sinusoid applied to it as shown in 
Fig. 6.7b. It is necessary for the peak amplitude of the input signal to ex­
ceed Em in order to have the output signal other than a constant. 

Several features of the output signal permit writing the describing func­
tion for this element. The relevant relationships include the following. 
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Figure 6.7 Relationships for an element with hysteresis. (a) Transfer characteristics. 
(b) Input and output waveforms for sinusoidal excitation. 
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(a) While there is phase shift between the input signal and the funda­
mental component of the output, neither the amount of this phase shift 
nor the amplitude of the output signal are dependent on the excitation 
frequency. 

(b) The amplitude of the fundamental component of a square wave 
with a peak amplitude EN is 4 EN7r. 

(c) The relative phase shift between the input signal and the fundamental 
component of the output is sin- 1 (EM/E), with the output lagging the 
input. 

Table 6.1 Describing Functions 

Nonlinearity Describing Function
 
Input = v, = E sin cor (All are frequency independent.)
 

GD(E) = K 4 00 E < EMI 
Slope= K GDE) (sin-R + RV1 - R 2) 400, 

E > EM 

where R Em 
E 

V1 
GD(E) = 4EN 4 0* 

;b 

EN 

Gn(E) = 0 4 0' E EM 

GD(E) = K [1 - 2sin-' R + RVR--R) 4 00, 

E > EM 

= Emwhere R 
E 
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Table 6.1-Continued 

Nonlinearity Describing Function 
Input = v, = E sin wt (All are frequency independent.) 

t GD(E) = 0 4 0' E < EmV
0 

EM GD(E) -
4EN 

-1 - R2 2 0* E > Em7rE 
EN 

= Emwhere R 
E 

E must exceed EM or a d-c term results. 

4EN 1
GD(E)= E2 -sin- R

7rE 

= Emwhere R 
E 

Combining these relationships shows that 

GD(E) = 4EN -sin- 1 Em E > Em (6.31)
irE E 

GD(E) undefined otherwise 

Table 6.1 lists the describing functions for several common nonlineari­
ties. Since the transfer characteristics shown are all independent of the 
frequency of the input signal, the corresponding describing functions are 
dependent only on input-signal amplitude. While this restriction is not 
necessary to use describing-function techniques, the complexity associated 
with describing-function analysis of systems that include frequency-de­
pendent nonlinearities often limits its usefulness. 

The linearity of the Fourier series can be exploited to determine the de­
scribing function of certain nonlinearities from the known describing func­
tions of other elements. Consider, for example, the soft-saturation charac­
teristics shown in Fig. 6.8a. The input-output characteristics for this ele­
ment can be duplicated by combining two tabulated elements as shown in 
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Figure 6.8 Soft saturation as a combination of two nonlinearities. (a) Transfer 
characteristics. (b) Decomposition into two nonlinearities. 
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Fig. 6.8b. Since the fundamental component of the output of the system of 
Fig. 6.8b is the sum of the fundamental components from the two non­
linearities 

GD(E) =K 1 4 00 E < EM (6.32a) 

GD(E) = 2K sin-IR + R V11--R2 

+ K 2 - 2K2 sin-1R + R /-R2) 0 

= LK2 + (K1 2) (sin-R + R - 0 (6.32b) 

for E > EM, where R = sin-1 (E 1 /E). 

6.3.2 Stability Analysis with the Aid of Describing Functions 

Describing functions are most frequently used to determine if limit 
cycles (stable-amplitude periodic oscillations) are possible for a given sys­
tem, and to determine the amplitudes of various signals when these oscil­
lations are present. 

Describing-function analysis is simplified if the system can be arranged 
in a form similar to that shown in Fig. 6.9. The inverting block is included 
to represent the inversion conventionally indicated at the summing point 
in a negative-feedback system. Since the intent of the analysis is to examine 
the possibility of steady-state oscillations, system input and output points 
are irrevelant. The important feature of the topology shown in Fig. 6.9 is 

Nonlinear element 

Figure 6.9 System arranged for describing-function analysis. 
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that a single nonlinear element appears in a loop with a single linear ele­
ment. The linear element shown can of course represent the reduction of a 
complex interconnection of linear elements in the original system to a single 
transfer function. The techniques described in Sections 2.4.2 and 2.4.3 are 
often useful for these reductions. 

The system shown in Fig. 6.10 illustrates a type of manipulation that 
simplifies the use of describing functions in certain cases. A limiter con­
sisting of back-to-back Zener diodes is included in a circuit that also con­
tains an amplifier and a resistor-capacitor network. The Zener limiter is 
assumed to have the piecewise-linear characteristics shown in Fig. 6.10b. 

The describing function for the nonlinear network that includes R 1, R 2, 
C, and the limiter could be calculated by assuming a sinusoidal signal for 

and finding the amplitude and relative phase angle of the fundamental 
component of VA. The resulting describing function would be frequency 
VB 

Amplifier with zero input 

R, conductance and output 
resistance 

A VA b(S) = a(s) VB 

(a) 

Vz A 

(b) 

Figure 6.10 Nonlinear system. (a) Circuit. (b) Zener-limiter characteristics. 



VA 

(a) 

(b) 

Figure 6.11 Modeling system of Fig. 6.10 as a single loop. (a) Block-diagram 
representation of nonlinear network. (b) Block diagram representation of complete 
system. (c) Reduced to form of Fig. 6.9. 
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Figure 6.11-Continued 

dependent. A more satisfactory representation results if the value of the 
Zener current iA is determined as a function of the voltage applied to the 
network. 

i - VB VA -C dvA (6.33)
R 1 R 1[0R 2 dt 

The Zener limiter forces the additional constraints 

VA = +-Vz iA > 0 (6.34a) 

VA = -Vz iA < 0 (6.34b) 

Equations 6.33 and 6.34 imply that the block diagram shown in Fig. 
6.1la can be used to relate the variables in the nonlinear network. The 
pleasing feature of this representation is that the remaining nonlinearity 
can be characterized by a frequency-independent describing function. 
Figure 6.11b illustrates the block diagram that results when the network 
is combined with the amplifier. The two linear paths in this diagram are 
combined in Fig. 6.1 c, which is the form suggested for analysis. 

Once a system has been reduced to the form shown in Fig. 6.9, it can be 
analyzed by means of describing functions. The describing-function ap­
proximation states that oscillations may be possible if particular values of 
Ei and coi exist such that 

a(joi)GD(Ei,w i) = - 1 (6.35a) 
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or
 
-l1
 

a(jwi) = (6.35b)GD(E1, wi) 

The satisfaction of Eqn. 6.35 does not guarantee that the system in 
question will oscillate. It is possible that a system satisfying Eqn. 6.35 will 
be stable for a range of signal levels and must be triggered into oscillation 
by, for example, exceeding a particular signal level at the input to the non­
linear element. A second possibility is that the equality of Eqn. 6.35 does 
not describe a stable-amplitude oscillation. In this case, if it is assumed that 
the system is oscillating with parameter values given in Eqn. 6.35, a small 
amplitude perturbation is divergent and leads to either an increasing or a 
decreasing amplitude. As we shall see, the method can be used to resolve 
these questions. The describing-function analysis also predicts that if stable-
amplitude oscillations exist, the frequency of the oscillations will be Wi 
and the amplitude of the fundamental component of the signal applied to 
the nonlinearity will be E1. 

The above discussion shows how closely the describing-function stability 
analysis of nonlinear systems parallels the Nyquist or Bode-plot analysis 
of linear systems. In particular, oscillations are predicted for linear systems 
at frequencies where the loop transmission is -- 1, while describing-function 
analysis indicates possible oscillations for amplitude-frequency combina­
tions that produce the nonlinear-system equivalent of unity loop trans­
mission. 

The basic approximation of describing-function analysis is now evident. 
It is assumed that under conditions of steady-state oscillation, the input to 
the nonlinear element consists of a single-frequency sinusoid. While this 
assumption is certainly not exactly satisfied because the nonlinear element 
generates harmonics that propagate around the loop, it is often a useful 
approximation for two reasons. First, many nonlinearities generate har­
monics with amplitudes that are small compared to the fundamental. 
Second, since many linear elements in feedback systems are low-pass in 
nature, the harmonics in the signal returned to the nonlinear element are 
often attenuated to a greater degree than the fundamental by the linear 
elements. The second reason indicates a better approximation for higher-
order low-pass systems. 

The existence of the relationship indicated in Eqn. 6.35 is often deter­
mined graphically. The transfer function of the linear element is plotted in 
gain-phase form. The function - 1/GD(E, w) is also plotted on the same 
graph. If GD is frequency independent, - l/GD(E) is a single curve with E 
a parameter along the curve. The necessary condition for oscillation is 
satisfied if an intersection of the two curves exists. The frequency can be 
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determined from the a(jo) curve, while amplitude of the fundamental com­
ponent of the signal into the nonlinearity is determined from the - 1/GD(E) 
curve. If the nonlinearity is frequency dependent, a family of curves 
- 1/GD(E, Wi), -1/GD(E, W2), .. . , is plotted. The oscillation condition 
is satisfied if the -1/GD(E, cot) curve intersects the a(jw) curve at the point 
a(joi). 

The satisfaction of Eqn. 6.35 is a necessary though not sufficient condi­
tion for a limit cycle to exist. It is also necessary to insure that the oscilla­
tion predicted by the intersection is stable in amplitude. In order to test 
for amplitude stability, it is assumed that the amplitude E increases slightly, 
and the point corresponding to the perturbed value of E is found on the 
- 1/GD(E, co)curve. If this point lies to the left of the a(jo) curve, the geom­
etry implies that the system poles 3 lie in the left-half plane for an increased 
value of E, tending to restore the amplitude to its original value. Alterna­
tively, if the perturbed point lies to the right of the a(jw) curve, a growing-
amplitude oscillation results from the perturbation and a limit cycle with 
parameters predicted by the intersection is not possible. These relationships 
can be verified by applying the Nyquist stability test to the loop transmis­
sion, which includes the linear transfer function and the describing function 
of interest. 

It should be noted that the stability of arbitrarily complex nonlinear sys­
tems that combine a multiplicity of nonlinear elements in a loop with linear 
elements can, at least in theory, be determined using describing functions. 
For example, numerous Nyquist plots corresponding to the nonlinear loop 
transmissions for a variety of signal amplitudes might be constructed to 
determine if the possibility for instability exists. Unfortunately, the effort 
required to complete this type of analysis is generally prohibitive. 

6.3.3 Examples 

Since describing-function analysis predicts the existence of stable-ampli­
tude limit cycles, it is particularly useful for the investigation of oscillators, 
and for this reason the two examples in this section involve oscillator cir­
cuits. 

The discussion of Section 4.2.2 showed that it is possible to produce 
sinusoidal oscillations by applying negative feedback around a phase-shift 
network with three identically located real-axis poles. If the magnitude of 
the low-frequency loop transmission is exactly 8, the system closed-loop 

3The concept of a pole is strictly valid only for a linear system. Once we apply the 
describing-function approximation (which is a particular kind of linearization about an 
operating point defined by a signal amplitude), we take the same liberty with the definition 
of a pole as we do with systems that have been linearized by other methods. 
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Figure 6.12 Phase-shift oscillator with limiting. 

poles are on the imaginary axis and, thus, resultant oscillations are stable 

in amplitude. It is possible to control the magnitude of the loop transmission 

precisely by means of an auxiliary feedback loop that measures the ampli­

tude of the oscillation and adjusts loop transmission to regulate this ampli­

tude. This approach to amplitude control is discussed in Section 12.1.4. 

An alternative and simpler approach that is often used is illustrated in 
Fig. 6.12. The loop transmission of the system for small signal levels is 

made large enough (in this case 10) to insure growing-amplitude oscillations 

if signal levels are such that the limiter remains linear. As the peak amplitude 

of the signal VA increases beyond one, the limiter reduces the magnitude of the 

loop transmission (in a describing-function sense) so as to stabilize the 

amplitude of the oscillations. 
The describing function for the limiter in Fig. 6.12 is (see Table 6.1) 

GD(E) = 1 4 00 E < 1 (6.36a) 

GD(E) = 2(sin-1 - + - - -2) 400 E > 1 (6.36b) 
7r E E E2 

This function decreases monotonically as E increases beyond one. Thus 

the quantity - 1/GD(E) increases monotonically for E greater than one 

and has an angle of - 1800. The general behavior of - 1/GD(E) and the 

transfer function of the linear portion of the oscillator circuit are sketched 

on the gain-phase plane of Fig. 6.13. 
The intersection shown is seen to represent a stable-amplitude oscilla­

tion when the test proposed in the last section is used. An increase in E 
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Figure 6.13 Describing-function analysis of the phase-shift oscillator. 

from the value at the intersection moves the - 1/GD(E) point to the left 
of the a(jw) curve. The physical significance of the rule is as follows. As­
sume the system is oscillating with the value of E necessary to make 
GD(E) a(j V3) = - 1. An incremental increase in the value of E decreases 
the magnitude of GD(E) and thus decreases the loop transmission below 
the value necessary to maintain a constant-amplitude oscillation. The 
amplitude decreases until E is restored to its original value. Similarly, an 
incremental decrease in E leads to a growing-amplitude oscillation until E 
reaches its equilibrium value. 

The magnitude of E under steady-state conditions can be determined 
directly from Eqn. 6.36. The magnitude of a(jo) at the frequency where its 
phase shift if - 1800, (w = V), is 1.25. Thus oscillations occur with 
GD(E) = 0.8. Solving Eqn. 6.36 for the required value of E by trial and 
error results in E ~_1.45, and this value corresponds to the amplitude of 
the fundamental component of VA. 

The validity of the describing-function assumption concerning the purity 
of the signal at the input of the nonlinear element is easily demonstrated 
for this example. If a sinusoid is applied to the limiter, only odd harmonics 
are present in its output signal, and the amplitudes of higher harmonics 
decrease monotonically. The usual Fourier-series calculations show that 
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the ratio of the magnitude of the third harmonic to that of the fundamental 
at the output of the limiter is 0.14 for a 1.45-volt peak-amplitude sinusoid 

as the limiter input. The linear elements attenuate the third harmonic of 

a V radian-per-second sinusoid by a factor of 18 greater than the funda­
mental. Thus the ratio of third harmonic to fundamental is approximately 
0.008 at the input to the nonlinear element. The amplitudes of higher 
harmonics are insignificant since their magnitudes at the limiter output are 

smaller and since they are attenuated to a greater extent by the linear ele­

ment. As a matter of practical interest, the attenuation provided by the 

phase-shift network to harmonics is the reason that good design practice 
dictates the use of the signal out of the phase-shift network rather than that 
from the limiter as the oscillator output signal. 

Figure 6.14a shows another oscillator configuration that is used as a 

second example of describing-function analysis. This circuit, which com­

bines a Schmitt trigger and an integrator, is a simplified representation of 

that used in several commercially available function generators. It can be 

shown by direct evaluation that the signal at the input to the nonlinear 

element is a two-volt peak-to-peak triangle wave with a four-second period 

and that the signal at the output of the nonlinear element is a two-volt 

peak-to-peak square wave at the same frequency. Zero crossings of these 

two signals are displaced by one second as shown in Fig. 6.14b. The ratio 

of the third harmonic to the fundamental at the input to the nonlinear ele­
ment is 1/9, a considerably higher value than in the previous example. 

Table 6.1 shows that the describing function for this nonlinearity is 

4 1 
GD(E) = -sin-' E > 1 (6.37)

rE E 

The quantity - 1 GD(E) and the transfer function for the linear element are 

plotted in gain-phase form in Fig. 6.15. The intersection occurs for a value 

of E that results in the maximum phase lag of 90' from the nonlinear ele­

ment. The parameters predicted for the stable-amplitude limit cycle im­

plied by this intersection are a peak-to-peak amplitude for vA of two volts 

and a period of oscillation of approximately five seconds. The correspond­

ence between these parameters and those of the exact solution is excellent 

considering the actual nature of the signals involved. 

6.3.4 Conditional Stability 

The system shown in block-diagram form in Fig. 6.16 combines a satu­

rating nonlinearity with linear elements. The negative of the loop trans­



235 Describing Functions 

vAA 

Schmitt trigger provides hysteresis. 

(a) 

+1 V 

A 
VA 

tso 
(seconds) 

-1 V 

+1 V 

VtVB II I I I I I 
0 3 4 5 6 71 2 	 ts 

(seconds) 

-1 V 	
I (b) 

Figure 6.14 Function generator. (a) Configuration. (b) Waveforms. 

mission for this system, assuming that the amplitude of the signal at VA is 
less than 10- volts so that the nonlinearity provides a gain of 10, is deter­
mined by breaking the loop at the inverting block, yielding 

-L(s) = 105a(s) = 	5 X 105(0.02s + 1)2 (6.38)
(s + 1)3(10- 3s + 1)2 
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Figure 6.15 Describing-function analysis of the function generator. 

A Nyquist diagram for this function is shown in Fig. 6.17. The plot re­
veals a phase margin of 40* combined with a gain margin of 10, implying 
moderately well-damped performance. The plot also shows that if the mag­
nitude of the low-frequency loop transmission is lowered by a factor of 
between 8 and 6 X 104, the system becomes unstable. Systems having the 
property that a decrease in the magnitude of the low-frequency loop trans­
mission from its design-center value converts them from stable to unstable 
performance are called conditionallystable systems. 

The nonlinearity can produce the decrease in gain that results in insta­
bility. The system shown in Fig. 6.16 is stable for sufficiently small values 
of the signal VA. If the amplitude of VA becomes large enough, possibly be­
cause of an externally applied input (not shown in the diagram) or because 
of the transient that may accompany the turn-on, the system may start to 
oscillate because the describing-function gain decreases. 

The common characteristic of conditionally stable systems is a phase 
curve that drops below - 1800 over some range of frequencies and then 
recovers so that positive phase margin exists at crossover. These phase 
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Figure 6.16 Conditionally stable system. 

characteristics can result when the amplitude falls off more rapidly than 
1/o 2 over a range of frequencies below crossover. The high-order rolloff 
is used in some systems since it combines large loop transmissions at 
moderate frequencies with a limited crossover frequency. For example, the 
transfer function 

5 X 105 
-L'(s) 5X1 -(6.39)

(2.5 X 103s + 1)(10- 3s + 1)2 

has the same low-frequency gain and unity-gain frequency as does Eqn. 6.38. 
However, the desensitivity associated with Eqn. 6.38 exceeds that of 6.39 at 
frequencies between 4 X 104 radians per second and 50 radians per second 
because of the high-order rolloff associated with Eqn. 6.38. The gain 
advantage reaches a maximum of approximately 10 at one radian per 
second. This higher gain results in significantly greater desensitivity for 
the loop transmission of Eqn. 6.38 over a wide range of frequencies. 

Quantitative information about the performance of the system shown in 
Fig. 6.16 can be obtained using describing-function analysis. The describing-
function for the nonlinearity for E > 10-5 is 

2 X 105 10-5 10-5 10-1 
GD(E)- (sin-i - + 1 -- E2) 400 (6.40) 

where E is the amplitude of the (assumed sinusoidal) signal VA. The quan­
tities - 1/GD(E) and a(jo) are plotted in gain-phase form in Fig. 6.18, and 
two intersections are evident. The intersection at co 50 radians per sec­
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w = Z X IU- - 10-2 

= 5 x 11 30 

Figure 6.17 Nyquist diagram of conditionally stable system. 

ond, E ~_ 10-4 volt does not represent a stable limit cycle. If the system is 

assumed to be oscillating with these parameters, an incremental decrease 
in the amplitude of the signal VA leads to a further decrease in amplitude 

and the system returns to stable operation. This result follows from the 

rule mentioned in Section 6.3.2. In this case, a decrease in E causes the 

- 1/GD(E) curve to lie to the left of the a(jw) curve, and thus the system 

poles move from the imaginary axis to the left-half plane as a consequence 
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Figure 6.18 Describing function analysis of conditionally stable system. 

of the perturbation. The same conclusion is reached if we consider the 
Nyquist plot for the system when the amplitude of VA is 10-4 volt. The 
gain attenuation of the limiter then shifts the curve of Fig. 6.17 downward 
so that the point corresponding to co = 50 radians per second intersects 
the - 1 point. An incremental decrease in E moves the curve upward 
slightly, and the resulting Nyquist diagram is that of a stable system. 
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Similar reasoning shows that a small increase in amplitude at the lower 
intersection leads to further increases in amplitude. Following this type of 
perturbation, the system eventually achieves the stable-amplitude limit cycle 
implied by the upper intersection with w - 1.8 radians per second and 
E - 0.73 volt. (The reader should convince himself that the upper inter­
section satisfies the conditions for a stable-amplitude limit cycle.) 

It should be noted that the concept of conditionally stable behavior aids 
in understanding the large-signal performance of systems for which the 
phase shift approaches but does not exceed ­ 1800 well below crossover, 
and then recovers to a more reasonable value at crossover. While these 
systems can exhibit excellent performance for signal levels that constrain 
operation to the linear region, performance generally deteriorates dra­
matically when some element in the loop saturates. For example, the 
recovery of this type of system following a large-amplitude step may 
include a number of large-signal overshoots, even if the small-signal step 
response of the system is approximately first order. 

Although a detailed analysis of such behavior is beyond the scope of 
this book, examples of the large-signal performance of systems that 
approach conditional stability are included in Chapter 13. 

6.3.5 Nonlinear Compensation 

As we might suspect, the techniques for compensating nonlinear systems 
using either linear or nonlinear compensating networks are not particu­
larly well understood. The method of choice is frequently critically depend­
ent on exact details of the linear and nonlinear elements included in the 
loop. In some cases, describing-function analysis is useful for indicating 
compensation approaches, since systems with greater separation between 
the a(jo) and - 1/GD(E) curves are generally relatively more stable. This 
section outlines one specific method for the compensation of nonlinear 
systems. 

As mentioned earlier, fast-rolloff loop transmissions are used because 
of the large magnitudes they can yield at intermediate frequencies. Unfor­
tunately, if the phase shift of this type of loop transmission falls below 
- 1800 at a frequency where its magnitude exceeds one, conditional sta­
bility can result. Nonlinear compensation can be used to eliminate the pos­
sibility of oscillations in certain systems with this type of loop transmission. 

As one example, consider a system with a linear-region loop transmission 

200 
-L(s) = 20(6.41)

(s + 1)(10- 3s + 1)2 

This loop transmission has a monotonically decreasing phase shift as a 
function of increasing frequency, and exhibits a phase margin of approxi­
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mately 650. Consequently, unconditional stability is assured even when 
some element in the loop saturates. 

In an attempt to improve the desensitivity of the system, series compen­
sation consisting of gain and two lag transfer functions might be added to 
the loop transmission of Eqn. 6.41, leading to the modified loop trans­
mission 

200 2.5 X 103(0.02s + 1)2 (6.42) 
(s -+ 1)(10- 3 s + )2_] (s + 1)2 j 

This loop transmission is of course the one used to illustrate the possibility 
of conditional stability (Eqn. 6.38). 

Consider the effect of implementing one or both of the lag transfer func­
tions with a network of the type shown in Fig. 6.19. If the magnitude of 
voltage yc is less than VB, the diodes do not conduct and the transfer function 
of the network is 

V6(s) R 2Cs + 1 
Vi(s) (R 1 + R 2)Cs + 1 

Element values can be selected to yield the lag parameters included in 
Eqn. 6.42. 

The bias voltage VB is chosen so that when the signal applied to the 
network is that which exists when the loop oscillates, the diodes clip the 
capacitor voltage during most of the cycle. Under these conditions, the 
gain of the nonlinear network (in a describing-function sense) is 

vo * R2 (6.44) 
or R1 + R2 

R 
+ 

V0 C 

+ VB 

VI R2 

++ 

Figure 6.19 Nonlinear compensating network. 
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Note that if both lag transfer functions are realized this way, the loop 
transmission can be made to automatically convert from that given by 
Eqn. 6.42 to that of Eqn. 6.41 under conditions of impending instability. 
This type of compensation can eliminate the possibility of conditionally 
stable performance in certain systems. The signal levels that cause satura­
tion also remove the lag functions, and thus the possibility of instability 
can be eliminated. 

PROBLEMS 

P6.1 
One of the difficulties involved in analyzing nonlinear systems is that 

the order of nonlinear elements in a block diagram is important. Demon­
strate this relationship by comparing the transfer characteristics that result 
when the two nonlinear elements shown in Fig. 6.20 are used in the order 

'o 

-1 1 

- -1 

(a) 

t 
V 

0 

Slope = +1 

Slope = +1 

(b) 

Figure 6.20 Nonlinear elements. (a) Limiter. (b)Deadzone. 
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00E 	 OE 

Resolver pair 

Figure 6.21 Positional servomechanism. 

ab with the transfer characteristics that result when the order is changed 
to ba. 

P6.2 
Resolvers are essentially variable transformers that can be used as 

mechanical-angle transducers. When two of these devices are used in a 
servomechanism, the voltage obtained from the pair is a sinusoidal function 
of the difference between the input and output angles of the system. A 
model for a servomechanism using resolvers is shown in Fig. 6.21. 
(a) 	 The voltage applied to the amplifier-motor combination is zero for 

Oo - 0r = nir, where n is any integer. Use linearized analysis to deter­
mine which of these equilibrium points are stable. 

(b) 	The system is driven at a constant input velocity of 7 radians per sec­
ond. What is the steady-state error between the output and input for 
this excitation? 

R 

VO C,_I 

VI 

VB 	 VA 

Figure 6.22 Square-rooting circuit. 
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(c) 	 The input rate is charged from 7 to 7.1 radians per second in zero time. 
Find the corresponding output-angle transient. 

P6.3 
An analog divider was described in Section 6.2.2. Assume that the trans­

fer function of the operational amplifier shown in Fig. 6.2 is 

3 X 101 
+ 1)2(s + 1)(10-Is 

Is the divider stable over the range of inputs - 10 < VA < + 10, 0 < VB < 

+10? 
A square-rooting circuit using a technique similar to that of the divider 

is shown in Fig. 6.22. What is the ideal input-output relationship for this 
circuit? Determine the range of input voltages for which the square-rooter 
is stable, assuming a(s) is as given above. 

P6.4 
Figure 6.23 defines variables that can be used to describe the motion of 

an inverted pendulum. Determine a transfer function that relates the angle 
0 to the position XB, which is valid for small values of 6. Hint. You may find 
that a relatively easy way to obtain the required transfer function is to use 
the two simultaneous equations (or the corresponding block diagram) 
which relate XT to 6 and 6 to XB and XT. 

Assume that you are able to drive XT as a function of 6. Find a transfer 
function, X,(s)/6(s), such that the inverted pendulum is stabilized. 

P6.5 
A diode-capacitor network is shown in Fig. 6.24. Plot the output voltage 

that results for a sinewave input signal with a peak value of E. You may 
assume that the diodes have an ideal threshold of 0.5 volt (i.e., no conduc­
tion until a forward-bias voltage of 0.5 volt is reached, any forward cur­
rent possible without increasing the diode voltage above 0.5 volt). Evalu­
ate the magnitude and angle of GD(1) for this network. (You may, ofcourse, 

XT Point mass 

Reference 	 - 1 meter massless rod 

0 
MeXB-K 

Figure 6.23 Inverted pendulum. 
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CVO O'3-1
 

YI 

Figure 6.24 Diode-capacitor network. 

work out GD(E) in general if you wish, but it is a relatively involved 
expression.) 

P6.6 
Determine the describing function for an element with the transfer char­

acteristics shown in Fig. 6.25. 

P6.7 
Analyze the loop shown in Fig. 6.26. In particular, find the frequency of 

oscillation and estimate the levels of the signals VA and vB. Also calculate 
the ratio of third harmonic to first harmonic at the input to the nonlinear 
element. 

P6.8 
Can the system shown in Fig. 6.27 produce a stable amplitude limit 

cycle? Explain. 

vlp = K 

+EN 

SEN 
Slope = K 

Figure 6.25 Nonlinear transfer relationship. 



246 Nonlinear Systems 

V 

VA VB (s -10 
VA d (S+ 1)(0.1 S+ 1)(0.01 S+1 

Figure 6.26 Nonlinear oscillator. 

P6.9 
Find a transfer function that, when combined with a limiter, can pro­

duce stable-amplitude limit cycles at two different frequencies. Design an 
operational-amplifier network that realizes your transfer function. 

P6.10 
The transfer characteristics for a three-state, relay-type controller are 

illustrated in Fig. 6.28. 

(a) Show that the describing function for this element is 

GD(E) = 2 2 + 2 11 42 -tan-' 
rE 2 n (I+E 1-I 

Slope = +2 

vB 

1 - ­

va VB_ -5 

(rs + 1)3I 1 -' 
-

Slope = +2 

Figure 6.27 Nonlinear system. 
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-1 
V I > 

1 

Figure 6.28 Controller transfer characteristics. 

(b) 	 The controller is combined in a negative-feedback loop with linear 
elements with a transfer function 

a(s) 	= ao 
(s + 1)(0.Is + 1) 

What is the range of values of ao for stable operation? 
(c) 	For ao that is twice the critical value, find the amplitude of the funda­

mental component of the signal applied to the controller. 

f 
VB 

+EN 

VBVA +EM
 

-EM 
 VA 

-EN 

R L 

C 

Figure 6.29 R-L-C oscillator. 
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P6.11 
One possible configuration for a sinusoidal oscillator combines a Schmitt 

trigger with an R-L-C circuit as shown in Fig. 6.29. Find the relationship 
between Em, EN, and the damping ratio of the network that insures that 
oscillations can be maintained. (You may assume negligible loading at the 
input and output of the Schmitt trigger.) 

P6.12 
Three loop-transmission values, given by Eqns. 6.38, 6.39, and 6.41 were 

considered as part of the discussion of conditionally stable systems. As­
sume that three negative-feedback systems are constructed with f(s) = 1 
and loop transmissions given by the expressions referred to above. Com­
pare performance by calculating the first three error coefficients for each of 
the three systems. 



CHAPTER VII
 

DIRECT-COUPLED AMPLIFIERS
 

7.1 INTRODUCTION 

Operational amplifiers incorporate circuit configurations that may be 

relatively unfamiliar to the circuit designer with a background in other 

areas. An understanding of these special techniques is necessary for the 

most effective use of operational amplifiers. 

One. of the more challenging problems arises in the design of the input 

stage of an operational amplifier. One important consideration is that this 

stage provides gain to zero frequency. Thus the isual biasing techniques 

which incorporate capacitors that reduce low-frequency gain cannot be 

used. Circuits that provide useful gain at zero frequency are called direct-

coupled or direct-current(d-c) amplifiers. The design of the direct-coupled 

input stage1 of an operational amplifier is further complicated by the fact 

that it should have low input current. 

Direct-coupled amplifiers are also useful other than as the input stage 

of an operational amplifier. Applications include processing certain signals 

of biological or geological origin that may contain significant components 

at a fraction of a hertz. While bandpass amplifiers can theoretically be 

used for such signals, the various capacitors required may become prohibi­

tively large or expensive. Furthermore, the recovery time associated with 

large capacitors following overload or turn on is intolerable in some appli­

cations. In other cases, signals of interest contain frequencies of cycles per 

week, and response to zero frequency is mandatory in these situations. 

Alternatively, the designer may be interested in realizing a high-frequency 

amplifier, where minimization of capacitance to ground at certain critical 

nodes is of primary concern. If a large coupling capacitor is used, its stray 

capacitance to ground can deteriorate high-frequency performance. 

The design of d-c amplifiers poses new problems because of the drift 

associated with such amplifiers. Drift is a phenomena whereby the output 

I It is obviously necessary that all stages of an operational amplifier be direct coupled 
if the complete circuit is to provide useful gain at zero frequency. Emphasis here is given 
to the input stage because it represents the most challenging design problem. 

249 
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of an amplifier changes not because of a change in the input voltage applied 
to the amplifier but rather in response to changes in circuit elements. In 
direct-coupled circuits, it is not possible to distinguish between an output 
that is'a result of an applied input signal and one that occurs in response to 
drift. For this reason, drift limits the minimum input signal that can be 
detected. 

A new circuit technique is required for the design of an amplifier that 
provides sufficiently low drift to be useful in d-c applications. In this chapter 
we shall concentrate on one circuit, the differential amplifier, which is 
used almost exclusively for d-c amplification. This circuit is particularly 
valuable when realized with bipolar transistors, since their highly pre­
dictable characteristics are readily exploited to yield low-drift performance. 2 

The discussion in this chapter focuses on the techniques used to reduce 
the drift and input current of a d-c amplifier, and thus the techniques de­
scribed are useful in a range of applications. Toward the end of expanding 
the applicability of the techniques described in this chapter, certain aspects 
are covered in greater detail than is necessary for a basic understanding 
of operational amplifiers. Thus, as is the case with the material on feed­
back systems, operational amplifiers are used as a vehicle for illustrating 
technology valuable in a variety of electronic circuit and system design 
problems. The specific ways that these design techniques are incorporated 
into operational amplifiers are reserved for discussion in subsequent sections. 

7.2 DRIFT REFERRED TO THE INPUT 

The most useful measure .ofthe drift of an amplifier is a quantity called 
drift referred to the input, and unless specifically stated otherwise, this 
quantity is the one implied when the term drift is used. Drift referred to 
the input is defined with reference to Fig. 7.1. This figure shows an amplifier 
with an assumed desired output voltage of zero for zero input voltage. The 
amplifier is initially balanced by making vr = 0, and adjusting some ampli­
fier parameter (shown diagrammatically in Fig. 7.1 as a variable resistor) 
until vo = 0. An external quantity, such as temperature, supply voltage, 
or time, is then changed and, if the amplifier is sensitive to this quantity, 
its output voltage changes. An input voltage is then applied to the ampli­
fier, and v is adjusted until vo again equals zero. The drift referred to the 

2 A humorous comment on the difficulty of achieving acceptable d-c amplifier perform­
ance before modern bipolar transistors were developed is provided in L. B. Argumbau 
and R. B. Adler, Vacuum-Tube Circuitsand Transistors, Wiley, New York, 1956. Chapter 
III, section 15 of this book is titled "Direct-Voltage Amplifiers-Why to Avoid Building 
Them." 
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Input v o Vo Output 

Zero adjust 

Figure 7.1 System used to define drift referred to the input. 

input of the amplifier is equal to the value of v1 necessary to zero the output. 
The resultant magnitude is often normalized and specified, for example, 
as volts per degree Centigrade, volts per volt (of supply voltage), or volts 
per week. The minimum-detectable-signal aspect of this definition is self-
evident. 

In many situations we are concerned not only with the variability of the 
circuit as some external influencing factor is changed, but also with un­
certainties that arise from the manufacturing process. In these cases, rather 
than initially balancing the circuit, the voltage that must be applied to its 
input to make its output zero may be specified as the offset referred to the 
input. The specifications related to drift and offset are at times combined 
by listing the maximum input offset that will result from manufacturing 
variations and over a range of operating conditions. 

There is a tendency to use an alternative (incorrect) definition of drift, 
which involves dividing the drift measured at the output of the amplifier 
by the amplifier gain. The difficulty in this approach arises since the gain 
is frequently dependent on the drift-stimulating variable. 

While alternative measurements of drift or offset may be equivalent in 
special cases, and are often used in the laboratory to simplify a measure­
ment procedure, it is necessary to insure equivalence of other methods for 
each circuit. We shall normally use the original definitions for our calcu­
lations. 

Figure 7.2 shows a very simple amplifier, which will be used to illustrate 
drift calculations and to determine how the base-to-emitter voltage of a 
bipolar transistor changes with temperature. It is assumed that the drift of 
the circuit with respect to temperature is required, and that the initial 
temperature is 3000 K. It is further assumed that for the transistor used, 
ic = 1mA at VBE = 0.6 V and T = 3000 K. With vr = 0, these parameters 
show that it is necessary to adjust the potentiometer to its midposition to 
make vo = 0. The temperature is then changed to 301* K, and it is observed 
the vo is negative. (The amount is unimportant for our purposes.) In order 
to return vo to zero (required by our definition of drift), it is necessary to 
return the transistor collector current to its original value. The change in 
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Figure 7.2 Circuit illustrating drift calculation. 

VBE required to restore collector current is identically equal to the required 
change in v and is therefore, by definition, the drift referred to the input 
of the amplifier. This discussion shows that drift for this circuit can be evalu­
ated by determining how VBE must vary with temperature to maintain con­
stant collector current. 

Drift for the circuit shown in Fig. 7.2 can be determined from the rela­
tionship between transistor terminal variables and temperature. If ohmic 
drops are negligible and the collector current is large compared to the satu­
ration current IS3 

ic = Ise =-BEjkTA 
3 gqVgokT eqVBEkT q(VBE- (7.1) 

where A is a constant dependent on transistor type and geometry, q is the 
charge on an electron, k is Boltzmann's constant, T is the temperature,
and VgO is the width of the energy gap extrapolated to absolute zero divided 
by the electron charge (V,, = 1.205 volts for silicon). 4 It is possible to 
verify the exponential dependence of collector current on base-to-emitter 
voltage experimentally over approximately nine decades of operating cur­
rent for many modern transistors. 

I P. E. Gray et al., PhysicalElectronicsand Models ofTransistors,Wiley, New York, 1964. 
4There is disagreement among authors concerning the exponent of T in Eqn. 7.1, with 

somewhat lower values used in some developments. As we shall see, the quantity has rela­
tively little effect on the final result. (The exponent appears only as a multiplying factor in 
the final term of Eqn. 7.5 and as a coefficient in Eqn. 7.8). Furthermore, two similar tran­
sistors should have closely matched values for this exponent, and the degree of match 
between a pair is the most important quantity in anticipated applications. 
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Solving Eqn. 7.1 for VBE yields 

kT ic 
VBE In +Vg (7.2) 

q AT 3 

The partial derivative of VBE with respect to temperature at constant ic 
is the desired relationship, and 

oVBE k Ic 3k 
=- In(73

AT 3aT ic = const q q 

However, from Eqn. 7.2 

kln A = VBE - Vgo (74) 
q AT' T 

Substituting Eqn. 7.4 into Eqn. 7.3 yields 

aVBE VBE - Vgo 3k 
00 (7.5) 

aT ic = const T q 

The quantity VBE - V0oT is -2 mV /C at T = 3000 K for the typical 
VBE value of 0.6 volt. The term 3k/q = 0.26 mV/ 0 C; therefore to a good 
degree of approximation 

VBE - VgoOVBE (7.6)
OT ic = const T 

The approximation of Eqn. 7.6 links the two rule-of-thumb values of 0.6 V 
and -2 mV/*C for the magnitude and temperature dependence, respec­
tively, of the forward voltage of a silicon junction. 

It is valuable to note two relationships that are exploited in the design 
of transistor d-c amplifiers. First, with no approximations beyond those 
implied by Eqn. 7.1, it is possible to determine the required transistor base­
to-emitter voltage variation for constant collector current knowing only 
the voltage, the temperature, and the material used to fabricate the tran­
sistor. Furthermore, if two silicon (or two germanium) transistors have 
identical base-to-emitter voltages at one temperature and at certain (not 
necessarily identical) operating currents, the temperature coefficients of 
the base-to-emitter voltages must be equal. Second, the base-to-emitter 
temperature coefficient at any one operating current is very nearly inde­
pendent of temperature as shown by the following development. The vari­
ation of temperature coefficient with temperature is found by differentiating 
Eqn. 7.5 with respect to temperature, yielding 

a FaVBE -~(VBE - Vgo) + TQVBE aT) (7.7) 
OT L aT jic = const T2 
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Substituting from Eqn. 7.5 for the aVBE/aT term in Eqn. 7.7, we obtain 

a (aVBE 
- -3k/qT (7.8)

OT aT ) 

Evaluating Eqn. 7.8 at 300* K shows that the magnitude of the change in 
base-to-emitter voltage temperature coefficient with temperature is less 
than 1yV/'C/*C.5 

It is now possible to determine the drift referred to the input of our origi­
nal amplifier. In order to return vo in Fig. 7.2 to zero at the elevated tem­
perature, it is necessary to decrease ic to its original value of 1 mA, and 
this decrease requires a -2.26 mV change in v (Eqn. 7.5). The drift re­
ferred to the input of our amplifier is by definition -2.26 mV/0 C, and 
Eqn. 7.8 insures that this drift is essentially constant over a wide range of 
temperatures. 

7.3 THE DIFFERENTIAL AMPLIFIER 

The highly predictable temperature coefficient of the base-to-emitter 
voltage of a bipolar transistor offers the possibility that some type of com­
pensation can be used to produce low-drift amplifiers. It is evident that the 
use of one transistor junction to compensate for voltage variations of a 
second similar junction should provide excellent results since both devices 
vary in a similar way. This section describes a connection that exploits the 
characteristics of a pair of bipolar transistors to provide low drift combined 
with several other useful features. 

7.3.1 Topology 

Consider the connection shown in Fig. 7.3. Here transistor Q2 is con­
nected as a common-base amplifier, while transistor Q1 is connected as an 
emitter follower. Assume that initially vn = 0, that the two transistors are 
at the same temperature and that they are matched in the sense that they 
have identical saturation currents. In this case the voltages at the emitters 
of the two transistors will be equal, or voi = v12 . The connection shown as 
a dotted line can then be completed with no change in any voltage level. 
If the magnitude of the voltage V2 is much larger than anticipated varia­
tions in base-to-emitter voltage, the current through parallel resistor com­
bination is virtually temperature independent. The matched transistor char­
acteristics insure that this constant current divides equally between the 

5An interesting alternative development of this relationship is given in "An Exact 
Expression for the Thermal Variation of the Emitter Base Voltage of Bi-Polar Transistors," 
R. J. Widlar, National Semiconductor Corp., Technical Paper TP-1, March, 1967. 
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Figure 7.3 Circuit illustrating development of the differential amplifier. 

two transistors. If we also assume that the common-base current gain of 
transistor Q2 is one, changes in temperature result in negligible changes in 
the collector current of this device. Thus the drift referred to the input of 
this connection can be close to zero. In addition to providing temperature 
compensation, the current gain and input resistance of transistor Q1 in­
creases the input-resistance of the circuit by a factor of 23 above that seen 
at the emitter of Q2. 

The circuit that results when the dotted connection in Fig. 7.3 is com­
pleted is shown in Fig. 7.4. The inherent symmetry of the differential ampli­
fier has been emphasized by including a collector-load resistor for Q1 and 
permitting input signals to be applied to either base. A second output sig­
nal is indicated between the collectors of the two transistors in Fig. 7.4, 
so that both differential(between collector) or single-ended(either collector 
to ground) outputs are available. 

7.3.2 Gain 

The output of the circuit of Fig. 7.4 for any particular input voltage can 
be calculated by the usual methods. However, an alternative and useful 
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Figure 7.4 The differential amplifier. 

analytic technique is available6 that simplifies the calculations and gives 
greater insight into the operation of the circuit. The gain of the circuit is 
calculated for two particular types of inputs, a differential input with vri = 

-v 1 2 , and a common-mode input with vri = Vr2. 
Figure 7.5 shows a schematic where the transistors have been replaced 

by appropriate, identical circuit models. Consider initially a pure differ­
ential input, of sufficiently small size so that the linear-region model re­
mains valid. It is easily shown that in this case the voltage ve does not change 
and that the common emitter connection may therefore be considered an 
incrementally grounded point. The incremental model for either half cir­
cuit reduces to that shown in Fig. 7.6. The incremental gain to the single-
ended output, V0, 2 , is simply that of a common-emitter amplifier: 

Vos ­SIg,,RLr,- (7.9)
N2 I V= -vi rx + r,2 

6 An essentially identical analysis is given for vacuum-tube differential amplifiers in 
T. S. Gray, Applied Electronics, 2nd Ed., Wiley, New York, 1954, pages 504-509. 
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Figure 7.5 Incremental model for a differential amplifier. 

The differential output component of v0 i for the left-hand half circuit is 
identical in magnitude but opposite in sign to that of the right-hand half 
circuit; therefore, v, 2 = - vi. The incremental gain to a differential out­
put is then 

S2gRLr, (7.10) 
Viv l= -vi 2 rx + rr 

It is conventional to consider gains calculated for a differential input 
signal applied between two bases of the amplifier, rather than by assuming 
a signal applied to one base and its negative applied to the other. If the 
signal between the bases is ed = 2 vl = - 2 vi2 the gains become 

v0 2 _ gmRLr( 

ed 2(rx + r,) 

and 

voi _ -gmRLr, (7.12) 
ed rx+r 7, 

For a pure common-mode input the voltage (vi1 = vi2), symmetry in­
sures that voltage voi (Fig. 7.5) remains zero and that va = vb. Therefore, 
it is possible to "fold" the circuit about its vertical midline and parallel 
corresponding components. The resulting incremental model is shown in 
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Figure 7.6 Right-hand half circuit for a differential input. 
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Figure 7.7 Circuit model for common-mode inputs. 

Fig. 7.7. The gain to a single-ended output is identical to that of a common-
emitter amplifier with emitter degeneration: 

- gmRLrVo2 (7.13)
Vul \V = vi2 2[r,/2 + r./2 + (0 + 1)RE] 

The common-mode input to differential-output gain is zero since v0i does 
not change in response to a common-mode input signal. 
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While the gain of the differential amplifier has been calculated only for 
two specific types of input signals, any input can be decomposed into a 
sum of differential and common-mode signals. The output to each indi­
vidual component can be calculated and, because of linearity, the output 
is the sum of the responses to the two individual inputs. For example, 
assume inputs e, and eb are applied to the left- and right-hand inputs of 
the circuit, respectively. The decomposition yields a common-mode com­
ponent eem = (ea + eb)/2, and a differential component (applied between 
inputs) ed ea - eb. The physical implication is clear. It is assumed that 
any combination of input voltage levels is actually the sum of two signals: 
a common-mode signal (the two bases are incremented by equal amounts) 
equal to the average level, and a differential signal (the two bases are in­
cremented by equal-magnitude, opposite-polarity signals) equal to the 
voltage applied between inputs. 

7.3.3 Common-Mode Rejection Ratio 

The evolution of the name differential amplifier is evident when we realize 
that circuit element values are typically such that the gain to a differential 
signal is significantly higher than that to a common-mode signal. The ratio 
of differential gain to common-mode gain is called the common-mode rejec­
tion ratio (CMRR), and many applications require high CMRR. For example, 
an electrocardiogram is a recording of the signal that results as the heart 
contracts, and is useful for the diagnosis of certain types of heart disease. 
The desired signal, detected by means of two electrodes attached to the 
body, has an amplitude of approximately 1 mV. In addition to the desired 
signal, a noise component at the power-line frequency with an amplitude 
of as much as 0.1 volt may be present as a common-mode signal on both 
electrodes. An amplifier with sufficiently high CMRR can be used to separate 
the desired signal from the interfering noise. 

The analysis of Section 7.3.2 indicates that the common-mode rejection 
ratio of a differential amplifier with the output taken between collectors 
should be infinite. (As we shall see, this result is a consequence of the 
idealized model used.) The CMRR for a single-ended-output differential 
amplifier is obtained by dividing Eqn. 7.11 by Eqn. 7.13 yielding the 
magnitude 

r,/2 + r,12 + (0 + 1)RE (7.14)
CMRR - 7.4 

r,, + r, 

Typically, (# + 1)RE r, r,, so that 

(# + 1)RE 
~ mRECMRR ~ . (7-15) 
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Figure 7.8 Circuit illustrating effect of unequal ry's. 

Since the quiescent current through RE (Fig. 7.4) is equal to twice the 
emitter current of either transistor, the CMRR can be related to VE, the 
quiescent voltage across RE, by 

CMRR = RE 2OVE (7.16)
kT 2RE 

Equation 7.16 shows that one way to achieve high common-mode rejection 
ratios for single-ended-output differential amplifiers is to use a large bias 
voltage. An attractive alternative (which allows more moderate supply 
voltage) is the use of a current source (realized with a transistor with emit­
ter degeneration) in place of RE. This approach has the further advantage 
that the quiescent current level is independent of the common-mode input 
signal, and for these reasons most high-performance d-c amplifiers include 
an emitter-circuit current source. 

If the simplified transistor model used up to now were strictly valid, the 
CMRR for an amplifier with an emitter-circuit current source would be in­
finite regardless of whether a single-ended or a differential output is used, 
since the incremental resistance of the current source (which replaces RE 

in Eqn. 7.15) is infinite. Analysis based on a more complete model shows 
that it is not possible to achieve infinite CMRR with a single-ended output, 
but that CMRR can be made arbitrarily high for a differential-output ampli­
fier by matching all transistor parameters sufficiently closely. It is useful to 
illustrate the degradation that results from imperfect matching by example. 
Figure 7.8 shows a linear-region equivalent circuit for a differential ampli­
fier. A collector-to-base resistance has been included in the transistor 
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model.7 The physical reason for the presence of this element in the model 
is described in Section 8.3.1. The magnitude of this resistance is r, for one 
transistor, while that of the second device differs by a fraction A. All other 
circuit parameters are identically matched. It is assumed that r2 is negligibly 
small compared to r, .8 It is further assumed that the circuit has been con­
structed with an ideal emitter-circuit current source. Since r, >> RL, the 
gain for a differential input is 

(v- v ) gmRL (7.17)
(Vi2 - Vin) Vin = Vi 

The gain for a common-mode input is 

I ARmRL(7.18) 
Vi vni = vi 2 (RL + r,)[(1 + A)r, + RL( 

Again invoking the inequality r, >> RL leads to 

va ARLVO~ R (7.19) 
on i = v 2 (1 + A)r, 

The resultant CMRR is obtained by dividing Eqn. 7.17 by Eqn. 7.19, yielding 

CMRR = gm(l 	 + A)r, (7.20) 
A 

A similar approach can be used to calculate common-mode errors that 
arise from other sources such as unequal transistor collector-to-emitter 
resistance or unequal values of r,. It can be shown that since each of these 
effects is small, there is little interaction among them, and it is valid to 
compute each error separately. 

As a matter of practical interest, it is possible to obtain well enough 
matched transistors to obtain low-frequency values for CMRR on the order 
of 104 to 106 with a simple differential-amplifier connection. 

7We shall also see that an additional resistor between collector and emitter is necessary 
to complete the model. This second resistor is omitted from the present discussion since 
the simplified model illustrates the point adequately. 

8 This assumption is frequently valid in the analysis of d-c amplifiers because the tran­
sistors are usually operated at low currents to decrease input current and to minimize offsets 
from differential self-heating. The resistance r, grows approximately inversely with collector 
current, while the value of r, is bounded, with a usual maximum value of 100 to 200 9. 
A typical value for r, for transistors such as the 2N5963 is 2.5 MQ at an operating current 
of 10 ,A. 

http:ARmRL(7.18
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7.3.4 Drift Attributable to Bipolar Transistors 

The reason for the almost exclusive use of the differential amplifier for 
d-c amplifier circuits is because of the inherent drift cancellation afforded 
by symmetrical components. The purpose of this section is to indicate how 
the circuit should be balanced for minimum drift. 

If a differential amplifier such as that shown in Fig. 7.4 is constructed 
with symmetrical components, the differential output voltage voi is zero 
for vri = V 2 . While resistors are available with virtually perfectly matched 
characteristics, selection of well-matched transistors is a significant problem. 

It has been assumed up to this point that the transistors used in a dif­
ferential amplifier are matched in the sense that they have equal saturation 
currents. One measure of the degree of match is to specify the ratio of the 
saturation currents for a pair of transistors. This ratio is exactly the same 
as the ratio of the collector currents of the two transistors when operated 
at equal base-to-emitter voltages, since at a base-to-emitter voltage VBE 

(assuming operation at currents large compared to Is), the collector current 
of one transistor is 

Ic1 = IsieQVBEkT (7.21) 

while that of the second transistor is 

IC2 = Is2eQVBE'kT (7.22) 

Alternatively, the degree of match can be indicated by specifying the dif­
ference AV between the base-to-emitter voltages of the two transistors 
when both are operated at some collector current Ic. This specification 
implies that at some base-to-emitter voltage VBE 

Ic1 = Is 1 eqVBE C =C -- IC2 = IS2e q(VBE+AV)IkT (7.23) 

This measure of match is easily related to the degree of match between 
saturation currents, since Eqn. 7.23 shows that 

ISi = e AV/kT (7.24) 
'I 

Equation 7.24 also shows that the base-to-emitter voltage mismatch, A V, 
is independent of the operating current level selected for the test. 

If the circuit of Fig. 7.4 is used as a d-c amplifier, the quantity AV for 
the transistor pair is exactly the offset referred to the input of the amplifier, 
since this differential voltage must be applied to the input to equalize col­
lector currents and thus make voi zero. For this reason, semiconductor 
manufacturers normally specify the degree of match between two transistors 
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in terms of their base-to-emitter voltage differential at equal currents rather 
than as the ratio of saturation currents. 

Several options are available to the designer to obtain well-matched pairs 
for use in differential amplifiers. Matched transistors are available from 
many manufacturers at a cost of from 2 to 10 times that of the two indi­
vidual devices. These transistors are frequently mounted in a single can so 
that the differential temperature of the two chips is minimized. The best 
specified match available in a particular series of devices is typically a 
3-mV base-to-emitter voltage differential when the devices operate at equal 
collector currents. 

An alternative involves user matching of the transistors. This possibility 
is attractive for several reasons. There are economic advantages, particu­
larly if large numbers of matched pairs are required, since relatively modest 
equipment suffices and since the effort required is not prohibitive. Better 
matches for a greater number of parameters are possible than with pur­
chased matched pairs. However, lack of money, patience, and environ­
mental control (remember the typical temperature coefficient of -2 mV/ 0 C) 
generally limits achievable base-to-emitter voltage matches to the order of 
0.5 mV. It is also necessary to provide some sort of thermal coupling to 
keep the matched devices at equal temperatures during operation. 

A third possibility is the use of a monolithic integrated-circuit differen­
tial pair. Through proper control of processing, all transistor parameters 
are simultaneously matched, and differential base-to-emitter voltages on 
the order of 1 mV are possible with present technology. Excellent thermal 
equality is obtained because of the proximity of the two devices. This 
approach is used as an integral part of all monolithic operational amplifiers. 
There are also a number of single and multiple monolithic matched pairs 
available for use in discrete designs. Several more sophisticated monolithic 
designs are available9 that include temperature sensing and heating ele­
ments on the chip to keep its temperature relatively constant. The effects of 
ambient temperature variations are largely eliminated by this technique. 

Regardless of the matching procedure used, some type of trimming is 
required to reduce the offset of the amplifier to zero at one temperature. 
One popular technique is to include a potentiometer in the emitter circuit 
as shown in Fig. 7.9. The two bases are shorted together and the pot is 
adjusted until the two collector currents are equal so that vo = 0. This 
adjustment is possible for R > 2A V/I, where AV is the base-to-emitter 
voltage differential of the pair at equal collector currents. (The use of too 

9Examples include the Fairchild Semiconductor 4A726 and aA727. 
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Figure 7.9 Balancing with emitter-circuit potentiometer. 

large a potentiometer is undesirable since it lowers the transconductanceO 
of the pair, and we shall see that this quantity becomes important when the 
effect of other circuit components on drift is considered.) While this balance 
method is frequently used, it is fundamentally in error if minimization of 
drift with temperature is the design objective. The approach equalizes col­
lector currents and thus insures that one transistor operates at a quiescent 
base-to-emitter voltage of VBE1, while the other operates at a voltage of 

VBE1 + AV. The required difference in base-to-emitter voltages is obtained 
by adjusting the pot so that the voltages across its two segments differ by 
AV. Since the voltages across the pot segments are the same whenever the 

input voltage is adjusted to make vo zero (assuming the common-base cur­

rent gain of the transistors is one, the current through each pot segmen 

must be I/2 when vo = 0), the drift referred to the input with respect to 

10 The transconductance of a differential pair is defined as the ratio of the incremental 
change in either collector current to the incremental differential input voltage. Assuming 
that both transistors have large values for 0 and negligible base resistance, the trans-
conductance for the configuration shown in Fig. 7.9 is 

I ici _ 1ic2 1 
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temperature for this design is identically equal to the differential change in 
the transistor base-to-emitter voltages with temperature. From Eqn. 7.5, 

a -= V B E1 - V g 3 k) 
T - C1 = iC2 = const T q 

(VBE2 -- go ~ VBE23k BE1 (7.25) 
\ T q T 

Since the difference VBE1 - VBE2 is AV, 

a AV 
(VBE1 - VBE2) - (7.26)aT T 

For example, a 3-mV mismatch at room temperature leads to a drift of 
10 AV/ 0C. 

An alternative is to operate the transistors with equal base-to-emitter 
voltages. This condition requires that the quiescent collector-current ratio 
be equal to the ratio of the transistor saturation burrents, or 

-c-- =I - e qAV/T (7.27) 
Ic2 Is2 

where, as defined above, AV is the difference between the base-to-emitter 
voltages of the two devices when they are operatedat equal collector cur­

rents. In this case, a 3-mV value for AV requires a 12% difference in col­
lector currents to equalize base-to-emitter voltages. A possible circuit con­
figuration is shown in Fig. 7.10. The two bases are shorted together, which 
forces equal base-to-emitter voltages and zero differential input voltage. 
The potentiometer is then adjusted to make vo = 0. The results of earlier 
analysis indicate that the temperature drift attributable to the transistors 
should be zero following this adjustment. While very low values are attain­
able by this method, there are other detailed effects, neglected in our sim­
plified analysis, wftich lead to nonzero drift. It is possible to adjust the rela­
tive base-to-emitter voltages to compensate for these effects." In practice, 
even the simplified balancing technique can result in drifts of a fraction of 
a microvolt per degree Centigrade. 

It is stressed that this balancing technique should not be considered a 

substitute for careful matching of the devices, but rather as a final trim 
following matching. If a large base-to-emitter voltage mismatch is compen­
sated for by this method, there is a large differential power dissipation with 
associated differential heating, base currents will differ by a large amount, 

11A. H. Hoffait and R. D. Thornton, "Limitations of Transistor DC Amplifiers," 
ProceedingsInstitute of Electrical and Electronic Engineers, February, 1964. 
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Figure 7.10 Method for balancing with equal base-to-emitter voltages. 

and the transconductance of the pair will be significantly lower than if 

well-matched devices are used. For example, cQmpensation for a 60-mV 

mismatch requires collector currents with a 10 to 1 ratio and lowers trans-

conductance by a factor of five compared with a well-matched pair operated 

at the same total emitter current. Operation with severely unbalanced col­

lector currents also mismatches all current-dependent transistor parameters. 

7.3.5 Other Drift Considerations 

It is interesting to note that the excellent compensation afforded by even 

the simplified balancing technique described above emphasizes the drift 

contribution of other components in circuit. Consider the circuit shown in 

Fig. 7.11. (For simplicity it is assumed that inputs are applied to only one 

side of the circuit.) Assume that the transistors are perfectly matched so 

that when the collector resistors are equal vo = 0 for v = 0. A drift re­

sults if the relative collector-resistor values change as a result of differen­

tial changes with temperature or aging. The drift attributable to a collector-

resistor fractional unbalance A can be calculated as follows. With v = 0, 

ici = ic2 ~ 1/2. As vi is increased, ici = 1/2 + (gm/2)vi and ic 2 = 1/2 ­

(gm/2)vi, where gm is the transconductance of either transistor. (It is as­
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Figure 7.11 Circuit with unequal load resistors. 

sumed that r, >> r. for the transistors.) In order to return vo to zero, it is 
necessary to have 

2 + vijRL v (1 + A)RL (7.28) 

or 

( I 
gmv2 2 (7.29)

2 

(A term containing the small cross product gmvi ARL has been dropped.) 
Since each device is operating at a quiescent current level 1/2, gm = 
qI/2kT ~ 201 at room temperature. Thus the input voltage required to re­
turn the output voltage to zero (by definition the drift referred to the input) 
is A/40. The significance of this sensitivity is appreciated when one considers 
that two ordinary equal-value carbon-composition resistors can have tem­
perature coefficients that differ by as much as one part per thousand per 
degree Centigrade. Use of such resistors would result in an amplifier drift 
of 25 yV/ 0 C! It is clear that the quality of the resistors used is an important 
factor when a 1pV/ 0 C amplifier is designed. 
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Figure 7.12 Equivalent circuit for finding drift as a function of ICBO. 

A similar conclusion is reached when the effects of collector-to-base 

leakage current ICB 012 are considered. An equivalent circuit that can be 

used to predict the drift from ICBO is shown in Fig. 7.12. Since the magni­

tude of ICBO is likely to be significantly different for two otherwise well-

matched transistors, only one leakage current generator is shown in Fig. 

7.12. Its value can be made the difference between the leakages if one com­

ponent is not negligible. Proceeding as before, the value of vi required to 
reduce the output to zero is given by solving 

gmvi - m + ICB0 (7.30) 
2 2 

for vi, yielding 

vi =ICO'i-CR0 (7.31) 
gm 

The transconductance of either input transistor gm can be related to the 

bias level for the differential pair (each member operates at 1/2) as gm = 

201. Therefore, the offset expressed in volts is ICBO 20'- Typical values are 

again evoked to illustrate the problem. The FT107A (an attractive choice for 

the input stage of a d-c amplifier since its specifications include a typical 3of 

12The assumptions often used to simplify device physics to the contrary, this quantity is 
not related to the saturation current in the transistor equation. The magnitude of Is is 
dominated by effects within the body of the semiconductor, while the dominant component 
of ICBO, at least at room temperature, results from surface effects. Temperature coefficients 
are significantly different. While Is doubles every 6 C, ICBO near room temperature typically 
doubles every 10' C. 
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1100 at 10yA of collector current!) has a specified maximum leakage current 
that increases from essentially zero at 25* C to 1yA at 125' C. The result­
ant average drift over the 1000 C temperature range for the device operat­
ing at a collector current level of 10 yA (I = 20 yA) is therefore bounded 
by 25 yV/*C. Fortunately the typical value for ICBO is 2 % of the maxi­
mum specified value, but additional screening procedures are required to 
insure this lower level is met by any particular device. 

It is worth emphasizing the importance of proper thermal design for 
low-drift d-c amplifiers. A temperature differential of 0.001* C results in an 
offset of 2 yV for a differential pair that is perfectly matched when the tem­
peratures of the transistors are identical. Several factors influence the tem­
perature differential of a pair. Good thermal contact between the members 
of the pair is mandatory. This required contact can be achieved by locating 
the two chips close together on a thermally conductive plate, or via mono­
lithic integrated-circuit construction. 

It is also necessary to minimize heating effects that disturb the pair. 
Self-heating as a consequence of the power dissipated in the pair is particu­
larly important. Differential self-heating is reduced by operating the two 
members of the pair at matched, low collector currents and at low collector 
voltage. The location of other heat sources that can establish thermal 
gradients across the pair must also be considered. These sources are easily 
isolated in discrete-component designs, but impose severe constraints on 
component placement in integrated circuits. 

Another aspect of the thermal problem involves the way in which the 
differential-amplifier transistors are connected to the input signal or to 
other circuit components. A thermocouple with an approximately 20 V/ C 
coefficient is formed when kovar, an alloy frequently used for transistor 
leads, is connected to copper. Thus thermal gradients across the circuit, 
which result in different temperatures for series-connected thermocouple 
junctions in the signal path, can contribute significant offset voltage. 

7.4 INPUT CURRENT 

The discussion of input-circuit errors up to this point has focused on 
voltage drift referred to the input. Additional input offset signals arise from 
input current if the signal source resistance is high. In many d-c amplifiers 
constructed using bipolar transistors, offsets from input current dominate. 
One alternative is the use of junction-gate or metal-oxide-semiconductor 
(Mos) field-effect transistors that exhibit substantially lower input currents. 
Unfortunately, the voltage drift of junction-gate field-effect transistors is 
about one order of magnitude worse than that of bipolar devices. Mos de­
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vices, with threshold voltages dependent on trapped surface charge, are 
even more unstable. The techniques used to stabilize the operation of these 
devices are significantly different than those used with bipolar transistors 
and are not discussed here." 

In contrast to the base-to-emitter voltage, which varies in a highly pre­
dictable fashion with temperature, the temperature dependence of base 
current is a complex function of transistor structure. Furthermore, match­
ing most parameters of two transistors, including 0 at one temperature, 
does not insure equal current gain at some different temperature. As a 
matter of practical interest, the fractional change in current gain with tem­
perature, (I/#)(8#/aT), is typically 0.5 to 1 % per degree Centigrade, with 
somewhat higher values measured at low collector currents and low 
temperatures. 

While these unpredictable variations in 3 make input-current compen­
sation schemes less precise than voltage-drift compensation, several useful 
methods are available for lowering input current. 

7.4.1 Operation at Low Current 

In spite of manufacturers' reluctance to admit it, there are many types of 
transistors that exhibit useful current gains at low collector currents. It is 
not unusual to find units with a value for # in excess of 10 at Ic = 10-11 A, 
and devices with current gains of 100 at Ic = 10-9 A are easily selected 
from several families. Clearly, operation at reduced collector current is 
one approach to low input current. A disadvantage of this technique is 
that collector-to-base leakage current may dominate input current, particu­
larly at high temperatures, or may contribute to excessive voltage drift 
(see Section 7.3.5). However, ICBO can be eliminated by operating a tran­
sistor at zero collector-to-base voltage, and there are several circuit 
techniques that keep this voltage low yet permit operation over a wide 
range of input voltages. 

A more fundamental problem is the low fT (current gain-bandwidth prod­
uct) of devices operating at low collector currents. Below some current 
level the base-to-emitter capacitance C, is dominated by a space-charge­
layer capacitance, and this quantity is independent of current. Since 
collector-to-base capacitance C, is independent of operating current and 
gm is directly proportional to current, 

fT = gM (7.32)
27r(C, + CQ 

is directly proportional to current at low operating currents. A typical 
value for fT at a collector current of 1 nA is 1 kHz. 

" L. Orchard and T. Hallen, "Fet Amplifier Design Precautions," EDN, August, 1968. 
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Figure 7.13 Method to eliminate effects of input current. 

7.4.2 Cancellation Techniques 

While the variation of input current with temperature is not as predictable 
as that of the base-to-emitter voltage, several compensation techniques take 
advantage of matching this quantity. Figure 7.13 shows one possibility. 
Here it is assumed that the source impedances associated with the two 
input signals are resistive and fixed. If 

iBIRA = iB2RB (7.33) 

the drop across each source resistor is equal and the net effect is simply to 
apply a common-mode input signal to the amplifier.14 Similarly, if 

aiB1 aiB2 

RA = RB OB (7.34) 

the effects of temperature-dependent input currents are eliminated. Both 
Eqns. 7.33 and 7.34 are satisfied if the resistors are selected to equalize 
voltage drops at one temperature and if the fractional change in # with 
temperature is equal for both devices. The technique of equalizing the re­

14It is assumed in this discussion that the input currents are independent of differential 
input voltage. This is not true for large signals, but in many applications the signals applied 
to a differential amplifier are sufficiently small to make base-current variations with signal 
level negligible. A technique to compensate for varying input current with signal levels 
is indicated in Section 7.4.3. 

http:amplifier.14
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sistances connected to the two inputs (effectively assuming equal input 
currents) is frequently used in operational-amplifier connections. 

In some applications, it is important to reduce the magnitude of one or 
both base currents of an amplifier, not simply insure that the two input cur­
rents to a differential amplifier are equal. Clearly one very simple approach 
is to provide the amplifier bias currents via resistors connected to an appro­
priate-polarity supply voltage. Unfortunately, the bias current supplied by 
this method is temperature independent, and thus the variation in amplifier 
input current with temperature is not decreased. Figure 7.14 shows one 
way to provide a degree of cancellation. If the O's of corresponding NPN 
and PNP transistors are equal, the current seen at either input is zero when 
the collector currents of the two NPN's are equal. The use of current sources 
in the emitters of the PNP's provides a compensating current that is inde­
pendent of common-mode level. 

Another technique is to use the temperature-dependent forward-voltage 
characteristics of a diode to generate a temperature-dependent compen­
sating current, as shown in Fig. 7.15. The amplifier itself is shown diagram­
matically in this figure, and only one input, close to ground potential, is 
indicated. Resistor R1 establishes a bias current through the diode. It is as­
sumed that this current is constant since it is selected to be much larger than 
iA and that Vc is much greater than VA and VF. The temperature dependence 
of VF, avF/aT, is identical to that of a transistor (Eqn. 7.5) and is approxi-

Figure 7.14 Input-current cancellation with transistors. 
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Figure 7.15 Use of a diode for input-current compensation. 

mately constant with temperature." The compensating current iA is equal 

to vB/R2, and has a fractional change with temperature equal to 

1 NiA 1 aVB aVF 
(7.35) 

iA 8T VB T (VF VA) T 

The two degrees of freedom represented by the selection of VA and R 2 

can be used to cancel at one temperature both the input current and its 

first derivative with respect to temperature. 
There are several variations on this basic topology that effectively boot­

strap the reference voltage for the compensating diode from a node refer­

enced to the common-mode input level such as the emitter connection of 

differential pair. The compensating current provided can be made rela­

tively independent of common-mode level in this way, thus allowing the 

technique to be used with input voltages at arbitrary levels with respect to 

ground. 

7.4.3 Compensation for Infinite Input Resistance 

The compensation methods introduced up to this point have been in­

tended to compensate for temperature variations of the input-transistor 

bias current. It has been assumed that the input signals are small enough 

15Carrier recombination in a diode can multiply the 3k /q term in Eqn. 7.5 by a factor 

between one and two. This modification does not significantly alter the basic dependence. 
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Figure 7.16 Circuit that can yield infinite differential input resistance. 

so that the input-current component attributable to the input resistance of 
the amplifier is negligible. While this inequality is generally satisfied in 
applications (such as operational amplifiers) where the input circuit is fol­
lowed by additional stages of voltage amplification, many differential-
amplifier stages operate with appreciable differential signals applied to their 
input. 

Figure 7.16 shows a connection that can be adjusted to provide infinite 
input resistance to differential signals. Consider a differential input signal, 
on = - vr 2. A positive vri increases the current flowing into the base of Q1 
and causes a positive change in v 0 2 . By proper choice of parameters it is 
possible to supply the required base current through the right-hand R 1 so 
that the change in ii, is zero". The necessary value for R1 is computed with 
the aid of the incremental model of Fig. 7.17. (The usual approximations 

16 This technique, which involves positive feedback, is not without its hazards. The 
topology of the circuit is essentially identical to that of a flip-flop, and if the circuit is 
overcompensated and driven from high impedance sources, bistable operation is possible. 

2 
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Vi , g v gmVb v r, Vi2 

Figure 7.17 Increment model for circuit of Fig. 7.16. 

have been included in developing the model.) Normally R1 >> RL so that 
the loading by R1 can be neglected. With this assumption, the incremental 
input current ii, that results for a pure differential input is 

ii = V[ (RL ) (7.36) 
Ir, R1, 

If the voltage gain of the circuit is large so that gmRL >> 1, the differential 
input resistance is infinite for 

gmrrRL = 1 or R1 = 8RL (7.37)
R,
 

The common-mode input resistance is lowered by the compensating re­
sistors, since Fig. 7.17 shows that 

(7.38)= R1Vl Vil =Vi2iil 

High common-mode input resistance can be restored by including PNP 

transistors in this compensating circuit as shown in Fig. 7.18. In addition 
to supplying the compensating current from a high-resistance source, se­
lection of the bias voltage gives an additional degree of freedom in con­
trolling the quiescent level of the compensating current. 

7.4.4 Use of a Darlington Input 

One obvious way to lower input current is to use transistors with higher 
current gains. As mentioned earlier, transistors with current gains in ex­
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Vc 

RL RL 

Figure 7.18 Use of common-base transistors to increase common-mode input 
resistance. 

cess of 1000 are available, and this value should increase as processing 

techniques improve. It is also possible to use two transistors in the Darling-

ton connection shown in Fig. 7.19. It is easy to show that at low frequencies 

this connection approximates a single transistor between terminals B, C, 

and E with current gain given by 

3 (7.39)# = #2(#1 + 1) + #1 0112 

and a transconductance 

gm = 2 Ic (7.40)
2kT 

Current gains in excess of 101 are possible with available devices. 

Figure 7.20 shows a differential amplifier with Darlington-connected in­

put transistors. While a connection of this type yields low values for input 

current, the voltage drift for this configuration usually exceeds that of the 

conventional differential amplifier. The problem stems from differential 

changes in the base currents of transistors Q, and Q2. (Remember that cur­

rent gain varies in a relatively unpredictable way with temperature.) Since 
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Figure 7.19 Darlington-connected transistors. 

the resistance seen at the emitters of transistors Q3 and Q4 is relatively 

high, current changes produce significant changes in voltages VA and VB­

A differential change in VA and VB results in drift equal in value to this 

change. 
In order to compute drift referred to the input from this effect, it is 

necessary to determine how vr must vary with iA and iB to keep vo = 0. 

VC 

RL 
RL 

0 vO 0 

C1 C2 

+ Q+ 

VBq+ A4 

I 

Figure 7.20 Differential amplifier with Darlington transistors. 
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Assume the operating point values for the two emitter currents are IA 
and IB. The incremental changes in these two currents that arise from 
changes in the current gains of transistors Q1 and Q2 are related to IA and IB 

by 

ia = -IA (7.41a)
1' 

ib = -IB 32 (7.41b) 

where A#/# is recognized as the fractional change in current gain for a 
transistor. 

The incremental output resistance of an emitter follower is approxi­
mately equal to the reciprocal of its transconductance. Thus the incre­
mental differential change between VA and VB caused by changes in iA and 
iB, which is identically equal to the change in v required to keep vo equal 
to zero is 

i ib IBA0 2 _ IAA01 (7.42)
Va -Vb (7.42 

gm3 gm4 gm4#2 gm1 

Since the transconductances are proportional to operating-point cur­
rents, Eqn. 7.42 reduces to 

IBA#2 IAA01 kT(,A02 A01(
Va - Vb =____ - j (7.43)

(qIB/kT)0 2 (qIA/kT)0j q 12 01 

Note that the drift component attributable to this effect is dependent only 
on the differential changes in the fractional current gains of the inner tran­
sistors. A typical value for the fractional change in current gain with tem­
perature is 0.6% per degree Centigrade. If transistors Q, and Q2 have this 
value matched to within 10%," the resultant drift is 15 yV/*C. 

Another potential difficulty with the use of the Darlington input connec­
tions is that its fractional change in input current with temperature is 
approximately a factor of two greater than that of an individual transistor 
because two devices are cascaded in the Darlington connection. Thus the 
low bias current of the Darlington configuration does not result in cor­
respondingly low changes in bias current with temperature. 

It is possible to trade input current for drift by increasing the emitter 
currents of Q3 and Q4 above the base currents of Q, and Q2, for example 

17 This degree of match is realistic for discrete transistors selected for matched base-to­
emitter voltages and current gains. Better results are normally achieved with monolithic 
matched transistors where the manufacuring process for the two devices is highly uni­
form. 
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by placing resistors from base to emitter of Q1 and Q2. Changes in base 
current have less effect since the output resistances of Q3 and Q4 are lower as 
a consequence of increased bias current. This technique is frequently used 
in the design of amplifiers with Darlington input transistors. 

7.5 DRIFT CONTRIBUTIONS FROM THE SECOND STAGE 

Thus far the discussion has focused on single-stage direct-coupled ampli­
fiers. No consideration has been given to situations that require a second 
stage either to provide greater voltage gain or to isolate a low-resistance 
load. The use of a second stage is mandatory in the design of operational 
amplifiers and thus must be investigated. 

There is a popular misconception that the dominant source of voltage 
drift for a d-c amplifier is always associated with its input stage. The argu­
ment supporting this view is that drift arising in the second stage is divided 
by the gain of the first stage when referred to the input of the amplifier, and 
is negligible if the first-stage gain is high. This assumption is not always 
justified because of the extraordinarily low values of drift that can be 
achieved with a properly balanced first stage. Balancing techniques similar 
to those used for the input stage are not effective for the second stage, since 
its drift contribution is often attributable to variations in input current 
rather than in base-to-emitter voltage. 

7.5.1 Single-Ended Second Stage 

Figure 7.21 shows a differential first stage (with two matched transistors 
collectively labeled Q1) driving a common-emitter PNP second stage. Two 
perturbation sources are shown, which will be used later to calculate drift. 
In addition to providing gain, the second stage shifts level so that the out­
put voltage can swing both positive and negative with respect to ground. 
If the base resistance of all transistors is negligibly small, the voltage gain 
of this amplifier is 

v0 _ -gmRL1#2RL2 7.44) 
vi 2(r,, + RLl) 

Drift referred to the input for this two-stage amplifier is calculated as 
before by determining how v must vary to keep vo equal to zero. Note 
that in order to maintain a fixed output voltage, it is necessary for ic2 to 
remain constant. There are a number of sources of drift for this amplifier. 
In this development only changes in iB2 and VEB2 that arise as the param­
eters of Q2 vary are considered. These changes can be modeled by the per­
turbation generators shown in Fig. 7.21. If the changes are small compared 
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Figure 7.21 Two-stage d-c amplifier. 

to operating-point values, linear analysis methods can be used to deter­
mine the drift referred to the input of the amplifier.
 

The results of this analysis show
 

-- 2AVEB2 2AiB2 
or . = ­ (7.45)

1C2 = const gm1RLi gmi 

The gain portion of the first term on the right of Eqn. 7.45 can be ex­
pressed in terms of V, the quiescent voltage across RLi. Similarly, the sec­
ond term can be expressed in terms of IEl, IC2, the current gain of Q2, 
and its fractional change. These substitutions yield 

-- 2kT VEB2 4kTIC2 A02 
vI. = +

iC2 = const qV qIE1I3 
2 

-- AVEB2 IC2 A02 

0V + lOE~~(7.46) 20V 10IE1 
at room temperature. 

http:lOE~~(7.46
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Typical values are used to illustrate magnitudes of these drift compo­
nents with temperature. The voltage V is constrained by available supply 
voltages, and a value of 5 volts is assumed. The typical AVEB value of 
-2 mV/*C is used. A current gain of 300 coupled with a temperature co­
efficient of 0.6% per degree Centigrade is assumed for Q2. Because the 
quiescent current level normally increases from the first stage to the second, 
a ratio of 5 is used for IC2/IEl- Substituting these values into Eqn. 7.46 
shows that the drift attributable to changes in VEB2 is approximately 20 
pV/ 0 C, while the component arising from iB2 changes is 10 V/*C. These 
values contrast dramatically with the drift that can be obtained from a 
properly designed first stage, and indicate the dominant effect that the 
second stage can have on drift performance. 

The drift calculations of this section apply even if current gain only is 
required from the second stage. It is easy to show that the calculated values 
of drift are the same if an emitter follower is used in place of the grounded-
emitter stage. 

The final term in Eqn. 7.46 indicates the importince of changes in second-
stage input current on drift performance. This term indicates that the drift 
performance deteriorates as the ratio of the quiescent operating current of 
the second stage to that of the first stage is increased. This result is one ex­
ample of how certain design considerations (in particular, the desire to 
increase quiescent currents from the first to subsequent stages) must be 
compromised to achieve low drift performance. 

7.5.2 Differential Second Stage 

It is evident from the typical values calculated in the last section that 
unless care is taken in the design of the second stage of a d-c amplifier, 
this stage can easily dominate the drift performance of the circuit. One 
approach to the design of low-drift multistage d-c amplifiers is to use a 
differential second stage so that reflected drift is determined by differential 
rather than absolute changes in second-stage parameters. 

Figure 7.22 shows a two-stage differential amplifier. Individual members 
of the first- and second-stage pairs are assumed matched. It is -further 
assumed that a single-ended output is desired, so one collector of the second-
stage pair is grounded. 

Normally a resistor is used in place of the current source IE2. Since only 
differential input signals can be applied to the second stage, and therefore 
the common-emitter point of the second stage is incrementally grounded, 
the impedance connected to this point is irrelevant. However, the calcula­
tions are somewhat more convenient if a current source is included. 

It is interesting to note that the voltage gain of this amplifier is identical 
to that of Fig. 7.21. Since the common-emitter connection of the second 
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Figure 7.22 Amplifier with two differential stages. 

stage is incrementally grounded for any possible input signal, no gain in­
crease results from the left-hand member of the PNP pair. 

Input drift attributable to second-stage differential base-to-emitter volt­
age changes is generally negligible if any degree of match exists. The drift 
referred to the input of the second stage is equal to the ratio AVBE21T per 

degree Centigrade (see Section 7.3.4). This value (typically on the order of 
10 to 100 yV/ C) is divided by the unloaded differential voltage gain of the 
first stage (twice the single-ended value calculated in the preceding section) 
when reflected to the input. 

The drift attributable to differential fractional changes in second-stage 

current gain is (assuming initially matched values for second-stage current 

gains) 

1c cos A32A IA02B (7.47)A0kTIE ­

iC2 = const #2qIEl1 2 
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where the A and B subscripts indicate the two members of the second-stage 
pair. (The factor of four compared with the calculation of the last section 
occurs since each second-stage transistor is operating at IE2/ 2 and since 
the differential connection requires that only half the differential current 
change be offset at either side.) The quantity (A#2A - A#2B)/2 is typically 
0.1 % per degree Centigrade for well-matched discrete components, and is 
often lower for integrated-circuit pairs. It is interesting to note that this 
component of drift dominates many amplifier designs, particularly if the 
current gains and the temperature coefficients of the second stage are not 
well matched, or if the operating. current level of the second stage is high 
relative to that of the first stage. 

The use of a Darlington second stage with its lower input current offers 
some improvement, since the higher voltage drift of the Darlington is 
tolerable in this stage. Another possibility is to adjust the relative collector 
currents of the second stage so that the differential change in second-stage 
base current with temperature is zero. Unfortunately, this adjustment is 
difficult to make. 

7.6 CONCLUSIONS 

The successful design of low-drift direct-coupled amplifiers depends on 
exploiting the unique tracking properties of the differential amplifier, and 
the application of a number of drift reducing tricks that have evolved. In 
view of the many possible pitfalls, it is reassuring to realize that the drift 
of several commercially available integrated-circuit operational amplifiers 
is on the order of 3 yV per degree Centigrade or lower, and that at least 
one discrete-component design achieves a drift of 0.5 yV per degree Centi­
grade. 

The purpose of the simple but somewhat tedious derivations and ex­
amples of this section has not been to permit exact evaluation of the drift 
of a circuit, but rather to emphasize that "little things mean a lot," and to 
indicate the dominant drift sources of a particular design so that they may 
be reduced. 

PROBLEMS 

P7.1 
Figure 7.23 shows several amplifying connections that consist of ideal 

amplifiers and passive components. Offset sources are shown as batteries. 
Calculate the offset referred to the input (the input voltage required to 
make vo = 0), the output offset (the output voltage with v = 0), and the 
gain (v0 /vi) for each connection. 
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Figure 7.23 Amplifier Connections. 
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Figure 7.23-Continued 

P7.2 
Consider an operational amplifier with a particular value of offset Eo 

referred to its input. Compare the offset referred to the input of amplifier 
connections that combine this amplifier with passive components to pro­
vide inverting or noninverting gains with a magnitude of A. 

P7.3 
Figure 7.24 shows a circuit that can provide a temperature-independent 

output voltage. Assume that the transistor has very high # and that io = 0. 
The diode variables are related as 

3
in = AdT e (VD-0.782)!kT 

while the transistor relationship is 

ic = AT3 e q(VBE-1. 
2 05)/kT 
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Germanium diode 

VO 

Silicon transistor 
'BE 

Figure 7.24 Voltage reference. 

(a) For what ratio of Ad to A, does avo/OT = 0? 
(b) What is vo with the condition of part a satisfied? 
(c) What is the output resistance of this connection? 

P7.4 
The current-voltage relationship for a family of diodes can be approxi­

mated as 

iD = K e q(VD-1.2)I kT 

where K is a (temperature-independent) constant that may vary from diode 
to diode. 

'Al 

R R 

R 

Figure 7.25 Nonlinear circuit. 



Problems 287 

(a) 	 Four of these diodes with identical values for K are connected as shown 
in Fig. 7.25. Find vo as a function if iA and iB. You may assume that 
the currents through all resistors R are much smaller than iA or iB and 
that both operational amplifiers are ideal. 

(b) 	Determine an expression for 

aVD 	 Ifor these diodes. 
OT 	 IiD = const 

(c) 	 Assume that, because of incredibly poor control of the process used to 
make these diodes, it is possible to find two diodes which, at T = 
300' K and 1 mA of forward current, have forward voltages of 0.3 V 
and 0.9 V, respectively. These diodes are connected as shown in Fig. 
7.26, and the pot is adjusted so that avo/aT = 0. What is vo with this 
pot setting? 

V
1 mA }0.9 

IO 

1mAl 

Figure 7.26 Voltage reference. 
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P7.5 
The current-voltage relationship for a particular diode is 

iD = AT 2 5
. eq(VD-1.205)IkT 

The value of the constant A is such that at 3000 K and VD = 0.6 V, iD = 
ImA. 

(a) 	 Determine ­
OT iD = const 

(b) 	Seven identical diodes are connected as shown in Fig. 7.27. By appro­
priate choice of iB, it is possible to make vo temperature independent 
over a limited range of temperature. Determine the required value of 
vo so that 

VO= 0 at T = 3000 K
OT iB = const 

Approximate the value of IB necessary to obtain the required value 
of vo. 

(c) 	 Calculate the second derivative of vo with respect to temperature. Use 
this value to estimate the temperature range over which vo remains 
within one part in 105 of its 300* K value. 

(d) 	 Repeat part b assuming that the magnitude of the right-hand current 
source is increased to 10 mA. 

The type of voltage reference that results from this topology is called a 
band-gap reference. The underlying principle is used as a voltage reference 
in several available integrated circuits. 

0 V0 

mAIB~ Ti 

Figure 7.27 Band-gap standard. 
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P7.6 
A differential amplifier is built with the topology shown in Fig. 7.11, 

with the exception that signals may also be applied to the base of the right-
hand transistor. The value of the current source is 20 pA, and the incre­
mental output resistance of this element is 10 MQ. (The reasons for finite 

output resistance from current sources are discussed in Section 8.3.5.) Cal­
culate the common-mode rejection ratio of this amplifier as a function the 
fractional unbalance in collector load resistors, A, assuming all transistor 
parameters are perfectly matched. 

P7.7 
An operational amplifier is built using a bipolar-transistor differential 

input stage. It is found that when the inverting input of the amplifier is 
grounded, the output voltage of the amplifier is zero at 25* C when a posi­

tive voltage of magnitude AV is applied to the noninverting input of the 
amplifier. You may assume that this offset and any temperature-dependent 
drift of the operational amplifier are caused only by a mismatch between 
the quantities Is of the input-transistor pair, and that transistor variables 
are related by Eqn. 7.1. 

The operational amplifier is intended for use in an inverting-amplifier 
connection, and therefore it is possible to reduce the effective offset at the 
inverting input to zero at 250 C by applying a voltage AV to the noninverting 
input. Three techniques for obtaining this bias voltage are indicated in Fig. 
7.28. Comment on the effectiveness of these three balancing methods in 
reducing the temperature drift of the amplifier. Assume that the diode 
forward-voltage variation with temperature is given by 

aVD (VD - V,,) 3k 
BT iD = const T q 

in parts b and c. 

P7.8 
A differential amplifier is constructed and balanced as shown in rig. 

7.10. Following balancing, it is found that transistor Q1 is operating at a 

quiescent collector current of 1. 1 mA, while Q2 operates at a collector cur­

rent of 0.9 mA. The transistors used are discrete devices mounted in reason­
ably close thermal proximity, and have a differential thermal resistance of 

20' C per watt (i.e., if one member of the pair operates at a power level AP 
watts above that of the other, its temperature is 20 X AP degrees Centi­
grade higher). Estimate the offset referred to the input that results for a 

one-volt change in power-supply voltage. 



VB (constant) 

(a) 

(constant and large
 
IB compared to current
 

through the pot)
 

(b) 

+ 1.275 

(constant and large compared 
IB to current through the pot) 

(c) 

Figure 7.28 Methods to reduce offset at inverting terminal to zero. (Potentiom­
eter set to make voltage at noninverting input AV at 3000 K in all cases.) 
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P7.9 
A differential amplifier that can provide low input capacitance, and, by 

proper control of bias voltage VB, high common-mode rejection ratio, is 

shown in Fig. 7.29. Assume that Q1 and Q2 are perfectly matched. Further 

assume that 0
3 

= 04 = 100 at 250 C. The output voltage is then zero for 

or = 0. Assume that the fractional change in 03 is 0.5 % per degree Centi­

grade, while that of 04 is 1% per degree Centigrade. Calculate the offset 

referred to the input for a 1* C temperature change. 

P7.10 
An operational amplifier is found to have a bias-current requirement at 

its noninverting input that is 10% higher than that at its inverting input at 

all temperatures of interest. The amplifier is connected as shown in Fig. 

7.30. Select the value of R that minimizes the effect of input current on 

circuit performance. 

P7.11 
The current at the inverting input of a certain operational amplifier is 

found to be equal to 10- 3A/T 2 where T is the temperature in degrees 

Kelvin. The amplifier is to be used in an inverting connection; conse­

+VC 

RL RL 

V ­0 

r, - + VB, VB < VC 

VQ 

Figure 7.29 Cascoded differential amplifier. 
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R 

Figure 7.30 Summing amplifier. 

quently the technique illustrated in Fig. 7.15 can be employed for input-
current compensation. Parameters are selected so that the diode operates 
at a very nearly constant 1 mA, and its forward voltage at 300' K is 600 
mV at this current. The diode current-voltage characteristics are of the 
general form 

iD = A' 
3 gq(VD-V o)kT 

Select resistor R2 and bias source VA in Fig. 7.15 so that the input current 
and its derivative with respect to temperature are cancelled at 300* K. 
What is the maximum compensated input current over the temperature 
range of 250 to 3500 K using this form of compensation? Contrast this 
range with the corresponding quantity obtained with no compensation 
and by cancelling the input current at 300' K with a fixed bias current. 

P7.12 

The use of Darlington-connected input-stage transistors is discussed in 
Section 7.4.4. An alternative high-gain connection is the complementary 
Darlington connection shown in Fig. 7.31a. A differential amplifier em­
ploying this connection is shown in Fig. 7.31b. Determine the voltage drift 
of this connection as a function of relative current-gain changes of the 

Q1-Q2 pair by an argument similar to that used for Fig. 7.20. 

P7.13 
A regulated power supply is constructed as shown in Fig. 7.32. This sup­

ply uses feedback around a very simple d-c amplifier in an attempt to make 

VO = VR. 

(a) Determine the output voltage for circuit values as shown. 
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(b) 	 How much does the output voltage change for a small fractional change 
in the current gain of Q2? 

(c) 	 Suggest a circuit modification that will reduce the dependence of vo 
on the fractional change in 02. 

Collector 

Emitter 

V, 

(b) 

Figure 7.31 Differential amplifier using complementary Darlington-connected in­

put transistors. (a) Base, collector, and emitter refer to terminals of the compound 

transistor. (b) Connection. 



vC 

Figure 7.32 Power supply. 
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CHAPTER VIII
 

OPERATIONAL-AMPLIFIER
 
DESIGN TECHNIQUES
 

8.1 INTRODUCTION 

This chapter introduces some of the circuit configurations that are 
used for the design of high-performance operational amplifiers. This brief 
exposure cannot make operational-amplifier designers of us all, since con­
siderable experience coupled with a sprinkling of witchcraft seems essential 
to the design process. Fortunately, there is little need to become highly 
proficient in this area, since a continuously updated assortment of excellent 
designs is available commercially. However, the optimum performance can 
only be obtained from these circuits when their capabilities and limitations 
are appreciated. Furthermore, this is an area where good design practice 
has evolved to a remarkable degree, and the techniques used for opera­
tional-amplifier design are often valuable in other applications. 

The input stage of an operational amplifier usually consists of a bipolar-
transistor differential amplifier that provides the differential input connec­
tion and the low drift essential in many applications. The design of this 
type of amplifier was investigated in detail in Chapter 7. The input stage is 
normally followed by one or more intermediate stages that combine with 
it to provide the voltage gain of the amplifier. Some type of buffer amplifier 
that isolates the final voltage-gain stage from loads and provides low output 
impedance completes the design. Configurations that are used for the inter­
mediate and output stages are described in this chapter. 

The interplay between a number of conflicting design considerations 
leads to a complete circuit that reflects a number of engineering compro­
mises. For example, one simple way to provide the high voltage gain char­
acteristic of operational amplifiers is to use several voltage-gain stages. 
However, we shall see that the use of multiple gain stages complicates the 
problem of insuring stability in a variety of feedback connections. Similarly, 
the dynamics of an amplifier are normally improved by operation at higher 
quiescent current levels, since the frequency response of transistors increases 
with increasing bias current until quite high levels are reached. However, 
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operation at higher current levels deteriorates d-c performance character­
istics. Some of the guidelines used to resolve these and other design conflicts 
are outlined in this chapter and illustrated by the example circuit described 
in Chapter 9. 

8.2 AMPLIFIER TOPOLOGIES 

Requirements usually constrain the input and output stages of an opera­
tional amplifier to be a differential amplifier and some type of buffer 
(normally an emitter-follower connection), respectively. 

It is in the intermediate stage or stages that design flexibility is evident, 
and the difference in performance between a good and a poor circuit often 
reflects the differences in intermediate-stage design. The primary perform­
ance objective is that this portion of the circuit provide high voltage gain 
coupled with a transfer function that permits stable, wide-band behavior 
in a variety of feedback connections. Furthermore, the flexibility of easily 
and predictably modifying the amplifier open-loop transfer function in 
order to optimize it for a particular feedback connection is desirable for a 
general-purpose design. 

8.2.1 A Design with Three Voltage-Gain Stages 

One much-too-frequently used design is shown in simplified form in Fig. 
8.1. The path labeled feedforward is one technique used to stabilize the 
amplifier, and is not essential to the initial description of operation. The 
basic circuit uses a differential input since this connection is mandatory for 
low drift and high common-mode rejection ratio. Two common-emitter 
stages (transistors Q3 and Q4) are used to provide the high voltage gain 
characteristic of operational amplifiers. Some sort of buffer amplifier 
(shown diagrammatically as the unity-gain amplifier in the output portion) 
is used to provide the required output characteristics. 

Casual inspection indicates some merit for the design of Fig. 8.1. Low 
drift is possible and d-c gains in excess of 10 can be achieved. The difficulty 
is evident only when the dynamics of the amplifier are examined. The trans­
fer function Vo(s)/ [V 2(s) - Vi(s)] determines stability in feedback connec­
tions. With typical element values, this transfer function has three or four 
poles located within a two-to-three decade range of frequency. It is not 
possible to achieve large loop-transmission magnitude and simultaneously 
to maintain stability with this type of transfer function. The designer of 
this type of amplifier should be discouraged when he compares his circuit 
with that of a phase-shift oscillator, where negative feedback is applied 
around three or more closely spaced poles. 
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Figure 8.1 One approach to operational-amplifier design. 

The problem can be illustrated by computing the transfer function for 

the amplifier shown in Fig. 8.1 with component values listed in Table 8.1. 
The reasons for selecting these component values are as follows. Fifteen-
volt supplies are used since this value has become the standard for many 

solid-state operational amplifiers. The quiescent operating current of the 
first stage is low to reduce input bias current. 

Relatively modest increases in quiescent currents from stage-to-stage are 
used to minimize loading effects. At these levels, circuit impedances are 
such that little change in the transfer function results if r, is assumed equal 

to zero. However, r, has been retained for completeness. Junction capaci­

tances are dominated by space-charge layer effects at low operating cur­

rents, so equal values for all transistor capacitances have been assumed. 

Clearly any equal change in all capacitances simply frequency scales the 

transfer function. The resistors in the base circuits of Q3 and Q4 are assumed 

large to maximize d-c gain. In practice, current sources can be used to main­

tain high incremental resistance and to establish bias currents. Resistor R 3 

is chosen to yield a quiescent output voltage equal to zero. 



298 Operational-Amplifier Design Techniques 

Table 8.1. Parameter Values for Example Using Amplifier of Fig. 8.1 

Supply voltages:
 

±15 V
 

Bias currents: 

ICi = IC2 = 10 yA 
Ic3 = 50 yA 
IC 4 = 250 yA 

Transconductancesa implied by bias currents: 

gm = 9m2 = 4 X 10-4 mho 
g = 2 X 10-3 mho 

gm4 = 10-2 mho 

Other transistor parameters:
 

,= 100 (all transistors)
 
r.= r . 2 = 250 k.Q 
r,3= 50 ko 
r= 10 ku 
r= 100 Q (all transistors) 
C,= C, = 10 pF (all transistors) 

Reisistors: 

R1 and R2 large compared to r,.3 and r. 4, respectively. 
R3 = 60 ku 
(Satisfying the inequalities normally requires that current sources be used rather 
than resistors in practical designs.) 

Buffer amplifier assumed to have infinite input impedance. 

a Recall that for any bipolar transistor operating at current levels where ohmic 
drops are unimportant, the transconductance is related to quiescent collector 
current by g,, = q Ic| /kT - 40 V-1 IIc [ at room temperature. 

A computer-generated transfer function V0(j)/[Vi2 (jO) - Vj(jo)] for this 
amplifier is shown in Bode-plot form in Fig. 8.2.1 Two important features 
of this transfer function are easily related to circuit parameters. The low-
frequency gain can be determined by inspection. Invoking the usual assump-

IThe gains of the amplifier for signals applied to its two inputs are not identical at high 
frequencies because a fraction of the signal applied to the base of Q1 is coupled directly 
to the base of Q3 via the collector-to-base capacitance of Q1. This effect, which is insignifi­
cant until frequencies approaching the fT's of the transistors used in the circuit, has been 
ignored in calculating the amplifier transfer function so that a true differential gain expres­
sion results. 
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tions, the incremental changes in first-stage collector current is related to an 

incremental change in differential input voltage as 

V - V i8.1) 

"(_\/gmi + 1/g,.2/ 

is large compared to the input resistance of Q3, all of this incre-Since R 1 

mental current flows into the base of Q3. This base current is amplified by 

a factor of 03, and resulting incremental current flows into the base of Q,. 
The incremental output voltage becomes 

V0 = -ic103 4R3 (8.2) 

8.2 shows that the low-frequency voltage gain iscombining Eqns. 8.1 and 

V0 030 4R 3 8.3) 
on - vn (1/gmi + 1/gm2) 

values from Table 8.1 into this equation showsSubstituting parameter 


that the incremental d-c gain is 1.2 X 10.
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The lowest frequency pole plotted in Fig. 8.1 has a break frequency of 
1.36 X 104 radians per second. This pole results from feedback through 
the collector-to-base capacitance of Q4 (sometimes called Miller effect), as 
shown by the following development. An incremental model that can be 
used to evaluate the transimpedance of the final common-emitter stage is 
shown in Fig. 8.3. This transimpedance is a multiplicative term in the com­
plete amplifier transfer function. 

Node equations for this circuit are 

-Ic3 = [g, 4 + (CA4 + C, 4)S]Va - C,4sV 

0 = (g. 4 - C 4)SV. + (G3 + CMs)Vo (8.4)4 

Solving for the transimpedance shows that 

V0(s) = #R3[ -(Cj 4/gm4)s + 1] 
2Ic3(s) r,4R3C,4C, 4s + r,4{ [(g, 4 + g, 4)R3 + 1]CA4 + C, 4}s + 1 

The denominator of Eqn. 8.5 is normally dominated by the term that in­
cludes the factor gm4R 3C,4 , reflecting the importance of feedback through 
C.4. Substituting values from Table 8.1 into Eqn. 8.5 and factoring the de­
nominator polynominal results in 

V0(s) _ 6 X 106(- 10- 9s + 1) 
Ic3(s) (10- 9s + 1)(6.08 X 105 s + 1) 

This development shows that the output stage would have a dominant pole 
with a 1.64 X 104 radians-per-second break frequency in its transfer func­
tion if the other components in the circuit did not alter the location of this 
pole. This value agrees with the location of the dominant pole for the com­
plete amplifier within approximately 20%. 

R 
3 

II C 

+1+ 
Il3 C. rr4 VI IV.

Lit r 
VI 

Figure 8.3 Model used to determine dynamics of final common-emitter stage of 
three-stage amplifier. 
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The algebra involved in getting this result can be circumvented by recog­
nizing that a one-pole2 (or Miller-effect) approximation to the input ca­
pacitance of transistor Q4 predicts a value 

CT = C 4 + C, 4(l + g. 4R3) (8.7) 

The break frequency estimated at this node is 

I 
Wh = - 1.66 X 104 rad/sec (8.8)

r,4CT 

While the d-c gain and the dominant pole location for this configuration 
are easily estimated, the location of other transfer-function singularities 
are related to amplifier parameters in a more complex way. 

The essential feature to be gained from the Bode plot of Fig. 8.2 is that 
this transfer function is far from ideal for use in many feedback connec­
tions. The amplifier is hopelessly unstable if it is operated with its non-
inverting input connected to an incremental ground and a wire connecting 
its output to its inverting input, creating a loop with a as shown in the 
Bode plot and f = 1. In fact, if frequency-independent feedback is applied 
around the amplifier, it is necessary to reduce the magnitude of the loop 
transmission by a factor of 50 below the gain of the amplifier itself to make 
it stable in an absolute sense, and by a factor of 2000 to obtain 450 of phase 
margin. The required attenuation could be obtained by means of resistively 
shunting the input of the amplifier or through the use of a lag network 
(see Section 5.2.4). Either of these approaches severely compromises de-
sensitivity and noise performance in many applications because of the 
large attenuation necessary for stability. Better results can normally be 
obtained by modifying the dynamics of the amplifier itself. 

8.2.2 Compensating Three-Stage Amplifiers 

At least two methods are often used to improve the dynamics of an 
amplifier similar to that described in the previous section. One of these 
approaches recognizes that the poles in the amplifier can be modeled as 
occurring because of R-C circuits located at various amplifier nodes. This 
type ofassociati6n was made in the previous section for the dominant ampli­
fier pole. The transfer function for a gain stage includes a multiplicative 
term of the general form Re/(ReCes + 1), where Re and C, are the effective 

resistance and capacitance at a particular node (see Fig. 8.4). If a com­

2 P. E. Gray and C. L. Searle, Electronic Principles:Physics, Models, and Circuits, Wiley, 
New York, 1969, pp. 497-503. 
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Figure 8.4 Compensation by adding a shunt impedance. 

pensating series R-C network to ground consisting of a resistor Re << R, 
and a capacitor Ce >> C, is added, the transfer function becomes 

VJ(s) Re(RcCes + 1) (8.9) 
Ii(s) (ReCes + 1)(ReCes + 1) 

The single pole has been replaced by two poles and a zero. (Note that 
asymptotic behavior at high and low frequencies, which is controlled by 
Re and Cc, has not been changed.) Component values are chosen so that 
one pole occurs at a much lower frequency than the original pole and the 
other at a frequency above the unity-gain frequency of the complete ampli­
fier, as illustrated in Fig. 8.5. The positive phase shift of the zero often can 
improve the phase margin of the amplifier. This type of compensation can 
be viewed as one of combining the uncompensated transfer function with 
appropriately located lag and lead transfer functions. While the singulari­
ties must be related so that the compensated and uncompensated transfer 
functions are identical at very low and very high frequencies, the second 
pole can always be moved to arbitrarily high frequencies by locating the 
first pole at a sufficiently low frequency. 

An alternative way to view this type of compensation is shown in the 
s-plane diagrams of Fig. 8.6. It is assumed that the three-stage amplifier 
has three poles at frequencies of interest. The lowest-frequency pole of the 
triad is replaced by two poles and a zero by means of a shunt R-C network. 
One possible way to choose singularity locations is to use the zero to 
cancel the second pole in the original transfer function and to locate the 
high-frequency pole that results from compensation above the highest-
frequency original pole. The net effect of this type of compensation is to 
increase the separation of the poles so that greater desensitivity can be 
achieved for a given relative stability. 

Several variations of the basic compensation scheme exist. It is possible 
to realize similar kinds of transfer functions by connecting a series R-C 
network from collector to base of a transistor rather than from its base to 
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Figure 8.5 Effect ofadding a shunt impedance on the transfer function of one stage. 

an incrementally-grounded point. The same kind of compensation can be 
used at more than one node, and this multiple compensation is frequently 
required in more complex amplifiers. 

While this general type of compensation is effective and has been suc­
cessfully applied to a number of amplifier designs, it is less than ideal for 
several reasons. One of the more important considerations is that the deter­

mination of element values that result in a given transfer function requires 

rather involved calculations. This difficulty tends to discourage the user 

from finding the optimum compensating-element values for use in other 

than standard applications. This type of compensation also requires large 

capacitors (typically 1000 pF to 0.1 yF) when the network is shunted from 

base to an incremental ground. The energy storage of a large capacitor can 

delay recovery following an amplifier overload that charges the capacitor 
to the wrong voltage level. 
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Figure 8.6 s-plane plots illustrating effect of shunt impedance on three-stage 
amplifier transfer function. 

An alternative type of compensation that may be used alone or in con­
junction with a shunt impedance is to "feed forward" around one or more 
amplifier stages as shown in Fig. 8.1. Here a unity-voltage-gain buffer 
amplifier (not essential but included in some designs to prevent loading at 
the inverting input terminal) couples the input signal to the base of Q4 
through capacitor Cf. Since the first stages are bypassed at high frequency, 
the high-frequency dynamics of the operational amplifier should be essen­
tially those of the output stage. The hope is that the output stage has only 
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one pole at frequencies of interest, and therefore will be stable with any 
amount of frequency-independent feedback. 

Feedforward is not without its disadvantages. The frequency response of 
a feedforward amplifier is significantly lower for signals applied to the non-
inverting input than for signals applied to its inverting input. Thus the 
amplifier has severely reduced bandwidth when used in noninverting con­
nections. There are also problems that stem from the type of transfer func­
tions that result from feedforward compensation. There is usually a second-
or third-order rolloff at low frequencies, with the transfer function recov­
ering to first order in the vicinity of the unity-gain frequency. Since this 
transfer function resembles those obtained with lag compensation, the 
settling time may be relatively long because of the small amplitude "tails" 
that can result with lag compensation (see Section 5.2.6). It is also possible 
to have these amplifiers become conditionally stable in certain connections 
(Section 6.3.4). This topic is investigated in Problem P8.3. 

Before leaving the subject of three-stage amplifiers, the liberty that has 
been taken in the definition of a stage is worth noting. The stages are never 
as simple as those shown in Fig. 8.1. The essential feature that characterizes 
a voltage-gain stage is that it generally introduces one pole at moderate 
frequencies. The 709 (Fig. 8.7) is an example of an early integrated-circuit 
amplifier that is a three-stage design. While we do not intend to investigate 
the operation of this circuit in detail (several modern and more useful 
amplifiers are described in Chapter 10), the basic signal-flow path illustrates 
the three-stage nature of this design. Transistors Q1 and Q2 form a differ­
ential amplifier. The main second-stage amplification occurs through the 
Q-Q6 Darlington-connected pair. Transistors Q3 and Q5 complete a dif­
ferential second stage with the Q4-Q6 pair and are included primarily to 
reduce amplifier drift. Transistors Q8 and Q9 are used for level shifting, 
with common-emitter stage Q12 the final stage of voltage gain. Emitter 
followers Q13 and Q1 function as a buffer amplifier. There is some minor-
loop feedback applied around the output stage to linearize its performance 
and to modify its dynamics via R15. 

Compensation is implemented by connecting a series R-C network from 
the output to the input of the second stage. It is also necessary to use ca­
pacitive feedback from the amplifier output to the base of Q12 (essentially 
around the output stage) to obtain acceptable stability in most applications. 

8.2.3 A Two-Stage Design 

While a number of operational-amplifier designs with three (or even 
more) voltage amplifying stages exist, it is hard to escape the conclusion 
that one is fighting nature when he tries to stabilize an amplifier with three 
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Figure 8.7 The 709 integrated-circuit operational amplifier. 

or more closely spaced poles. The key to successful operational-amplifier 
design is to realize that the only really effective way to eliminate poles in 
an amplifier transfer function is to reduce the number of voltage-gain pro­
ducing stages. Stages that provide current gain only, such as emitter fol­
lowers, generally have poles located at high enough frequencies to be ig­
nored. 

An amplifier with two voltage-gain stages results if one of the common-
emitter stages of Fig. 8.1 is eliminated, as shown in Fig. 8.8.1 Again, tran­
sistors Q1 and Q2 function as a differential amplifier. However, in contrast 
to the previous amplifier, note that the base of transistor Q1 is the inverting 
input of the complete amplifier, while the first-stage output is the collector 

3The great value and versatility of this basic amplifier and its many variations were 
first pointed out to me by Dr. F. W. Sarles, Jr. 
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Figure 8.8 Basic two-stage amplifier. 

of transistor Q2. This emitter-coupled connection assures low input ca­
pacitance (approximately C,1 + C, 1/2) at the base of Q1 since this device 
is operating as an emitter follower. Low input capacitance is an advantage 
in many applications since feedback is normally applied from the output 
of the amplifier to its inverting input terminal. The input capacitance at the 
inverting input can introduce an additional moderate-frequency pole in the 
loop transmission of the amplifier-feedback network combination with at­
tendant stability problems. Thus low input capacitance increases the range 
of feedback impedances that can be used without deteriorating the loop 
transmission. 

The transfer function for this amplifier calculated using the parameter 
values in Table 8.2 is 4 

V0(s) 6 X 10( 
Vi2(s) - Vil(s) (3 X 10- 4s + 1)(1.1 X 10-8 s + 1) 

with all other singularities above 5 X 108 sec 1 . The corresponding Bode 
plot (Fig. 8.9) shows that a phase margin of 750 results even when the out­

4 As in the case of the three-stage amplifier, the slight input-stage unbalance that occurs 
at high frequencies because of signals fed directly to the base of Q3 via the collector-to-base 
capacitance of Q2 has been ignored in the analysis that leads to this transfer function. The 
error introduced by this simplification is insignificant at frequencies below the unity-gain 
frequency of the amplifier. Furthermore, the transfer function of interest in most feedback 
applications where the feedback signal is applied to the base of Q1 does not include the 
feed-forward term associated with C,2­
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Figure 8.9 Transfer function of two-stage amplifier. 

put of the amplifier is fed directly back to its inverting input. This type of 
transfer function, obtained without including any additional compensation 
components, contrasts sharply with the uncompensated three-stage-ampli­
fier transfer function of the previous section. 

It is informative to see why the transfer function of this amplifier is 
dominated by a single pole and why the second pole is separated from the 
dominant pole by a factor of approximately 30,000. This separation, which 
permits excellent desensitivity in feedback applications while maintaining 
good relative stability, is a major advantage attributable to the two-stage 
design. The dominant pole is primarily a result of energy storage in the 
collector-to-base capacitance of transistor Q3. A CT approximation to the 
input capacitance of this transistor is (see the discussion associated with 
Eqn. 8.7) 

Cr = C 3 + C,3(l + gm3R2) = 6.02 X 10-9 F (8.11) 

The corresponding time constant 

T 
B3 CTr,3 = 3.01 X 10-4 sec (8.12) 

agrees with the dominant time constant in Eqn. 8.10. The essential point 
is that the feedback through C,0, which is actually a form of minor loop 
compensation (see Section 5.3), controls the transfer function of the com­
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Table 8.2 Parameter Values for Example Using Amplifier of Fig. 8.8 

Supply voltages:
 
+15 V
 

Bias currents: 

ICi = IC2 = 10 yA 
IC3 = 50 yA 

Transconductances implied by bias currents:
 

gmi = g,2 = 4 X 10-4 mho
 

gma = 2 X 10-1 mho
 

Other transistor parameters: 
0 = 100 (all transistors) 
r,1 = r,2 = 250 ku 
r, 3 = 50 kQ 
r,, = 100 Q(all transistors) 
C, = C, = 10 pF (all transistors) 

Resistors: 
R 1 >> r, 3 

R2 = 300 kQ 

Buffer amplifier assumed to have infinite input impedance. 

plete amplifier at frequencies between approximately 3.3 X 103 and 108 
radians per second. As we shall see, the minor-loop feedback mechanism 
that dominates amplifier performance in this case can be used to advantage 
for compensation of more complex amplifiers that share the topology of 
this circuit. 

Most modern high-performance operational amplifiers represent rela­
tively straightforward extensions of the circuit shown in Fig. 8.8, and this 
popularity is a direct consequence of the excellent dynamics associated with 
the topology. An important modification included in most designs is the 
use of a more complex second stage than the simple common-emitter 
amplifier shown in Fig. 8.8 in order to achieve higher d-c open-loop gain. 
Other options exist in the way the output buffer circuit is realized and the 
drift-reducing modifications that may be incorporated into the first and 
second stages. 

8.3 HIGH-GAIN STAGES 

As mentioned in the previous section, a high-gain second stage is usually 
used to provide the basic amplifier with the voltage gain normally required 
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from an operational amplifier. As we shall see, high current gain or high 
power gain alone is insufficient. It is necessary to have stages with high 
voltage gain, high transresistance (ratio of incremental output voltage to 
incremental input current), or both included in an operational-amplifier 
circuit. Note that there is no restriction on the number of transistors used 
in the stage. The implication in our definition of stage is that its dynamics 
are similar to that of a single common-emitter amplifier, that is, it intro­
duces only one pole at frequencies that are low compared to the fT of the 
devices used. 

Use of the usual hybrid-pi model for the analysis of the simple common-
emitter amplifier of Fig. 8.10 shows that the low-frequency incremental 
voltage is v0 /vi = -gmRL and the incremental transistance is v0/ii = 

-3RL. The magnitude of either of these quantities can be increased (seem­
ingly without limit) by increasing RL. In order to obtain high gains with­
out high supply voltages [the voltage gain of the circuit of Fig. 8.10 is 
(q/kT) (Vc - Vo)~ 40(Vc - Vo)], a current source can be used as the col­
lector load. We realize that this technique will not result in infinite voltage 
gain and transresistance in an actual circuit because the simplified hybrid-pi 
model does not accurately predict the behavior of circuits with voltage gains 
in excess of several hundred. In order to proceed it is necessary to develop 
a more complete hybrid-pi model. 

8.3.1 A Detailed Low-Frequency Hybrid-Pi Model' 

The simplified hybrid-pi model predicts that both the base current and 
the collector current of a transistor are independent of changes in collector-
to-base voltage. Actually, both currents are voltage-level dependent be­
cause of an effect called base-width modulation, as illustrated by the fol­
lowing argument. Consider an NPN transistor operating at moderate cur­
rent levels with fixed base-to-emitter voltage VBE and collector-to-base 
voltage VCB. The approximate charge distribution in the base region for 
this transistor is shown by the solid line in Fig. 8.11. In this figure, n, is 

the minority-carrier concentration in the base region; N, is the equilib­
rium concentration of electrons in the base region; and x is the distance 
into the base region with x = 0 at the base edge of the emitter-base space-
charge layer. The charge distribution drops linearly from its value n,(0) at 
x = 0 to essentially zero (if the collector-to-base junction is reverse biased 
by at least several hundred millivolts) at the edge of the collector space-

charge layer. However, the width of the collector space-charge layer is 

5This material is covered in greater detail in P. E. Gray et al., PhysicalElectronics and 
CircuitModels for Transistors,Wiley, New York, 1964, Chapter 8, and C. L. Searle et al., 
Elementary CircuitPropertiesof Transistors,Wiley, New York, 1964, Chapter 4. 
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Figure 8.10 Common-emitter amplifier. 

monotonically increasing function of collector-to-base voltage. Thus, if the 
collector-to-base voltage is reduced, the collector space-charge layer be­
comes narrower. This narrowing increases the effective width of the base 
region from its original value of W to a new value W + AW. The resultant 
new charge distribution is shown by the dotted line in Fig. 8.11. 

Two changes in terminal variables result from this change in base width. 
First, the collector current (proportional to the slope of the distribution) 
becomes smaller. Second, the base current increases, since the total rate at 
which charge recombines in the base region is directly proportional to the 
total charge in this region. The magnitudes of these changes are calculated 
as follows. 

t 
"" 

np (0) = Npo e qVBE/k T) 

Lower VCB 

W W+AW 
x > 

Figure 8.11 Effect of collector-to-base voltage on base-charge distribution (NPN 

transistor). 
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The collector current of an NPN transistor is related to transistor and 

physical constants by 

Ic = qNA Ae gqVBE/kT (8.13)
W 

where 

NPO is the equilibrium concentration of electrons in the base region.
 
A is the cross-sectional area of the base.
 
De is the diffusion constant for electrons in the base region.
 

The assumptions necessary to derive this relationship include operation 
under conditions of low-level injection but at current levels large compared 
to leakage currents, and that the ohmic drops in the base region are neg­
ligible. The assumption of negligible ohmic voltage drop in the base region 
results in no loss of generality, since a base resistance can be added to the 
model which evolves from Eqn. 8.13. 

Under conditions of constant base-to-emitter voltage and temperature, 
Eqn. 8.13 reduces to 

K 
Ic =- (8.14)W 

where the constant K includes all other terms from Eqn. 8.14. Differenti­
ating yields 

dIc K (.5
dW (8.15)dW W2 

Differential changes in W are related to incremental changes in collector-
to-base voltage as 

dW 
AW = ve (8.16)

dVCB 

Incremental changes in collector current can thus be expressed in terms of 
incremental changes in collector-to-base voltage as 

K dW 
ic -veb (8.17)

W 2 dVCB 

Solving Eqn. 8.14 for K and substituting into Eqn. 8.17 yields 

ic - - c W ve (8.18)
WdVCB 

The transconductance of a transistor is related to quiescent collector 
current as 

qge (8.19)
kT 
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Solving Eqn. 8.19 for Ic and substituting this result into Eqn. 8.18 shows 
that 

kT dW] 
= qW dVCB. gmvcb (8.20) 

The bracketed quantity in Eqn. 8.20 is called the base-width modulation 
factor and is denoted by the symbol q. Introducing this notation and adding 
the familiar relationship between incremental components of collector cur­
rent and base-to-emitter voltage to Eqn. 8.20 yields 

ic = gmvbe + llgmvcb (8.21) 

The quantity 77is typically 10-1 to 10-4, indicating that the collector current 
is much more strongly dependent on base-to-emitter voltage than on 
collector-to-base voltage. This is, of course, the reason we are able to ignore 
the effect of collector-to-base voltage variations except in high-gain situ­
ations. 

The change in base current as a function of collector-to-base voltage 
can be calculated with the aid of Fig. 8.11. If reverse injection from the 
base into the emitter region is assumed small, the base current is directly 
proportional to the area of the triangle, since the total number of minority 
carriers that recombine per unit time and thus contribute to base current 
is proportional to the total number of these carriers in the base region. The 
geometry of Fig. 8.11 shows that the magnitude of the fractional change in 
the area of the triangle is equal to the magnitude of the fractional change 
in slope of the distribution for small changes in W. Furthermore, an in­
crease in W decreases collector current and increases base current. Equating 
fractional changes yields 

ib _ c - _ 7IlgmVcb (8.22) 
IB IC IC 

Rearranging Eqn. 8.22 and recognizing that Ic/IB = yields for the incre­
mental dependence of base current on collector-to-base voltage at constant 
base-to-emitter voltage 

. gmveb
ib = - (8.23) 

Adding the incremental relationship between base current and base-to­
emitter voltage to Eqn. 8.23 results in 

i= - - g Vcb (8.24) 
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Figure 8.12 Intrinsic hybrid-pi model that includes base-width modulation effects. 

It is necessary to augment the familiar hybrid-pi transistor model to in­
clude the effects of base-width modulation when the model is used for the 
analysis of high-gain circuits. While there are several model modifications 
that would accurately represent base-width-modulation phenomena, con­
vention dictates that the model be augmented by the addition of a collector­
to-emitter resistor ro and a collector-to-base resistor r, as shown in Fig. 
8.12. The objective is to choose the four elements of the model so that the 
terminal relationships dictated by Eqns. 8.21 and 8.24 are obtained. Note 
that, since four degrees of freedom are required to match arbitrary two-
port relationships, it may be necessary to have the dependent current-gen­
erator scale factor in Fig. 8.12 differ from gm, and this possibility is indi­
cated by calling this scale factor g,. 

The terminal relationships developed from the analysis of the effects of 
base-width modulation are repeated here for convenience: 

ic gmvbe + figmVcb (8.21) 

i g Ube - V (8.24)- Ucb 

6The equations relating the same variables for the model of Fig. 8.12 are

ic = gmvbe + gAvcb +d- go(vbe + Vcb) 

= (g' + go)vbe + (go + g,)vcb (8.25) 

i = gvbe - gvcb (8.26) 

Equationing coefficients in these two sets of equations yields 

g" + go = g. (8.27) 

6 Recall that corresponding r's and g's are reciprocally related. Thus, for example, 
go = 1/ro. 
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go + g' = ngm (8.28) 

gr = gm (8.29) 

g. = 7gm 	 (8.30) 

These 	equations are readily solved to determine model element values: 

g'= gm [i-i (1 - (8.31) 

r = = (8.32) 
g 7 

gm 

r 
1
I 

go Ogm1l 

1 

- (1/#)] 
(8.33) 

1 =/3 (8.34) 
gp ngm 

Since for any well-designed transistor 7 < 1 (typical values are 10-1 to 
10-4) and / >> 1, the approximations 

gI 9[IcT~ gm = qg|Ic I8.5	 (8.35) 
gm-gm-kT 

and 

ro 	 (8.36) 
ogm 

usually replace Eqns. 8.31 	and 8.33, respectively. 
It is instructive to examine the relative magnitudes of the model param­

eters for a transistor under typical conditions of operation. Assume that a 
transistor with / = 200 and o = 4 X 10-4 is operated at Ic = 1 mA at 
room temperature. Then g, = 40 mmho, g, = 200 ymho or r, = 5 k2, 
g, = 16 jmho or r, = 62.5 kQ and g. = 0.08 yumho or r, = 12.5 MQ. 
Note that all conductances in the intrinsic model are proportional to gm 
and therefore to quiescent collector current. 

8.3.2 Common-Emitter 	Stage with Current-Source Load 

In spite of the internal loading of ro and r,, high voltage gain is possible 
with a current-source load for a common-emitter stage, and this connection 
is used in many operational-amplifier designs. Figure 8.13a shows a sche­
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Figure 8.13 Current-source-loaded common-emitter stage. (a) Schematic. (b) In­
cremental equivalent circuit (r, negligibly small). 

matic for such a stage and Fig. 8.13b is the corresponding low-frequency 
equivalent circuit. It is assumed that the incremental resistance of the cur­
rent source is infinite. (The problems associated with realizing a high-re­
sistance current source will be described in Section 8.3.5.) It is also assumed 
that the base resistance of the transistor can be neglected. This assumption 
is best justified by considering a complete amplifier where the resistances at 
various nodes are known. In most anticipated applications r2 will either 
be small enough so that it can be neglected even for voltage-source drives 
at the base of the transistor in question, or the value of r. will be masked 
by a large driving resistance connected in series with it. 
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The equivalent circuit of Fig. 8.13b is easily analyzed by solving the 
output-node equation: 

gmvi + gv0 + g,(vo - vi) = 0 (8.37) 

Since g, << go (see Eqns. 8.34 and 8.36) and g, << gm, 

- - mr o (8.38) 

With the equivalence of Eqn. 8.36, r0 = l/gm, the voltage-gain of the 
circuit becomes simply - 1/n. As mentioned earlier typical values for 77are 
10-- to 10-4, and therefore a voltage-gain magnitude of 10 to 104 is 
possible. 

The incremental input current can be calculated as follows. 

i = (g, + gA)vi - gpvo (8.39) 

Substituting from Eqn. 8.38 yields 

i (g, + gA + gmrog,)vi (8.40) 

Recognizing that 

gmrOg, = g," (8.41) 
simplifies Eqn. 8.40 to 

i= (2g,, + g.)vi - 2g,vi (8.42) 

This relationship indicates that the use of a current-source load halves the 
input resistance of a common-emitter amplifier compared to the value when 
loaded with a moderate-value resistor, since the currents flowing through 
r, and r. are equal in this high-gain connection. 

Combining Eqns. 8.42 and 8.38 shows that the transresistance is 

V0 rrg ro _ r_ r_ (8.43)
i 2 2 2 

The dominant pole for this amplifier, at least for realistic values of driving-
source resistance, occurs at the input. Because of the high voltage gain, the 
input capacitance includes a component several thousand times larger than 
C, and this effective input capacitance is the primary energy-storage ele­
ment. 

8.3.3 Emitter-Follower Common-Emitter Cascade 

The current-source-loaded common-emitter stage analyzed in the pre­
ceding section can be driven with an emitter follower to increase trans-
resistance. Figure 8.14 illustrates this connection. Analysis is simplified by 
applying the results of the last section. Since the input resistance of the 
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VA 

Figure 8.14 Emitter-follower common-emitter cascade. 

common-emitter amplifier is r,/2 (Eqn. 8.42), the transfer ratios va/vi and 
v,/ui can be calculated by replacing the input circuit of Q2 with a resistor 
equal to r, 2/2. These results are combined with Eqns. 8.38 and 8.42 to de­
termine gain and transresistance. Furthermore, it is not necessary to con­
sider elements r, and r, in the model for transistor Q1 since the voltage 
gain of this device is low. An incremental equivalent circuit that relates v, 
to vi is shown in Fig. 8.15. 

+ + gm i vb 

Vi f,, 1V b 

V+ 

Figure 8.15 Equivalent circuit used to determine Va/Vi for circuit of Fig. 8.14. 
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The voltage-transfer ratio is 

Va-" 1 - 1 
(8.44) 

vi 1 + r,,2/2r,,1 + gmir7, 2 /2 

For the circuit of Fig. 8.14 the quiescent collector current of Q2 is I, 
while that of Qi is approximately I/02. Therefore, 

32 #2kT 
r,2 = (8.45) 

gm2 qI 

and 

01 #1#2kT 
(8.46) 

gmi qI 

Equation 8.46 shows that for reasonable values of 11, the term r,2/2r,1 
in Eqn. 8.44 can be dropped. 

Introducing this simplification and noting that gm2 = #2gm 1 , so that 
r,2 = 1/gmi reduces Eqn. 8.44 to 

V 1 
(8.47)

vi 3 

Therefore 
ve1 

V, (8.48)
vi 3772 

Since v, , = vi, the input resistance is 

- 3Vi= - rr1 (8.49)
j 2 

Combining Eqns. 8.48 and 8.49 shows that the transresistance is 

r27 
(8.50) 

This equation can be compared with Eqn. 8.43 by noting that r,1 = 

0102/gm2. Thus 
V6 __ 012 _ _ lr 

(8.51)
ii 2g.2 2 

Transistor Q1 simply improves the transresistance of the circuit by a factor 
of 11. 

The dominant pole for this circuit is associated with the input of Q2, 
since the incremental resistance to ground at this point remains high even 
with the emitter follower included. 



320 Operational-Amplifier Design Techniques 

8.3.4 Current-Source-Loaded Cascode 

The gain limitations of the common-emitter amplifier stem from an in­
ternal negative-feedback mechanism related to transistor operation. As 
the collector-to-base voltage changes, the effective width of the base region 
also changes and resulting variations in collector- and base-terminal cur­
rent oppose the original change. This effect is similar to that of the collector-
to-base capacitance C, that supplies charge to both the collector and base 
terminals in such a direction as to oppose rapid variations in collector 
voltage. The cascode connection, which is useful because it minimizes feed­
back through C, at high frequencies, can also be used to minimize the 
effects of base-width modulation on circuit performance. 

A connection that combines a cascode amplifier with a current-source 
load is shown in Fig. 8.16. This circuit can be analyzed by brute-force 
techniques, or a little thought can be traded for a page of calculations. We 
have already shown that the voltage gain of a current-source-loaded com­
mon-emitter amplifier is -1/7. 

VO 

VI 

Figure 8.16 Cascode amplifier with current-source load. 
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Therefore the transfer ratio va/va in Fig. 8.16 is 

ve 1 1 
- I+ I~ - (8.52) 

We have also shown that the input resistance for the common-emitter 
amplifier is r,/2. Observe that since the incremental collector current of 
Q2 cannot change in the connection of Fig. 8.16, the incremental ratio 
Va/li must be the same as the input resistance of the common-emitter 
amplifier, or 

V= r 2 (8.53)
ia 2 

The voltage gain of Q1 can be calculated by simply assuming it is loaded 
with a resistor equal r,2/2. Accordingly, 

= -gM (8.54) 

providing this gain is small enough so that rj1 and r0 i are negligible. Equa­
tion 8.54 can be simplified by noting that r.2 = 0 2/gm2 , and that gmi = 
gm2 since both devices are operating at virtually identical quiescent cur­
rents. With this relationship the voltage gain of the current-source-loaded 
cascode becomes 

v 0 2(8.55)
Vi 2-q2 

Since the input resistance of Q1 is r 1 , the transresistance for the circuit is 

V0 =_ #32r,, 1 #0201 #211 [ 1r, 2 (8.56) 
i2 22 ~ 2 2gmi 2772gm 2 2 

Comparing the cascode with the two previous circuits, we see that it 
provides the same transresistance as the circuit including the emitter fol­
lower and has significantly higher voltage gain than either of the other 
circuits. It is of practical interest to note that transistors are available that 
can provide voltage gains in excess of 10 in this connection. 

The dominant pole occurs at the collector of Q2 because the incremental 
resistance at this node is extremely high. The use of the cascode reduces the 
capacitance seen at the base of Q1 so that even with a high source resistance, 
the time constant at this node is typically between 100 and 10,000 times 
shorter than the collector-circuit time constant. 

8.3.5 Related Considerations 

The circuits described in the last three sections offer at least one further 
advantage that is useful for the design of operational amplifiers. The cur­
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rent source included in all of these circuits insures that the transistors op­
erate at quiescent current levels that are essentially independent of output 
voltage. Large output-voltage swings are therefore possible without alter­
ing any current-dependent transistor parameters. 

Care may be required in the design of a current source with sufficiently 
high output resistance to prevent significant loading of the high-gain stages. 
Figure 8.17a shows a transistor connected as a current source. The output 
resistance for this connection determined from the incremental circuit 
model is 

v F~ (gm± g)(rr||RE) l + gm(rrlRE)
.- L + ~ r( L g ] (8.57) 

The output resistance varies from 

V0V- 0r, for RE = 0 (8.58) 

to 

grr r,
" ~t rg = r" for RE r, (8.59) 

V0 

1o 2g0 

This analysis indicates that it is not possible to build a current source of 
this type with an output resistance in excess of r,/ 2 . 

Since r, is current dependent and since the current source operates at a 
current level equal to that of its driving transistor in the high-gain circuits, 
r, and r, for a current-source transistor will be comparable to those of the 
driving transistor. The analysis of Section 8.3.2 can be extended to show 
that the output resistance of the common-emitter stage is r, when driven 
from a voltage source and is ro/2 when driven from a high impedance 
source. Thus use of a common-emitter current source (RE = 0 in Fig. 
8.17) can reduce the gain of this stage by as much as a factor of two. 
Since the output resistance of the emitter-follower common-emitter cas­
code is 2r,/3 when driven from a voltage source, the susceptibility of this 
stage to loading is comparable to that of the common-emitter stage. 

The output resistance of the cascode is r,/ 2 , so even the highest output 
resistance that can be achieved with a bipolar-transistor current source 
will halve the unloaded gain of this stage. A further practical difficulty is 
that approaching a current-source resistance of r,/2 requires RE r, 
(Eqn. 8.57). If we assume the base-to-emitter voltage of the transistor is 
small compared to V in Fig. 8.17a, 

V - qV 40Vr, (8.60) 
-RE - 8.6_ 
IE kTgm 0 

In order to satisfy the inequality RE>> r,, it is necessary to have V >> #/40. 
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VO 

(b) 

Figure 8.17 Current source. (a) Schematic. (b) Equivalent circuit. 

The use of low 0 transistors is not the answer, since such transistors also 
have low r,.One way to avoid the requirement for high supply voltage is 
to use the connection of Fig. 8.18. Cascoding serves the same function as 
it does in the amplifier, and provides an output resistance of approximately 
r,/2 with a total supply voltage of several volts. 

The analysis presented above shows that the output resistance of a bi­
polar-transistor current source is bounded by r,/ 2 , and that this maximum 
value occurs only when the base of the transistor is connected to a low re­
sistance level relative to the emitter-circuit resistance. Field-effect transistors 
(FET's) can be used in the interesting connection shown in Fig. 8.19a to 
increase the output resistance of a current source. A model that can be 
used for the linear-region analysis of the FET is shown in Fig. 8.19b. An 
incremental equivalent circuit of the cascoded source, assuming that the 
finite output resistance of the current source Rs = va/i. completely de­
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-V, 
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Figure 8.18 Cascoded current source. 

scribes this element, is shown in Fig. 8.19c. This equivalent circuit shows 
that the relationship between v, and io is 

v, = ioRs + + i"Rsyf8 (8.61) 
YoS Yos 

or that 

Vo Yos+ Rs I + (8.62)
to Y03 \ yos/ 

Since the quantity yf,/yo, can be several hundred or more for certain FET'S, 

this connection greatly increases the incremental resistance of the current 

source itself. For example, by using a bipolar-transistor current source 

cascoded with a FET, incremental resistances in excess of 1012 0 can be 

obtained at a quiescent current of 10 yA. It is theoretically possible to fur­

ther increase current-source output resistance by using multiple cascoding 

with FET's, although stray conductance limits the ultimate value in actual 

circuits. 
Another problem that occurs in the design of high-gain stages is that 

the output of the stage must be isolated with a very high-input-resistance 

buffer to prevent loading that can cause a severe reduction in the voltage gain 

of the stage. One approach is to use a FET as a source follower, since the 

input resistance of this connection is essentially infinite. The use of a FET 

as a buffer or to cascode a current source is frequently the best technique 
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Figure 8.19 Current source cascoded with a field-effect transistor. (a) Circuit. 

(b) Linear model for field-effect transistor. (c) Incremental equivalent circuit. 
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in discrete-component designs. However, it is presently difficult to fabri­
cate high-quality bipolar and field-effect transistors simultaneously in mono­
lithic integrated-circuit designs; thus alternatives are necessary for these 
circuits. 

If a bipolar-transistor emitter follower (Fig. 8.20) is used, care must be 
taken to insure sufficiently high input resistance. The incremental input 
resistance for this circuit with no additional loading is 

Vi 
- _r,'11r,. + 0(r.fl RE)] (8.63) 

In order to approach the maximum input resistance of r,/2 (particularly 
important if the buffer is to be used with the cascode amplifier), it is neces­
sary to have RE> ro. This inequality normally cannot be satisfied with 
reasonable supply voltages, so a current source is frequently used in place 
of RE. A further advantage of the current source is that the drive current 
that can be supplied to any following stage becomes independent of voltage 
level. 

One design constraint for an emitter follower intended for use with the 
current-source-loaded cascode amplifier is that the quiescent operating cur­
rent of this stage should not be large compared with that of the cascode or 
else the gain of the stage will be determined primarily by r, of the emitter 
follower. 

+ V, 

Zi 

R E 

=-v2 

Figure 8.20 Emitter follower. 
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8.4 OUTPUT AMPLIFIERS 

Factors that influence the design of the differential amplifier normally 

used as the input stage of an operational amplifier were investigated in 

Chapter 7, and the design of stages that provide high voltage gain was 

covered in earlier sections of this chapter. Modern operational amplifiers 

that combine a differential-amplifier input stage (often current-source 
loaded) with a current-source-loaded second stage require a final amplifier 

to supply output current and to provide additional isolation for the pre­

ceding high-gain stage. The dividing line between the devices used primarily 

to supply output current and those used to isolate the high-resistance node 

of the high-gain stage is often hazy. The emphasis in this section is on the 

power-handling aspect of the output amplifier. The guidelines of the pre­

vious section are used when isolation is the major objective. 

Some type of emitter-follower circuit is almost always used as the out­

put stage of an operational amplifier, since this configuration combines 

the necessary current gain with dynamics that can usually be ignored until 

frequencies above the unity-gain frequency of the complete amplifier are 

reached. 
The simplest emitter-follower connection is shown in Fig. 8.21, and this 

circuit is powered from the - 15-volt supplies that have become relatively 

standard for operational amplifiers. While this circuit can provide the neces­

sary output current and isolation, it requires high quiescent power relative 

to the maximum power it can supply to the load. If the circuit is designed 

so that the output voltage can swing to at least - 10 volts (a typical value 

+ 15 V 

V1 

RL V0 

Figure 8.21 Emitter follower with resistive biasing. 
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for operation from 15-volt supplies), it is necessary to make RE equal to 

half the minimum expected load resistance, since at the most negative out­
put voltage the transistor will be cut off and the load current must be sup­
plied via RE. If, for example, RL = 500 Q, RE must be less than or equal to 
250 Q to insure that a - 10-volt output level can be obtained. The power 
delivered to the load is 200 mW at vo = = 10 volts, while the total power 

required from the supplies under quiescent conditions (vo = 0) is 1.8 watts, 
or power nine times as large as the maximum output power for negative 
output voltage. This low ratio of peak output power to quiescent power is 
intolerable in many applications. A second and related problem is that the 

input resistance to the stage will be only 3RL/3 when RE is selected to 

guarantee a - 10-volt output. 

The situation improves significantly if the biasing resistor is replaced by 
a current source as shown in Fig. 8.22. A - 10-volt output is obtained with 
I = 10 volts/RL. If we use the earlier value of 500 Q for RL, a 200-mW 

peak output for negative output voltage results with 600 mW of quiescent 

power consumption. The input resistance to the circuit is similarly increased 
by a factor of three. 

Further improvement results if a complementary emitter follower (Fig. 
8.23) is used. Neither transistor in this connection is forward biased with 
vr = vo = 0, and thus the quiescent power consumption of the circuit is 
zero. The NPN supplies output current for positive output voltages, while 
the PNP supplies the current for negative output voltages. In either case only 
one transistor conducts, so that the load current only is required from the 
loaded power supply. 

+15 V 

VI 

RL
VO

Figure 8.22 Emitter follower with current-source biasing. 
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Figure 8.23 Complementary emitter follower. 

As might be expected, the complementary emitter follower has its own 
design problems; the most difficult of these involve establishing appropriate 
quiescent levels. If the circuit is constructed as shown in Fig. 8.23, it ex­
hibits crossover distortion since it is necessary to forward bias either tran­
sistor base-to-emitter junction by approximately 0.6 volt to initiate con­
duction. Consequently, there is a 1.2-volt range of input voltage for which 
the output remains essentially zero. The idealized transfer characteristics 
as well as representative input and output waveforms for this circuit are 
shown in Fig. 8.24. We might initially feel that, since this circuit is intended 
for use as the output stage of an operational amplifier, the effect of this 
nonlinearity would be reduced to insignificant levels by the gain that pre­
cedes it in most feedback applications. In fact, the example presented in 
Section 2.3.2 showed that feedback virtually eliminated the distortion from 
this type of dead zone in one system. Unfortunately, the moderation of the 
nonlinearity depends on the gain of the linear elements in the loop, and is 
often insufficient at higher frequencies where this gain is reduced. As a 
result, while an output stage as simple as the one shown in Fig. 8.23 is at 
times successfully used in high-power low-frequency applications, it must 
normally be linearized to yield acceptable performance in moderate- to 
high-frequency situations. 

The required linearization is accomplished by forward biasing the base­
to-emitter junctions of the transistors so that both are conducting at low 
levels with zero input signal. One conceptually possible biasing scheme is 
shown in Fig. 8.25. If each of the two batteries is selected to just turn on its 
respective transistor, the input and output voltages of circuit will be identi­
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Figure 8.24 Input-output relationships for the complementary emitter follower. 
(a) Transfer characteristics. (b) Waveforms. 

cal. Ignoring the practical difficulties involved in realizing the floating volt­

age sources (which can be resolved), two types of difficulties are probable: 

the biasing voltages will either be too small or too large. These problems 

occur because of the exponential and highly temperature-dependent rela­

tionship between collector current and base-to-emitter voltage. If too small 

bias voltages are used, a fraction of the crossover distortion remains, while 

if the bias voltages are too large, the circuit can conduct substantial quies­

cent current through the two transistors, and there is the probability of 

thermal runaway. 
Thermal runaway is a potentially destructive process that is most easily 

understood by considering a transistor biased with a fixed base-to-emitter 
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Figure 8.25 One approach to biasing the complementary emitter follower. 

voltage so that it conducts some collector current. The power dissipation 
that results heats the transistor, and since the device is operating at fixed 
base-to-emitter voltage, the resultant temperature increase leads to a larger 
collector current, which results in higher power dissipation, etc. If the gain 
around this thermal positive-feedback loop exceeds one, the collector cur­
rent increases until the transistor dies. (See Problem P8.13.) 

In order to avoid these difficulties, forward-biased junctions are normally 
used to provide the bias voltages. If these biasing junctions are matched to 
the output-transistor base-to-emitter junctions and located in close thermal 
proximity to them, excellent control of bias current results. This approach 
is particularly attractive for monolithic integrated-circuit designs because 
of the ease of obtaining matched, isothermal devices with this construction 
technique. Further insurance against thermal runaway is often obtained by 
including resistors in series with the emitters of the output transistors. 
Voltage drops across these resistors reduce base-to-emitter voltage and thus 
tend to stabilize bias currents as these currents increase. The value of these 
resistors represents a compromise between the increased operating-point 
stability that results from higher-value resistors and the lower output re­
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sistance associated with smaller resistors. A compromise value of approxi­
mately 25 Q is frequently used for designs with peak output current in the 
20-mA range. 

One interesting bias-circuit variation for a complementary emitter-fol­
lower connection is used in the 741 integrated-circuit operational amplifier. 
This circuit is shown in simplified form along with quiescent current levels 
in Fig. 8.26. The circled components function as a diode and a half (or more 
precisely a diode and three-fifths) to establish a conservative bias-voltage 
value. Because the base current of the transistor is small compared to the 
currents through the two resistors, this negative-feedback connection forces 
the voltages across the resistors to be proportional to their relative values. 

While forward-biasing techniques make the use of complementary con­
nections practical, minor nonlinearities usually remain. For this reason, 
operational amplifiers intended for use at very high frequencies occasionally 
use a current-source-biased emitter follower (Fig. 8.22) in order to achieve 
improved linearity. 

It is often necessary to incorporate current limiting in the design of an 
output stage intended for general-purpose applications. While it would be 
ideal if the current limit protected the amplifier for shorts from the output 
to ground or either supply voltage, this requirement often severely compro­
mises maximum output current. Consequently, the current limit is at times 
designed for protection from output-to-ground shorts only. 

o +V, 

0.75 mnA 

/4.5 k92 80 pA 

1.6 VBE It+ c Output 

B7.5 kn 80 PA / 

Voltage-gain 
stage 

0 - Vs 

Figure 8.26 Bias circuit used in 741 amplifier. 
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Figure 8.27 Resistively biased complementary emitter follower. 

Figure 8.27 shows a discrete-component output stage that illustrates 
some of the concepts introduced above. Assume that the input and output 
voltage levels are both zero, and that no current is drawn from the output. 
Under these conditions, approximately 3 mA flows through diodes D1 and 
D 2 and the two 4.7-kQ resistors. If diodes D 1 and D 2 are matched to the 
base-to-emitter junctions of Q1 and Q2, respectively, the quiescent bias 
current of the transistor pair is slightly more than 1 mA. (The details of 
this type of calculation are given in Section 10.3.1.) The 22- resistors 
effectively protect against thermal runaway. Assume, for example, that the 
temperatures of the transistor junctions each rise 500 C above their respec­
tive diodes. As a result of this temperature differential, the voltage across 
each 22- resistor increases by at most 100 mV, and thus the quiescent-
current increase is limited to less than 5 mA. 

Base drive for the transistors is supplied from the 4.7-kQ resistors rather 
than directly from the input-signal source. The current limit occurs when 
this required drive current is eliminated in the following way. Assume that 
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Figure 8.28 Current-source biased complementary emitter follower. 

the input voltage is positive and that transistor Q1 is supplying an output 
current of approximately 25 mA. Under these conditions diode D3 is on 
the verge of conduction, since with approximately the same voltages across 
D1 and the base-to-emitter junction of Q1, the voltages across the top 22-0 
resistor (22 Q X 25 mA = 550 mV) and D3 are nearly equal. If the input-
signal source is limited to low current output, diode DA clamps the input 
voltage level, preventing further increases in base drive. Because the limiting 
current level is proportional to the forward voltage of a diode, the limiting 
level decreases with increasing ambient temperature. This dependence is 
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advantageous, since the power-handling capacity of the output transistors 
also decreases with increasing temperature. 

This relatively simple circuit is often an adequate output stage. One 
deficiency is that the input resistance of the circuit is dominated by the 
parallel combination of the biasing resistors. Since the output current is 
limited to approximately 25 mA, minimum load resistors on the order of 
400 Q are anticipated. The current gain of the output pair insures that the 
input loading attributable to this value of load resistor is insignificant com­
pared to that of the biasing resistors. Increasing the value of the biasing 
resistors can result in insufficient base drive at maximum output voltages. 

The circuit shown in Fig. 8.28 can be used when maximum input re­
sistance to the buffer amplifier is required. Diodes Di and D2 function as 
they did in the previous circuit. However they are biased with 1-mA cur­
rent sources formed by transistors Q3 and Q4 rather than by resistors. The 
high incremental resistance of these current sources minimizes loading at 
the amplifier input. Since the current sources supply base drive for the 
output transistors, turning these current sources off limits output current. 
The limiting occurs as follows for a positive input voltage. When the out­
put current is approximately 30 mA, the voltage at the cathode end of 
diode D3 equals the voltage at the base of Q3. Further increases in output 
current lower the upper current-source magnitude, thereby reducing drive. 

PROBLEMS 

P8.1 
Consider an operational amplifier built with n identical stages, and an 

open-loop transfer function 
a0,=a(s) 

(rs + 1)" 

This amplifier is used in a noninverting unity-gain connection. Determine 
the maximum stable value of a, for n = 3 and n = 4. What is the limiting 
stable value for a, as n -- oo ? 

P8.2 
Figure 8.29 illustrates a model for a multiple-stage operational amplifier. 

The output impedance of the input section of the amplifier is very high, 
and the transfer admittance is 

IS)(S) 0.67 X 10­
~ Vi(s) ~ (10-s + 1)(10 7 s + 1) 

The quiescent collector current of the transistor is 100 yA. Transistor 
parameters include # = 100, C, = 5 pF, and C, = 10 pF. You may as­
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amplifier 

+0 
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-15 V 

Figure 8.29 Multiple-stage operational amplifier. 

sume that a one-pole approximation adequately characterizes the com­
mon-emitter stage, and that the input impedance of the buffer amplifier is 
very high. Ignore base-width-modulation effects. 

(a) 	 Find the transfer function V(s)/VJ(s) for this amplifier. What is the 
magnitude of this transfer function at the frequency where it has a 
phase shift of - 1800? 

(b) 	 Determine a compensating impedance that can be placed between base 
and emitter of the transistor so that the second pole of the compensated 
transfer function occurs near its unity-gain frequency. What is the 
open-loop transfer function with your compensation? 

(c) 	 Find a compensating impedance that can be placed between collector 
and base of the transistor to yield a transfer function similar to that 
obtained in part b. 

P8.3 
A model for an operational amplifier incorporating feedforward com­

pensation is shown in Fig. 8.30. Approximate the open-loop transfer func­

104 	 - 103 

Figure 8.30 Block diagram for feedforward amplifier. 
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tion V(s)/ Vi(s) for this amplifier. (Note that you should be able to estimate 
the transfer function of interest fairly accurately without having to factor 
any polynomials.) What is the amplifier phase shift at its unity-gain fre­
quency? Draw a Bode plot of the transfer function. Comment on possible 
difficulties with this amplifier. 

P8.4 
Do you expect the base-width modulation factor q of a bipolar transistor 

to be more strongly dependent on quiescent collector current or quiescent 
collector-to-emitter voltage? Explain. 

P8.5 
Figure 8.31 shows the characteristics of a certain NPN transistor as dis­

played on a curve tracer when the base current is 10 yA. Find values for 

g r, rO, and r, for this device valid at Ic = 1 mA, VCE = 10 volts. Esti­
mate 77for this transistor. 

P8.6 
Assume that the transistor connection shown in Fig. 8.14 is modified to 

include a bias current source that increases the value of the emitter current 
of Q. Express the voltage gain and transresistance of the resulting circuit 
in terms of the value of the bias source and other circuit parameters. 

P8.7 
A current-source-loaded Darlington connection is shown in Fig. 8.32. 

Find the low-frequency voltage gain and transresistance of this circuit, 
assuming that both transistors have identical values for # and -. 

t 
IC 

Ic =09 mA Ic= 1 mA C mA 

5 10 15 VCE (Volts) : 

Figure 8.31 Transistor I-V characteristics. 
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OvooC 

V, 

Figure 8.32 Current-source-loaded Darlington amplifier. 

P8.8 
Determine the low-frequency gain vo/vi and transresistance v0/ij for the 

current-source-loaded differential amplifier shown in Fig. 8.33. Assume 
both transistors are identical and characterized by 0 and 77. 

P8.9 
A bipolar transistor is used in a current-source connection with its 

emitter connected to ground. Compare the output resistances that result 
when the base of the transistor is biased with a high or a low resistance 
source. Show that the same values result for the output resistance of a 
common-emitter amplifier loaded with an ideal current source as func­a 
tion of the driving-source resistance. 

P8.10 

A transistor is available with # = 200 and r = 5 X 10-4. This device is 
used as the common-emitter portion of a current-source-loaded cascode 
connection operating at a quiescent current of 10 yA. The second cascode 
transistor can either be a bipolar device with parameters as given above or a 
FET with yf. = 10-4 mho and yo, = 10-6 mho. (See Fig. 8.19b for an incre­
mental FET model.) Compare the voltage gain that results with these two 
options. 

P8.11 
Consider the amplifier shown in Fig. 8.34. The biasing is such that when 

all devices are in their linear operating regions, the quiescent operating 
current is 10 yA. Find the voltage gain of this connection assuming all 
four bipolar transistors have identical parameter values as do both FET'S. 
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vvo 

Figure 8.33 Current-source-loaded differential amplifier. 

Use the values given in Problem P8.10. Estimate the break frequency of the 
dominant pole in the amplifier transfer function assuming that both FET'S 

have drain-to-gate capacitances of 2 pF and that these capacitances domi­
nate the frequency response. 

P8.12 
Determine the input resistance of the emitter-follower connection shown 

in Fig. 8.35 as a function of transistor parameters and quiescent operating 
levels. You may assume both transistors are identical. 

P8.13 
Thermal runaway is a potentially destructive process that can result 

when a transistor operates at fixed base-to-emitter and collector-to-emitter 
voltage because of the following sequence of events. The device heats up as a 
consequence of power dissipated in it. This heating leads to a higher col­
lector current, a correspondingly higher power dissipation, and conse­
quently a further increase in temperature. The objective of this problem is to 
determine the conditions under which unbounded thermal runaway results. 

The transistor in question is biased with a fixed collector-to-emitter 
voltage of 10 volts, and fixed base-to-emitter voltage that yields a quiescent 
collector current Ic. You may assume the transistor has a large value for 3, 
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Figure 8.34 High-gain amplifier. 

and that transistor base-to-emitter voltage, collector current, and tempera­
ture are related by Eqn. 7.1. The constant A in this equation is such that the 
transistor collector current is 10 mA at 0' C chip temperature with a base­
to-emitter voltage of 650 mV. 

The device is operating at an ambient temperature of 0' C. Measure­
ments indicate that chip temperature is linearly related to power dissipa­
tion. The transfer function relating these two quantities is 

__ = 1100 + IPd(s) (10-Is + 1 100s + 1 
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+ 
VB 

-

Figure 8.35 Emitter follower. 

where Tj is the junction temperature in degrees Centigrade and Pd is the 

device power dissipated in watts. 

Form a linearized block diagram that allows you to investigate the possi­

bility of thermal runaway. Determine the quiescent value of Ic that results 

in transistor destruction. Now modify your block diagram to show how 

the inclusion of a transistor emitter resistor increases the safe region of 

operation of the connection. 

P8.14 
A certain operational amplifier can supply an output current of E 5 mA 

over an output voltage range of :L 12 volts. Design a unity-voltage-gain 

stage that can be added to the output of the operational amplifier to in­

crease the output capability of the combination to at least :100 mA 

over a ± 10-volt range. Available power-supply voltages are ± 15 volts. 

Assume that complementary transistors with a minimum f of 50 and a power 

dissipation capability of 2.5 watts are available. A reasonable selection of 

low power devices is also available. Your design should include current 

limiting to protect it for shorts from the output of the stage to ground. 
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CHAPTER IX
 

AN ILLUSTRATIVE DESIGN
 

9.1 CIRCUIT DESCRIPTION 

The purpose of this section is to illustrate by example one way that the 
basic two-stage amplifier can be expanded into a complete, useful opera­
tional amplifier. Later sections of this chapter analyze the circuit to deter­
mine its performance, show how it can be compensated in order to tailor 
its open-loop transfer function for use in specific applications, and indicate 
how design alternatives might affect performance. 

No attempt is made to justify this particular implementation of the two-
stage amplifier other than to point out that the circuit was designed at 
least in part for its educational value. An appreciation of the salient fea­
tures of this particular circuit leads directly to improved understanding of 
other operational amplifiers, including a number of integrated-circuit de­
signs, which have evolved from the basic topology. The modifications in­
corporated into the basic design are certainly not the only possible ones, 
nor are they all likely to be required in any given application. The circuit 
does illustrate how a designer might resolve some of the tradeoffs available 
to him, and also provides a background for much of the material in later 
sections. 

9.1.1 Overview
 

The complete circuit and important quiescent levels are shown in Fig.
 
9.1. The circuit represents a modification of the basic amplifier that com­
bines a differential amplifier incorporating several of the drift minimizing 
techniques described in Chapter 7 with a high-gain stage consisting of a 
current-source-loaded cascode amplifier. A unity-voltage-gain buffer ampli­
fier isolates the high-resistance node at the output of the cascode amplifier 
and provides high current output drive capability. The amplifier is designed 
to provide a ± 10-volt maximum output signal and operate from standard 
= 15-volt supplies. The supply voltages are both bypassed with a parallel 

combination of an electrolytic and a ceramic capacitor, since this combina­
tion is effective over a wide frequency range. 

343 
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I -715 yF 
0.1 IF+ 20 V 

Figure 9.1 Discrete-component operational amplifier. Note. *Indicates I % 
metal-film resistor. 

This circuit shares a characteristic with a number of other moderately 
involved designs, which is often disturbing to novice circuit designers since 
there is some difficulty in determining which transistors are actually in the 
signal path. It is important to resolve this uncertainty prior to any detailed 
discussion of the circuit. Referring to Fig. 9.1, we see that transistors Q1 
and Q2 are the differential-amplifier input stage. As we shall see, the second-
stage topology constrains the emitter connection of the Q-Ql pair to 
be incrementally grounded. Thus Q5 and Qe form a cascode amplifier. This 
current-source-loaded cascode provides the largest fraction of the amplifier 
gain, with analysis to be presented indicating a voltage gain of 180,000 in 
this portion of the circuit. 

The high-resistance node at the output of the cascode amplifier is iso­
lated with source-follower-connected FET Q8. The source follower drives 
transistors Qio and Q11, which are connected as a complementary emitter 
follower. 

The amplifier can be compensated by connecting an appropriate net­
work between the indicated terminals, thereby forming a minor loop that 
includes the high-gain stage. Details of this process are given in Section 
9.2.3. 

The above discussion shows that the signal path includes only transistors 

Q1, Q2, Q5, Q6, Q8, Qio, and Q11. The remaining transistors are used either 



345 Circuit Description 

as current sources (Q3, Q7, and Q9), or to reduce voltage drift referred to 
the input by forming a differential second stage at d-c (Q4), or to limit out­
put current (Q12 and Q13). 

9.1.2 Detailed Considerations 

Once the topology of the circuit is selected, a decision concerning approxi­

mate bias-current levels is a necessary first step in the detailed design 
process. Low current levels give improved d-c performance since input 

currents and input-stage self-heating are reduced. However, the frequency 

response of the amplifier is reduced by operation at low currents. (See 
Section 9.3.3 for a description of power-speed tradeoffs.) 

A compromise collector current level of 10 yuA, which can provide ex­

cellent d-c performance combined with closed-loop frequency response of 

several MHz, was selected for the first-stage transistors. Transistor Q3 is a 
current source that provides the total 2 0-yA quiescent current of the first 
stage and insures high common-mode rejection ratio. This current source 
shares a common bias network with two other current sources. The bias 

network includes a diode that provides approximate temperature compen­

sation for the current sources, and also includes capacitive bypassing to the 

negative supply. Bypassing to the negative supply rather than to ground is 
preferable in this case since it insures that the current-source output is 

independent of high-speed transients on the negative supply line. 
The differential input stage is a matched pair of 2N5963 transistors. The 

devices are selected to have base-to-emitter voltages matched to within 
3 mV at equal collector currents and, furthermore, to have current gains 
matched to within 10% at the operating current level. They are mounted in 
close thermal proximity to reduce temperature differentials. Wrapping wire 
around the pair or mounting them in an aluminum block drilled to accept 
the transistors improves the thermal bond. The 2N5963 is selected because 
it is inexpensive and provides a typical current gain of 1100 at a collector 
current of 10 yiA. The resultant bias current required at either input is ap­
proximately 10 nA without any form of current compensation. Compen­

sating techniques such as these described in Section 7.4.2 can be used to 

lower this bias current to less than 1 nA over a 500 C temperature range. 

Transistors Q, and Q6 are the cascode-amplifier transistors. An additional 

PNP transistor, Q4, is used to improve d-c performance by forming a differ­
ential amplifier with transistor Q. While this transistor lowers drift, it does 
not affect the operation of the QS-Q6 pair in any way as shown by the fol­

lowing discussion. It is evident that at low frequencies the common-emitter 
point of pair Q4-Q5 is incrementally grounded since only differential signals 
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can be applied to this pair by the input stage. The capacitor1 included across 
the 33-kQ emitter-circuit resistor guarantees that the emitter of Q, also re­
mains incrementally grounded at high frequencies. Since transistor Q, is 
included only to improve d-c performance and is not required for gain at 
any frequency, its base circuit can be bypassed at moderate and high fre­
quencies. Bypassing insures that Q1 operates as a common-collector stage 
at these frequencies. It was mentioned in the last chapter that operation in 
this mode is advantageous since it minimizes the input capacitance seen at 
the base of Q1 (the inverting input of the complete amplifier), and thus 
allows a wider range of feedback networks to be used without significant 
high-frequency loading. 

The amplifier is balanced by changing relative collector load resistor 
values in the first stage. Since the input-stage transistors are matched for a 
maximum base-to-emitter voltage differential of 3 mV at equal collector 
currents, the ratio of the collector currents will be at most e3mlr(q>kT) _ 

1.12 at equal base-to-emitter voltages. The 50-kQ potentiometer that allows 
a maximum collector-resistor ratio of 1.17:1 is therefore adequate for bal­
ancing even if some mismatch of second-stage base currents exists. The 
diode included in the Q-Q2 collector circuit provides a degree of com­
pensation for the base-to-emitter voltage changes of transistors Q-Qs with 
temperature in order to stabilize their quiescent current. 

The 2N4250 transistors used in the second stage are one of the highest-
gain PNP types available, with a typical current gain in excess of 300 at 50 
pA of collector current. This gain permits a five-to-one increase in quiescent 
operating level between the first and second stages (valuable since this in­
crease improves the bandwidth of the second-stage devices) without seri­
ously compromising drift performance. It also contributes to high overall 
amplifier gain. While it is not necessary to use the same transistor type for 
both members of a cascode amplifier pair, the 2N4250 is also used in the 
common-base section of the cascode (Q6) since it has high rM, a necessary 
condition for high voltage gain. The 2N3707 used as the current-source 
load for the cascode is also selected in part because of high r,. 

All critical resistors associated with the first two stages are precision 
metal film types. These are preferred since their low temperature coeffi­
cients reduce voltage drift and because of their low noise characteristics. 

A field-effect transistor is used to isolate the high-impedance node at the 
cascode output. The virtually infinite input resistance of the FET improves 

1As a matter of practical interest, eliminating this capacitor has only a minor effect on 
the overall performance of the amplifier, but complicates the analysis. This is an example 
of a component included primarily for educational purposes. 
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voltage gain. Component economy is also achieved, since an additional 
stage of current gain would probably be required for isolation if bipolar 
transistors were used. A current source is used for FET bias so that the bias 
current is independent of output-voltage level. The quiescent level of this 
stage is chosen to meet maximum drive requirements for the following 
stage. 

A complementary emitter-follower pair (Q1o-Qui) is used to provide large 
positive or negative output currents with minimum quiescent power dissi­
pation. Metal-can rather than epoxy-cased transistors are used in this stage 
for increased power-handling capability. The two diodes included in the 
base circuit of the emitter-follower pair reduce crossover distortion, while 
the 22-0 resistors eliminate the possibility of thermal runaway that accom­
panies this connection. 

Transistors Q12 and Q13 combine with the 22- resistors to limit the out­
put current of the amplifier to approximately 30 mA. This limiter circuit, 
which is similar in operation to the diode limiter described in connection 
with Fig. 8.27, is used since it is identical in form to one frequently used in 
integrated-circuit designs. Consider'the limiting process when the amplifier 
output voltage is negative. If the sink current exceeds 25 to 30 mA, tran­
sistor Q13 conducts, since its base-to-emitter voltage approximates 600 mV. 
This conduction reduces base drive for Q1. The current that must be con­
ducted by Q13 in order to eliminate base drive to Q11 is at most 2 mA, 
the output level of current source Q9. 

When the amplifier output voltage is positive, transistor Q12 conducts 
to limit output current. This situation is potentially hazardous, since it is 
conceivable that the driving transistor (Q8) could be destroyed if no mech­
anism limited its drain current. However, the geometry of the TIS58 is 
such that its drain current is the order of 5 mA when the gate-to-source 
voltage of this device reaches the forward-conduction value. Thus, while 
transistor Q12 may conduct approximately 3 mA in positive output 
current limit, destruction of Q8 is not possible. Note also that since the 
maximum collector current of Q6 is limited to modest values by the 33-ki 
emitter-circuit resistor associated with Q-Q5, the maximum current from 
Q, cannot injure any devices. 

No attempt is made to control internal amplifier voltages, such as the 
emitter potential of Q5, during current overload. The charge stored on the 
3.3-yF capacitor delays recovery from overload, but since current limit is 
not anticipated during normal operation (overload protection is included 
primarily to protect us from our own errors during system breadboarding), 
this delay is unimportant. 
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9.2 ANALYSIS 

In order to demonstrate the performance features of the amplifier intro­
duced in the previous section, it is necessary to approximate analytically 
some of its more important characteristics. While the exact details of the 
analysis are specific to this amplifier, several significant features, particu­
larly those concerning dynamics and compensation, are common to all 
two-stage operational amplifiers. Thus the conclusions we shall reach ex­
tend beyond this particular circuit. 

We should realize that certain aspects of the following analysis are likely 
to be in error by a factor of two or more, since the uncertainty of some of 
the parameter values associated with the transistors limits accuracy. Another 
type of difficulty is encountered in the analysis of the dynamics of the ampli­
fier, since a number of poles are predicted in the vicinity of the fT of the 
transistors used in the amplifier. Such results are always suspect because 
transistor-model deficiencies prevent accurate analysis in this frequency 
range. Fortunately, these inaccuracies are of little concern since our ob­
jective is not so much precise prediction of the performance of this particu­
lar amplifier as it is an understanding of the important features of this gen­
eral type of amplifier. 

9.2.1 Low-Frequency Gain 

One important characteristic of an operational amplifier is its d-c open-
loop gain. Calculation of the gain of this amplifier is necessary because 
accurate measurement of the signal levels that would permit experimental 
gain determination is precluded by noise and drift. 

By far the largest fraction of the low-frequency gain of the amplifier 
occurs in the cascode stage for this particular implementation of the basic 
topology. The analysis of the complete amplifier is facilitated by initially 
developing a low-frequency equivalent circuit for the cascode amplifier. 
The analysis of Section 8.3.4 showed that the voltage gain of an unloaded 
cascode amplifier is 

# _ gm6rA6 

2-q6 2 

while its input resistance is rT5 . (Subscripts differentiating between the two 
transistors in the cascode connection refer to Fig. 9.1.) While the output 
resistance of the cascode connection was not specifically calculated, a re­
sult from Section 8.3.5 can be used to determine this quantity. Equation 
8.59 gives r,/2 as the output resistance of a common-base current source 
with a large incremental emitter-circuit resistance. The output resistance of 
the cascode must be identical since its output consists of a common-base 
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connection with a large emitter-circuit resistance. These results show that 
the low-frequency performance of the cascode portion of the amplifier can 
be modeled by the equivalent circuit of Fig. 9.2. 

The d-c gain of the circuit shown in Fig. 9.1 is determined using the 
parameter values shown in Table 9.1 for the transistors. The calculation is 
performed assuming that the noninverting input of the amplifier is incre­
mentally grounded. This assumption yields the same value for d-c gain that 
would be obtained considering a true differential input voltage. Incre­
mentally grounding the noninverting input does eliminate an insignificant 
high-frequency term in the transfer function that results from signals fed 
through the collector-to-base capacitance of Q2 (see Section 8.2.3). 

Figure 9.2 Equivalent circuit for cascode amplifier at low frequencies. 

Table 9.1 Transistor Parameters for Circuit of Fig. 9.1 

IC 	 C, C, 
or or or 

Transistor ID gm 3 r, r, ro Ced Cgs 
Number Type (PA) (mmho) (kQ) (MU) (Mu) (pF) (pF) 

Q1, Q2 2N5963 10 0.4 1100 2750 * * 6 10 
Q3 2N3707 20 * * * * * 8 10 

Q4, 	Q5,Q6 2N4250 50 2 350 175 500 1.4 10 15 

Q7 2N3707 50 2 200 100 500 2.5 8 10 

Qs TIS58 2 mA * - - - - 2 * 

Q9 2N3707 2mA * * * * * * * 

Qio 2N2219 * * 200 * * * * * 

Qiu 2N2905 * * 200 * * * * *
 

Q12 2N3707 0 * * * * * * * 

Qi3 2N4250 0 * * * * * * * 

- Not relevant. 
* Value unimportant in included analysis. 
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Overall gain is found by first calculating the transfer relationships for 
various portions of the circuit. An incremental input voltage applied to the 
base of Q1, vi, causes a change in the collector current of Q2 given by 

ic2 = -- (9.1) 

(It has been assumed that both input transistors are operating at equal 
currents so that gmi =gm2.) 

The previously developed cascode equivalent circuit shows that the 
change in base voltage of Q, is related to the Q2 collector-current change by 

Vbe= -- ic2(325 kallr, 5) (9.2) 

(The collector-circuit potentiometer has been assumed set to center posi­
tion so that the load resistor of transistor Q2 is equal to 325 ku.) In order 
to determine the voltage gain of the cascode amplifier, it is necessary to 
calculate the load applied to it. The input resistance of field-effect transistor 
Q8 is essentially infinite, while the output resistance for the current source 
Q7 is 

r + gm7 (r, 168 ki)( 
rM [1 

7 j(9.3)g77 1 go7 _ 

(See Eqn. 8.57.) It is computationally convenient to reduce this equation 
now and to introduce the experimentally verifiable assumption that r"7 ~ 
rM6. This value is reasonable, since both devices are operating at identical 
currents, and are fabricated using similar (though complementary) process­
ing. The 2N3707 has a typical 0 of 200 at 50 yA, so that r, 7 is typically 100 
kQ at this current. Therefore, r,7 0 68 kQ ~ 0.4r,7. Accordingly, the output 
resistance of Q7 becomes 

r 7 ~ r,7 r,7 1 0.4r,7 0.2 8r,7 (9.4)
L go7 _ go7 _ 

Using this relationship, the assumed equivalence of r, 7 and r,6 , and the 
model of Fig. 9.2 shows that the loaded cascode voltage gain is 

Vcb6- ~ -gm,6 r,-6 0.28r1,6 -- g,,6(0.18r,6) (9.5) 

Recognizing that the unloaded voltage gain from the collector of Q6 to 
the amplifier output is unity and combining Eqns. 9.1, 9.2, and 9.5 yields 

= ---- (325 k 11r,5)gm. 6(0.18r 6) (9.6)
vi 
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Substituting parameter values from Table 9.1 into Eqn. 9.6 predicts a d-c 
open-loop gain magnitude of 4 X 106. The gain is dominated by the con­
tribution of 1.8 X 105 from the cascode amplifier (see Eqn. 9.5). 

9.2.2 Transfer Function 

The locations of all poles and zeros of the amplifier could be predicted 
for the complete circuit by substituting appropriate incremental models for 
the active devices, although this would be a formidable task even with the 
aid of a computer. The approach used here is to make relatively crude ap­
proximations to gain insight into the controlling dynamics of the amplifier 
and then to verify the approximate results with a more detailed (though 
still incomplete) computer analysis. 

The unloaded low-frequency voltage gain of the buffer amplifier (tran­
sistors Q8 through Q11) is unity. Amplifier loads as low as several hundred 
ohms do not appreciably alter its performance. If the load applied to the 
amplifier is not capacitive, the frequency response of the buffer approaches 
the fT of the devices used in it. Furthermore, the input impedance of Q8, 
which loads the cascode amplifier, is independent of any load applied to 
the amplifier output since the FET is unilateral. Thus the influence of the 
buffer can be modeled by simply using the input capacitance of Q8, Cods, 
as a load for the cascode. Similarly, the loading of transistor Q7 can be 
represented as a parallel impedance consisting of its output capacitance C,7 
and output resistance 0.28r,7 (Eqn. 9.4). 

An incremental model that reflects these simplifications is shown in Fig. 
9.3. The base resistances (r,'s) of all transistors, as well as r, and r, of 
transistors other than Q6 and Q7 (the transistors in the high-gain portion 
of the circuit) have also been ignored. An argument based on the concept 
of open-circuit time constants2 is used to further simplify this model. The 
open-circuit resistances3 facing capacitors C, 1 , C, 1, C 2, C,3 , and C 6 are 
all on the order of 1/g,, for the related transistor or lower. Thus these 
capacitors do not affect the dynamics of the amplifier at frequencies low 
compared to the fT's of the various transistors and are eliminated for the 
initial approximation. As a result of this approximation the only contribu­
tion of the input stage to amplifier dynamics is a consequence of the loading 

C, 2 applies to the base of Q,, and the stage itself can be modeled as a single 
dependent current source. 

2 See P. E. Gray and C. L. Searle, Electronic Principles: Physics, Models, and Circuits, 
Wiley, New York, 1969, Chapters 15 and 16. 

3The open-circuit resistance facing a capacitor is the incremental resistance at the terminal 
pair in question calculated with all other capacitors in the circuit removed or open-circuited. 
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Figure 9.3 Model used to determine transfer function. 
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The further-simplified incremental model incorporating the approxima­
tions introduced above and shown in Fig. 9.4 is used to approximate the 
location of the two low-frequency amplifier poles. The node equations for 
this circuit are 

g21Vi = [(C 1 + C,5)s + G1]Va - C,5SVb 

0 = (-C,5s + g, 5)V. + (CjSs ± g.6 + gr6 + gA) Vb - go6 Vo 

o = (-gm6 - go6)Vb + (C 2s + g 6 + G2)V. (9.7) 

(See Fig. 9.4 for the definition of parameters in this equation.) 
The poles are found by equating the determinant of the matrix of coeffi­

cients of Eqn. 9.7 to zero, yielding 

S3C1 C 2Cm5 + C 2(C 1 + 2CI5 ) C 2 1 = 0 (9.8) 
gm6G1(G 2 + gA) G1(G2 + g.6) G2 + gm6 

In reducing Eqn. 9.7 to 9.8, small terms have been dropped. However, 
only terms that are small because of transistor and topological inequalities 
such as gn >> g, >> g, >> g, and C 2 > CA6 since one component of C 2 is 
C,6 have been eliminated. Thus the conclusions that will be drawn from 
Eqn. 9.8 are applicable to a variety of circuits that share this topology 

C96V+y6 'm9.6 V6R2R2 r.6r.6 \10.28r.6 2 C 6+Vbrt F CIA7 + Cgd8 

+ - ­

CM2 r ~ ms ~'b 

Figure 9.4 Simplification of Fig. 9.3. 
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rather than being limited to the specific choice of element values shown 
in Fig. 9.1. Fundamental relationships among parameter values also insure 
that the three poles represented by Eqn. 9.8 will be real and widely spaced. 
Consequently, this cubic equation can be easily factored, since 

(TaS + 1)(TbS + 1)(7eS + 1) - Tareb7S' + TaTbS2 + TaS +1 

for Ta >> >> T c (9.9) 

Equation 9.9 allows us to write Eqn. 9.8 as 

0CC, (9.10)C + 	2Cs(G2 + gju sC2' + G1 gme(C1 + 2C,5) 

indicating that 

C 2 

Ta = + gA6G 2 

C1 + 	 2CA5 
Tb = GrbG 1 

rc = 	gm(C (9.11) 
gme(C1 + 2C,5) 

The physical interpretation of the time constants lends insight into the 
operation of the circuit. The resistance associated with time constant Ta is 
simply the incremental resistance from the high resistance node (the col­
lector of Q6) to ground. [Recall that 1/ (G2 + g,6) =0.28r,6 1 r,6 || r,6 = 
0. 18r,, the value obtained earlier and used in Eqn. 9.5 for the incremental 
resistance from this node to ground.] Similarly, capacitance C 2 = C"6 + 
C, 7 + C~d8 is the capacitance from the high resistance node to ground. 
Since the capacitance of all amplifier nodes is the same order of magnitude, 
it is not surprising that the dominant amplifier pole is associated with 
energy storage at the highest resistance node. Substituting values from 
Table 9.1 shows that Ta = 1.8 ms, implying that the dominant amplifier 
open-loop pole is located at s = - 550 sec- 1. 

Time constant Tb is associated with the resistance and capacitance from 
the base of Q5 to ground. The conductance G1 in Eqn. 9.11 was defined 
previously as the conductance from this node to ground. The capacitance 
consists of the collector-to-base capacitance of Q2 that shunts this node 
and the total effective input capacitance (including that attributed to Miller 
effect) Q5 would display if this transistor were loaded with a resistive load 
equal to 1/gmn5. Note that at frequencies much above /Ta radians per sec­
ond, the capacitive loading at the collector of Q6 has reduced the voltage 
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Figure 9.5 Amplifier open-loop transfer function based on two lowest-frequency 
poles (no compensation). 

gain of this transistor; as a result, there is no significant feedback to the 
emitter of Q6 through r06 at these frequencies. Thus transistor Qe provides 
the 1/gme = 1/gm5 load for Q5. The time constant r b is equal to 4.5 4s, 
implying that the second amplifier pole is located at s = -2.2 X 101 sec-1. 
Time constant r, corresponds to a frequency that approximates fT for the 
transistors in the circuit, and thus to one of many high-frequency poles 
that are ignored in the simplified analysis. 

Combining the d-c gain (Eqn. 9.6) with the dynamics predicted above 
yields 

V0(s) -4 X 10( 
V(s) (1.8 X 10- 3s + 1)(4.5 X 10- 6s + 1) 

Equation 9.12 is shown as a Bode plot 4 in Fig. 9.5. 

4 The transfer function plotted in Fig. 9.5 is actually the negative of Eqn. 9.12. This 
modification is made because we anticipate using the amplifier in negative-feedback con­
nections. Since the loop transmission has the same sign as the gain calculated for the 
amplifier in these applications, plotting the negative of the amplifier gain follows the 
convention of plotting the negative of the loop transmission of a feedback system. Viewed 
alternatively, the transfer function plotted in Fig. 9.5 would result if the input signal were 
applied to the noninverting input terminal of the amplifier. 
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The pole locations for this design were also predicted by computer analy­
sis, in order to verify some of the assumptions introduced in the preceding 
development. The equivalent circuit of Fig. 9.3 with 100-Q base resistors 
added to the circuit model for each transistor was analyzed. Thus only the 
buffer amplifier was eliminated from the computer calculations. The loca­

1tions of the two dominant poles predicted by the computer were - 520 sec­
1and -- 2.15 X 105 sec- . All other poles had break frequencies in excess of 

107 radians per second. In spite of the seemingly drastic approximations 
included in the analysis of this circuit, the predicted locations of the two 
dominant poles are confirmed by the computer calculation to within round-
off errors. 

9.2.3 A Method for Compensation 

The transfer function of this amplifier (Eqn. 9.12) has the poles separated 
by a factor of 400, and in many feedback amplifiers this amount of separa­
tion would seem ideal from a stability point of view. Unfortunately, with 
the massive low-frequency open-loop gain characteristic of operational 
amplifiers (4 X 106 in this design), greater separation is required to insure 
adequate stability in many applications. For example, if the amplifier is 
used as a unity-gain follower by connecting its output to its inverting input, 
a loop is formed with a(jo) as shown in Fig. 9.5 and f = 1. The Bode plot 
shows that the phase margin of the system is approximately 0.50 in this 
case, clearly an unsatisfactory value. In practice, this configuration would 
be unstable, since the negative phase shift associated with neglected open-
loop singularities is far greater than 0.50 at the amplifier unity-gain fre­
quency. It is clear that some method must be used to modify the open-loop 
transfer function of the amplifier in order to achieve acceptable perform­
ance in this and many other connections. 

One of the significant advantages of the amplifier configuration de­
scribed in this section and of all amplifiers that share its topology is that it 
is possible to use internal feedback to provide easily predicted and well-
controlled compensation. The compensation is implemented by connecting 
a network between the terminals marked compensation in Fig. 9.1. This 
network completes a minor loop that includes the high-gain stage. Since 
both dominant amplifier poles are included inside the local feedback loop, 
it is possible to alter the location of the most important poles in the ampli­
fier transfer function by this type of internal feedback. The degree of control 
that minor-loop feedback can exercise on the transfer function of a two-
stage amplifier was hinted at in Section 5.3 and in the discussion of the 
effects of C, of the high-gain stage in Section 8.2.3. 
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There are at least two important limitations to this type of compensation. 
First, since this compensation is a form of negative feedback, the magni­
tude of the compensated open-loop amplifier transfer function will be less 
than or equal to the magnitude of the uncompensated transfer function at 
most frequencies. While resonances introduced by the minor feedback loop 
may give a gain increase at one or two particular frequencies, the band­
width over which such increases exist is necessarily limited. Second, there 
is some maximum frequency for which this is an effective method of com­
pensation, since beyond this frequency the influence of other singularities, 
some of which are outside the compensating loop and therefore cannot be 
controlled, become important. While these singularities are all at frequen­
cies comparable to the fT's of the transistors, they do set the ultimate 
bandwidth limitation of the amplifier because of the phase shift that they 
contribute to its open-loop transfer function at frequencies of interest. For 
example, at 1/10 of its break frequency, a 10th-order pole contributes 570 
of negative phase shift to a transfer function but only changes the magni­
tude by 5%. In practice, the unity-gain frequency of the amplifier-feedback 
network combination is normally chosen to limit the phase contribution 
of the high-frequency singularities to less than 300 at this frequency so that 
stability is not compromised. It is often necessary to determine the fre­
quency at which the phase shift of higher-order singularities becomes im­
portant experimentally because of the difficulties associated with accurate 
analytic prediction of their locations. 

An incremental model for the amplifier of Fig. 9.1 that can be used to 
analyze the effects of the internal feedback used for compensation is shown 
in Fig. 9.6. The development of this model relies heavily on the analysis 
of Section 9.2.2. The input impedance of the amplifier, which is unimpor­
tant for purposes of this calculation, is Zi. An input voltage forces a 
proportional current at the node including the base of Q,.5 

The impedance at the base of Q5 is modeled as a parallel R-C network 
with a time constant equal to Tb in Eqn. 9.11. The remainder of the cascode 
is modeled as an impedance equal to the impedance from the collector of 
Q, to ground driven by a dependent-current source supplying a current 
gm6 Vbe. The impedance transformation of the field-effect transistor is rep­
resented as a unity-voltage-gain buffer amplifier. The complementary emit­

5This representation assumed an input voltage applied to the inverting input of the 
amplifier. If voltages are applied to both inputs, the differential voltage is used for Vi. An 
advantage of this type of amplifier is that the dynamics of the first stage do not significantly 
influence the transfer function at frequencies of interest; thus it functions as a true differ­
ential-input amplifier. 
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ter-follower pair is modeled as a second buffer amplifier with an output 
impedance Z,. 

The compensating minor loop is formed by connecting a two-port net­
work between the output of the source follower and the base of Q5. Since 
the right-hand port of the network is driven by the low-impedance source 
follower, the voltage Vb is independent of Va; thus the two-port can be 
completely represented in this application by the two admittances6 

Ya = - " V = 0 (9.13a) 
Va 

Ia 
Ye = " Va = 0 (9.13b) 

Vb 

Node equations for the model of Fig. 9.6 are 

g - Vi = (Y1 + Ya)Va - YcVb (9.14)
2 

0 = g.6 Va + Y2Vb 

where 

Y1 = + Cis 

1
 
Y2 = + Cs
 

Recognizing that output voltage V is identical to Vb in the absence of 
load allows us to determine the gain of the amplifier from Eqn. 9.14 as 

V0 V _ (gm1 /2)gm6/[(Y1 + Ya) Y 2] 
Vi -(9.15)- - =-V Vi 1 +-6g6Y/ [(Y 1 + Ya) Y2] 

The quantity gm6 Ye [(Yi +Ya) Y2]is identified as the negative of the loop 
transmission of the inner loop formed when the amplifier is compensated. 
In many cases of practical interest, the phase angle of this expression is 
close to plus or minus 900 when its magnitude is unity. The 900 phase mar­
gin of the compensating loop then insures that there is no peaking in its 
response. In these cases a very simple approximation serves to determine 
the magnitude of the open-loop transfer function of the amplifier, and the 

6These definitions differ from those conventionally used to describe two-port networks 
in that the reference direction for Ia is out of the network. This choice reduces the number 
of minus signs in the following equations. 
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approximation yields a result that is correct within a factor of 0.707 at all 
frequencies. The implication from 9.15 is that 

V(jo.) gmi~.CO­ - (9.16)
Vi(jw) 2 Ye(jco) 

at frequencies where 

gmeo Yc(jo) 

[Y1(jO) + Ya(jO)] Y 2(jo) 
and 

V(jo) g i gm.17) 
Vi(j) 2 [Y1(jo) + Y(jo)]Y 2(jw) 

at all other frequencies. Thus, when the minor-loop transmission magni­
tude is large, the open-loop transfer function of the amplifier is controlled 
by the minor-loop feedback element. 

This approximation is particularly easy to apply graphically. The open-
loop transfer function of the amplifier without compensation, but with the 
compensating network loading the base of Q5, is plotted on log-magnitude 
vs. log-frequency coordinates. The proper loading is realized by connecting 
one side of the network to the base of Q5 in the usual manner, and by dis­
connecting the other side of the network from the source of Q8 and con­
necting it instead to an incremental ground. This first plot is particularly 
easy to obtain if a single capacitor is used as the compensating element 
(the most frequent case because this compensation leads to an approxi­
mately single pole open-loop transfer function) since only the location of 
the higher-frequency pole in Eqn. 9.12 is changed. The magnitude of the 
expression gmi/2 Ye(jw) is also plotted on the same coordinates. The magni­
tude of the amplifier open-loop transfer function at any frequency is then 
approximately equal to the lower magnitude of the two plotted curves. 
This relationship is easily developed from Eqns. 9.16 and 9.17, by noticing 
that the gain of the amplifier with the shorted compensating network con­
nected to the base of Q5 is 

gmi gm6 
2 (Y1 + Ya)Y 2 

and that if 

gmi gmi gm 

2Ye| 2 (Y1 + Y.)Y 2 
then 

,i Y) >Y 
(Y1i+ Y)Y 2 
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Figure 9.7 Effect of compensation. 

Figure 9.7 illustrates the effects of compensating the amplifier shown in 
Fig. 9.1 with a 20-pF capacitor. The quantities Ye and Ya for this compen­
sating network are both equal to 2 X 10-"s. One of the two curves is ob­
tained directly from the uncompensated transfer function of Fig. 9.5 by 
moving the second pole from 2.2 X 105 radians per second to 1.5 X 10 
radians per second, since loading by the compensating capacitor increases 
the total capacitance at the base of Q5 by 50%. The second plot is 

g,,M 107 

2Ye(jw) ~w 

The curve for the compensated amplifier is the lower of the two plots at all 
frequencies. 

The advantages of this compensation for certain applications are obvi­
ous. It was shown earlier that operation with f = 1 would cause the un­
compensated amplifier to oscillate. If a 20-pF compensating capacitor is 
used, the phase margin of the amplifier with direct feedback is greater than 
450 

Note that this compensation lowers the first amplifier open-loop pole to 
2.5 radians per second. The location of the low-frequency pole cannot be 
independently chosen if we insist on a single-pole rolloff at frequencies 
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below the unity-gain frequency and constrain both the unity-gain frequency 
and the d-c gain. The pole must be located at a frequency equal to the ratio 
of the unity-gain frequency to the d-c gain. This pole does not compromise 
closed-loop bandwidth, since closed-loop bandwidth is determined by the 
crossover frequency of the loop. 

It is worth mentioning that parameter values for this amplifier are such 
that the uncompensated open-loop transfer function will be noticeably 
modified by any capacitive compensation in excess of approximately 0.1 
pF! The minimum capacitor value necessary to modify the amplifier transfer 
function can be determined by noting that the uncompensated magnitude 
curve shown in Fig. 9.5 includes a region where its value is 2 X 101/w 
Thus, if a capacitor in excess of 0.1 pF is used for compensation, the magni­
tude [g,,i/2 Ye(jw) will be smaller than the uncompensated magnitude over 
some frequency range. Furthermore, it is evident that feedback from any 
high level part of the circuit (from the collector of Qe on) back to the base 
circuit of Q5 has approximately the same effect as feedback via the com­
pensation terminals. Inevitable stray capacitance between these two parts 
of the circuit is usually on the order of 1 pF, and it is therefore concluded 
that the "uncompensated" curve of Fig. 9.7 can probably never be mea­
sured for an actual amplifier. 

As indicated above, feedback from any portion of the circuit from the 
collector of Q6 on modifies performance in much the same way as feed­
back from the source of Q8, and in certain applications it may be advan­
tageous to compensate by feeding back from an alternate point. For ex­
ample, feedback from the output terminal includes more of the amplifier 
inside the compensating loop and thus with the control of this loop. Unfor­
tunately, compensating-loop stability is less certain for this type of minor-
loop feedback. Similarly, if large capacitors are used for compensation, 
greater inner-loop stability may be achieved by compensating from the 
collector Q6. 

Some of the reasons for selecting an amplifier topology with the possi­

bility for this type of compensation should now be clear. The compensation 

is normally chosen so that it, rather than uncompensated amplifier dy­
namics, dominates amplifier performance at all frequencies of interest. Thus 

the open-loop transfer function of the amplifier with compensation becomes 

quite reliable. A wide variety of open-loop transfer functions can be ob­

tained (several examples will be given in Chapter 13) with the main limita­

tion being the requirement of maintaining the stability of the compensating 
loop. Furthermore, it is easy to determine what compensating network 

should be used to produce a given open-loop transfer function. 
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9.3 OTHER CONSIDERATIONS 

A myriad of performance characteristics combine to determine the over­

all utility of an operational amplifier. The possibilities for modifications 
that compromise one characteristic in order to enhance another are nu­

merous in this type of complex circuit. While the major advantage of the 

two-stage design centers on its easily controlled dynamics, the topology 

can be readily tailored to specific applications by other types of modifica­

tions. This section indicates a few of the "hidden" features of the two-stage 

design and points out the possibility of certain types of design compromises. 

9.3.1 Temperature Stability 

The last section shows that the use of internal feedback to compensate 

the amplifier under discussion yields an open-loop transfer function in­

versely proportional to the transfer admittance of the compensating net­

work over a wide range of frequencies. The constant of proportionality for 

this and other variations of the two-stage design includes the transconduct­

ance of either input transistor, and is thus inversely related to temperature 

if the collector current of these transistors is temperature independent. This 

relatively mild variation with temperature is tolerable in many applications. 

If greater transfer-function stability is required, the input-stage bias cur­

rent can be made directly proportional to the absolute temperature. As a 

result, input-stage transconductance, and therefore the open-loop transfer 

function, will be temperature independent. A further advantage of this 

type of bias-current variation is that it partially compensates for input-tran­

sistor current-gain variations with temperature and thus reduces input-

current changes. 
The required bias-current temperature dependence can be implemented 

by appropriate selection of the total voltage applied to the base-to-emitter 

junction and the emitter resistor of the input-stage current source (Q3 in 

Fig. 9.1). It can be shown that the output current from the source will be 

directly proportional to temperature if this voltage is constant and is ap­

proximately equal to the energy-band-gap voltage V, (see Problem P9.11). 

9.3.2 Large-Signal Performance 

The analysis of the effects of compensation on amplifier performance has 

been limited up to now to linear-region operation. It is clear that compen­

sation also effects large-signal behavior. For example, an open-loop transfer 

function similar to that obtained using a 20-pF compensating capacitor 

could be obtained by connecting a series-connected 3.6-yF capacitor and 

500-i resistor from the base of Q, to ground. However, recovery from over­
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load might be greatly delayed with this type of compensation because of the 
time required to change the voltage on a 3.6-yF capacitor with the limited 

current available at this node. 
The compensation also limits the slew rate, or maximum time rate of 

change of output voltage of the amplifier. Consider an output voltage time 

rate of change o. If a compensating capacitor Ce is used, the capacitor 

current required at the node including the base of Q5 is Cebo. The maximum 

magnitude of the current that can be supplied to this node by the first stage 

and that is available to charge the capacitor is approximately equal to the 

quiescent bias current of either input transistor Ici. Thus the slew rate is 

vo(max) = Ici/Cc. However, the ratio Ici/Ce also controls the unity-gain 

frequency of the amplifier, since this frequency is g 1/2Ce = qIc1/2kTCc. 

The important point is that if some consideration, such as the phase shift 

from high-frequency singularities, limits the unity-gain frequency, it also 

limits the slew rate if a single capacitor is used to compensate the amplifier. 

One way to circumvent this relationship is to add equal-value emitter 

resistors to both input transistors so that the transconductance of the input 

stage is lower than gi/2. Unfortunately, emitter degeneration also de­

grades the drift of the amplifier. Another more attractive possibility is the 

use of more involved compensation than that provided by a single capaci­

tor. This alternative will be discussed in Chapter 13. 

9.3.3 Design Compromises 

There are many variations of the basic amplifier topology that result in 

useful designs, and some of these variations will be illustrated in Chapter 

10. Other degrees of freedom are possible by varying quiescent operating 

current and by changing transistor types. The purpose of this section is to 

indicate how these variations influence amplifier performance. 

Consider the changes that result from increasing all quiescent operating 

currents by a factor K. This change can be effected by decreasing all circuit 

resistors by the same factor. In response to the current change, all internal 

transistor resistances will decrease by the same factor, since all are mul­

tiples of 1/gm. Current gains of the various transistors do not change sig­

nificantly if K is not grossly different from one. Thus the d-c voltage gain, 

which is a ratio of transistor and circuit conductances of the amplifier, will 

not change in response to changes in quiescent current. Input current will 

increase directly with quiescent current, and drift may increase somewhat 

because of increased self-heating in the first stage. 

The dynamics for the design in question (at least without compensation) 

are determined primarily by the resistance and capacitance values at the 

base of Q5 and at the collector of Q6. The resistance values at these nodes 
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decrease by an amount K, since they consist of combinations of transistor 
and circuit resistances. The capacitance values remain constant, at least for 
moderate changes from the levels used in the last sections, for the following 
reason. The capacitances involved are transistor-junction capacitances Cod, 
C,, and C.. Capacitances Ced and C, are current-level independent, while 
C is the sum of a constant term plus a component linearly proportional 
to current. For transistor types likely to be used in this circuit, the current-
proportional term is not important at levels below 1 mA. Thus an increase 
in current levels by as much as a factor of 10 from the values indicated in 
Fig. 9.1 does not significantly change critical node capacitances. 

The argument above shows that moderate increases in operating current 
cause proportional increases in the locations of uncompensated open-loop 
poles. The form of the amplifier uncompensated open-loop transfer func­
tion remains unchanged and is simply shifted toward higher frequency. The 
possibility for increased bandwidth after compensation as a result of this 
modification is evident. 

A second alternative is to change the relative ratios of first- and second-
stage currents. An increase in second-stage current relative to that of the 
first stage has three major effects: 

1. Drift increases because second-stage loading becomes more significant. 
2. Gain decreases because the input resistance of the second stage de­

creases. 
3. Bandwidth increases because the second-stage resistances decrease. 

Significant flexibility is afforded by the choice of the active devices. The 
transistor types shown in Fig. 9.1 were selected primarily for high values 
of # and 1/ . These types result in an amplifier design with high d-c voltage 
gain, low input current, and low drift. Unfortunately, because of compro­
mises necessary in transistor fabrication, these types may have relatively 
high junction capacitances. 

Clearly higher-frequency transistors can be used in the design. In fact, 
amplifiers with this topology have been operated with closed-loop band­
widths in excess of 100 MHz by appropriately selecting transistor types and 
operating currents. However, the d-c voltage gain for a design using high-
frequency transistors is usually one to two orders of magnitude lower than 
that of the design shown in Fig. 9.1. Input current and voltage drift are 
also severely degraded. Furthermore, many high-frequency transistors have 
breakdown voltages on the order of 10 to 15 volts, resulting in limited dy­
namic range for an amplifier using such transistors. 

At times high-frequency types are used for transistors Q4 and Q5, with 
high-gain types used in other locations. This change improves the band­
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width of the amplifier, but compromises voltage gain and drift because of 
the lower current gain typical of high-frequency transistors. Since transistors 
Q4 and Q, operate at low voltage levels, dynamic range is not altered. 

9.4 EXPERIMENTAL RESULTS 

While the amplifier described in this chapter was designed primarily as 
an educational vehicle, it has been built and tested, and can be used to dem­
onstrate certain performance features of the two-stage design. Although a 
detailed description of the experimentally measured performance of this 
amplifier is of questionable value since it is not a commercially available 
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Figure 9.8 Inverting amplifier. (a) Circuit. (b) Block diagram. 
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design, the presentation of several transient responses seems a worthwhile 

prelude to the more detailed experimental evaluation of compensation in­

cluded in Chapter 13. 
The amplifier was connected as shown in Fig. 9.8a. This connection, 

which results in the block diagram shown in Fig. 9.8b, is useful for demon­

strations since it permits control of the loop transmission both by selection 

of the value of Cc [which influences a(s)] and by choice of R. The ideal 

closed-loop gain of the connection is minus one independent of R. 
The magnitude of the loop transmission for this system, with only the 

lowest-frequency pole included, is shown in Bode-plot form in Fig. 9.9. 

As anticipated, the crossover frequency is dependent on the ratio a/Cc. 
The output of the amplifier in response to -20-mV step input signals 

with R = oo (a = 1/2) for four different values of compensating capacitor 

is shown in Fig. 9.10. Note that for the larger values of Cc, the response is 

very nearly first order, and that the 10 to 90% rise time agrees closely with 
2

the value predicted for single-pole systems, t, = .2 /wc. Smaller compen­

sating-capacitor values change the character of the response as the system 

becomes relatively less stable and faster. The highly oscillatory response 

that results for Ce = 5 pF indicates that the phase shift added at the 

crossover frequency by the second- and higher-frequency poles is very nearly 
90* in this case. 
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Figure 9.9 Loop-transmission magnitude for inverting amplifier. 
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Figure 9.10 Closed-loop step response as a function of compensating capacitor 
(input-step amplitude is -20 mV). (a) Cc = 47 pF. (b) C, = 33 pF. (c) Ce = 10 pF. 
(d) Ce = 5 pF. 
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Figure 9.11 Step response as a function of compensating capacitor and a (input-
step amplitude is -20 mV). (a) C, = 20 pF, a = 1/2. (b) C, = 20 pF, a = 1/4. 

(c) C, = 10 pF,a 1 /4. 
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Figure 9.11-Continued 

The step response shown in Fig. 9.11 shows how this design allows the 
effects of changing attenuation inside the loop to be offset by altering com­

pensation. While the attenuation is changed by changing the value of R in 
this demonstration, it depends on the ideal closed-loop gain in many prac­
tical connections. Figure 9.1 la shows the step response for a = 1/2 (R 
= o) and C, = 20 pF. The response for a = 1/4 (R = iR 1 ) and 

Cc = 20 pF is shown in Fig. 9.1 lb. The rise time is approximately twice as 
long in Fig. 9.11b, anticipated since the crossover frequency is a factor of 
two lower in this connection (see Fig. 9.9). The crossover frequency can be 
restored to its original value by lowering C, to 10 pF. The transient response 
for this value of compensating capacitor (Fig. 9.11c) is virtually identical 

to that shown in part a of this figure. 
Figure 9.12 demonstrates the slew rate of the amplifier by showing its 

slew-rate limited response to 20-volt peak-to-peak square wave signals. 

The parameter values for Fig. 9.12a are a = 1/2 and C, = 20 pF, while 

those of Fig. 9.12b are a = 1/4 and Ce = 10 pF. These are the values 
that gave the virtually identical small-signal responses shown in Figs. 9.1 la 

and 9. 1lc, respectively. The large-signal responses show that the slew rate 

is inversely proportional to compensating-capacitor value, as predicted in 

Section 9.3.2. 
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Figure 9.12 Effect of compensating capacitor on large-signal response (input 
square-wave amplitude is 20 volts peak-peak). (a) Ce = 20 pF, a = 1/2. 
(b) C, = 10 pF,a = 1/4. 
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PROBLEMS 

P9.1 
Figure 9.13 shows schematics for several available integrated circuits. 

Determine the transistors that actually contribute to signal amplification 
for each of these circuits. 

P9.2 
Assume that measurements made on an operational amplifier of the type 

described in this chapter indicate a bias current required at either input 
terminal equal to 9 X 10- 4A/T 2 , where T is the temperature in degrees 
Kelvin. We intend to use the amplifier connected for a noninverting gain of 
two. Design a temperature-dependent network that can partially compen­
sate the input current seen at the noninverting input of the amplifier. Note 
that since an input voltage range of 1z5 volts is anticipated, the incremental 
resistance of the compensating source must be the order of 1010 9 to achieve 
good compensation. 

P9.3 
The input transistors of the amplifier described in this chapter are 

matched such that the difference between the base-to-emitter voltages of 
these two devices is less than 3 mV when they operate at equal collector 
currents. Assume that this matching is not performed, and consequently 
that the base-to-emitter voltage of Q2 (see Fig. 9.1) is 50 mV lower than that 
of Q, when the two devices operate at equal currents. The amplifier can 
still be balanced by replacing the collector-circuit resistor network of the 
pair with a 650-kQ potentiometer, and possibly changing the 33-kQ resistor 
in the emitter circuit of the Q-Q6 pair so that the quiescent operating level 
of these devices remains 50 yA following balancing. Calculate the effect 
that balancing an amplifier with this degree of mismatch between input de­
vices has on the open-loop gain of the amplifier. 

P9.4 
Figure 9.14 shows a simplified representation for an operational ampli­

fier. You may assume that the current sources have infinite output im­
pedance and that the buffer amplifier has infinite input resistance. All 
transistors are characterized by 0 = 200 and -q = 5 X 104. 

(a) 	 Estimate the low-frequency open-loop gain of this configuration. 
(b) 	What is the input offset voltage of the amplifier, assuming that the 

two input transistors have identical values for Is? 

(c) 	 What is the common-mode rejection ratio of this amplifier? 

(d) 	Estimate the time constant associated with the dominant amplifier pole, 

assuming all transistors have C = 10 pF, C, = 5 pF. 
(e) 	 Suggest at least three circuit changes (aside from simply using better 

transistors) that can increase the value of the d-c open-loop gain. 
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Figure 9.13 Integrated-circuit amplifiers. (a) uA733. (b) MC1533. (c) yA741.
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Figure 9.14 Operational amplifier. 

P9.5 
An interesting amplifier topology that can be used for operational ampli­

fiers intended to be connected as unity-gain voltage followers is shown in 
Fig. 9.15. (Note that the amplifier is shown connected as a voltage fol­
lower.) You may assume that the current sources have infinite output im­
pedance and that all transistors are characterized by # = 100 and 7 
= 2 X 104. 
(a) How many voltage-gain stages does this amplifier have? 

(b) Estimate the unloaded, low-frequency open-loop gain of the amplifier. 

(c) Estimate the low-frequency closed-loop output impedance of the circuit. 

P9.6 
Assume that the field-effect transistor (Q 8 in Fig. 9.1) in the amplifier de­

scribed in this chapter is replaced with a 2N3707. Use values given in Table 

9.1, with appropriate modifications reflecting operation at 2 mA, to deter­

mine values for gmn, r,, r., and r,.You may assume that the value of C, 
at 2 mA is 50 pF. Determine the changes in amplifier d-c open-loop gain 

and the changes in uncompensated dynamics that result from this design 

change. 
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Figure 9.15 Follower-connected amplifier. 

P9.7 
A detailed analysis of a certain operational amplifier shows that its 

open-loop transfer function contains a single low-frequency pole, and that 

the location of this pole is easily controlled by appropriate compensation. 
In addition to this dominant pole, the open-loop transfer function includes 
7 poles at s = - 10 sec- 1 and two right-half-plane zeros at s = 2 X 108 
sec-1. Show that, at least at frequencies up to several megahertz, the net 
effect of these higher-frequency singularities can be modeled as a single 
time delay. Determine the delay time of an approximating transfer func-

Compensation 

+ 

V. 0-V 
+ 

+_ 

Vv 1 M2 104 amp
volt 

a 100 k2 
1000 pF 

2 x 104 

(2 x 10- 5 s + 1) a 

Figure 9.16 Operational-amplifier model. 
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Figure 9.17 Low-pass T network. 

tion. Use the time-delay approximation to describe the effect of the higher-
order singularities on the maximum crossover frequency of feedback con­
nections that include this amplifier inside the loop. If the d-c open-loop gain 
of the amplifier is 10, how should the dominant pole be located in order 
to achieve 450 of phase margin when the amplifier is connected as a unity-
gain inverter? 

P9.8 
A model for an operational amplifier is shown in Fig. 9.16. This amplifier 

is connected as a unity-gain voltage follower. 
(a) 	 What is the phase margin with no compensation? 
(b) 	 If a capacitor is used between the compensating terminals, how large 

a value is required to double the uncompensated phase margin? 
(c) 	 How large a capacitor should be used to obtain 450 of phase margin 

in the follower connection? 
(d) 	 An alternative compensating technique involves shunting a series R-C 

network across the 100-kQ resistor and 1000-pF capacitor combination 
shown in Fig. 9.16. Find parameter values for this type ofcompensation 
that yields results similar to those obtained in part c. 

P9.9 
The amplifier described in Problem P9.8 is used in a loop where an 

approximate open-loop transfer function of 10 (10- 2 s + 1) is required. It 

c C 

R 

Figure 9.18 High-pass T network. 
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is suggested that the required transfer function be obtained by compen­
sating the amplifier with the T network shown in Fig. 9.17. Determine 
network-parameter values that might reasonably be expected to approxi­
mate the required transfer function. 

When the amplifier is tested with this type of compensation, we find that 

our first guess was incorrect. Explain. 

P9.10 
Another class of application involves the use of the T network shown in 

Fig. 9.18 to compensate the amplifier described in Problem P9.8. This net­

work can be used without encountering the type of difficulties that occur 

using the network described in Problem P9.9. Determine the type of trans­

fer function that results using the high-pass T, and comment on the value 
of this type of compensation. 

P9.11 
It was mentioned in Section 9.3.1 that the temperature stability of the 

amplifier described in this chapter could be improved by making the bias 

current source of the first stage have an output current directly proportional 

to temperature. This proportionality can be accomplished by means of the 

circuit shown in Fig. 9.19. Assume that the transistor current-voltage char­
acteristic is 

ic = AT 3 eq(VBE-Vgo)/kT 

Determine the value of VB that results in an output current directly pro­

portional to temperature at 300* K. 

P9.12
 
A two-stage operational amplifier can be modeled as shown in Fig.
 

9.20. In this representation, the high-gain second stage itself is modeled 

10 

Figure 9.19 Temperature-dependent current source. 
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Figure 9.20 Model for two-stage operational amplifier. 

as an operational amplifier with a minor-loop feedback element con­
nected around it. You may assume that the second stage has ideal charac­
teristics (i.e., infinite gain and input impedance, zero output impedance, 
etc.). 
(a) 	 Determine the unity-gain frequency of this amplifier as a function of 

IB and Cc. 
(b)	 Express the slew rate of the amplifier in terms of the same parameters. 
(c)	 Find a desigi modification that allows an increase in slew rate without 

increasing unity-gain frequency. 



CHAPTER X 

INTEGRATED-CIRCUIT
 
OPERATIONAL AMPLIFIERS
 

10.1 INTRODUCTION 

The trend toward the use of operational amplifiers as general-purpose 
analog building blocks began when modular, solid-state discrete-component 
designs became available to replace the older, more expensive vacuum-tube 
circuits that had been used primarily in analog computers. As cost de­
creased and performance improved, it became advantageous to replace 
specialized circuits with these modular operational amplifiers. 

This trend was greatly accelerated in the mid 1960s as low-cost mono­
lithic integrated-circuit operational amplifiers became available. While the 
very early monolithic designs had sadly deficient specifications compared 
with discrete-component circuits of the era, present circuits approach the 
performance of the best discrete designs in many areas and surpass it in a 
few. Performance improvements are announced with amazing regularity, 
and there seem to be few limitations that cannot be overcome by appro­
priately improving the circuit designs and processing techniques that 
are used. No new fundamental breakthrough is necessary to provide per­
formance comparable to that of the best discrete designs. It seems clear 
that the days of the discrete-component operational amplifier, except for 
special-purpose units where economics cannot justify an integrated-circuit 
design, are numbered. 

In spite of the clear size, reliability, and in some respects performance 
advantages of the integrated circuit, its ultimate impact is and always will 
be economic. If a function can be realized with a mass-produced integrated 
circuit, such a realization will be the cheapest one available. The relative 
cost advantage of monolithic integrated circuits can be illustrated with the 
aid of the discrete-component operational amplifier used as a design ex­
ample in the previous chapter. The overall specifications for the circuit are 
probably slightly superior to those of presently available general-purpose 
integrated-circuit amplifiers, since it has better bandwidth, d-c gain, and 
open-loop output resistance than many integrated designs. Unfortunately, 
economic reality dictates that a company producing the circuit would 
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probably have to sell it for more than $20 in order to survive. General-
purpose integrated-circuit operational amplifiers are presently available 
for approximately $0.50 in quantity, and will probably become cheaper in 
the future. Most system designers would find a way to circumvent any 
performance deficiencies of the integrated circuits in order to take advantage 
of their dramatically lower cost. 

The tendency toward replacing even relatively simple discrete-component 
analog circuits with integrated operational amplifiers will certainly increase 
as we design the ever more complex electronic systems of the future that 
are made economically feasible by integrated circuits. The challenge to the 
designer becomes that of getting maximum performance from these ampli­
fiers by devising clever configurations and ways to tailor behavior from the 
available terminals. The basic philosophy is in fundamental agreement with 
many areas of design engineering where the objective is to get the maximum 
performance from available components. 

Prior to a discussion of integrated-circuit fabrication and designs, it is 
worth emphasizing that when compromises in the fabrication of integrated 
circuits are exercised, they are frequently slanted toward improving the 
economic advantages of the resultant circuits. The technology exists to 
design monolithic operational amplifiers with performance comparable to 
or better than that of the best discrete designs. These superior designs will 
become available as manufacturers find the ways to produce them eco­
nomically. Thus the answer to many of the "why don't they" questions that 
may be raised while reading the following material is "at present it is 
cheaper not to." 

10.2 FABRICATION 

The process used to make monolithic integrated circuits dictates the type 
and performance of components that can be realized. Since the probabilities 
of success of each step of the fabrication process multiply to yield the 
probability of successfully completing a circuit, manufacturers are under­
standably reluctant to introduce additional operations that must reduce 
yields and thereby increase the cost of the final circuit. Some manufac­
turers do use processes that are more involved than the one described here 
and thus increase the variety and quality of the components they can form, 
but unfortunately the circuits made by these more complex processes can 
usually be easily recognized by their higher costs. 

The most common process used to manufacture both linear and digital 
integrated circuits is the six-mask planar-epitaxial process. This technology 
evolved from that used to make planar transistors. Each masking operation 
itself involves a number of steps, the more important of which are as 
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Figure 10.1 NPN transistor made by the six-mask epitaxial process. 

follows. A silicon-dioxide layer is first formed by exposing the silicon 

integrated-circuit material to steam or oxygen at elevated temperatures. 

This layer is photosensitized, and regions are defined by photographically 

exposing the wafer using a specific pattern, developing the resultant image, 

and removing unhardened photosensitive material to expose the oxide 

layer. This layer is then etched away in the unprotected regions. The oxide 

layer itself thus forms a mask which permits N- or P-type dopants to be 

diffused into the silicon wafer. Following diffusion, the oxide is reformed 

and the masking process repeated to define new areas. 

While the operation described above seems complex, particularly when 

we consider that it is repeated six times, a large number of complete circuits 

can be fabricated simultaneously. The circuits can be tested individually so 

localized defects can be eliminated. The net result is that a large number of 

functioning circuits are obtained from each successfully processed silicon 

wafer at a low average cost per circuit. 

10.2.1 NPN Transistors 

The six-mask process is tailored for making NPN transistors, and 

transistors with characteristics similar to those of virtually all discrete types 

can be formed by the process. The other components necessary to complete 

the circuit must be made during the same operations that form the NPN 

transistors. 
A cross-sectional view of an NPN transistor made by the six-mask planar-

epitaxial process is shown in Fig. 10.1.1 Fabrication starts with a P-type 

1 It is cautioned that in this and following figures, relative dimensions have been grossly 
distorted in order to present clearly essential features. In particular, vertical dimensions 
in the epitaxial layer have been expanded relative to other dimensions. The minimum 
horizontal dimension is constrained to the order of 0.001 inch by uncertainties associated 
with the photographic definition of adjacent regions. Conversely, vertical dimensions in 
the epitaxial layer are defined by diffusion depths and are typically a factor of 10 to 100 
times smaller. 
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substrate (relatively much thicker than that shown in the figure) that pro­
vides mechanical rigidity to the entire structure. The first masking operation 
is used to define heavily doped N-type (designated as N+) regions in the 
substrate. The reason for these subcollector or buried-layer regions will be 
described subsequently. A relatively lightly doped N layer that will be the 
collector of the complete transistor is then formed on top of the substrate 
by a process of epitaxial growth. 

The next masking operation performed on the epitaxial layer creates 
heavily doped P-type (or P+) regions that extend completely through the 
epitaxial layer to the substrate. These isolation regions in conjunction with 
the substrate separate the epitaxial layer into a number of N regions each 
surrounded by P material. The substrate (and thus the isolation regions) 
will be connected to the most negative voltage applied to the circuit. Since 
the N regions adjacent to the isolation and substrate cannot be negatively 
biased with respect to these regions, the various N regions are electrically 
isolated from each other by reverse-biased P-N junctions. Subsequent steps 
in the process will convert each isolated area into a separate component. 

The P-type base region is formed during the next masking operation. The 
transistor is completed by diffusing an N+ emitter into the base. A collector 
contact, the need for which is described below, is formed in the collector 
region during the emitter diffusion. The oxide layer is regrown for the last 
time, and windows that will allow contact to the various regions are 
etched into this oxide. The entire wafer is then exposed to vaporized 
aluminum, which forms a thin aluminum layer over the surface. The final 
masking operation separates this aluminum layer into the conductor 
pattern that interconnects the various components. 

The six masking operations described above can be summarized as 
follows: 

1. Subcollector or buried layer 
2. Isolation 
3. Base 
4. Emitter 
5. Contact window 
6. Conductor pattern 

The buried layer and the heavily doped collector-contact regions are 
included for the following reasons. Recall that in order to reduce reverse 
injection from the base of a transistor into its emitter which lowers current 
gain, it is necessary to have the relative doping level of the emitter signifi­
cantly greater than that of the base. It is also necessary to dope the collector 
lightly with respect to the base so that the collector space-charge layer ex­
tends dominantly into the collector region in order to prevent low collector­
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to-base breakdown voltage. As a result of these cascaded inequalities, the 
collector region is quite lightly doped and thus has high resistivity. If collec­
tor current had to flow laterally through this high-resistivity material, a 
transistor would have a large resistor in series with its collector. The low-
resistivity subcollector acts as a shorting bar that connects the active 
collector region immediately under the base to the collector contact. The 
length of the collector current path through the high resistivity region is 
shortened significantly by the subcollector. (Remember that the vertical 
dimensions in the epitaxial region are actually much shorter than horizontal 
dimensions.) 

The heavily doped N+ collector contact is necessary to prevent the 
collector material from being converted to P type by the aluminum that 
is a P-type dopant. It is interesting to note that the Schottky-diode junction 
that can form when aluminum is deposited on lightly doped N material 
is used as a clamp diode in certain digital integrated circuits. 

As mentioned earlier, excellent NPN transistors can be made by this 
process, and the performance of certain designs can be better than that of 
their discrete-component counterparts. For example, the collector-to-base 
capacitance of modern high-speed transistors can be dominated by lead 
rather than space-charge-layer capacitance. The small geometries possible 
with integrated circuits reduce interconnection capacitance. Furthermore, 
NPN transistors are extremely economical to fabricate by this method, with 
the incremental increase in selling price attributable to adding one transistor 
to a circuit being a fraction of a cent. 

Since all transistors on a particular wafer are formed simultaneously, 
all must have similar characteristics (to within the uniformity of the proc­
essing) on a per-unit-area basis. This uniformity is in fact often exploited 
for the fabrication of matched transistors. A degree of design freedom 
is retained through adjustment of the relative active areas of various 
transistors in a circuit, since the collector current of a transistor at 
fixed base-to-emitter voltage is proportional to its area. This relationship is 
frequently used to control the collector-current ratios of several transistors 
(see Section 10.3). Alternatively, the area of a transistor may be selected to 
optimize current gain at its anticipated quiescent current level. Thus tran­
sistors used in the output stage of an operational amplifier are frequently 
larger than those used in its input stage. 

A recent innovations used in some high-performance designs incorporates 
two emitter diffusions to significantly increase the current gain of certain 
transistors in the circuit. The oxide layer is first etched away in the emitter 

2 R. J. Widlar, "Super Gain Transistors for IC's," National Semiconductor Corporation, 
Technical Paper TP-1 1, March, 1969. 
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region of selected transistors, and the first emitter diffusion is completed. 
Then, without any oxide regrowth, the emitter regions of the remaining 
transistors are exposed and the second emitter diffusion is completed. The 
transistors that have received both emitter diffusions are sometimes called 
"super-3" transistors since the narrow base width that results from the two 
diffusions can yield current gains between 101 and 104. The narrow base 
region also lowers collector-to-base breakdown voltage to several volts,
and precautions must be taken in circuits that use these devices to insure 
that the breakdown voltage is not exceeded. A second problem is that an 
overzealous diffusion schedule can easily reduce the base width to zero, and 
the price of amplifiers using super-3 transistors usually reflects this possi­
bility. 

10.2.2 PNP Transistors 

The six-mask epitaxial process normally used for monolithic integrated 
circuits is optimized for the fabrication of NPN transistors, and any other 
circuit components are compromised in that they must be made compatible 
with the NPN fabrication. One of the limitations of the process is that high-
quality PNP transistors cannot be made by it. This limitation is particularly 
severe in view of the topological advantages associated with the use of 
complementary transistors. For example, the voltage level shifting re­
quired to make input and output voltage ranges overlap in an operational 
amplifier is most easily accomplished by using one polarity device for the 
input stage combined with the complementary type in the second stage. 
Similarly, designs for output stages that do not require high quiescent 
current are cumbersome unless complementary devices are used. 

One type PNP transistor that can be made by the six-mask process is 
called a lateral PNP. This device is made using the NPN base diffusion for 
both the emitter and collector regions. The N-type epitaxial layer is used 
as the base region. Figure 10.2 shows a cross-sectional view of one possible 
geometry.' Current flows laterally from emitter to collector in this structure, 
in contrast to the vertical flow that results in a conventional design. 

There are a number of problems associated with the lateral PNP transistor. 
The relative doping levels of its emitter, base, and collector regions are far 
from optimum. More important, however, is the fact that the base width 
for the structure is controlled by a masking operation rather than a diffusion 
depth, and is one to two orders of magnitude greater than that of a con­
ventional transistor. There is also parasitic current gain to the substrate 
that acts as a second collector for the transistor. These effects originally 

3 Practical geometries usually surround the emitter stripe with a collector region. This 
refinement does not alter the basic operation of the device. 
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Figure 10.2 Lateral-PNP transistor. 

combined to produce very low current gain, with values for # of less than 
unity common in early lateral PNP'S. More recently, process refinements 
primarily involving the use of the buried layer to reduce parasitic current 
gain have resulted in current gains in excess of 100. 

A more fundamental limitation is that the extremely wide base leads to 
excessive charge storage in this region and consequently very low values for 

fT. The phase shift associated with this configuration normally limits to 
1 to 2 MHz the closed-loop bandwidth of an operational amplifier that 
includes a lateral PNP in the gain path. 

One interesting variation of the lateral-PNP transistor is shown in Fig. 
10.3. The base-to-emitter voltage applied to this device establishes the per­

unit-length current density that flows in a direction perpendicular to the 
emitter. The relative currents intercepted by the two collectors are thus 
equal to the relative collector lengths. The concept can be extended, and 
lateral-PNP transistors with three or more collectors are used in some 
designs. 

One advantage of the lateral-PNP structure is that the base-to-emitter 
breakdown voltage of this device is equal to the collector-to-base break­
down voltage of the NPN transistors that are formed by the same process. 
This feature permits nonlinear operation with large different input voltages 
for operational amplifiers that include lateral PNP's in their input stage. 
(Two examples are given in Section 10.4.) 

A second possible PNP structure is the vertical or substrate PNP illustrated 
in Fig. 10.4. This type of transistor consists of an emitter formed by the 
NPN base diffusion and a base of NPN collector material, with the substrate 
forming the P-type collector. The base width is the difference between the 
depth of the P-type diffusion and the thickness of the epitaxial layer and 

can be controlled moderately well. Current gain can be reasonably high and 
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Figure 10.3 Split-collector lateral-PNP transistor. 

bandwidth is considerably better than that of a lateral design. One un­
desirable consequence of the necessary compromises is that large-area tran­
sistors must be used to maintain gain at moderate current levels. Another 
more serious difficulty is that the collectors of all substrate PNP'S are com­
mon and are connected to the negative supply voltage. Thus substrate 
PNP'S can only be used as emitter followers. 

10.2.3 Other Components 

The P-type base material is normally used for resistors, and the resistivity 
of this material dictated by the base-region doping level is typically 100 to 
200 ohms per square. Problems associated with achieving high length-to­
width ratios in a reasonable area and with tolerable distributed capacitance 
usually limit maximum resistance values to the order of 10 kilo-ohms. 
Similarly, other geometric considerations limit the lower value of resistors 

N+ base contact P emitter 

P+P+ 

Epitaxial layer (functions as base) 

Substrate (functions as collector) 

Figure 10.4 Vertical or substrate PNP transistor. 
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made using the base diffusion to the order of 25 ohms. Higher-value 
resistors (up to approximately 100 kilo-ohms) can be made using the higher-
resistivity collector material, while lower-value resistors are formed from 
the heavily doped emitter material. 

Practical considerations make control of absolute resistance values to 
better than 10 to 20% uneconomical, and the temperature coefficient of all 
integrated-circuit resistors is high by discrete-component standards. How­
ever, it is possible to match two resistors to 5 % or better, and all resistors 
made from one diffusion have identical temperature coefficients. 

It is possible to make large-value, small-geometry resistors by diffusing 
emitter material across a base-material resistor (see Fig. 10.5). The cross-
sectional area of the current path is decreased by this diffusion, and resist­
ance values on the order of 10 k per square are possible. The resultant 
device, called a pinched resistor, has the highly nonlinear characteristics 
illustrated in Fig. 10.6. The lower-current portion of this curve results from 
field-effect transistor action, with the P-type resistor material forming a 
channel surrounded by an N-type gate. The potential of the gate region is 
maintained close to that of the most positive end of the channel by conduc­
tion through the P-N junction. Thus, if the positively biased end of the 
pinched resistor is considered the source of a P-channel FET, the charac­
teristics of the resistor are the drain characteristics of a FET with approxi­
mately zero gate-to-source voltage. When the voltage applied across the 
structure exceeds the reverse breakdown voltage of the N+ and P junction, 
the heavily doped N+ region forms a low-resistance path across the resistor. 
The high-conductance region of the characteristics results from this effect. 

In addition to the nonlinearity described above, the absolute value of a 
pinched resistor is considerably harder to control than that of a standard 
base-region resistor. In spite of these limitations, pinched resistors are used 

Resistor contacts 

N* 

p+ P+ 

a e N 

P 

Figure 10.5 Pinched resistor. 



390 Integrated-Circuit Operational Amplifiers 

t 

Figure 10.6 Pinched-resistor current-
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in integrated circuits, often as shunt paths across base-to-emitter junctions 
of bipolar transistors. The absolute value of such a shunt path is relatively 
unimportant in many designs, and the voltage applied to the resistor is 
limited to a fraction of a volt by the transistor junction. 

An alternative high-resistance structure that has been used as a bias 
current source in some integrated-circuit designs is the collector FET shown 
in Fig. 10.7. This device, which acts as an N-channel FET with its gate biased 
at the negative supply voltage of circuit, does not have the breakdown-
voltage problems associated with the pinched resistor. 

Integrated-circuit diodes are readily fabricated. The collector-to-base 
junction of NPN transistors can be used when moderately high reverse 
breakdown voltage is necessary. The diode-connected transistor (Fig. 10.8) 
is used when diode characteristics matched to transistor characteristics are 
required. If it is assumed that the transistor terminal relationships are 

Ic = Is e(VBEkT 

we can write for the diode-connected transistor 

ID = IB + IC I+ ) C 

= I + Is eqVD/kT - Is eqVDIkT (10.1) 

The base-to-emitter junction is used as a Zener diode in some circuits. The 

reverse breakdown voltage of this junction is determined by transistor pro­

cessing, with a typical value of six volts. 
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Figure 10.7 Collector FET. (a) Cross-section view. (b) Top view. 

Reverse-biased diode junctions can be used as capacitors when the non­
linear characteristics of the space-charge-layer capacitance are acceptable. 
An alternative linear capacitor structure uses the oxide as a dielectric, with 
the aluminum metalization layer one plate and the semiconductor material 
the second plate. This type of metal-oxide-semiconductor capacitor has the 
further advantage of bipolar operation compared with a diode. The capaci­
tance per unit area of either of these structures makes capacitors larger than 
100 pF impractical. 

10.3 INTEGRATED-CIRCUIT DESIGN TECHNIQUES 

Most high-volume manufacturers of integrated circuits have chosen to 
live with the limitations of the six-mask process in order to enjoy the 



392 Integrated-Circuit Operational Amplifiers 

ID 

vBE 

- Figure 10.8 Diode-connected transistor. 

associated economy. This process dictates circuit considerations beyond 

those implied by the limited spectrum of component types. For example, 
large-value base-material resistors or capacitors require a disproportionate 

share of the total chip area of a circuit. Since defects occur with a per-

unit-area probability, the use of larger areas that decrease the yield of the 

process and thus increase production cost are to be avoided. 
The designers of integrated operational amplifiers try to make maximum 

use of the advantages of integrated processing such as the large number of 

transistors that can be economically included in each circuit and the excel­
lent match and thermal equality that can be achieved among various com­

ponents in order to circumvent its limitations. The remarkable performance 

of presently available designs is a tribute to their success in achieving this 

objective. This section describes some of the circuit configurations that 

have evolved from this type of design effort. 

10.3.1 Current Repeaters 

Many linear integrated circuits use a connection similar to that shown in 

Fig. 10.9, either for biasing or as a controlled current source. Assume that 

both transistors have identical values for saturation current Is and that # 

is high so that base currents of both transistors can be neglected. In this 

case, the collector current of Q1 is equal to ir. Since the base-to-emitter 

voltages of Q1 and Q2 are identical, currents ir and io must be equal.4 An 

4 In the discussion of this and other current-repeater connections it is assumed that the 
output terminal voltage is such that the output transistor is in its forward operating region. 
Note that it is not necessary to have the driving current ir supplied from a current source. 
In many actual designs, this current is supplied from a voltage source via a resistor or from 
another active device. 
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I 0 

Figure 10.9 Current repeater. 

alternative is to change the relative areas of Q, and Q2. This geometric 
change results in a directly proportional change in saturation currents, so 
that currents ir and io become a controlled' multiple of each other. If ir 
is made constant, transistor Q2 functions as a current source for voltages to 
within approximately 100 mV of ground. This performance permits the 
dynamic voltage range of many designs to be nearly equal to the supply 
voltage. 

The split-collector lateral PNP transistor described earlier functions as a 
current repeater when connected as shown in Fig. 10.10. The constant K 
that relates the two collector currents in this connection depends on the 
relative sizes of the collector segments. Since the base current for the 

+ vC 

~B 

< Kic = i 
CCu
 

Output 

Figure 10.10 Split-collector PNP transistor 
connected for controlled gain. 
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lateral PNP is equal to the sum of the two collector currents divided by its 
current gain Op, we can write 

(1 + K)
ir = iB + iC C + iC (10.2) 

and 

io KiC (10.3) 

Combining Eqns. 10.2 and 10.3 shows that the current gain for this con­
nection is 

io Kio K(10.4)­
ir 1 + [(1 + K)/3] 

If values are selected so that 1 + K <K Op, the feedback inherent to this 
connection makes its input-output transfer ratio relatively insensitive to 
changes in Op. This desensitivity is advantageous since the quantity K, 
determined by mask geometry, is significantly better controlled than is Op. 
The feedback also increases the current-gain half-power frequency of the 
controlled-gain PNP above the f cutoff frequency of the lateral-PNP transis­
tor itself. 

The simple current repeater shown in Fig. 10.9 is frequently augmented 
to make its current transfer ratio less sensitive to changes in transistor 
parameters. Equal-value emitter resistors can be included to stabilize the 
transfer ratio of the connection for changes in the base-to-emitter voltages 
of the two transistors. While this technique is sometimes used for discrete-
component current repeaters, it is of questionable value in many integrated 
designs because matched resistors are as difficult to fabricate as matched 
transistors. 

Other modifications are intended to reduce the dependency of the current 
transfer ratio on the transistor current gain. It is easily shown that the cur­
rent transfer ratio for Fig. 10.9, assuming perfectly matched transistors, is 

o= 1 (10.5)
ir 1 + 2/( 

Figure 10.11 shows two somewhat more complex current-repeater connec­

tions assumed constructed with perfectly matched transistors. Intermediate 
currents that facilitate calculation of current tra'i~sfer ratios are included 
in these diagrams. The circuit of Fig. 10.1la uses an emitter follower to 

buffer the base currents of a conventional current repeater. The resultant 
current transfer ratio is 

_o 1 #32 + 
i 0[= (2 2 + (10.6)
ir 1 + 2/ #+ 1) 2+ # + 2 



i = io +1 (02 

0 g2+0+2 

i1 =A + 
Output 

(1+2/0)
A g+1 

ioi [1 + 2/3][9/(P + 1)] = 

2+20+ 

'AiA (1 + 2/0) 

(b) 
Figure 10.11 Improved current-repeater connections. (a) Use of emitter follower. 
(b) Use of current compensation. 
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The connection of Fig. 10.11 b uses an interesting current cancellation tech­
nique to obtain a transfer ratio 

io [1 + 2/3] [0/(0 + 1)] #2 + 20 
-	 = (10.7)

ir 1 + (1 + 2/0)/(0 + 1) #2 + 2( + 2 

Either of these currents repeaters has a transfer ratio that differs from 
unity by a factor of approximately (1 + 2 /0 2 ) compared with a factor of 
(1 + 2/3) for the circuit of Fig. 10.9, and are thus considerably less sensi­
tive to variations in 3. It can also be shown (see Problem P10.5) that the 
output resistance of the circuit illustrated in Fig. 10.11 b is the order of ry 
while that of either of the other circuits is the order of r,. This difference is 
significant in some high-gain connections. 

A clever modification of the current repeater, first used in the 709 de­
sign, yields a low-value constant-current source using only moderate-value 
resistors. Assuming high f and a large value of V relative to VBE1 in Fig. 
10.12, 

Ici - -	 (10.8)
R1 

so that 
kT V 

VBE1 -
q 

n 
RiIsi 

-9) 

However, 

Ic 2R 2 + 
kT 
- In 
q 

IC2 
-
Is2 

VBE1 (10.10) 

If it is assumed that saturation currents are equal, combining Eqns. 10.9 
and 10.10 yields 

kT V 
Ic2R2 = 	 -- In (10.11) 

q R1Ic2 

The resultant transcendental equation can be solved for any particular 
choice of constants. For example, if Eqn. 10.11 is evaluated at room tem­
perature (kT/q - 26 mV) for V/R 1 = 1 mA and R2 = 12 kU, IC2 _ 10 1A. 

10.3.2 Other Connections 

Most operational-amplifier designs require both NPN and PNP transistors 
in order to provide voltage level shifting. Several connections effectively 
augment the low gain of many lateral PNP designs by combining the PNP 

transistor with an NPN transistor as shown in Fig. 10.13. (This connection is 
also used in discrete-component circuits and is called the complementary 
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+yV Output 

RI C2 

Ic1 

VBE1 BE2 ­

R2 

Figure 10.12 Low-level current source. 

Darlington connection.) At low frequencies this combination appears as a 
single PNP transistor with the base, emitter, and collector terminals as indi­
cated. The current gain of this compound transistor is approximately equal 
to the product of the gains of the two individual devices, while trans-
conductance is related to collector current of the combination as in a con­
ventional transistor. 

An ingenious connection using lateral PNP transistors, shown in Fig. 
10.14, was introduced in the LM101 amplifier design. Assume that the two 
NPN transistors have identical saturation currents, as do the PNP's. Further 
assume that the current gains of both PNP transistors are op. The total out­
put collector current, ic3 + ic4, must be equal to OpI. If the input voltages 

Emitter 

Base 

Figure 10.13 Complementary Darlington con-
Collector nection. 
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Input 1 Q1 Q2 Input 2 

Q3 Q4 

To second stage 

Figure 10.14 Differential input stage. 

are equal, ic3 and ic4 must be equal because of the matched saturation 
currents. As a differential input signal is applied, the relative collector 
currents change differentially; therefore this stage can be used to perform 
the circuit function of a differential pair of PNP transistors. However, the 
ratio of input current to collector current depends on the current gain of the 
high-gain NPN's. Another advantage is that the input capacitance is low 
since the input transistors are operating as emitter followers. Furthermore, 
the low-bandwidth PNP devices are operating in an incrementally grounded-
base connection for differential input signals, and this connection maxi­
mizes their bandwidth in the circuit. One disadvantage is that the series 
connection of four base-to-emitter junctions lowers transconductance by a 
factor of two compared to a standard differential amplifier operating at the 
same quiescent current level. 

It is interesting to note that the successful operation of this circuit is 
actually dependent on the low gain characteristic of the lateral-PNP tran­

sistors used. If high-gain transistors were used, capacitive loading at the 
bases of the two PNP transistors would cause large collector currents as a 
function of the time rate of change of common-mode level. The controlled 
gain PNP shown in Fig. 10.10 is used in this connection in some modern 
amplifier designs. 

Several connections are used to double the effective transconductance 
of an input differential pair and thus increase the gain provided by this 
portion of an operational amplifier. One such circuit is shown in Fig. 10.15. 
Assume equal operating currents for Q1 and Q2. If Q4 were a constant 
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9 To second stage 

%__0eD 

Input 10c Q, QI2 ' input 2 

Figure 10.15 Use of current repeater to increase stage transconductance. 

current source, the incremental output current would be related to a differ­

ential input voltage ed as io/ed = gm/2. The differential connection of Q1 
and Q2 insures that incremental changes in collector currents of these de­

vices are equal in magnitude but opposite in polarity, and the current re­

peater connection of Q3 and Q4 effectively subtracts the change in collector 

current of Qi from that of Q2. (The more sophisticated current repeaters 

described in the last section are often substituted.) The gain is increased 

by a factor of two so that i/ed = gm. Another advantage is that the im­

pedance level at the circuit output is high so that this stage can provide 

high voltage gain if required. We will see that some integrated-circuit 
operational amplifiers exploit this possibility to distribute the total gain 
more equally between the two stages than was done with the discrete-com­

ponent design discussed in the last chapter. 
Another approach is illustrated in Fig. 10.16. A differential input causes 

equal-magnitude changes in the collector currents of Q1 and Q2. However, 

the high gain of the Q-Q5 loop changes the voltage at the emitter of Qr in 
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To following 
stage 

R 	 R 

Input 10 Q1 12 Q2 Input 2 

11 

Figure 10.16 Use of local feedback to increase stage transconductance. 

such a way as to minimize current changes at the base of Q3. Thus the 
current through the load resistor for Q1 is changed by an amount approxi­
mately equal to the change in ici. A corresponding change occurs in the 
current through the load resistor for Q2, doubling the current into the base 

of Q4. 

10.4 	 REPRESENTATIVE INTEGRATED-CIRCUIT
 
OPERATIONAL AMPLIFIERS
 

A number of semiconductor manufacturers presently offer a variety of 
integrated-circuit operational amplifiers. While an exhaustive study of 
available amplifiers is beyond the scope of this book, an examination of 
several representative designs demonstrates some of the possible variations 
of the basic topology described in Chapters 8 and 9 and serves as a useful 
prelude to the material on applications. 
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It should be mentioned that most of the circuits described are popular 
enough to be built, often with minor modifications, by a number of manu­
facturers. These "second-source" designs usually retain a designation that 
maintains an association with the original. Another factor that contributes 
to the proliferation of part numbers is that most manufacturers divide their 
production runs into two or three categories on the basis of measured 
parameters such as input bias current and offset voltage as well as the 
temperature range over which specifications are guaranteed. For example, 
National Semiconductor uses the 100, 200, and 300 series to designate 
whether military, intermediate, or commercial temperature range specifica­
tions are met, while Fairchild presently suffixes a C to designate commercial 
temperature range devices. 

We should observe that no guarantee of inferior performance is implied 
when the less splendidly specified devices are used. Since all devices in one 
family are made by an identical process and since yields are constantly 
improving, a logical conclusion is that many commercially specified devices 
must in fact be meeting military specifications. These considerations 
coupled with a dramatic cost advantage (the order of a factor of three) 
suggest the use of the commercial devices in all but the most exacting appli­
cations. 

10.4.1 The LM101 and LM101A Operational Amplifiers 

The LM101 operational amplifier' occupies an important place in the 
history of integrated-circuit amplifiers since it was the first design to use 
the two-stage topology combined with minor-loop feedback for compensa­
tion. Its superiority was such that it stimulated a variety of competing 
designs as well as serving as the ancestor of several more advanced National 
Semiconductor amplifiers. 

The schematic diagram for the amplifier is shown in Fig. 10.17, and 
specifications are included in Table 10.1. (The definitions of some of the 
specified quantities are given in Chapter 11.) As was the case with the 
discrete-component amplifier described in the last chapter, it is first neces­
sary to identify the functions of the various transistors, with emphasis 
placed on the transistors in the gain path. Transistors Q1 through Q4 form 

a differential input connection as described in the last section. The Q5 
through Q7 triad is a current-repeater load for the differential stage. Tran­
sistors Q8 and Q9 are connected as an emitter follower driving a high voltage 
gain common-emitter stage. The voltage gains of the first and second stages 

5R. J. Widlar, "A New Monolithic Operational Amplifier Design," National Semicon­
ductor Corporation, Technical Paper TP-2, June, 1967. 



Table 10.1 LM101 Specifications: Electrical Characteristics 

Parameter Conditions Min Typ Max Units 

Input offset voltage TA = 250 C, Rs < 10 kQ 1.0 5.0 mV 
Input offset current TA = 25' C 40 200 nA 
Input bias current TA = 250 C 120 500 nA 
Input resistance TA = 250 C 300 800 k3 
Supply current TA = 250 C, Vs = ±20 V 1.8 3.0 mA 
Large-signal voltage gain TA = 250 C, Vs = ±15 V 

Vout = ±10 V, RL > 2 k2 50 160 V/mV 
Input offset voltage Rs < 10 ktl 6.0 mV 
Average temperature Rs < 50 0 3.0 yV/.C 

coefficient of input 
offset voltage Rs < 10 k2 6.0 yV/ 0 C 

Input offset current TA +1250 C 10 200 nA 
TA -550 C 100 500 nA 

Input bias current 
Supply current 

TA 
TA 

-550 C 
+1250 C, Vs = 120 V 

0.28 
1.2 

1.5 
2.5 

yA 
mA 

Large-signal voltage gain Vs =15 V, Vout = 10 V 
RL 2 k2 25 V/mV 

Output voltage swing Vs ±15 V, RL = 10 kQ ±12 ±14 V 
RL= 2 k E10 E13 V 

Input voltage range Vs = 15 V E12 V 
Common-mode rejection 

ratio RS < 10 kQ 70 90 dB 
Supply-voltage rejection 

ratio Rs < 10 kQ 70 90 dB 

106 

105 

E 10~3 -C 
3pF 

100 
C, 30OpF 

10 
0 

0.1 
1 10 100 103 104 105 106 107 

Frequency (Hz) -A 

Open - loop freqnency response 
+15 - volt supplies, 25'C 
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Figure 10.17 LM101 schematic diagram. 0 
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Q229 

IC9
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IC20+ 
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1 kVBE18 

10 k92 

Figure 10.18 LM101 bias circuitry. 

of this amplifier are both proportional to the reciprocal of the base-width 
modulation factor and thus are comparable in magnitude. 

The complementary Darlington connection Q16 and Q17 supplies negative 
output current. The use of this connection augments the low gain of the 
lateral PNP. (Recall that this amplifier was manufactured when current 
gains of 5 to 10 were anticipated from lateral-PNP transistors.) While a 
vertical-PNP transistor could have been used in the output stage, the de­
signer of the 101 elected the complementary Darlington since it reduced 
total chip area 6 and since processing was simplified. 

Positive output current is supplied by Q14. The gain path from the collec­
tor of Q9 to the emitter of Q14 includes transistor Q11, another lateral 
PNP. This device matches the current gain from the collector of Q9 to the 
output for positive output swings with the gain for negative output swings. 
By locating current source Q13 in the emitter circuit of Q11, this current 
source provides bias for Q11 as well as a high-resistance load for Q9. Diode­

6 It is interesting to note that the size of the LMI0I chip is 0.045 inch square, smaller 
than many single transistors. 
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connected transistor Q12 is included in the output circuit to reduce cross­
over distortion. 

The operation of the biasing circuit for the LM101 depends on achieving 
equal current gains from certain lateral-PNP transistors. This approach was 
used since while low, unpredictable gains characterized the lateral PNP's 
of the era, the performance was highly uniform from device to device on 
one chip. The transistors used for biasing are shown in Fig. 10.18. The loop 
containing transistors Q1s, Q19, and Q2o controls Ic20 so that IC20 

VBE18/R9 - 60 MA. 
The high-value resistor, R1, included in this circuit is a collector FET. 

The characteristics of this resistor make the current supplied by it relatively 
independent of supply voltage. The base current of Q2o is repeated by tran­
sistors Q2, and Q22 and applied to the common-base connection of Q3 and 

Q4. If the areas of Q21 and Q22 and the current gains of Q3, Q4, and Q20 were 
equal, the total first-stage collector current, IC3 + IC4, would be equal to 

IC20. The area of Q21 is actually made larger than that of Q22 so that each 
input transistor operates at a quiescent collector current of 10 MA. 

Biasing for transistor Q9 includes transistors Qni, Q13, Qi9, and Q20. 
Assuming high gain from Qi9, 

Ic20(/20 + 1) #13 

'09 = /#20 (1 + ) (10.12) 
Thus Ic9 = Ic20 for equal PNP gains. 

The actual circuit (Fig. 10.17) shows that the collectors of Q7 and Q8 are 
connected in parallel with that of Q19. This doesn't significantly alter opera­
tion since Ici & IC - ICs, and allows a smaller geometry chip since Q7, 
Qs, and Q19 can all be located in the same isolation diffusion. 

Positive output current is limited by transistor Qi (Fig. 10.17) when the 

voltage across R8 becomes approximately 0.6 volt. The negative current limit 
is more involved. When the voltage across R7 reaches approximately 1.2 

volts, the collector-to-base junction of Qi5 becomes forward biased, and 
further increases in output current are supplied by Qu,. Since this lateral 
PNP has low gain, the emitter current of Q9 increases significantly when the 
limiting value of output current is reached. The emitter current of Q9 flows 

through R5, and when the drop across this resistor reaches 0.6 volt, tran­
sistor Qio limits base drive for Q8, preventing further increases in output 

current. 
There are two reasons for this unusual limiting circuit. First, the peculiari­

ties of lateral PNP Q16 make it advantageous to have relatively high resistance 
between the emitter of this transistor and the output of the circuit to insure 
stability with capacitive loads. Second, this limit also protects Q9 if its 

collector is clamped to some voltage level. Such clamping applied to point 8 
can be used to limit the output voltage of the amplifier. 
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The amplifier can be balanced to reduce input offset voltage by connect­
ing a high-value resistor (typically 20 M12 to 100 MQ) from either point 5 
or point 1 to ground. This type of balancing results in minimum voltage 
drift from the input transistors. 

Compensating minor-loop feedback around the high-gain portion of the 
circuit is applied between points 1 to 8. The 300-Q resistor in this circuit 
provides a zero at a frequency approximately one decade above the ampli­
fier unity-gain frequency when a capacitor is used for compensation. The 
positive phase shift associated with this zero improves amplifier stability. 

Measurements made on the amplifier show that the transconductance 
from the input terminals to the base of Q8 is approximately 2 X 10-4 mho so 
that the open-loop transfer function of the amplifier at frequencies of inter­
est is approximately 2 X 10-4/ Yc, where Yc is the short-circuit transfer 
admittance of the compensating network as defined in Section 9.2.3. This 
value of transconductance is consistent with the four series-connected input 
transistors operating at 10 1A of quiescent current. The transconductance to 
either output of the differential pair is qlc/4kT ~ 10-4 mho, and this value 
is doubled by the current-repeater load used for the input stage. While the 
compensating network does load the high-impedance node at the collector 
of Q9, such loading is usually insignificant. 

The open-loop transfer function included as part of the specifications 
shows that the amplifier has a single-pole response with a unity-gain fre­
quency of approximately 1 MHz when compensated with a 30-pF capacitor. 
This result can also be obtained from the analytic expression given above. 
The amplifier dynamics other than those which result from the inner loop 
limit the crossover frequency of loops using this amplifier to between 1 and 
2 MHz. The phase shift that leads to instability for higher crossover fre­
quencies results primarily from the lateral PNP transistors in the input stage. 

Evolutibnary modifications changed the LM101 amplifier to the LM101A 
shown in Fig. 10.19, and this amplifier is (as of this writing) still the standard 
to which all other general-purpose, externally compensated integrated 
operational amplifiers are compared. The differences reflect primarily the 
increased performance of components available at the time the LM101A 
was designed. Better matching tolerances reduced the maximum input 
offset voltage to 2 mV at 250 C and improved common-mode rejection ratio 
and power-supply rejection modestly. Improved input-transistor current 
gain and a modified bias circuit reduced the maximum input bias current 
over the full -55* C to + 1250 C temperature range to 100 nA and reduced 
the typical room-temperature offset current to 1.5 nA. 

A detailed discussion of the bias circuit of the LM101A (transistors Q18 
through Q22 in Fig. 10.19) is beyond the scope of the book. 7 Its most im-

I R. J. Widlar, "I. C. Op Amp with Improved Input-Current Characteristics," EEE, 
pp. 38-41, December, 1968. 



Balance Compensation 

R1
5 ki 

R4 5 
250 Q Balance 

Figure. 10.19 LM101A schematic diagram. 



0 
00 

Table 10.2 uA776 Specifications: L15 Volt Operation for 776; Electrical Characteristics (TA is 250 C, unless 
otherwise specified) 

ISET = 1.5 MA ISET = 15 MA 
Parameter Conditions Min Typ Max Min Typ Max Units 

Input offset voltage Rs < 10 ku 2.0 5.0 2.0 5.0 mV 
Input offset current 0.7 3.0 2.0 15 nA 
Input bias current 2.0 7.5 15 50 nA 
Input resistance 50 5.0 MQ 
Input capacitance 2.0 2.0 pF 
Offset voltage adjustment range 9.0 18 mV 
Large-signal voltage gain RL > 75 ku, Vout = +10 V 200 400 V/mV 

RL > 5 ku, Vout = i10 V 100 400 V/mV 
Output resistance 5.0 1.0 kQ 
Output short-circuit current 3.0 12 mA 
Supply current 20 25 160 180 /A 
Power consumption 0.75 5.4 mW 
Transient response Rise time Vi = 20 mV, RL ; 5 ku, 1.6 0. 35 /S 
(unity gain) CL = 100 pF 

Overshoot 0 10 
Slew rate RL > 5 ku 0.1 0.8 V/us 
Output voltage swing RL > 75 ku ±12 ±14 V 

RL > 5 kQ ±10 L13 V 



The following specifications apply: -55' C < TA +1250 C 

Input offset voltage 
Input offset current 

Input bias current 

Input-voltage range 
Common-mode rejection ratio 
Supply-voltage rejection ratio 
Large-signal voltage gain 
Output voltage swing 
Supply current 
Power consumption 

Rs < 10 ku 6.0 6.0 
TA = +125* C 5.0 15 

TA = -55* C 10 40 

TA = +125* C 7.5 50 
TA = -55* C 20 120 

:10 +10 

Rs < 10 ku 70 90 70 90 
Rs < 10 ku 25 150 25 150 
RL > 75 ku, Vut = ±10 V 100 75 
RL > 75 ku =10 ±10 

30 200 
0.9 6.0 

mV 
nA 
nA 
nA 
nA 

V 
dB 

yAV/V 
V/mV
 

V
 
pA 

mW 

0 
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portant functional characteristic is that the quiescent collector current of 
the input stage is made proportional to absolute temperature. As a result,
the transconductance of the input stage (which has a direct effect on the 
compensated open-loop transfer function of the amplifier) is made virtually 
temperature independent. A subsidiary benefit is that the change in quies­
cent current with temperature partially offsets the current-gain change of 
the input transistors so that the temperature dependence of the input bias 
current is reduced. The modified bias circuit became practical because the 
improved gain stability of the controlled-gain lateral PNP's used in the 
LM101A eliminated the requirement for the bias circuit to compensate for 
gross variations in lateral-PNP gain. 

We shall get a greater appreciation for the versatility of the LMl0lA, 
particularly with respect to the control of its dynamics afforded by various 
types of compensation, in Chapter 13. 

10.4.2 The yiA776 Operational Amplifier 
The LM101A circuit described in the previous section can be tailored for 

use in a variety of applications by choice of compensation. An interesting 
alternative way of modifying amplifier performance by changing its 
quiescent operating currents is used in the AA776 operational amplifier. 
Some of the tradeoffs that result from quiescent current changes were dis­
cussed in Section 9.3.3, and we recall that lower operating currents com­
promise bandwidth in exchange for reduced input bias current and power 
consumption. 

The schematic diagram for this amplifier is shown in Fig. 10.20, with 
performance specifications listed in Table 10.2. Several topological similari­
ties between this amplifier and the LM101 are evident. Transistors Q1 
through Q6 form a current-repeater-loaded differential input stage. Tran­
sistors Q7 and Q9 are an emitter-follower common-emitter combination 
loaded by current source Q12. Diode-connected transistors Q21 and Q22 
forward bias the Qjo-Qu complementary output pair. Capacitor C1 com­
pensates the amplifier. 

The unique feature of the yA776 is that all quiescent operating currents 
are referenced to the current labeled ISET in the schematic diagram by 
means of a series of current repeaters. Thus changing this set current causes 
proportional changes in all quiescent currents and scales the current-
dependent amplifier parameters. 

The collector current of Q19 is proportional to the set current because of 
the Q16-Q18-Q19 connection. The difference between this current and the 
collector current of Qi5 is applied to the common-base connection of the 
Q-Q4 pair. The collector current of Qi6 is proportional to the total quies­
cent operating current of the differential input stage, since Q1 and Qi 
form a current repeater for the sum of the collector currents of Q1 and Q2. 
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Figure 10.20 "A776 schematic diagram. 
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The resultant negative feedback loop stabilizes quiescent differential-stage 
current. The geometries of the various transistors are such that the quies­
cent collector currents of Q1, Q2, Q3, and Q4 are each approximately equal 
to ISET. 

The amplifier can be balanced by changing the relative values of the 
emitter resistors of the Q5-Q6 current-repeater pair via an external poten­
tiometer. While this balance method does not equalize the base-to-emitter 
voltages of the Q5-Q6 pair, any drift increase is minimal because of the 
excellent match of first-stage components. An advantage is that the external 
balance terminals connect to low-impedance circuit points making the 
amplifier less susceptible to externally-generated noise. 

One of the design objectives for the yA776 was to make input- and out­
put-voltage dynamic ranges close to the supply voltages so that low-
voltage operation became practical. For this purpose, the vertical PNP Q7 
is used as the emitter-follower portion of the high-gain stage. The quiescent 
voltage at the base of Q7 is approximately the same as the voltage at the 
base of Q9 (one diode potential above the negative supply voltage) since the 
base-to-emitter voltage of Q7 and the forward voltage of diode-connected 
transistor Qs are comparable. (Current sources Q1 and Q2o bias Q7 and 
Q8.) Because the operating potential of Q7 is close to the negative supply, 
the input stage remains linear for common-mode voltages within about 1.5 
volts of the negative supply. 

Transistor Q21 is a modified diode-connected transistor which, in con­
junction with Q22, reduces output stage crossover distortion. At low set-
current levels (resulting in correspondingly low collector currents for Q9 
and Q12) the drop across R3 is negligible, and the potential applied between 
the bases of Qio and Qu is equal to the sum of the base-to-emitter voltages 
of Q21 and Q22. At higher set currents, the voltage drop across R3 lowers the 
ratio of output-stage quiescent current to that of Q9 as an aid toward main­
taining low power consumption. 

A vertical-PNP transistor is used in the complementary output stage, and 
this stage, combined with its driver (Q9 and Q12), permits an output voltage 
dynamic range within approximately one volt of the supplies at low output 
currents. Current limiting is identical to that used in the discrete-component 
amplifier described in Chapter 9. 

The ability to change operating currents lends itself to rather interesting 
applications. For example, operation with input bias currents in the pico­
ampere region and power consumption at the nanowatt level is possible 
with appropriately low set current if low bandwidth is tolerable. The ampli­
fier can also effectively be turned into an open circuit at its input and output 
terminals by making the set current zero, and thus can be used as an analog 
switch. Since the unity-gain frequency for this amplifier is gm/(2 X 30 pF) 
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where g,, is the (assumed equal) transconductance of transistors Q1 through 

Q4, changes in operating current result in directly proportional changes in 
unity-gain frequency. 

This amplifier is inherently a low-power device, even at modest set-
current levels. For example, many performance specifications for a yA776 
operating at a set current of 10 yA are comparable to those of an LM101A 
when compensated with a 30-pF capacitor. However, the power consump­
tion of the yA776 is approximately 3 mW at this set current (assuming 
operation from 15-volt supplies) while that of the LM101A is 50 mW. The 
difference reflects the fact that the operating currents of the second and 
output stage are comparable to that of the first stage in the /A776, while 
higher relative currents are used in the LM101A. One reason that this 
difference is possible is that the slew rate of the yA776 is limited by its 
fixed, 30-pF compensating capacitor. Higher second-stage current is neces­
sary in the LM101A to allow higher slew rates when alternate compensating 
networks are used. 

Compensation 

R1 R2 R 3 R4 
20kW 20kQ 3k0 5k1 

15 yA Q7 Q8 

Q10 

4Q5 Q6 -- - Output 

c Qi2 

InputD 1 D2 

Q316 
Q15 

6 gA 
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Figure 10.21 LM108 simplified schematic diagram. 



Table 10.3 LM108 Specifications: Electrical Characteristics 

Parameter Conditions Min Typ Max Units 

Input offset voltage TA = 250 C 0.7 2.0 mV 
Input offset current TA = 250 C 0.05 0.2 nA 
Input bias current TA = 250 C 0.8 2.0 nA 
Input resistance TA = 250 C 30 70 MA 
Supply current TA = 25* C 0.3 0.6 mA 
Large-signal voltage gain TA = 250 C, Vs = 15 V 

Vout = ±10 V, RL, > 10 kQ 50 300 V/mV 
Input offset voltage 3.0 mV 
Average temperature 

coefficient of input-offset 

voltage 3.0 15 pV/*C 

Input offset current 0.4 nA 
Average temperature 

coefficient of input offset 
current 0.5 2.5 pA /'C 

Input bias current 3.0 nA 
Supply current TA= +1250 C 0.15 0.4 mA 
Large-signal voltage gain Vs = =15 V, Vout = 10 V 

RL > 10 kQ 25 V/mV 
Output voltage swing Vs = 05 V, RL = 10 ki2 13 L14 V 
Input voltage range Vs = =15 V ± 14 V 
Common-mode rejection ratio 85 100 dB 
Supply-voltage rejection ratio 80 96 dB 
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10.4.3 The LM108 Operational Amplifier' 

The LM108 operational amplifier was the first general-purpose design to 
itse super 3transistors in order to achieve ultra-low input currents. While a 
detailed discussion of the operation of this circuit is beyond the scope of 
this book, the LM108 does illustrate another of the many useful ways that 
the basic two-stage topology can be realized. 

A simplified schematic diagram that illustrates some of the more im­
portant features of the design is shown in Fig. 10.21, with specifications 
given in Table 10.3. (The complete circuit, which is considerably more 
complex, is described in the reference given in the footnote.) The schematic 

diagram indicates two types of NPN transistors. Those with a narrow base 

(Q1, Q2, and Q4) are super # transistors with current gains of several thou­
sand and low breakdown voltage. The wide-base NPN transistors are con­
ventional devices. 

The input differential pair operates at a quiescent current level of 3 MA 
per device. This quiescent level combined with the high gain of Q1 and Q2 
results in an input bias current of less than one nanoampere, and thus the 

LM108 is ideally suited to use in high-impedance circuits. 
In order to prevent voltage breakdown of the input transistors, their 

collectors are bootstrapped via cascode transistors Q5 and Q6. Operating 
currents and geometries of transistors Q,, Q4, Q5, and Q6 are chosen so that 
the input transistors operate at nearly zero collector-to-base voltage. Thus 

collector-to-base leakage current (which can dominate input current at 

elevated temperatures) is largely eliminated. It is also necessary to diode 
clamp the input terminals to prevent breaking down input transistors under 
large-signal conditions. This clamping, which deteriorates performance in 
some nonlinear applications, is one of the prices paid for low input current. 

Transistors Q9 and Qio form a second-stage differential amplifier. Diode-
connected transistors Q7 and Q8 compensate for the base-to-emitter volt­
ages of Q9-Qlo, so that the quiescent voltage across R 4 is equal to that 
across R 1 or R 2. Resistor values are such that second-stage quiescent current 
is twice that of the first stage. Transistors Qi5 and Q16 connected as a current 
repeater reflect the collector current of Q9 as a load for Q1o. This connection 
doubles the voltage gain of the second stage compared with using a fixed-
magnitude current source as the load for Q1o. The high-resistance node is 
buffered with a conventional output stage. 

Compensation can be effected by forming an inner loop via collector-to­
base feedback around Q10. Circuit parameters are such that single-pole 
compensation with dynamics comparable to the feedback-compensated 
case results when a dominant pole is created by shunting a capacitor from 

8 R. J. Widlar, "I. C. Op Amp Beats FET's on Input Current," National Semiconductor 
Corporation, Application note AN-29, December, 1969. 
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the high-resistance node to ground. This alternate compensation results in 
superior supply-voltage noise rejection. (One disadvantage of capacitive 
coupling from collector to base of a second-stage transistor is that this 
feedback forces the transistor to couple high-frequency supply-voltage 
transients applied to its emitter directly to the amplifier output.) 

The dynamics of the LM108 are not as good as those of the LM101A. 
While comparable bandwidths are possible in low-gain, resistively loaded 
applications, the bandwidth of the LM101A is substantially better when 
high closed-loop voltage gain or capacitive loading is required. The slower 
dynamics of the LM108 result in part from the use of the lateral PNP'S in 
the second stage where their peculiarities more directly affect bandwidth 
and partially from the low quiescent currents used to reduce the power 
consumption of the circuit by a factor of five compared with that of the 
LM1OIA.­

10.4.4 The LMI10 Voltage Follower 
The three amplifiers described earlier in this section have been general-

purpose operational amplifiers where one design objective was to insure 
that the circuit could be used in a wide variety of applications. If this re­
quirement is relaxed, the resultant topological freedom can at times be 

n+p 

Input 0_ 0Output 

-vs 

Figure 10.22 Voltage follower. 
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exploited. Consider the simplified amplifier shown in Fig. 10.22. Here a 
current-source-loaded differential amplifier is used as a single high-gain 
stage and is buffered by an emitter follower. The emitter follower is biased 
with a current source. This very simple operational amplifier is connected 
in a unity-gain noninverting or voltage-follower configuration. Since it is 
known that the input and output voltage levels are equal under normal 
operating conditions, there is no need to allow for arbitrary input-output 
voltage relationships. One very significant advantage is that only NPN 

transistors are included in the gain path, and the bandwidth limitations that 
result from lateral PNP transistors are eliminated. 

This topology is actually a one-stage amplifier, and the dynamics asso­
ciated with such designs are even more impressive than those of two-stage 
amplifiers. While the low-frequency open-loop voltage gain of this design 
may be less than that of two-stage amplifiers, open-loop voltage gains of 
several thousand result in adequate desensitivity when direct output-to­
input feedback is used. 

The LM 110 voltage follower (Fig. 10-23) is an integrated-circuit oper­
ational amplifier that elaborates on the one-stage topology described 
above. Perfomance specifications are listed in Table 10.4. Note that 
this circuit, like the LM108, uses both super 0 (narrow base) and con­
ventional (wide base) NPN transistors. The input stage consists of transistors 
Q8 through Q1 connected as a differential amplifier using two modified 
Darlington pairs. Pinch resistors R8 and R9 increase the emitter current of 
Q8 and Q1 to reduce voltage drift. (See Section 7.4.4 for a discussion of the 
drift that can result from a conventional Darlington connection.) Tran­
sistor Qis supplies the operating current for the input stage. Transistor Q16 
supplies one-half of this current (the nominal operating current of either 
side of the differential pair) to the current repeater Q1 through Q3 that 
functions as the first-stage load. 

Transistors Q5 and Q6 form a Darlington emitter follower that isolates 
the high-resistance node from loads applied to the amplifier. The emitter of 

Q6, which is at approximately the output voltage, is used to bootstrap the 
collector voltage of the Qio-Qui pair. The resultant operation at nominally 
zero collector-to-base voltage results in negligible leakage current from Qu1. 
The Q8-Q9 pair is cascoded with transistor Q4. Besides protecting Q8 and 
Q9 from excessive voltages, the cascode results in higher open-loop voltage 
gain from the circuit. 

Diode D1 and diode-connected transistor Q13 limit the input-to-output 
voltage difference for a large-signal operation to protect the super # tran­
sistors and to speed overload recovery. Transistor Q7 is a current limiter, 
while Q1 functions as a current-source load for the output stage. The 
single-ended emitter follower is used in preference to a complementary 
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Table 10.4 LM 110 Specifications: Electrical Characteristics 

Parameter Conditions Min Typ. Max Units 

Input offset voltage 
Input bias current 
Input resistance 
Input capacitance 
Large-signal voltage gain 

Output resistance 

Supply current 
Input offset voltage 
Offset voltage 

temperature drift 

Input bias current 
Large-signal voltage gain 

Output voltage swing 

Supply current 
Supply-voltage rejection ratio 

TA= 25* C 
TA = 25* C 
TA = 25* C 

TA= 25 C, Vs = 15 V 
Vout = z10 V, RL = 8 ku 
TA = 25* C 
TA = 250 C 

-550 C < TA 85* C 
TA = 125* C 

Vs = ±15 V, Vou = ±10 V 
RL = 10 kQ 
Vs = 15 V, RL = 10 k2 
TA = 125 C 
5 V < Vs < 18 V 

1010 

0.999 

0. 999 
+10 

70 

1.5 
1.0 

1012 

1.5 

0.9999 
0.75 
3.9 

6 
12 

2.0 
80 

4.0 
3.0 

2.5 
5.5 
6.0 

10 

4.0 

mV 
nA 
0 
pF 

V/V 
0 

mA 
mV 

jyV/*C 
nA 

V/V 
V 

mA 
dB 
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connection since it is more linear and thus better suited to high-frequency 
applications. An interesting feature of the design is that the magnitude of 
the current-source load for the emitter follower can be increased by shunt­
ing resistor Ru via external terminals. This current can be increased when 
it is necessary for the amplifier to supply substantial negative output cur­
rent. The use of boosted output current also increases the power consump­
tion of the circuit, raises its temperature, and can reduce input current 
because of the increased current gain of transistor Qu1 at elevated tempera­
tures. 

The capacitive feedback from the collector of Q4 to the base of Q8 
stabilizes the amplifier. Since the relative potentials are constrained under 
normal operating conditions, a diode can be used for the capacitor. 

The small-signal bandwidth of the LM110 is approximately 20 MHz. 
This bandwidth is possible from an amplifier produced by the six-mask 
process because, while lateral PNP's are used for biasing or as static current 
sources, none are used in the signal path. 

It is clear that special designs to improve performance can often be em­
ployed if the intended applications of an amplifier are constrained. Un­
fortunately, most special-purpose designs have such limited utility that 
fabrication in integrated-circuit form is not economically feasible. The 
LM110 is an example of a circuit for which such a special design is practical, 
and it provides significant performance advantages compared to general-
purpose amplifiers connected as followers. 

10.4.5 Recent Developments 

The creativity of the designers of integrated circuits in general and 
monolithic operational amplifiers in particular seems far from depleted. 
Innovations in processing and circuit design that permit improved perform­
ance occur with satisfying regularity. In this section some of the more 
promising recent developments that may presage exciting future trends are 
described. 

The maximum closed-loop bandwidth of most general-purpose mono­
lithic operational amplifiers made by the six-mark process is limited to 
approximately 1 MHz by the phase shift associated with the lateral-PNP 
transistors used for level shifting. While this bandwidth is more than 
adequate for many applications, and in fact is advantageous in some be­
cause amplifiers of modest bandwidth are significantly more tolerant of poor 
decoupling, sloppy layout, capacitive loading, and other indiscretions than 
are faster designs, wider bandwidth always extends the application spec­
trum. Since it is questionable if dramatic improvements will be made in the 
frequency response of process-compatible PNP transistors in the near future, 
present efforts to extend amplifier bandwidth focus on eliminating the 
lateral PNP's from the gain path, at least at high frequencies. 
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One possibility is to capacitively bypass the lateral PNP's at high fre­
quencies. This modification can be made to an LM101 or LM101A by 
connecting a capacitor from the inverting input to terminal 1 (see Figs. 
10.17 and 10.19). The capacitor provides a feedforward path (see Section 
8.2.2) that bypasses the input-stage PNP transistors. Closed-loop bandwidths 
on the order of 5 MHz are possible, and this method of compensation is 
discussed in greater detail in a later section. Unfortunately, feedforward 
does not improve the amplifier speed for signals applied to the noninverting 
input, and as a result wideband differential operation is not possible. 

The LM 118 pioneered a useful variation on this theme. This operational 
amplifier is a three-stage design including an NPN differential input stage, 
an intermediate stage of lateral PNP's that provides level shifting, and a 
final NPN voltage-gain stage. The intermediate stage is capacitively by­
passed, so that feedforward around the lateral-PNP stage converts the 
circuit to a two-stage NPN design at high frequencies, while the PNP stage 
provides the gain and level shifting required at low frequencies. Since the 
feedforward is used following the input stage, full bandwidth differential 
operation is retained. Internal compensation insures stability with direct 
feedback from the output to the inverting input and results in a unity-gain 
frequency of approximately 15 MHz and a slew rate of at least 50 volts per 
microsecond. External compensation can be used for greater relative 
stability. 

A second possibility is to use the voltage drop that a current source 
produces across a resistor for level shifting. It is interesting to note that the 
yA702, the first monolithic operational amplifier that was designed before 
the advent of lateral PNP's, uses this technique and is capable of closed-loop 
bandwidths in excess of 20 MHz. However, the other performance specifi­
cations of this amplifier preclude its use in demanding applications. The 
yA715 is a more modern amplifier that uses this method of level shifting. 
It is an externally compensated amplifier capable of a closed-loop band­
width of approximately 20 MHz and a slew rate of 100 V/us in some con­
nections. 

It is evident that improved high-speed amplifiers will evolve in the future. 
The low-cost availability of these designs will encourage the use of circuits 
such as the high-speed digital-to-analog converters that incorporate them. 

A host of possible monolithic operational-amplifier refinements may 
stem from improved thermal design. One problem is that many presently 
available amplifiers have a d-c gain that is limited by thermal feedback on 
the chip. Consider, for example, an amplifier with a d-c open-loop gain of 
101, so that the input differential voltage required for a 10-volt output is 
100 4V. If the thermal gradient that results from the 10-volt change in 
output level changes the input-transistor pair temperature differentially 
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by 0.050 C (a real possibility, particularly if the output is loaded), differential 
input voltage is dominated by thermal feedback rather than by limited 
d-c gain. Several modern instrumentation amplifiers use sophisticated 
thermal-design techniques such as multiple, parallel-connected input tran­
sistors located to average thermal gradients and thus allow usable gains 
in the range of 106. These techniques should be incorporated into general-

purpose operational amplifiers in the future. 
An interesting method of output-transistor protection was originally 

developed for several monolithic voltage regulators, and has been included 
in the design of at least one high-power monolithic operational amplifier. 
The level at which output current should be limited in order to protect a 
circuit is a complex function of output voltage, supply voltage, the heat sink 
used, ambient temperature, and the time history of these quantities because 
of the thermal dynamics of the circuit. Any limit based only on output 
current level (as is true with most presently available operational amplifiers) 
must be necessarily conservative to insure protection. An attractive alterna­
tive is to monitor the temperature of the chip and to cut off the output 
before this temperature reaches destructive levels. As this technique is 
incorporated in more operational-amplifier designs, both output current 
capability and safety (certain present amplifiers fail when the output is 
shorted to a supply voltage) will improve. The high pulsed-current capa­
bility made possible by thermal protection would be particularly valuable 
in applications where high-transient capacitive changing currents are en­
countered, such as sample-and-hold circuits. 

Another thermal-design possibility is to include temperature sensors and 
heaters on the chip so that its temperature can be stabilized at a level above 
the highest anticipated ambient value. This technique has been used in the 

yA726 differential pair and yA727 differential amplifier. Its inclusion in a 

general-purpose operational-amplifier design would make parameters such 
as input current and offset independent of ambient temperature fluctuations. 

10.5 ADDITIONS TO IMPROVE PERFORMANCE 

Operational amplifiers are usually designed for general-purpose applica­

bility. For this reason and because of limitations inherent to integrated-

circuit fabrication, the combination of an integrated-circuit operational 

amplifier with a few discrete components often tailors performance advan­

tageously for certain applications. The use of customized compensation 

networks gives the designer a powerful technique for modifying the dy­
namics of externally compensated operational amplifiers. This topic is 

discussed in Chapter 13. Other frequently used modifications are intended 

to improve either the input-stage or the output-stage characteristics of 
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Figure 10.24 Input current compensation for voltage follower. 

monolithic amplifiers, and some of these additions are mentioned in this 
section. 

One advantage that many discrete-component operational amplifiers 
have compared with some integrated-circuit designs is lower input current. 
This improvement usually results because the input current of the discrete-
component design is compensated by one of the techniques described in 
Section 7.4.2. These techniques can reduce the input current of discrete-
component designs, particularly at one temperature, to very low levels. The 
same techniques can be used to lower the input current of integrated-circuit 
amplifiers. Many amplifiers can be well compensated using transistors as 
shown in Fig. 7.14. Transistor types, such as the 2N4250 or 2N3799, which 
have current-gain versus temperature characteristics similar to those of the 
input transistors of many amplifiers, should be used. 

The connection shown in Fig. 10.24 can be used to reduce the input 
current of a follower-connected LMl0lA. As a consequence of the tem­
perature-dependent input-stage operating current of this amplifier (see 
Section 10.4.1), the temperature coefficient of its input current is approxi­
mately 0.3% per degree Centigrade, comparable to that of a forward-
biased silicon diode at room temperature. 

Another possibility involves the use of the low input current LM1 10 as a 
preamplifier for an operational amplifier. Since the bandwidth of the LM1 10 
is much greater than that of most general-purpose operational amplifiers, 
feedback-loop dynamics are unaffected by the addition of the preamplifier. 
While this connection increases voltage drift, the use of self heating (see 
Section 10.4.4) and simple input current compensation can result in an 
input current under 0.5 nA over a wide temperature range.9 

9 While the LM108 has comparably low input current, its dynamics and load-driving 
capability are inferior to those of many other general-purpose amplifiers. As a result the 
connection described here is advantageous in some applications. 
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Figure 10.25 Use of FET followers. 

Field-effect transistors10 can be connected as source followers in front 
of an operational amplifier as shown in Fig. 10.25. Input current of a fraction 
of a nA at moderate temperatures is obtained at the expense of increased 
drift and poorer common-mode rejection ratio. The use of relatively inex­
pensive dual field-effect transistors yields typical drift figures of 10 to 100 
pV,/C. The product of source-follower output resistance and amplifier 
input capacitance is normally small enough so that dynamics remain un­
changed. If this capacitive loading is a problem, the gate and source termi­
nals of the FET's can be shunted with small capacitors. 

It is possible to reduce the drift of an operational amplifier by preceding 
it with a differential-amplifier stage, since the drift of a properly designed 
discrete-component differential amplifier can be made a fraction of a 
microvolt per degree Centigrade (see Chapter 7). This method is most 
effective when relatively high voltage gain is obtained from the differential 
stage and when its operating current is high compared with the input 

10 While the best-matched field-effect transistors are made by a monolithic process, the 
process cannot simultaneously fabricate high-quality bipolar transistors. Some manu­
facturers offer hybrid integrated circuits that combine two chips in one package to provide 
a FET-input operational amplifier. The yA740 is a monolithic FET-input amplifier, but its 
performance is not as good as that of the hybrids. 
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current of the operational amplifier. A recently developed integrated circuit 
(the LM121) is also intended to function as a preamplifier for operational 
amplifiers. The bias current of this preamplifier can be adjusted, and 
combined drift of less than one microvolt per degree Centigrade is possible. 
The use of a preamplifier that provides voltage gain often complicates 
compensation because the increased loop transmission that results may 
compromise stability in some applications. 

The output current obtainable from an integrated-circuit operational 
amplifier is limited by the relatively small geometry of the output transistors 
and by the low power dissipation of a small chip. These limitations can be 
overcome by following the amplifier with a separate output stage. 

There is a further significant performance advantage associated with the 
use of an external output stage. If output current is supplied from a tran­
sistor included on the chip, the dominant chip power dissipation is that 
associated with load current when currents in excess of several milliamperes 
are supplied. As a consequence, chip temperature can be strongly dependent 
on output voltage level. As mentioned earlier, thermal feedback to the input 
transistors deteriorates performance because of associated drift and input 
current changes. A properly designed output stage can isolate the amplifier 
from changes in load current so that chip temperature becomes virtually 
independent of output voltage and current. 

Output-stage designs of the type described in Section 8.4 can be used. 
The wide bandwidth of emitter-follower circuits normally does not com­
promise frequency response. The output stage can be a discrete-component 
design, or any of several monolithic or hydrid integrated circuits may be 
used. The MC1538R is an example of a monolithic circuit that can be used 
as a unity-gain output buffer for an operational amplifier. This circuit is 
housed in a relatively large package that permits substantial power dissi­
pation, and can provide output currents as high as 300 mA. Its bandwidth 
exceeds 8 MHz, considerably greater than that of most general-purpose 
operational amplifiers. 

Another possibility in low output power situations is to use a second 
operational amplifier connected as a noninverting amplifier (gains between 
10 and 100 are commonly used) as an output stage for a preceding opera­
tional amplifier. Advantages include the open-loop gain increase provided 
by the noninverting amplifier, and virtual elimination of thermal-feedback 
problems since the maximum output voltage required from the first ampli­
fier is the maximum output voltage of the combination divided by the 
closed-loop gain of the noninverting amplifier. It is frequently necessary to 
compensate the first amplifier very conservatively to maintain stability in 
feedback loops that use this combination. 
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PROBLEMS 

P10.1 
You are the president of Single-Stone Semiconductor, Inc. Your best­

selling product is a general-purpose operational amplifier that has chip 
dimensions of 0.05 inch square. Experience shows that you make a satis­
factory profit if you sell your circuits at a price equal to 10 times the cost 
at the wafer level. You presently fabricate your circuits on wafers with a 
usable area of 3 square inches. The cost of processing a single wafer is $40, 
and yields are such that you currently sell your amplifier for one dollar. 
Your chief engineer describes a new amplifier that he has designed. It has 
characteristics far superior to your present model and can be made by the 
same process, but it requires a chip size of 0.05 inch by 0.1 inch. Explain to 
your engineer the effect this change would have on selling price. You may 
assume that wafer defects are randomly distributed. 

P10.2 
A current repeater of the type shown in Fig. 10.9 is investigated with a 

transistor curve tracer. The ground connection in this figure is connected 
to the curve-tracer emitter terminal, the input is connected to the base 
terminal of the tracer, and the repeater output is connected to the collector 
terminal of the curve tracer. Assume that both transistors have identical 
values for Is and very high current gain. Draw the type of a display you 
expect on the curve tracer. 

P10.3 
Assume that it is possible to fabricate lateral-PNP transistors with a 

current gain of 100 and a value of C, equal to 400 pF at 100 yA of collector 
current. A unity-gain current repeater is constructed by bisecting the 
collector of one of these transistors and connecting the device as shown in 
Fig. 10.10. Calculate the 0.707 frequency of the current transfer function 
for this structure operating at a total collector current of 100 y.A. You may 

neglect C, and base resistance for the transistor. Contrast this value with 

the frequency at which the current gain of a single-collector lateral-PNP 

transistor with similar parameters drops to 0.707 of its low-frequency value. 

P10.4 
Figure 10.26 shows a connection that can be used as a very low level 

current source. Assume that all transistors have identical values of Is, high 

0, and are at a temperature of 300' K. Find values for R 1, R 2, and R 3 such 

that the output current will be 1 ytA subject to the constraint that the sum 

of the resistor values is less than 100 kQ. 

P10.5 
Consider the three current repeater structures shown in Figs. 10.9, 

10.1la, and 10.1lb. Assume perfectly matched transistors, and calculate the 
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Figure 10.26 Very low level current source. 

incremental output resistance of each connection in terms of f and - of the 
transistors and the operating current level. 

P10.6 
The final voltage-gain stage and output buffer of an integrated-circuit 

operational amplifier is shown in Fig. 10.27. Calculate the quiescent col­

lector-current level of the complementary emitter follower. You may assume 
that the current gain of the NPN transistors is 100, while that of PNP'S is 10. 
You may further assume that all NPN's have identical characteristics, as do 
all PNP'S. 

P10.7 
An operational amplifier input stage is shown in Fig. 10.28. Calculate 

the drift referred to the input of this amplifier attributable to changes in 
current gain of the transistors used in the current repeater. You may assume 
that these transistors are perfectly matched, have a common-emitter current 
gain of 100, and a fractional change in current gain of 0.5% per degree 
Centigrade. Suggest a circuit modification that reduces this drift. 

P10.8 
A portion of the biasing circuitry of the LM1OIA operational amplifier 

is shown in Fig. 10.29. This circuit has the interesting property that for a 

properly choosen operating current level, the bias voltage is relatively in­
sensitive to changes in the current level. Determine the value of IB that 
makes aVo/aIB zero. You may assume high current gain for both tran­
sistors. 

P10.9 
Determine how unity-gain frequency and slew rate are related to the 

first-stage bias current for the yA776 operational amplifier. Use the specifi­
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cations for this amplifier to estimate input-stage quiescent current at a 
set-current value of 1.5 MA. Assuming that the ratio of bias current to set 
current remains constant for lower values of set current, estimate the 10 to 
90% rise time in response to a step for the yA776 connected as a non-
inverting gain-of-ten amplifier at a set current of 1 nA. Also estimate slew 
rate and power consumption for the yA776 at this set current. 

P10.10
 
A yA776 is connected in a loop with a LM101A as shown in Fig. 10.30.
 

(a) 	 Show that this is one way to implement a function generator similar to 
that described in Section 6.3.3. 

(b) 	 Plot the transfer characteristics of the LM101A with feedback (i.e., the 
voltage vA as a function of VB). 
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Figure 10.28 Amplifier input stage. 
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Figure 10.29 Bias circuit. 
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Figure 10.30 Nonlinear oscillator. 

(c) 	 Draw the waveforms VA(t) and VB(t) for this circuit. You may assume 
that the slew rate of the 101A is much greater than that of the yA776. 

(d) 	 How do these waveforms change as a function of ISET? 

P10.11
 
A simplified schematic of an operational amplifier is shown in Fig. 10.31.
 

(a) 	 How many stages has this amplifier? 
(b) 	 Make the (probably unwarranted) assumption that all transistors have 

identical (high) values for # and identical values for -q. Further assume 
that appropriate pairs have matched values of Is. Calculate the low-
frequency gain of the amplifier. 

(c) 	 Calculate the amplifier unity-gain frequency and slew rate as a function 
of the current I, the capacitor Cc, and any other quantities you need. 
You may assume that this capacitor dominates amplifier dynamics. 

(d) 	 Suggest a circuit modification that retains essential features of the 
amplifier performance, yet increases its low-frequency voltage gain. 

P10.12 
Specifications for the LM101A operational amplifier indicate a maximum 

input bias current of 100 nA and a maximum temperature coefficient of 
input offset current (input offset current is the difference between the bias 
current required at the two amplifier inputs) of 0.2 nA per degree Centigrade. 
These specifications apply over a temperature range of -550 C to + 1250 C. 
Our objective is to precede this amplifier with a matched pair of 2N5963 
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Figure 10.31 Operational amplifier. 

transistors connected as emitter followers so that it can be used in applica­
tions that require very low input currents. Assume that you are able to 
match pairs of 2N5963 transistors so that the difference in base-to-emitter 
voltages of the pair is less than 2 mV at equal collector currents. Design 
an emitter-follower circuit using one of these pairs and any required bias-
circuit components with the following characteristics: 

1. The bias current required at the input of the emitter followers is 
relatively independent of common-mode level over the range of =10 volts. 

2. The drift referred to the input added to the complete circuit by the 
emitter followers is less than ±2 AV per degree Centigrade. Indicate how 

you plan to balance the emitter-follower pair in conjunction with the 

amplifier to achieve this result. 

Estimate the input current for the modified amplifier with your circuit, 

assuming that the common-emitter current gain of the 2N5963 is 1000. 
Estimate the differential input resistance of the modified amplifier. You 
will probably need to know the differential input resistance of the LM1O1A 
to complete this calculation. In order to determine this quantity, show that 

for the LM1OA input-stage topology, differential input resistance can be 

determined from input bias current alone. 
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CHAPTER XI 

BASIC APPLICATIONS
 

11.1 INTRODUCTION 

The operational amplifier is an extremely versatile general-purpose linear 
circuit. Clearly a primary reason for studying this device is to determine 
how it can best be used to solve design problems. Since this book is in­
tended as a text book and not as a handbook, we hope to accomplish our 
objective by giving the reader a thorough understanding of the behavior 
of the operational amplifier so that he can innovate his own applications, 
rather than by giving him a long list of connections that others have found 
useful. Furthermore, there are a number of excellent references' available 
that provide extensive collections of operational-amplifier circuits, and 
there is little to be gained by competing with these references for com­
pleteness. 

We have already seen several operational-amplifier connections in the 
examples used in preceding sections. In this and the following chapter we 
shall extend our list of applications in order to illustrate useful basic tech­
niques. We hope that the reader finds these topologies interesting, and that 
they help provide the concepts necessary for imaginative, original design 
efforts. Some of the common hazards associated with the use of operational 
amplifier are discussed, as is the measurement and specification of per­
formance characteristics. The vitally important issue of amplifier compen­
sation for specific applications is reserved for Chapter 13. 

11.2 SPECIFICATIONS 

A firm understanding of some of the specifications used to describe 
operational amplifiers is necessary to determine if an amplifier will be satis­
factory in an intended application. Unfortunately, completely specifying a 

1A few of these references are: Philbrick Researches, Inc., Applications Manual of Com­
puting Amplifiers. G. A. Korn and T. M. Korn, ElectronicAnalog and Hybrid Computers, 
2nd Edition, McGraw-Hill, New York, 1972. J. G. Graeme, G. E. Tobey, and L. P. 
Huelsman (Editors), OperationalAmplifiers, Design and Applications, McGraw-Hill, New 
York, 1971. Analog Devices, Inc., Product Guide, 1973. National Semiconductor Corpora­
tion, Linear ApplicationsHandbook, 1972. 
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complex circuit is a virtually impossible task. The problem is compounded 
by the fact that not all manufacturers specify the same quantities, and not 
all are equally conservative with their definitions of "typical," "maximum," 
and "minimum." As a result, the question of greatest interest to the de­
signer (will it work in my circuit?) is often unanswered. 

11.2.1 Definitions 

Some of the more common specifications and their generally accepted 
definitions are listed below. Since there are a number of available opera­
tional amplifiers that are not intended for differential operation (e.g., ampli­
fiers that use feedforward compensation are normally single-input ampli­
fiers), the differences in specifications between differential- and single-input 
amplifiers are indicated when applicable. 

Input offset voltage. The voltage that must be applied between inputs of 
a differential-input amplifier, or between the input and ground of a single-
input amplifier, to make the output voltage zero. This quantity may be 
specified over a given temperature range, or its incremental change (drift) 
as a function of temperature, time, supply voltage, or some other parameter 
may be given. 

Input bias current. The current required at the input of a single-input 
amplifier, or the average of the two input currents for a differential-input 
amplifier. 

Input offset current. The difference between the two input currents of a 
differential-input amplifier. Both offset and bias current are defined for 
zero output voltage, but in practice the dependence of these quantities on 
output voltage level is minimal. The dependence of these quantities on 
temperature or other operating conditions is often specified. 

Common-mode rejection ratio. The ratio of differential gain to common-
mode gain. 

Supply-voltage sensitivity. The change in input offset voltage per unit 
change in power-supply voltage. The reciprocal of this quantity is called the 

supply-voltage rejection ratio. 
Input common-mode range. The common-mode input signal range for 

which a differential amplifier remains linear. 
Input differential range. The maximum differential signal that can be 

applied without destroying the amplifier. 
Output voltage range. The maximum output signal that can be obtained 

without significant distortion. This quantity is usually specified for a given 
load resistance. 

Input resistance. Incremental quantities are normally specified for both 
differential (between inputs) and common-mode (either input to ground) 
signals. 
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Output resistance. Incremental quantity measured without feedback un­
less otherwise specified. 

Voltage gain or open-loop gain. The ratio of the change in amplifier out­
put voltage to its change in input voltage when the amplifier is in its linear 
region and when the input signal varies extremely slowly. This quantity is 
frequently specified for a large change in output voltage level. 

Slew rate. The maximum time rate of change of output voltage. This 
quantity depends on compensation for an externally compensated amplifier. 
Alternatively, the maximum frequency at which an undistorted given ampli­
tude sinusoidal output can be obtained may be specified. 

Bandwidth specifications. The most complete specification is a Bode plot, 
but unfortunately one is not always given. Other frequently specified quan­
tities include unity-gain frequency, rise time for a step input or half-power 
frequency for a given feedback connection. Most confusing is a gain-
bandwidth product specification, which may be the unity-gain frequency, 
or may be the product of closed-loop voltage gain and half-power band­
width in some feedback connection. 

Even when operational-amplifier specifications are supplied honestly and 
in reasonable detail, the prediction of the performance of an amplifier in a 
particular connection can be an involved process. As an example of this 
type of calculation, consider the relatively simple problem of finding the 
output voltage of the noninverting amplifier connection shown in Fig. 11.1 
when vr = 0. The voltage offset of the amplifier is equal to E0 . It is assumed 
that the low-frequency voltage gain of the amplifier ao is very large so that 
the voltage between the input terminals of the amplifier is nearly equal to 
Eo.-(Recall that with Eo applied to the input terminals, vo = 0. If ao is 
very large, any other d-c output voltage within the linear region of the 

I +L 
RS 

+ E 

-I I-> R2 

Figure 11.1 Noninverting amplifier. 
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amplifier can be obtained with a voltage of approximately Eo applied be­
tween inputs.) The currents at the amplifier input terminals expressed in 
terms of the bias current IB and the offset current Io are also shown in this 
figure.2 

The voltage and current values shown in the figure imply that, for vr = 0,(_IR Io\R 1 R 2 

-Rs IB + 0 R, (IB Eo~-1 ~ + - (11.1)
2)- (R1+ R2 2 R1 + R2 

Solving for vo yields 

VO (R2 + R1) Eo R1 + R2 Rs I o 
vo= - Eo - jRs IB+ 1 

R1 R1 2) 

+ R2 IB -10 (.2
2 2) 

This equation shows that the output voltage attributable to amplifier input 
current can be reduced by scaling resistance levels, but that the error 
resulting from voltage offset is irreducible since the ratio (R 1 + R 2 )/R 1 pre­
sumably must be selected on the basis of the required ideal closed-loop 
gain. Equation 11.2 also demonstrates the well-known result that balancing 
the resistances connected to the two inputs eliminates offsets attributable 
to input bias current, since with R 1 R 2/(R 1 + R 2) = Rs, the output voltage 
is independent of IB. 

As another example of the use of amplifier specifications, consider a 
device with an offset E 0 , a d-c gain of ao, and a maximum output voltage 
VoM. The maximum differential input voltage required in order to obtain 
any static output voltage within the dynamic range of the amplifier is then 3 

Vim = Eo + VOM(11.3) 
ao 

This equation shows that values of ao in excess of VoM/Fo reduce the 
amplifier input voltage (which must be low for the closed-loop gain to 
approximate its ideal value) only slightly. We conclude that if ao > VoM/ 
Eo, further operational-amplifier design efforts are better devoted to lower­
ing offset rather than to increasing ao. 

2 The specification of the input currents in terms of bias and offset current does not, of 
course, indicate which input-terminal current is larger for a particular amplifier. It has been 
arbitrarily assumed in Fig. 11.1 that the offset current adds to the bias current at the 
noninverting input and subtracts from it at the inverting input. 

I The quantities in the equation are assumed to be maximum magnitudes. The possibility 
of cancellation because of algebraic signs exists for only one polarity of output voltage, and 
is thus ignored when calculating the maximum magnitude of the input voltage. 
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999 R 
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(a) 

V0 

o V0 -

(c) 

Figure 11.2 Circuits used to determine offset voltage and input currents. 
D.U.T. = Device Under Test. (a) Measurement of offset voltage. (b) Measurement 
of L. (c) Measurement of I+. 

11.2.2 Parameter Measurement 

One way to bypass the conspiracy of silence that often surrounds ampli­
fier specifications is to measure the parameters that are important in a par­
ticular application. Measurement allows the user to determine for himself 
how a particular manufacturer defines "typical," "maximum," and "mini­
mum," and also permits him to grade circuits so that superior units can 
be used in the more demanding applications. 
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The d-c characteristics exclusive of open-loop gain are relatively straight­
forward to measure. Circuits that can be used to measure the input offset 
voltage Eo and the input currents at the two input terminals, I+ and I_, 
are shown in Fig. 11.2. In the circuit of Fig. 1l.2a, assume that resistor 
values are chosen so that IEo| >> II-R I.The quiescent voltages are 

(- 10-sVo + Eo)ao = Vo (11.4) 

for an appropriately chosen reference polarity for Eo. Solving this equation 
for Vo yields 

Vo = a 103Eo (11.5)
1 + 10-3 ao 

Thus we see that this circuit uses the amplifier to raise its own offset voltage 
to an easily measured level. 

If the resistor R 1 in Figs. 11.2b and ll.2c is chosen so that both II_Ri 
and |I+R1 | >> Eo 1, the output voltages are 

Vo = IR 1 (11.6) 

and 

Vo =-I+R (11.7) 

respectively. The measurement of I_ and I+ allows direct calculation of 
offset and bias currents, since we recall from earlier definitions that the 
bias current is equal to the average of I+ and I_, while the offset current is 
equal to the magnitude of the difference between these two quantities. 

A test box that includes a socket for the device under test and incor­
porates mode switching to select among the tests is easily constructed. Re­
sults can be displayed on an inexpensive D'Arsonval meter movement, 
since resistor values can be chosen to yield output voltages on the order of 
one volt. The low-pass characteristics of the meter movement provides a 
degree of noise rejection that improves the accuracy of the measurements. 
If further noise filtering is required, moderate-value capacitors may be 
used in parallel with resistors 999R and R1 in Fig. 11.2. 

The offset measurement circuit shown in Fig. I1.2a requires large loop-
transmission magnitude for proper operation. If there is the possibility 
that the low-frequency loop transmission of a particular amplifier is too 
small, the alternative circuit shown in Fig. 11.3 can be used to measure 
offset. The second amplifier provides very large d-c gain with the result 
that the voltage out of the amplifier under test is negligible. At moderate 
frequencies, the second amplifier functions as a unity-gain inverter so that 
loop stability is not compromised by the integrator characteristics that re­
sult if the feedback resistor R is eliminated. Lowering the value of this 
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(K-1) R, 

R, 

Figure 11.3 Offset-measurement circuit with increased loop transmission. 

feedback resistor relative to the input resistor of the second amplifier may 
improve stability, particularly when the (K - l)R 1 resistor is bypassed for 
noise reduction. Since this connection keeps the output voltage from the 
amplifier under test near ground, Vo will be (in the absence of input-
current effects) simply equal to KEo. 

The supply-voltage rejection ratio of an amplifier can be measured with 
the same circuitry used to measure offset if provision is included to vary 
voltages applied to the amplifier. The supply-voltage rejection ratio is de­
fined as the ratio of a change in supply voltage to the resulting change in 
input offset voltage. 

The technique of including a second amplifier to increase loop transmis­
sion simplifies the measurement of common-mode rejection ratio (see Fig. 
11.4). If the differential gain ao of the amplifier is large compared to its 
common-mode gain acm, we can write 

= acmo vA+(11.8)+ KoV0 aCMVCM 

Thus 

ao KVCm (19
=CMRR = 

acm VA 

Since the voltage VA also includes a component proportional to the offset 
voltage of the amplifier, it may be necessary to use incremental measure­
ments to determine accurately rejection ratio. 
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VAVA 

(K - 1) R3 
C R 

Ri 
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Voltage here 
VCM _0 

Figure 11.4 Circuit for measuring common-mode rejection ratio. 

The slew rate of an amplifier may be dependent on the time rate of change 
of input-signal common-mode level and will be a function of compensation 
for an amplifier with selectable compensation. Standardized results that 
allow intercomparison of various amplifiers can be obtained by connecting 
the amplifier as a unity-gain inverter and applying a step input that sweeps 
the amplifier output through most of its dynamic range. Diode clamping at 
the inverting input of the amplifier can be used to prevent large common-
mode signals. (See Section 13.3.7 for a representative circuit.) Alternatively, 
the maximum slew rate in a specific connection of interest can often be 
determined by applying a large enough input signal to force the maximum 
time rate of change of amplifier output voltage. 

The open-loop transfer function of an amplifier is considerably more 
challenging to measure. Consider, for example, the problem of determining 
d-c gain. We might naively assume that the amplifier could be operated 
open loop (after all, we are measuring open-loop gain), biased in its linear 
region by applying an appropriate input quiescent level, and gain deter­
mined by adding an incremental step at the input and measuring the change 
in output level. The hazards of this approach are legion. The output signal 
is normally corrupted by noise and drift so that changes are difficult to 
determine accurately. We may also find that the amplifier exhibits bistable 
behavior, and that it is not possible to find a value for input voltage that 
forces the amplifier output into its linear region. This phenomenon results 
from positive thermal feedback in an integrated circuit, and can also occur 
in discrete designs because of self-heating, feedback through shared bias 
networks or power supplies, or for other reasons. The positive feedback 
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that leads to this behavior is swamped by negative feedback applied around 
the amplifier in normal applications, and thus does not disturb performance 
in the usual connections. 

After some frustration it is usually concluded that better results may be 
obtained by operating the amplifier in a closed-loop connection. Signal 
amplitudes can be adjusted for the largest output that insures linear per­
formance at some frequency, and the corresponding input signal measured. 
The magnitude and angle of the transfer function can be obtained if the 
input signal can be accurately determined. Unfortunately, the signal at the 
amplifier input is usually noisy, particularly at frequencies where the open-
loop gain magnitude is large. A wave analyzer or an amplifier followed by 
a phase-sensitive demodulator driven at the input frequency may be neces­
sary for accurate measurements. This technique can even be used to deter­
mine ao if the amplifier is compensated so that the first pole in its open-loop 
transfer function is located within the frequency range of the detector. 

There are also indirect methods that can be used to approximate the 
open-loop transfer function of the amplifier. The small-signal closed-loop 
frequency or transient response can be measured for a number of different 
values of frequency-independent feedback fo. A Nichols chart or the curves 
of Fig. 4.26 may then be used to determine important characteristics of 
a(jo) at frequencies near that for which |a(jo)fo = 1. Since various values 
offo are used, a(j) can be determined at several different frequencies. This 
type of measurement often yields sufficient information for use in stability 
calculations. 

A third possibility is to test the amplifier in a connection that provides a 
multiple of the signal at the amplifier input, in much the same way as does 
the circuit suggested earlier for offset measurement. Figure 11.5 shows one 

R1 R, 

+ (K-i1) R+ ~KVi 
Vt 

D.U.T.R i 

+ 

-

Figure 11.5 Connection for measuring the open-loop transfer function. 
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possibility. The signal at the junction of the two resistors labeled R1 is K 
times as large as the input signal applied to the amplifier, and can be com­
pared with either V0 or Vt (which is equal to - V, when the loop transmis­
sion is large) in order to determine the open-loop transfer function of the 
amplifier. Note that if the signal at the junction of the two equal-value re­
sistors is compared with V,, this method does not depend on large loop 
transmission. 

While this method does scale the input signal, it does not provide filter­
ing, with the result that some additional signal processing may be neces­
sary to improve signal-to-noise ratio. 

11.3 GENERAL PRECAUTIONS 

The operational amplifier is a complex circuit that is used in a wide va­
riety of connections. Frequently encountered problems include amplifier 
destruction because of excessive voltages or power dissipation and oscilla­
tion. The precautions necessary to avoid these hazards depend on the spe­
cific operational amplifier being used. We generally find, for example, that 
discrete-component amplifiers are more tolerant of abuse than are inte­
grated-circuit units, since more sophisticated protective features are fre­
quently included in discrete designs. 

This section indicates some of the more common problem areas and sug­
gests techniques that can be used to avoid them. 

11.3.1 Destructive Processes 

Excessive power-supply voltages are a frequent cause of amplifier damage. 
Isolation from uncertain supply-voltage levels via a resistor-Zener diode 
combination, as shown in Fig. 11.6, is one way to eliminate this hazard. 
The Zener diodes also conduct in the forward direction in the event of 
supply-voltage reversal. A better solution in systems that include a large 
number of operational amplifiers is to make sure that the power supplies 
include "crowbar"-type protection that limits voltages to safe levels in the 
event of power-supply failure. 

Excessive differential input voltage applied to an operational amplifier 
may damage the input-transistor pair. If input voltages in excess of about 
0.6 volt are applied to a normal differential-amplifier connection, the base­
to-emitter junction of one of the members of the pair will be reverse biased. 
Further increases in applied differential voltage eventually result in reverse 
breakdown. 

The base-to-emitter junction can be burned out if sufficient power is 
applied to it. A more subtle problem, however, is that base-to-emitter re­
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Figure 11.6 Supply-voltage limiting. 

verse breakdown, even at low power levels, often irreversibly lowers the 

current gain of bipolar transistors. Thus the input current of an amplifier 

can be permanently increased by this mechanism. The potential for low 

power level base-to-emitter breakdown exists in many connections. Con­

sider, for example, the usual integrator connection. If amplifier power is 

shut off with the feedback capacitor charged, the differential input voltage 
limit may be exceeded. 

One practical solution is to include a pair of clamp diodes between the 

input terminals of the amplifier. Since the voltage between these terminals 

is nearly zero under normal operating conditions, the diodes have no effect 

until excessive voltage levels are reached. 
Excessive power dissipation can result in some designs if the output ter­

minal is shorted to ground. This possibility exists primarily in early inte­

grated-circuit designs that do not include current-limiting circuits. More 

modern integrated-circuit designs, as well as most discrete circuits, are pro­

tected for output-to-ground shorts at normal supply-voltage levels and 

room-temperature operation. Some of these amplifiers are not protected 

for output shorts to either supply voltage, or output-to-ground shorts at 

elevated temperatures. 
The compensation or balance terminals of operational amplifiers are 

frequently connected to critical low-level points, and any signal applied to 
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these terminals invites disaster. The author is particularly adept at demon­
strating this mode of destruction by shorting adjacent pins to each other or 
a pin to ground with an oscilloscope probe. 

11.3.2 Oscillation 

One of the most frequent complaints about operational amplifiers is that 
they oscillate in connections that the user feels should be stable. This phe­
nomenon usually reflects a problem with the user rather than with the 
amplifier, and most of these instabilities can be corrected by proper design 
practice. 

One frequent reason for oscillation is that dynamics associated with the 
load applied to the amplifier or the feedback network connected around it 
combine with the open-loop transfer function of the amplifier to produce 
feedback instabilities. The material presented in the chapters on feedback 
provides the general guidelines to eliminate these types of oscillations. 
Specific examples are given in Chapter 13. 

Another common cause of oscillation is excessive power-connection im­
pedance. This problem is particularly severe with high-frequency amplifiers 
because of the inductance of the leads that couple the power supply to the 
amplifier. In order to minimize difficulties, it is essential to properly de-
couple or bypass all power-supply leads to amplifiers without internal de-
coupling networks. Good design practice includes using a fairly large value 
(>1 yF) solid-tantalum electrolytic capacitor from the positive and the 
negative power supply to ground on each circuit board. Individual ampli­
fiers should have ceramic capacitors (0.01 yF to 0.1 vF) connected directly 
from their supply terminals to a common ground point. The single ground 
connection between the two decoupling capacitors should also serve as the 
tie point for the input-signal common, if possible. Lead length on both the 
supply voltage and the ground side of these capacitors is critical since 
series inductance negates their value. Ground planes may be mandatory 
in high-frequency circuits for acceptably low ground-lead inductance. If 
low supply currents are anticipated, crosstalk between amplifiers can be 
reduced by including small (~22 0) series resistors in each decoupling net­
work, as shown in Fig. 11.7. 

In addition to reducing supply-line impedance, decoupling networks 
often lower the amplitude of any supply-voltage transients. Such transients 
are particularly troublesome with amplifiers that use capacitive minor-loop 
feedback for compensation, since the feedback element can couple tran­
sients applied to a supply-voltage terminal directly to the amplifier output. 

The open-loop transfer function of many operational amplifiers is de­
pendent on the impedance connected to the noninverting input of the ampli­
fier. In particular, if a large resistor is connected in series with this terminal 
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Figure 11.7 Power-supply decoupling network. Note. Heavy leads must be short. 

(possibly to balance resistances seen at both inputs, thus reducing effects 
of bias currents), the bandwidth of the amplifier may deteriorate, leading 
to oscillation. In these cases a capacitor should be used to shunt the non-
inverting input of the amplifier to the common input-signal and power-sup­
ply-decoupling ground point. 

The input capacitance of an operational amplifier may combine with the 
feedback network to introduce a pole that compromises stability. Figure 
11.8 is used to illustrate this problem. It is assumed that the input conduct­
ance of the amplifier is negligibly small, and that its input capacitance is 
modeled by the capacitor C. shown in Fig. 11.8. If the capacitors shown 
with dotted connections in this figure are not present, the loop transmis­

C2 

+40 
c 

Vi CiI R 

Figure 11.8 Effect of input capacitance. 
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sion includes a term l/[(R1 |1 R 2)Cis + 1]. If capacitor C 2 is included and 
values are chosen so that R 2 C 2 = RiCi, the transfer function of the feed­
back network from the amplifier output to its inverting input becomes 
frequency independent. In practice, it is not necessary to match time con­
stants precisely. A minor mismatch introduces a closely spaced pole-zero 
doublet, which normally has little effect on stability, into the loop-trans­
mission expression. 

A possible difficulty is that the inclusion of capacitor C2 changes the ideal 
closed-loop gain of the amplifier to 

Vo0(s) _____ R2
=-S -2 (11.10)Vi(s) R1(R 2C2s + 1) 

C
An alternative is to include both capacitors C1 and C2. If R 1C 1 = R 2 C 2 and 

1 + C2 >> Ci, the ideal closed-loop gain maintains its original value 

V. R2 

-V - (11.11)Vi R1 

while the feedback-network transfer function from the output to the invert­
ing input of the operational amplifier becomes essentially frequency inde­
pendent. 

11.3.3 Grounding Problems 

Improper grounding is a frequent cause of poor amplifier performance. 
While a detailed study of this subject is beyond the scope of this book, 
some discussion is in order. 

One frequent grounding problem stems from voltage drops in ground 
lines as a consequence of current flow through these lines. Figure 11.9 
illustrates an obviously poor configuration. Here both a signal source and 
a power supply are connected to a single ground point. However, the cur­
rent through a load is returned to the low side of the power supply via a 
wire that also sets the potential at the noninverting input of the opera­
tional amplifier. If this current creates a potential V. at the noninverting 
input with respect to system ground, the amplifier output voltage with 
respect to system ground will be 

V0 - Vi + V, (11.12)
R1 R1 

The error term involving current flow through the ground return line can 
be substantial, since narrow printed-circuit conductors and connector pins 
can have considerable resistance and inductance. 
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Figure 11.9 An example of poor grounding technique. 

While the obvious topology illustrated in Fig. 11.9 is relatively easy to
 
avoid, somewhat better disguised variations occur with disturbing fre­
quency. The solution is to design the system with two different ground
 
networks. One of these networks, called signalground, serves as the return
 
for critical points such as signal sources, feedback networks, and precision
 
voltage references. Every attempt is made to keep both a-c and d-c currents
 
in this network small so that it is essentially an equipotential network. High
 
currents from noncritical loads (an excellent example is the logic often
 
found in complex systems that include both analog and digital components)
 
have their own ground-return network called power ground. These two
 
grounds connect at only one point, which is also the low side of all system
 
power supplies.
 

11.3.4 Selection of Passive Components 

The passive components used in conjunction with operational amplifiers 
must be selected with care to obtain satisfactory performance. 

Metal-film or carbon-film resistors with tolerances of 1 % are inexpensive 
and readily available. These resistors can be obtained with temperature 
coefficients as low as 25 parts per million per degree Centigrade, and have 
fair long-term stability. They are acceptable in less demanding applications. 
We should note, however, that if 1% resistors are used, loop transmissions 
in excess of 100 are wasted in many connections. 

Wire-wound resistors may be used where accuracy, stability, and tem­
perature coefficient are of primary concern, since units are available that 
can maintain values to within 0.01 % or better with time and over moderate 
temperature excursions. Disadvantages of these resistors include relatively 
large size and poor dynamic characteristics because of their distributed
 
nature. It is important to realize that the excellent temperature stability of
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these resistors can easily be negated if they are combined with components 
such as potentiometers for trimming. The accepted procedure when adjust­
ments are required is to use shunt or series connections of selectable, stable 
resistors to closely approximate the required value. A potentiometer with 
a total range of a fraction of a percent of the desired value can then be used 
to complete the trim. The temperature coefficient of the relatively less 
stable element has little effect since the potentiometer resistance is a very 
small fraction of the total. 

At least one manufacturer offers precision relatively thick metal-film re­
sistors with tolerances to 0.005 %. While the long-term stability and tem­
perature coefficient of these units is not as good as that of the best wire 
wounds, their small size and excellent dynamic characteristics recommend 
them in many demanding applications. 

The selection of acceptable capacitors is even more difficult. In addition 
to tolerance and stability problems, capacitors exhibit the phenomenon of 
dielectricabsorption.One manifestation of this effect is that capacitors tend 
to "remember" and creep back toward the prior voltage if open circuited 
following a step voltage change. The time required to complete this transient 
ranges from milliseconds to thousands of seconds, while its magnitude can 
range from a fraction of a percent to as much as 25 % of the original change, 
depending primarily on the capacitor dielectric material. Dielectric absorp­
tion deteriorates the performance of any circuit using capacitors, with 
sample and holds (where step voltage changes are routine) and integrators 
being particularly vulnerable. 

Teflon and polystyrene are the best dielectric materials from the point 
of view of dielectric absorption. The dielectric-absorption coefficient 
(roughly equal to the fractional recovery following a step voltage change) 
can be less than 0.1 % for capacitors properly constructed from these ma­
terials. They also have very high resistivity so that self-time constants (the 
product of capacitance and the shunt resistance that results from dielectric 

or case resistivity) in excess of 106 seconds are possible. While the tempera­

ture coefficient for either of these materials is normally the order of 100 
parts per million per degree Centigrade, special processing or combinations 

of capacitors with two types of dielectrics can lower temperature coefficient 

to a few parts per million per degree Centigrade. The primary disadvan­

tages are relatively large size and high cost (particularly for teflon) and a 

maximum temperature of 85' C for polystyrene. 

Mica or glass capacitors often provide acceptable characteristics for 

lower-value units. Polycarbonate has considerably better volumetric effi­

ciency than either teflon or polystyrene, and is used for moderate- and 

large-value capacitors. Dielectric absorption is somewhat poorer, but still 
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acceptable in many applications. Mylar-dielectric capacitors are inexpen­
sive and have an absorption coefficient of approximately 1%. These units 
are often used in noncritical applications. 

Ceramic capacitors, particularly those constructed using high-dielectric­
constant materials, have a particularly unfortunate combination of charac­

teristics for most operational-amplifier circuits, and should generally be 
avoided except as decoupling components or in other locations where di­

electric absorption is unimportant. 

11.4 REPRESENTATIVE LINEAR CONNECTIONS 

The objective of many operational-amplifier connections is to provide a 

linear gain or transfer function between circuit input and output signals. 

This section augments the collection of linear applications we have seen in 

preceding sections. As mentioned earlier, our objective in discussing these 

circuits is not to form a circuits handbook, but rather to encourage the 

creativity so essential to useful imaginative designs. 
The connections presented in this and subsequent sections do not include 

the minor details that are normally strongly dependent on the specifics of a 

particular application and the operational amplifier used, and that would 

obscure more important and universal features. For example, no attempt is 
made to balance the resistances facing both input terminals, although we 

have seen that such balancing reduces errors related to amplifier input 

currents. We tacitly assume that the amplifier with feedback provides its 

ideal closed-loop gain unless specifically mentioned otherwise. Similarly, 
stability is assumed. The methods used to guarantee the latter assumption 
are the topic of Chapter 13. 

11.4.1 Differential Amplifiers 

We have seen numerous examples of both inverting and noninverting 

amplifier connections. Figure 11.10 shows a topology that combines the 

features of both of these connections. The ideal input-output relationship 
is easily determined by superposition. If Vb is zero, 

V1 = - V1 (11.13)Z1 

If V, is zero, the circuit is a noninverting amplifier preceded by an attenu­

ator, and 

( 1 +Z )Z4 Z 
V = Z3 V (11-14) 
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Z2 

.Zi 

-
Z4

Vb 

Figure 11.10 Differential connection. 

Linearity insures that in general

(" Z4 +)Z1 Z2) Z2 V 

Vo==(Vb -VV) (11.15)
Z3 + Z4 Z1 Z1 

If values are selected so that Z4/Z3 = Z2/Z1. 

Z 
V., - (Vb -- V.) (11.16)

Zi 

This connection is frequently used with four resistors to form a differ­
ential amplifier. Adjustment of any of the four resistors can be used to 
zero common-mode gain. Other possibilities involve combining two ca­
pacitors for Z 2 and Z 4 with two resistors for Zi and Z3 . If the time constants 
of the two combinations are equal, a differential or a noninverting inte­
grator results. 

It is important to note that the input current at the V, terminal of the 
differential connection is dependent on both input voltages, while the cur­
rent at the Vb terminal is dependent only on voltage Vb. This nonsymmetri­
cal loading can cause errors in some applications. Two noninverting unity-
gain amplifiers can be used as buffers to raise input impedance to very high 
levels if required. 

If the design objective is a high-input-impedance differential amplifier 
with high common-mode rejection ratio, the connection shown in Fig. 
11.11 can be used. Consider a common-mode input signal with Va = Vb = 

Vi. In this case the two left-hand amplifiers combine to keep the voltage 
across R 2 zero. Thus for a common-mode input, the intermediate voltages 
V, and Vd are related to inputs as 

Vc = Vd = V. V. = V (11.17) 
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Va - --- R vT 

R2 I> V. 

R3 R4 

Vb 

Figure 11.11 Buffered differential amplifier with high common-mode rejection 
ratio. 

Alternatively, consider a pure differential input signal with Vi/2 = Va = 

- Vb. In this case the midpoint of resistor R 2 is an incrementally grounded 

point, and each of the left-hand amplifiers functions as a noninverting 

amplifier with a gain of (2R 1 + R 2)/R 2. Linearity insures that the differential 

gain of the left-hand pair of amplifiers must be independent of common-
mode level. Thus 

Ve - Vd 2R1 + R2 (11.18) 
Va- Vb R2 

The right-hand amplifier has a gain of zero for the common-mode com­
ponent of Vc and Vd, and a gain of R 4/R 3 for the differential component 
of these intermediate signals. Combining expressions shows that V is in­
dependent of the common-mode component of Va and Vb, and is related 
to these signals as 

V (2R+R 2) R4 (Va - Vb) (11.19)
R2 R3 

In addition to the high input impedance provided by the left-hand ampli­
fiers, the differential gain of this pair makes the common-mode rejection 
of the overall amplifier less sensitive to ratio mismatches of the output-
amplifier resistor networks. 



452 Basic Applications 

11.4.2 A Double Integrator 

We have seen that either inverting or noninverting integration can be 
accomplished with an operational amplifier. Figure 11.12 shows a connec­
tion that provides a second-order integration with a single operational 
amplifier. The circuit is analyzed by the virtual-ground method. Assuming 
that the inverting input of the amplifier is at ground potential 

I(s) = V(s)(11.20)
2R(RCs + 1) 

and 

RC 2s2 V0(s)
IA~s) = R ''V()(11.21)2(RCs + 1) 

The negligible input current of the amplifier forces If = -I . Combining 
Eqns. 11.20 and 11.21 via this constraint shows that 

V0(s) 1 
=- - (11.22)Vi(s) (R Cs)2 

11.4.3 Current Sources 

The operational amplifier can be used as a current source in a number of 
different ways. Figure 11.13 shows two simple configurations. In part a of 
this figure, the load serves as the feedback impedance of an inverting-
connected operational amplifier. The virtual-ground method shows that 
the current through the load must be equal to the current through resistor 
R. In part b, the operational amplifier forces the voltage across R to be 
equal to the input voltage. Since the current required at the inverting input 
terminal of the amplifier is negligible, the load current is equal to the 
current through resistor R. 

vi 2C ci c ­

Figure 11.12 Double integrator. 

http:V()(11.21
http:V(s)(11.20
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Load 

- --- L adL--­

R
R 

(b) 

(a) 

Figure 11.13 Current sources. (a) Inverting connection. (b) Follower connection. 

Both of the current-source connections described above require that the 

load be floating. The configuration shown in Fig. 11.14 relaxes this require­
ment. Here the operational amplifier constrains the source current of a 

field-effect transistor. Provided that operating levels are such that the FET 

gate is reverse biased, the source and drain currents of this device are 

identical. Thus the operational amplifier controls the load current in­

directly. 
The relative operating levels of the circuit shown in Fig. 11.14 must be 

constrained to keep the FET in its forward operating region with its gate 

+VC 

Load = 

Vi+ 

R 

Figure 11.14 Current source using a field-effect transistor. 
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R2=KR 

R,= KR 

+ 

R5, aR a 

R4 = (-a)R 0 
cLoad To arbitrary

V7 1 b Wb I+potential 

R3= yO 

Figure 11.15 Howland current source. 

reverse biased for satisfactory performance. The Howland current source 
shown in Fig. 11.15 allows further freedom in the choice of operating 
levels. 

The analysis of this circuit is simplified by noting that the operational 
amplifier relates V, to Vi and Vb as 

V. = - Vi + 2Vb (11.23) 

The circuit topology implies the relationships 

Io = Ib I. (11.24) 

Ia = Va (11.25)V0aR 

- Vb 
Ib = o V (11.26) 

V0 

(1 - a)R 

and 

Vb = " (11.27)
2 - a 

The transfer relationships of interest for this circuit are the input voltage 
to short-circuit output current transconductance I,/ Vi and the output con­

ductance of the circuit I/V 0 . Solving Eqns. 11.23 through 11.27 for these 
conductances shows that 

Io 1
" v = --- (11.28)
Vi VII = 0 aR 
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and 

= 0 (11.29)
V. Vi = 0 

Since the output current is independent of output voltage, we can model 
the circuit as a current source with a magnitude dependent on input voltage. 

While the output resistance of this current source is independent of the 
quantity a, this parameter does affect scale factor. Smaller values of aR 
also allow a greater maximum output current for a given output voltage 
saturation level from the operational amplifier. There is a tradeoff involved 
in the selection of a, however, since smaller values for this parameter result 
in higher error currents for a given offset voltage referred to the input of 
the amplifier (see Problem P11.11). 

There is further freedom in the selection of relative resistor ratios, since 
an extension of the above analysis shows that the output resistance is in­
finite provided R2/R 1 = (R4 + R 5)/R 3. 

It is interesting to note that the success of this current source actually 
depends on positive feedback. Consider a voltage V, applied to the output 
terminal of the circuit. The current that flows through resistor R 4 is exactly 
balanced by current supplied from the output of the operational amplifier 
via resistor R5. The voltage at the output of the operational amplifier is 
the same polarity as V, and has a larger magnitude than this variable. 

We should further note that the resistor R3 does not have to be connected 
to ground, but can also function as an input terminal. In this configuration 
the output current is proportional to the difference between the voltages 
applied to the two inputs. 

11.4.4 Circuits which Provide a Controlled Driving-Point Impedance 

We have seen examples of circuits designed to produce very high or very 
low input or output impedances. It is also possible to use operational 
amplifiers to produce precisely controlled output or driving-point imped­
ances. Consider the circuit shown in Fig. 11.16. The operational amplifier 
is configured to provide a noninverting gain of two. As a result of this gain, 
the impedance connected between the amplifier output and its noninverting 
input has a voltage Vi across it with a polarity as shown in Fig. 11.16. 
Since there is negligible current required at the inverting input of the ampli­
fier, the input current required from the source is 

Ii = -I = (11.30) 
z 
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Vg 

lI 

Vi 
R V( -2V/ 

L 
R 

Figure 11.16 Negative impedance converter. 

Solving Eqn. 11.30 for the input impedance of the circuit yields 

Vi 
(11.31)

Ii 

Equation 11.31 shows that this circuit has sufficient positive feedback to 
produce negative input impedances. 

The gyrator shown in Fig. 11.17 is another example of a circuit that 

provides a controlled driving-point impedance. The circuit relationships 
include 

(11.32)Ii = I. + Ib 

Vi - Vb V­ (11.33) 
- 6 

Ib --
R1,R 

(11.34)Ib =R1 

Vb 
Z (11.35) 

R2 

Combining Eqns. 11.32 through 11.35 and solving for the driving-point 

impedance shows that 

V_ R1R2 (11.36)
Ii Z 
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Ia 

VV 2V 

Vi ~~2R 2 

- Ib 

R,1 

Figure 11.17 Gyrator. 

We see that the gyrator provides a driving-point impedance that is re­

ciprocally related to another circuit impedance. Applications include the 

synthesis of elements that function as inductors using only capacitors, re­
sistors, and operational amplifiers. For example, if we choose impedance Z 
to be a 1-yF capacitor and R1 = R2 = 1 ko, the driving-point impedance of 
the circuit shown in Fig. 11.17 is s, equivalent to that of a 1-henry inductor. 

11.5 NONLINEAR CONNECTIONS 

The topologies presented in Section 11.4 were intended to provide 
linear gains, transfer functions, or impedances. While practical realizations 

of these circuits may include nonlinear elements, the feedback is arranged 

to minimize the effects of such nonlinearities. In many other cases feed­
back implemented by means of operational amplifiers is used to augment, 

control, or idealize the characteristics of nonlinear elements. Examples of 

these types of applications are presented in this section. 

11.5.1 Precision Rectifiers 

Many circuit connections use diodes to rectify signals. However, the for­
ward voltage drop associated with a diode limits its ability to rectify low­
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+L
 
Slope = 1 

(b) 

(a) 

Figure 11.18 Precision rectifier. (a) Circuit. (b) Transfer characteristics. 

level signals. The combination of a diode with an operational amplifier 

(Fig. 11.18) results in a circuit with a much lower threshold. Operation de­

pends on the fact that the diode-amplifier combination can only pull the 

output voltage positive, so that negative input voltages result in zero out­

put. With a positive input voltage, a negligibly small differential signal 

(equal to the threshold voltage of the diode divided by the open-loop gain 

of the amplifier) is amplified to provide sufficient amplifier output voltage 

to overcome the diode threshold, with the result that 

vo = vr vr > 0 (l1.37a) 

vo = 0 vO< 0 (11.37b) 

Many variations of this precision rectifier or "superdiode" exist. For 

example, the circuit shown in Fig. 11.19 rectifies and provides a current-

source drive for a floating load such as a D'Arsonval meter movement. 

Figure 11.20 illustrates another rectifier circuit. With v, negative, voltage 

VA is zero, and v 0 = - v, because of the inversion provided by the right-

hand amplifier. The transistor provides a feedback path for the first ampli­

fier so that it remains in its linear region for negative inputs. Operation in 

the linear region keeps the inverting input of the first amplifier at ground 

potential, thereby preventing the input signal from driving voltage VA via 

direct resistive feedthrough. Maintaining linear-region operation also elimi­

nates the long amplifier recovery times that frequently accompany overload 

and saturation. While a diode could be used in place of the transistor, the 

transistor provides a convenient method for driving further amplifying cir­

cuits, which indicate input-signal polarity if this function is required. For 

positive input voltages, voltage VA = - vr, so that the resistor with value 
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VV 

1 
L-R 

Load 

R 

Figure 11.19 Full-wave precision rectifier for floating load. 

R/2 also applies current to the input of the second amplifier, with the 
result that 

vo = -(vr - 2vr) = vr VI > 0 (ll.38a) 

VO = - Vr < 0 (11.38b) 

11.5.2 A Peak Detector 

The peak-detector circuit shown in Fig. 11.21 illustrates a further elabo­
ration on the general theme of minimizing the effects of voltage drops in 
various elements by including these drops inside a feedback loop. If the 
output voltage is more positive than the input voltage, the output of the 
operational amplifier will be saturated in the negative direction. (Some 
form of clamping may be included to speed recovery from this state.) 
Under these conditions, the capacitor current consists only of diode and 
FET-gate leakage currents; thus the capacitor voltage changes very slowly. 
As a matter of practical concern, the circuit will function properly only if 
current levels are such that the capacitor voltage drifts negatively in this 
state. Otherwise, the connection will eventually saturate at its maximum 
positive output level. 

If vr becomes greater than vo, the capacitor is charged rapidly from the 
output of the operational amplifier via the diode until equality is reestab­
lished. Note that the capacitor voltage is not forced to be equal to vr, but 
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To indicator circuit 

VI 

V0 

AOI 

Figure 11.20 Full-wave precision rectifier. 

+ ­

Figure 11.21 Peak detector. 

rather to be equal to a voltage that, combined with the FET gate-to-source 
voltage, forces equality between vo and vr. In this way the output voltage 
"remembers" the most positive value of the input signal. 

11.5.3 Generation of Piecewise-Linear Transfer Characteristics 

Diodes can be combined with operational amplifiers to realize signal-
shaping circuits other than rectifiers. Figure 11.22 shows a circuit that pro­
vides a compressive or limiting-type nonlinear transfer relationship. For 
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Figure 11.22 Limiter. (a) Circuit. (b) Transfer characteristics. 
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input voltages more negative than VB(R1Ra/R ) the diode is an open cir­2R 4 

cuit, and the incremental gain of the circuit is -R 2/R 1. When vr = 
VB(R1R 3/R 2 R4), the diode is on the threshold of conduction. Assuming a 
"perfect" diode (zero threshold voltage and zero on resistance in the for­
ward direction), the effective feedback resistance for further increases in 
input voltage is R 2 11 R3, and the magnitude of the incremental gain decreases 
to -(R 2 R3)/R 1 . 

The operation of the limiter was described assuming perfect diode char­
acteristics. If the performance degradation that results from actual diode 
characteristics is intolerable, a "superdiode" connection can be used as 
shown in Fig. 11.23. The lower operational amplifier cannot affect circuit 
operation for the positive values of VA that correspond to input voltages 
more negative than VB(RlR 3/R 2 R 4) because the diode in series with its 
output is reverse biased. However, the lower amplifier can supply as much 
current as is required to keep the voltage at the junction of R3 and R 4 from 
becoming negative, and thus this circuit provides hard limiting with the 
incremental gain dropping to zero for input voltages more positive than 
the threshold level. If softer limiting is required, a resistor can be included 
at the indicated point. 

It is clear that additional resistor networks and diodes (or superdiodes) 
can be added to increase the number of break points in the transfer charac­
teristics. However, the topology of Fig. 11.22 or Fig. 11.23 precludes in­
creasing the magnitude of the incremental gain as input-voltage magnitude 
increases. Shifting the diode-resistor network to the amplifier input circuit 
(Fig. 11.24) is one way that expansive-type nonlinearities can be realized. 

11.5.4 Log and Antilog Circuits 

The exponential current-voltage characteristics of diodes or transistors 
can be exploited to realize circuits with exponential or logarithmic charac­
teristics. Figure 11.25 illustrates a very simple circuit that provides a 
logarithmic relationship between output voltage and input current. Under 
normal operating conditions, the operational amplifier keeps the collector-
to-base voltage of the transistor at zero. As a result, collector-to-base 
junction leakage currents are eliminated as are base-width modulation ef­
fects, and many types of transistors will accurately follow the relationship 

ic ~ IsevBE/kT (11.39) 

over a range of operating current levels that extends from picoamperes to 
a fraction of a milliamp. Deviation from purely exponential behavior oc­
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Figure 11.23 Limiter incorporating a super diode. (a) Circuit. (b) Transfer 
characteristics. 
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Expander. (a) Circuit. (b) Transfer characteristics. 

464 



465 Nonlinear Connections 

----VO0 


(> 0) 

Figure 11.25 Log circuit. 

curs at current levels comparable to Is and at current levels where ohmic 
resistances become significant. 4 

For this circuit topology, VBE = ~ vo, and feedback keeps ic = ir. Sub­
stituting these constraints into Eqn. 11.39 shows that 

ir = Ise-q'voI'T (11.40) 

or, if we solve for vo, 

kT ir 
=o - In - (11.41) 

q Is 

Of course, the current applied to this circuit can be derived from an 
available input voltage via a resistor connected to the inverting input ter­
minal of the operational amplifier. In this case, the voltage offset of the 
operational amplifier contributes an error term that normally limits dy­
namic range to three or four orders of magnitude. If the input signal is 
available as a current, as it is for some sensors such as ionization gauges, 
much wider dynamic range is possible for sufficiently low amplifier bias 
current. 

One shortcoming of this simple circuit is that the quantity Is is highly 
temperature dependent (see Section 7.2). The circuit shown in Fig. 11.26 
offers improved performance with temperature. Feedback through the 
right-hand operational amplifier keeps the collector current of Q2 equal to 
the reference current IR; thus 

kT IR 
VBE2 = (11.42)-n 

q Is2 

4 Theoretically, a diode could be used as a feedback element as indicated in Section 1.2.3 
to obtain logarithmic closed-loop characteristics. In practice, the transistor connection 
illustrated here is preferable, since transistors generally display the desired characteristics 
over a far larger dynamic range than do diodes. 
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Note that, since the potential at the collector of Q2 is held at zero volts by 
the operational amplifier, the reference current is easily obtained via a re­
sistor connected to a positive supply voltage. 

The left-hand operational amplifier adjusts the base voltage of Q2, 
thereby changing the base-to-emitter voltage of Q1 until the collector cur­
rent of Q1 equals ir, with the result that 

kT ir 
VBE1 = n 	 (11.43) 

q Isi 

If values are selected so that the base current of Q2 does not load the 
base-circuit attenuator, the voltage relationship is 

VBE1 = VBE2 	 - VO (11.44) 

Combining Eqns. 11.42 through 11.44 and solving for vo yields 

UkTF r I~R kT 4r Is2 vo 16.7 - In n - -16.7 In (11.45)q is1 Is2 _q 	 in Is1 

If transistors 	Q1 and Q2 have well-matched values of Is, Eqn. 11.45 becomes 

kT Fir]
vo=- 16.7 	 UIn ir(11.46) 

q LiRJ 

The resistive-divider attenuation ratio of 16.7 is used so that at room tem­
perature, Eqn. 11.46 reduces to 

vo = -1 volt logio [r 	 (11.47)
1iR 

While the use of matched transistors as shown in Fig. 11.26 does elimi­
nate the dependence of the output on Is, Eqn. 11.46 shows that the scale 
factor of the circuit is proportional to absolute temperature. One common 
solution is to compensate by using a resistor with a value inversely propor­
tional to absolute temperature as the smaller of the two resistors in the 
voltage divider. 

The antilog circuit shown in Fig. 11.27 results from rearranging compo­
nents. The reader should verify that, at room temperature and with matched 
transistors, the input-output relationship for this circuit is 

vo = R 1IR X 10-r/1 vo t)	 (11.48) 

http:ir(11.46
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Figure 11.26 Improved log circuit. 
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Figure 11.27 Antilog circuit. 
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11.5.5 Analog Multiplication 

There are a number of configurations that perform analog multiplication, 
that is, provide an output voltage proportional to the product of two input 
voltages. For example, one or more log circuits can be combined with an 
antilog circuit to realize multipliers, dividers, or circuits that raise a voltage 
to a power. Another technique known as quarter-square multiplication ex­
ploits the relationship 

(vx + vy)2 - (vx - vy)2 = 4vxvy (11.49) 

The quadratic transfer characteristics can be approximated with piecewise­
linear diode-operational amplifier connections. 

A method known as transconductance multiplication is the basis for 
several available discrete and integrated-circuit analog multipliers because 
it is capable of moderate accuracy and requires relatively few components. 
A simplified transconductance multiplier (limited to two-quadrant opera­
tion because the voltage vy cannot be negative) is shown in Fig. 11.28. 

If it is assumed the VX attenuator is not loaded by the input current of 
transistor Q1 and that the differential input voltage applied to the pair is 
small enough so that linear-region relationships are valid for the transistors, 
the difference between the two collector currents is 

ici - ic 2 = 	 avxgm (11.50) 

where gm is the (equal) transconductance of either transistor. 
For small-signal operation, the quantity gm is related to quiescent oper­

ating current, which is in turn determined by the input variable vy. Thus, 

m iyq 	 Kvyq (11.51)
2kT 2kT 

Substituting 	Eqn. 11.51 into Eqn. 11.50 shows that 

ic1- = 	 aKq xUY (11.52)
2kT V 

The reader should convince himself that the differentially connected 
operational amplifier provides an output voltage equal to R 2 times the 
difference between the two collector currents. Substituting this relationship 
into Eqn. 11.52 yields 

aKR2q 
2kT 	 (11.53) 
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Figure 11.28 Two-quadrant transconductance multiplier. 

There are a number of design constraints necessary for satisfactory op­

eration or introduced for convenience, including the following. 

(a) The current iy is normally limited to a fraction of a milliamp so that 

performance is not degraded by ohmic transistor resistance. 

(b) The attenuation ratio a must be chosen to limit the input voltage 

applied to the transistor pair to a low level. Detailed calculations show that 

the inaccuracy attributable to the exponential transistor characteristics can 

be limited to less than 1% of maximum output if the maximum magnitude 

of the voltage into the differential pair is kept below approximately 8 mV. 

(c) Because of the limited signal levels applied to the differential pair, 
its drift has a significant effect on overall performance. The circuit can be 

balanced by adjusting the ratio of the two resistors labeled R 1 in Fig. 11.28. 
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(d) The temperature dependence of Eqn. 11.53 can be compensated for 
by making the voltage-attenuator ratio or the current-source scale factor 
temperature dependent. 

(e) The restriction of single-polarity values for the vy input can be re­
moved by including a second differential pair of transistors, and by making 
the operating currents of the two pairs vary differentially as a function of 
vy. The interested reader is invited to show that the input-output relation­
ship for the four-quadrant transconductance multiplier shown in Fig. 
11.29 is given by Eqn. 11.53. 

(f) Scale factor is frequently adjusted to give vo = vxvy/lO volts, a 
value compatible with the signal levels common to many analog systems. 
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Figure 11.29 Four-quadrant transconductance multiplier. 
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In general, achieving highly accurate performance from a transconduct­
ance multiplier involves a rather complex series of adjustments to null 
various sources of error. This process is simplified somewhat by an inno­
vation developed by Gilbert- which uses compensating diodes to eliminate 
scale-factor temperature dependence and to increase the signal levels that 
may be applied to the differential pairs. While there are problems that must 
be overcome, the technique is good enough so that several manufacturers 
offer inexpensive transconductance multipliers with errors from all sources 
of less than 1% of maximum output. 

11.6 	 APPLICATIONS INVOLVING ANALOG-SIGNAL
 
SWITCHING
 

Systems that combine operational amplifiers with analog switches add a 
powerful dimension to the data-processing capability of the amplifiers 
alone. The switches are often used to control analog operations with digital 
command signals, and the resultant hybrid (analog-digital) circuits such as 
analog-to-digital converters are used in a myriad of applications. While a 
detailed discussion of these advanced techniques is beyond the scope of this 
book, several simple examples of connections including analog switching 
are presented in this section. 

Either junction-gate or Mos field-effect transistors are frequently used for 
low-level signal switching. One advantage of a field-effect transistor as an 
analog switch is that it has no inherent offset voltage. The drain-to-source 
characteristics of a FET in the on state are linear and resistive for small 
channel currents, and the drain-to-source voltage is zero for zero channel 
current. A second advantage is that the channel leakage current of a 
pinched-off FET is generally under 1 nA at room temperature. This level is 
insignificant in many operational-amplifier connections. 

There 	are several integrated circuits available that combine FET'S with 
drive circuitry to interface the switch to digital-signal levels. Alternatively, 
discrete-component circuits can be designed to take advantage of the 
lower on-state resistances generally available from discrete field-effect 
transistors. 

A second possibility is to use a bipolar transistor as a switch. The cur­
rent handling capacity of bipolar devices is generally higher than that of 
FET's. However, there is a collector-to-base offset voltage that can be as 

5B. Gilbert, "A D.C.-500 MHz Amplifier /Multiplier Principle," Digest of Technical 
Papers, 1968 Solid-State Circuits Conference, Philadelphia, Pa. 
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Figure 11.30 Gated operational amplifier. 

high as several hundred millivolts.' Some high-current switching techniques 
arrange the feedback to eliminate offset-voltage effects. 

A third type of switch combines the switching and amplification func­
tions in a single circuit. Figure 11.30 shows a possible connection. With 
VG negative, the amplifier is an example of the simple two-stage topology 
described in Section 8.2.3. If voltage VG is switched to a positive poten­
tial, all three transistors and the diode become reverse biased, and thus 
both inputs and the output are open circuits. The gating feature can be 
retained in designs that expand the simple configuration shown in Fig. 
11.30 into a complete operational amplifier. Several integrated-circuit 
examples of this type of design exist (see Section 10.4.2). 

6 One way to reduce the offset voltage of a bipolar transistor is to use it in an inverted or 
reverse mode with the roles of the emitter and collector interchanged, and offset voltages 
of a fraction of a millivolt are possible in this connection. The reason for the lower offset 
in the inverted mode is that the collector-to-emitter voltage of a saturated transistor is, 
in the absence of ohmic drops, 

kT 1 
Voffut = - In ­

q a 

The reverse common-base current gain aR is used to determine forward-region offset, while 
the forward gain aF is used to determine inverted offset voltage. Since aF is generally close 
to one, inverted offset voltages can be quite small. Unfortunately, current gain and break­
down voltages are usually limited in the inverted connection. Consequently, as FET charac­
teristics have improved, these devices have largely replaced inverted bipolar transistors as 
low-level switches. 
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One frequent use for analog switching is to multiplex a number of signals. 
The required circuit can be realized by using field-effect transistors to 
switch the signal applied to the input of a noninverting buffer amplifier. 
Another topology (see Fig. -11.31) results in an inverting multiplexer. The 
advantage of this configuration is that the drive circuit can be simpler than 
is the case with the noninverting connection. Recall that for a junction FET, 
it is necessary to make the gate potential approximately equal to the channel 
potential to turn on the transistor. If the noninverting connection is used, 
the channel of the on FET will be at the potential of the selected input. 
Furthermore, one end of the channel of all other switches will also be at 
the potential of the selected input. These uncertain levels complicate the 
drive-circuit requirements. 

In the inverting topology, the channel of the on FET will be close to 
ground, and the diodes shown in Fig. 11.31 insure that the drain of the off 
FET will not be significantly more negative than ground. Thus a switch is 
turned on by grounding its gate, and turned off by making its gate more 
negative than the pinchoff voltage. An example of a common-base level 
shifter that converts T2L logic signals to the required gate-drive levels is 
described in Section 12.3.3. 
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Figure 11.31 Inverting multiplexer. 
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Switch R 

SwitchJ()R1 

Figure 11.32 Gain-range amplifier. 

The compensating FET is selected to have an on resistance matched to 
that of the switches. This device keeps the gain of the multiplexer equal to 
- 1 as on resistance changes with temperature. 

There are a variety of applications that require an amplifier with a select­
able closed-loop gain. One topology for this type of gain-range amplifier 
is shown in Fig. 11.32. With switch o closed and switch o open, the ideal 
closed-loop gain is one, while reversing the state of the two switches 
changes the ideal gain to (R 1 + R 2)/R 1 . The on resistance of the switches is 
relatively unimportant because only the low input current of the opera­
tional amplifier flows through a switch in this connection. 

A related circuit function is that of an amplifier that provides a select­
able gain of plus or minus one. One use for this kind of circuit is in square-
wave modulators or demodulators. Figure 11.33 illustrates a possible con­
nection. Assume initially the switch o is not included in the circuit. With 
switch 0 closed, the amplifier provides an ideal closed-loop gain of - 1. 
With switch 0 open, the voltage VA = v,, and thus the circuit provides an 
ideal gain of +1. 

Switch @ may be included to reduce the effects of switch on-state re­
sistance. Assume, for example, that design considerations dictate a value 
for R 1 equal to 10 times the on-state resistance of a switch. If only switch 
o is used, a closed-loop gain error of 0.2% results from this resistance with 
the switch closed. If both switches are included and closed, the voltage VA 

is reduced by a factor of 2.5 X 101 relative to vr because of the resulting two 
stages of attenuation. This attenuation lowers the error from feedthrough 
to an insignificant level. 
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Figure 11.33 Amplifier that provides gain of +1. 

There are a number of topologies that combine operational amplifiers 
with switches to form a sample-and-hold circuit. Figure 11.34 shows one 
possibility. When the FET conducts, the loop drives the voltage vo toward 
the value of vr. The complementary emitter-follower pair amplifies the 
limited current available from the operational amplifier and FET combina­
tion so that large currents can be supplied to the capacitor to charge it 
rapidly. The resistive path between bases and emitters of the follower pair 

+ VS 

Vi + 

+ 0+Fr 

T yol 

Figure 11.34 Sample-and-hold circuit. 
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eliminates the deadzone, which would result near equilibrium if the tran­
sistors alone were used. While the gain of the first operational amplifier 
insures that such a deadzone would not influence static characteristics, it 
could deteriorate stability. 

When the switch opens, current into the capacitor is limited to buffer-
amplifier input current and switch and emitter-follower leakage current. 
The base-to-emitter resistor prevents amplification of leakage currents in 
this state. Since the total capacitor current in the hold mode can be kept 
small, the held voltage maintains the desired value for prolonged periods. 

Note that a field-effect transistor could be used as a buffer as was done 
in the peak detector described in Section 11.5.2 since the high open-loop 
gain of the first amplifier would drive the capacitor voltage to the value 
necessary to make vo = vr. However, the output resistance is higher in the 
hold mode if the FET buffer is used, since feedback is not available to reduce 
output impedance in the hold mode. 

PROBLEMS 

P11.1 
The following results are obtained for measurements made using the 

circuit shown in Fig. 11.35a. 

1. With switch Dopen and switch o closed, Vo = 12 mV. 
2. With switch o closed and switch o closed, Vo = 32 mV. 
3. With switch o closed and switch o open, Vo = 10 mV. 

Determine values for the three bias generators shown in Fig. 11.35b. In 
this representation, the external generators model all bias voltage and cur­
rent effects so that the input currents and differential input voltage at the 
terminals of the amplifier shown in the model are zero. 

The amplifier is connected as shown in Fig. 1l.35c. Express vo in terms 
of vr and the amplifier parameters shown in Fig. 11.35b. 

P11.2 
The circuit shown in Fig. 11.2a is used to measure the input offset volt­

age of an operational amplifier with a d-c open-loop voltage gain of 104. 
What error does limited loop transmission introduce into the offset mea­
surement for these parameter values? 

P11.3 
A certain operational amplifier is specified to have a maximum input 

offset voltage magnitude of 5 mV. The amplifier is connected as a unity-
gain inverter using two 2-MQ resistors. The noninverting input is con­
nected directly to ground. Measurements reveal that the output voltage is 
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100 k92 
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rent or differential 
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100 kn 

100 k92 

VI 

Figure 11.35 (a) Test circuit. (b) Model. (c) Amplifier connection. 

+ 50 mV with zero input voltage in this connection. The amplifier in ques­

tion has provision for reducing the input offset voltage at one temperature 

to zero by use of an appropriately connected external potentiometer that 

effectively changes the magnitude of current sources that load the amplifier 
input-stage transistors. It is found that by use of an extreme setting of the 

balance pot it is possible to make the output voltage of the inverter zero for 
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zero input voltage. Discuss possible disadvantages of this method of ad­
justment. Suggest alternatives likely to yield superior performance. 

P11.4 
A simplified schematic for an integrated-circuit operational amplifier is 

shown in Fig. 11.36. Careful open-loop gain measurements indicate a gain 
of 300,000 at 1kHz for the uncompensated amplifier and that the first pole 
in the amplifier transfer function is above this frequency. In the absence of 
load, the heating attributable to transistor Q3 and its current-source load 
raise the temperature of Q2 0.10 C above that of Q1 under static conditions 
with the output at its negative saturation level of - 13 volts. Similarly, 
with the output at its positive saturation level (+ 13 volts) the temperature 
of transistor Q1 is eventually raised 0.1* C above that of Q2. Plot the 
vo versus vr characteristics that result for very slow variations in vr. Now 
assume that the chip locations of transistors Q1 and Q2 are interchanged. 
Again plot the vo versus vr characteristics. Discuss how these results can 
complicate measurements of low-frequency open-loop gain. 

+15 V 

20 PA 

1 mA 

V1 

+1 Vo 

10 1A 

15 V 

Figure 11.36 Operational amplifier. 
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P11.5 
Integrated-circuit operational amplifiers that use an input stage similar 

to that of the LM101A (see Section 10.4.1) generally have a high maximum 
differential input voltage rating. Explain why differential input voltages of 
approximately 30 volts are possible with this stage compared with the 6-volt 
maximum level typically specified for a conventional differential amplifier. 

P11.6 
A low input current operational amplifier has an open-loop transfer 

function 
106 

a(s) = 
(s + 1)(10-Is + 1) 

This amplifier is connected to monitor the output current from an ioniza­
tion gauge. The resultant circuit can be modeled as shown in Fig. 11.37. 
The capacitance shown at the input of the amplifier includes, in addition 
to the capacitance of the amplifier itself, the capacitance of the gauge and 
of the shielded cable used to connect the gauge to the amplifier. Investigate 
the stability of this circuit. Suggest a method for improving stability. 

P11.7 
An operational amplifier with high d-c open loop gain and 100-mA out­

put current capacity is connected as shown in Fig. 11.38. Low-frequency 
measurements indicate an incremental gain v0/v = 1100. Explain. 

100 Mn 

'W\ 
a (s) Va 

JO~n 
1 40 T 100 pF V 

J 
10 Mn 

Figure 11.37 Model for operational amplifier connected to ionization gauge. 
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Figure 11.38 Noninverting amplifier connection. 

P11.8 
Measurements reveal that the dielectric absorption associated with a 

certain 1-yF capacitor can be modeled as shown in Fig. 11.39. Design a 
circuit that combines this capacitor with an ideal operational amplifier and 
any necessary passive components such that the closed-loop transfer func­
tion is - 1/s. 

P11.9 
A differential connection as shown in Fig. 11.10 is constructed with 

Z1 = Z3 = 1 kQ and Z2 = Z4 = 10 kU. The operational amplifier has very 
high d-c open-loop gain and a common-mode rejection ratio of 104. As­
suming all other operational-amplifier characteristics are ideal, what out­
put voltage results with both inputs equal to one volt? Suggest a modifica­
tion that raises the common-mode rejection ratio for the connection. 

P11.10 
An operational amplifier with a d-c open-loop gain of 101 is connected 

as a current source with the topology shown in Fig. 11.14. The resistor 

100 Mn 1000pF 

0.999 y F 

Figure 11.39 Capacitor with dielectric absorption. 
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value is R = 10 k. With an input voltage of +5 volts, FET parameters are 

yf = 1 mmho and yo, = 5 pmho. (See Fig. 8.19 for a definition of terms.) 
What is the incremental output resistance of this connection? 

P11.11 
A Howland current source is constructed as shown in Fig. 11.40. Deter­

mine the current I, as a function of V., Vb, V,, and a. Assume that the 
offset voltage referred to the input of the amplifier is 5 mV and that the 
operational amplifier saturates at an output voltage level of f 10 volts. 
Select the parameter a to maximize the output current available at zero 
output voltage subject to the constraint that Iio l < 5 yA with VA = VB = 0. 

P11.12 
Design a circuit using no inductors that provides a driving-point im­

pedance Z = -1 k + 10- 2 s. 

P11.13 
A nonlinear lag network is required to compensate a servomechanism. 

(See Section 6.3.5 for a discussion of this type of network.) The network 
should have a transfer function 

V0(s) 0.02s + 1 

Vi(s) s+ 1 

for small input-signal levels. When the magnitude of the voltage across the 
capacitor exceeds 0.1 volt, the capacitor voltage should be clamped to pre­

10 k92 

5 k2 

5 kS + 

V4I ++ 5k 

SF(1 -a)5k2 k 
Vb 

fI, 

I-

Figure 11.40 Differential current source. 
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Figure 11.41 Nonlinear transfer characteristics. 

vent further increases. Thus the large-signal transfer characteristics will 
approach vo/v 1 ~ 0.02, independent of frequency. 

Design the required network using a capacitor no larger than 5 yF. 
Provide buffering so that a power amplifier with 1-kR input resistance does 
not load the network appreciably. The capacitor-voltage limiting level for 
your design should be relatively temperature independent. 

P11.14 
Design a circuit that provides the transfer characteristics shown in Fig. 

11.41. Use a configuration that makes the breakpoint locations well defined 
and relatively temperature independent. Select resistor values so that op­
erational-amplifier input bias currents of 100 nA do not significantly affect 
performance and so that the loads applied to the outputs of the amplifiers 
used are less the 1 mA for any |vr < 15 volts. 

P11.15 
Design a circuit that provides an output 

VVXVY3 
VO 10 volts 

You may assume that both vx and Vy are limited to a range of 0 to - 10 
volts. Assume that any operational amplifiers used can provide undistorted 

outputs of h 10 volts. You should design your circuit so that various volt­
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age levels are close to maximum values for maximum input signal levels in 

order to improve dynamic range. Comment on the temperature stability 

of your design. 

P11.16
 
A sample-and-hold circuit is built using the topology shown in Fig.
 

11.34. The open-loop transfer function of the first operational amplifier is 

105 
a(s) = (O.Ols + 1)(5 X 10 8s + 1)2 

and an LM 110 amplifier with a closed-loop bandwidth in excess of 20 MHz 
is used as the output buffer. The sum of the FET on resistance and the re­

sistor shunting the current-booster transistors is 1 ko, and the capacitor 

value is 1 yF. Investigate the stability of this system under small-signal 
conditions of operation. Suggest a circuit modification that can be used to 

improve stability. Comment on the effectiveness of your method under 

large-signal conditions (with the booster transistors conducting) as well as 

for linear-region operation. 





CHAPTER XII 

ADVANCED APPLICATIONS
 

12.1 SINUSOIDAL OSCILLATORS 

One of the major hazards involved in the application of operational 

amplifiers is that the user often finds that they oscillate in connections he 

wishes were stable. An objective of this book is to provide guidance to help 
circumvent this common pitfall. There are, however, many applications 
that require a periodic waveform with a controlled frequency, waveshape, 
and amplitude, and operational amplifiers are frequently used to generate 

these signals. 
If a sinusoidal output is required, the conditions that must be satisfied to 

generate this waveform can be determined from the linear feedback theory 
presented in earlier chapters. 

12.1.1 The Wien-Bridge Oscillator 

The Wien-bridge corifiguration (Fig. 12.1) is one way to implement a 

sinusoidal oscillator. The transfer function of the network that connects 

the output of the amplifier to its noninverting input is (in the absence of 

loading) 

V.(s) _ RCs 
V0(s) ~ R2Cess + 3RCs + 1 

The operational amplifier is connected for a noninverting gain of 3. Com­

bining this gain with Eqn. 12.1 yields for a loop transmission in this 

positive-feedback system 

3RCs 
C2 2L(s) = s 3RCs (12.2)

R2Cs + 3RCs + 1 

The characteristic equation 

R2C2 23RCs s + 1 
I - L(s) = 1 -

2 
3RsR222+1 2 

(12.3)
R2C2s + 3RCs + 1 R2 C2s + 3RCs + 1 

has imaginary zeros at s = ±(j/RC), and thus the system can sustain 

constant-amplitude sinusoidal oscillations at a frequency w = 1/RC. 

485 
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Figure 12.1 Wien-bridge oscillator. 

12.1.2 Quadrature Oscillators 

The quadrature oscillator (Fig. 12.2) combines an inverting and a non-
inverting integrator to provide two sinusoids time phase shifted by 90* 
with respect to each other. The loop transmission for this connection is 

[+ 1)R3Cas 
L(s) = L Is] L(R3C3S + 1 (12.4)

R1Cis (R2C2s + 1)RaCas 

In this expression, the first bracketed term is the closed-loop transfer 
function of the left-hand operational amplifier (the inverting integrator), 

C1 

R, 

R2 

>1 

Figure 12.2 Quadrature oscillator. 
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while the second bracketed expression is the closed-loop transfer function 
of the right-hand operational amplifier. By proper selection of component 
values, the right-hand amplifier functions as a noninverting integrator. In 
fact, the discussion of this general connection in Section 11.4.1 shows that 
only the noninverting input of a differential connection is used as a signal 
input in this application. 

If all three times constants are made equal so that R1C1 = R2 C2 = R3C3 = 

RC, Eqn. 12.4 reduces to 

1 
2L(s) R2 C2s (12.5) 

The corresponding characteristic equation for this negative-feedback sys­
tem is 

2C21 s 1_R 
2 +

21 - L(s) = 1 + = R 2C2s (12.6)
R2C2s2 R2C2 s2 

Again, the imaginary zeros of Eqn. 12.6 indicate the potential for constant-
amplitude sinusoidal oscillation. Note that, since there is an integration 
between Va and Vb, these two signals will be phase shifted in time by 90* 
with respect to each other. 

A similar type of oscillator (without an available quadrature output) can 
be constructed using a single amplifier configured as a double integrator 
(Fig. 11.12) with its output connected back to its input. 

12.1.3 Amplitude Stabilization by Means of Limiting 

There is a fundamental paradox that complicates the design of sinusoidal 
oscillators. A necessary and sufficient condition for the generation of con­
stant-amplitude sinusoidal signals is that a pair of closed-loop poles of a 
feedback system lie on the imaginary axis and that no closed-loop poles 
are in the right half of the s plane. However, with this condition exactly 
satisfied (an impossibility in any but a purely mathematical system), the 
amplitude of the system output is determined by initial conditions. In any 
physical system, minor departure from ideal pole location results in an 
oscillation with an exponentially growing or decaying amplitude. 

It is necessary to include some mechanism in the oscillator to stabilize 
its output amplitude at the desired level. One possibility is to design the 
oscillator so that its dominant pole pair lies slightly to the right of the 
imaginary axis for small signal levels, and then use a nonlinearity to limit 
amplitude to a controlled level. This approach was illustrated in Section 
6.3.3 as an example of describing-function analysis and is reviewed briefly 
here. 
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Consider the Wien-bridge oscillator shown in Fig. 12.1. If the ratio of 
the resistors connecting the output of the amplifier to its inverting input is 
changed, it is possible to change the gain of the amplifier from 3 to 3(1 + A). 
As a result, Eqn. 12.3 becomes 

23(1 + A) R2 C 2s 2 - 3ARCs + IILs) =I R2C2s 2 + 3RCs + I R 2C2s + 3RCs + 1 (12.7) 

The zeros of the characteristic equation (which are identically the closed-
loop pole locations) become second order with w,, = 1/RC and r = 
- (3/2)A. In practice, A is chosen to be large enough so that the closed-loop 
poles remain in the right-half plane for all anticipated parameter variations. 
For example, component-value tolerances or dielectric absorption asso­
ciated with the capacitors alter the closed-loop pole locations. 

Limiting can then be used to lower the value of A (in a describing-func­
tion sense) so that the output amplitude is controlled. Figure 12.3 shows 
one possible circuit where a value of A = 0.01 is used. The oscillation fre­
quency is 104 rad/sec or approximately 1.6 kHz. Output amplitude is 
(allowing for the diode forward voltage) approximately 20 V peak-to-peak. 
The symmetrical limiting is used since it does not add a d-c component or 
even harmonics to the output signal if the diodes are matched. 

12.1.4 Amplitude Control by Parameter Variation 

The use of a limiter to change a loop parameter in a describing-function 
sense after a signal amplitude has reached a specified value is one way to 
stabilize the output amplitude of an oscillator. This approach can result in 
significant harmonic distortion of the output signal, particularly when the 
oscillator is designed to function in spite of relatively large variations in ele­
ment values. An alternative approach, which often results in significantly 
lower harmonic distortion, is to use an auxillary feedback loop to adjust 
some parameter value in such a way as to place the closed-loop poles pre­
cisely on the imaginary axis, precluding further changes in the amplitude 
of the oscillation, once the desired level has been reached. This technique is 
frequently referred to as automatic gain control, although in practice some 
quantity other than gain may be varied. 

As an example of this type of amplitude stabilization, let us consider the 
effect on performance of varying resistor R3 in the quadrature oscillator 
(Fig. 12.2). We assume that C1 = C2 = C3, and that R1 = R2 = R, while 
R3= (1 + A)R. In this case the loop transmission of the system (see Eqn. 
12.4) is 

(1 + A)RCs + 1L(s) - R2 C2s2(l + A) (RCs + 1) (12.8) 
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with a corresponding characteristic equation 

R3 Ca(1 + A)s 3 + R2C2(1 + A)s 2 + RC(1 + A)s + 1 
(12.9)

R 2C 2s2 (l + A) (RCs + 1) 

If we assume a small value for A, the zeros of the characteristic equation 
can be readily determined, since 

R3 C3(1 + A)s + R2 C2(1 + A)s2 + RC(l + A)s + 1 

C + + 1 R2C2 1 + -)s + RC s + 1] 

JAI << 1 (12.10) 

The performance of the oscillator is, of course, dominated by the complex-
conjugate root pair indicated in Eqn. 12.10, and this pair has a natural 
frequency w,, 1/RC and a damping ratio ~ A/4. The important feature 
is that the closed-loop poles can be made to lie in either the left half or the 

right half of the s plane according to the sign of A. 

Output 

10 

Figure 12.3 Wien-bridge oscillator with limiting. 
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The design of the amplitude-control loop for a quadrature oscillator 
provides an interesting and instructive example of the way that the feedback 
techniques developed in Chapters 2 to 6 can be applied to a moderately 
complex circuit, and for this reason we shall investigate the problem in 
some detail. The difficulties are concentrated primarily in the modeling 
phase of the analytical effort. 

Our intent is to focus on amplitude control, and this control is to be 
accomplished by moving the closed-loop poles of the oscillator to the left-
or the right-half plane according to whether the actual output amplitude 
is too large or too small, respectively. We assume that the signal VA(t) (see 
Fig. 12.2) has the form 

VA(t) = eA(t) sin cot (12.11) 

This representation, which models the signal as a constant-frequency 
sinusoid with a variable envelope eA(t), is not exact, because the instan­
taneous frequency of the sinusoidal component of VA is a function of A. 
However, if the amplitude-control loop has a very low crossover frequency 
compared to the frequency of oscillation so that magnitude changes are 
relatively slow, we can consider the amplitude eA alone and ignore the 
sinusoidal portion of the expression. In this case the exact frequency of the 
sinusoid is unimportant. 

In order to find the dependence of VA on the control parameter A, assume 
that the circuit is oscillating with A = 0 so that the closed-loop poles of the 
oscillator are precisely on the imaginary axis. With this constraint the 
envelope is constant with some operating point value EA so that 

VA(t) = EA sin wt (12.12) 

where o = 1/RC. If A undergoes an incremental step change to a new 
value A1 at time t = 0, the oscillator poles move into the left-half plane (for 
positive Ai), and 

VA(t) - EA e--r-' sin cot (12.13) 

Inserting values for and co,, from Eqn. 12.10 into Eqn. 12.13 yields 

t 
VA(t) - EA e-(At/4RC) sin - (12.14)

RC 

The envelope for this signal is 

eA(t) = EAe-CAlt/4Rc> = E( +At -2- (12.15)
4RC 2 4RC 
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If Ait/4RC is small (a condition insured by a sufficiently small value of A1), 
we can separate eA(t) into operating-point and incremental components as 

EAi 
eA(t) = EA + e.(t) EA - 4RC (12.16)

4RC 

Thus a positive incremental step change in A leads to an incremental 
envelope change that is a linearly decreasing function of time. This condi­
tion implies that the linearized transfer function that relates envelope 
amplitude to A is 

Ea(s) __EA=(s)-- (12.17)
A(s) 4RCs 

This linearized analysis confirms the feeling that control of the value of A 
is in fact a reasonable way to stabilize the amplitude of the oscillation, since 
the incremental change in the envelope of the oscillation is proportional to 
the timc integral of A. 

Further design of the amplitude-control loop depends on the actual 

topology of the system. Figure 12.4 shows one possible implementation in 

mixed circuit and functional block-diagram form. The envelope of the 

signal to be controlled is determined by an amplitude-measuring circuit. 
This circuit may be a simple diode-resistor-capacitor peak detector in 
cases where high precision is not required, or it may be an active "super­
diode" type of connection (an example is given in Section 12.5.1) in more 
demanding applications. In either case, the design of this circuit is not 
particularly difficult and will not be discussed here. The envelope of the 
signal is compared with a reference value, and the resulting error signal 
passes through a linear controller with a transfer function a(s). The output 
of the controller is used to drive a field-effect transistor that functions as a 
variable resistor whose value determines A. 

The FET connection incorporates local compensation to linearize its 
characteristics as shown in the following development. If a junction FET is 
biased into conduction with a small voltage applied across its channel, and 
its gate reverse biased with respect to its channel, the drain current is approx­
imately related to terminal voltages as 

iD = K (VGS + VP)vDs - (12.18) 

where K is a constant dependent on transistor construction, and Vp is the 
magnitude of the gate-to-source pinch-off voltage. 

The dependence of iD on the square of the drain-to-source voltage is 

undesirable, since this term represents a nonlinearity in the channel resist­
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Figure 12.4 Quadrature oscillator with amplitude stabilization. 
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ance of the device, and this nonlinearity will introduce harmonic distortion 
into the oscillator output. The nonlinearity can be eliminated by adding 
half of the drain-to-source voltage to the gate-to-source voltage via resistors 
as shown in Fig. 12.4. The resistors are large enough so that they do not 
significantly shunt the drain-to-source resistance of the FET under normal 
operating conditions. With the topology shown, 

VGS = 1 (VC + VDs) (12.19) 

Substituting Eqn. 12.19 into Eqn. 12.18 shows that 

iD = K [( + ++V+ N -v ]P)+V)K -DS (12.20)
2 2 2 2 

or 

RDS- (12.21)
OD K[(vc/2) + Vp] 

This equation indicates that the incremental resistance of the FET is inde­
pendent of drain-to-source voltage when the network is included. 

For purposes of design, we assume that the FET is characterized by 
VP = 4 volts and K = 10-1 mho per volt. Recall that stable-amplitude 
oscillations require that all three R-C time constants be identical; thus the 
operating point value of RDS is 500 ohms. Equation 12.21 combined with 
FET parameters indicates that this value results with an operating-point 
value for the control voltage of -4 volts. The incremental change in RDS 
as a function of the control voltage at this operating point, obtained by 
differentiating Eqn. 12.21 with respect to Vc, 

aR v - =- 125 /V (12.22)ovcl vc = -4 V= 

Earlier modeling was done in terms of A, the fractional deviation of the 
resistance R3 in Fig. 12.2 from its nominal value. This resistor consists of 
the FET plus a 9.5 kQ resistor in the actual implementation. The incremental 
dependence of A on the control voltage is determined by dividing Eqn. 
12.22 by the anticipated operating-point value of the total resistance, 10 ki. 
Thus 

V-1 (12.23)-4 V -0.0125t c c = 

The relationships summarized in Eqns. 12.17 and 12.23 combined with 
the system topology and an assumed operating-point value for the en­
velope EA = 10 volts lead to the linearized block diagram for the amplitude­
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Figure 12.5 Linearized block diagram for amplitude-control loop. 
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control loop shown in Fig. 12.5. The negative of the loop transmission for 
this system is 

Ea(s) 312.5 
____ - a(s) X (12.24)
E,(s) S 

A number of factors govern the choice of a(s) for this application including: 

(a) The actual FET gate-to-source voltage required under quiescent con­
ditions is strongly dependent on FET parameters and the exact values of the 
other components used in the circuit. The easiest way to insure that the 
difference between the envelope and the reference is constant in spite of 
these variable parameters is to include an integration in a(s) since this 
integration forces the operating-point value of the error to zero. 

(b) The analysis is predicated on a much lower crossover frequency for 
the amplitude-control loop than the frequency of oscillation, 104 radians 
per second. However, a very low frequency control loop accentuates the 
effect on amplitude of rapid changes in quantities like the supply voltages. 
A somewhat arbitrary compromise is to choose a crossover frequency of 
100 radians per second. 

(c) Since the analysis is based on a hierarchy of approximations, the 
system should be designed to have a very conservative phase margin. 

(d) The controller transfer function should include low-pass filtering. 
The detector signal that indicates the envelope amplitude invariably in­
cludes components at the oscillation frequency or its harmonics. If these 
components are not filtered so that they are at an insignificant level when 
applied to the FET gate, the resultant channel-resistance modulation intro­
duces distortion into the oscillator output signal. 

A controller transfer function that incorporates these features is 

3.2(0.1s + 1) 
a(s) = s(10-3ss(0s+12(12.25)+ 1)2 

The negative of the loop transmission with this value for a(s) is 

E(s) _10 3(0.1s + 1) (12.26) 
Ee(s) s2(10- 3s + 1)2 

The system crossover frequency is 100 radians per second, and phase margin 
exceeds 70' with this value for a(s). 

A possible circuit that provides the negative of the desired a(s) is shown 
in Fig. 12.6. In many cases of practical interest, this inversion can be can­
celled by some rearrangement of the amplitude-measuring circuit. The 
second required filter pole is obtained with a passive network. The filter 

http:s(0s+12(12.25
http:3.2(0.1s
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Figure 12.6 Controller circuit. 

network impedance level is low enough so that the network is not disturbed 
by the 2-M12 load connected to it. 

The reference level required to establish oscillator amplitude can be 
applied to the controller by adding another input resistor to the operational 
amplifier. It may also be possible to realize part of the amplitude-measuring 
circuitry with this amplifier. An example of this type of function combination 
is given in Section 12.5.1. 

Two practical considerations involved in the design of this oscillator 
deserve special mention. First, the signal vB normally has lower harmonic 
distortion than does VA since the integration of the first amplifier filters any 
harmonics that may be introduced by the FET. Second, it is possible to vary 
the reference amplitude for this circuit and thus modulate the amplitude 
of the oscillator output. However, the control bandwidth in this mode will 
be relatively small, and performance will change as a function of quiescent 
envelope amplitude since the loop-transmission magnitude is dependent on 
operating levels. 

The performance of an oscillator of this type can be quite impressive. 
Amplitude control to within 1mV peak-to-peak is possible if "superdiodes" 
are used in the envelope detector. Harmonic distortion of the output signal 
can be kept a factor of 104 or more below the fundamental component. 

12.2 NONLINEAR OSCILLATORS 

The discussion of oscillators up to this point has focused on the design of 
circuits that provide sinusoidal output signals. The basic approach is to 
use a linear, second-order feedback loop to generate the sinusoid, and then 
incorporate some mechanism to control amplitude. 
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Operational amplifiers are also frequently used in nonlinear oscillator 
circuits that intentionally produce nonsinusoidal output signals. The analy­
sis of these types of oscillators is complicated by the fact that transform 
methods normally cannot be used. One frequently used technique for 
evaluating the performance of these types of oscillators is to determine the 
output and internal signals directly via time-domain calculations. 

12.2.1 A Square- and Triangle-Wave Generator 

A function generator that produces square and triangle waves as its 

outputs was used as an example of describing-function analysis in Section 
6.3.3. This topology combines an integrator with a Schmitt-trigger circuit. 
The Schmitt trigger can be realized by applying positive feedback around an 
operational amplifier, as shown in Fig. 12.7.1 Consider operation with vr a 
large positive voltage. In this case the amplifier will be saturated with a 
positive output voltage. 

It is assumed that the output-voltage magnitude is limited to a maximum 
value of VM. This limiting can be accomplished in several ways. If relatively 
crude level control is sufficient, the saturation levels may be determined 
simply by power-supply voltages and internal amplifier voltage drops. 
Somewhat better control is possible if an amplifier such as the LM101A 
(see Section 10.4.1) is used. The output level of this circuit can be limited 
by connecting diode clamps to a compensation terminal. A third possibility 
is to follow the operational amplifier shown with a precision limiter similar 
to those described in Section 11.5.3, and to apply positive feedback around 
the entire connection. This approach has the further advantage that the 
output element is operating with local negative feedback and thus has very 
low output resistance. 

In order to force the circuit to change state, the input voltage is lowered. 
When the input level reaches approximately - (R1/R 2) VM, the noninverting 
input of the amplifier is close to ground potential and the device enters its 
linear operating region. The massive positive feedback that results with 
the amplifier active sweeps its output negative until a level of - VM is 

reached. Further negative changes in input voltage do not affect the output. 
If the input voltage is raised, the amplifier enters its active region at an 

1In many practical circuits, a comparator rather than an operational amplifier is used to 
implement a Schmitt trigger. A comparator, like an operational amplifier, is a high-gain, 
direct-coupled amplifier. However, since it is riot intended for use in negative-feedback 
connections, the frequency-response compromises that must be made to insure the stability 
of an operational amplifier need not be included in the comparator design. Consequently, 
the response time of a Schmitt trigger realized via a comparator can be significantly faster 
than that obtained using an operational amplifier. 
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Figure 12.7 Schmitt trigger. (a) Circuit. (b) Characteristics. 

input level of +(R1/R 2)VM, and is then driven to positive saturation. These 
transition points combine to give the characteristics shown in Fig. 12.7b. 

A possible oscillator connection using this type of Schmitt trigger is 
shown in Fig. 12.8. With the modulating voltage Vc = 0, signal waveforms 
are as shown in part b of this figure. The period of oscillation is determined 
by noting that the magnitude of the slope of the triangle wave is always 
10/RC, and that the total change in the voltate level of VA is 40 volts for 
one complete cycle. Therefore 

40 
r =- = 4RC (12.27)

10/RC 

The corresponding frequency of oscillation is 

1 1 
(12.28) 

= 4RC 
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Figure 12.8-Continued 

In commercial versions of this circuit, decade frequency switching is fre­
quently accomplished by changing capacitors, while variation of the value 
of resistor R provides vernier control in any one decade. 

12.2.2 Duty-Cycle Modulation 

The current that charges the capacitor can be modulated by means of an 
applied voltage vc, with this current given by 

.VC + VB 
1A = V + (12.29)

R 

A positive value for Vc increases capacitor charging current when VB is 
positive and decreases this current when VB is negative. The net result is to 

duty-cycle modulate the signal VB as shown in Fig. 12.8c. The fraction of 
the time this signal stays positive is 

T+ __ =_20RC/(lO + vc) I (I Vc(
 

7*+ + 7- 20RC/(1O + vc) + 20RC/(1O - vc) 2 10
 



501 Nonlinear Oscillators 

This duty-cycle modulator has a number of interesting features that make 
it useful in a variety of applications. Equation 12.30 shows that the duty 
cycle is linearly proportional to vc and changes from one to zero as Vc 
changes from - 10 volts to +10 volts. However, maximum capacitor 
charging current is limited to twice its value with zero vc, so that the time 
spent in the shorter of the two periods is never less than half its quiescent 
value. The frequency of operation is a nonlinear function of Vc and is given 
by 

21 100 -Oc 
f =0=R= (12.31) 

r+ + T_ 20RC/(10 + vc) + 20RC/(10 - Vc) 400RC 

This equation shows that the frequency is lowered by any nonzero value 
of Vc. 

Applications include the control of switching power amplifiers and the 
realization of the type of analog multiplier shown in Fig. 12.9. In this 
circuit, the duty-cycle modulator controls the state of a switch that is fre­
quently realized with field-effect transistors. The circuit is arranged so that 
the switch arm is connected to a voltage +vy for a fraction of the time 

I[1 + (vx/VR)], and to a voltage - vy for the remainder of the time, a 
fraction equal to 1[1 - (vx/ VR)]. (Alternative implementations use current 
rather than voltage switching to increase switching speed.) The output filter 
(usually a multiple-order active filter rather than the simple network shown) 
averages the switch voltage vs, so that 

vo= s = +Vy [ + -X,y - (12.32) 

where the over bar indicates time averaging. Note that the voltage VR 

(which is equal to the maximum magnitude of the signal out of the Schmitt 

+Vy 

Fraction of time switch arm is high 

is- (1 + )
2 VR 

Duty -cycle +Vmodulator 

Duty cycle Vs_(1+!LX 
T, +T_ 2 VR 

_VY 

Figure 12.9 Time-division multiplier. 
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trigger) can be varied to mechanize division. A technique for varying the 
signal from the Schmitt trigger is described below. 

Versions of this type of multiplier that limit errors to 0.05 % of maximum 
output have been designed. 

12.2.3 Frequency Modulation 

Another variation of the basic nonlinear oscillator shown in Fig. 12.10 
results in an oscillator with a voltage-controlled operating frequency. Here 
the Schmitt trigger determines the state of a switch that allows a variable-
level voltage to be applied to the integrator. If the Schmitt trigger switches 
at input-signal levels of d VT the total excursion of the signal VA will be 
4 VT volts per cycle. The slope of signal VA has a magnitude of VF/RC volts 
per second, and thus the frequency of oscillation is 

VF/RC _VF 

=FR Vf = - (12.33)4VT 4VTRC 

12.2.4 A Single-Amplifier Nonlinear Oscillator 

The operational amplifier used as an integrator in the nonlinear oscillator 
described above can be replaced with a passive resistor-capacitor network 
a shown in Fig. 12.11, resulting in a configuration first reported by Bose.2 

The Schmitt trigger functions in an inverting mode in this connection so 
that a sufficiently positive level for vA saturates the amplifier output at 
- VM. Switching points occur at VA = -[- VM R1/(R 1 + R 2). If the dotted 
modulating resistor is omitted, the waveforms are as shown in Fig. 12.1 lc. 
The capacitor voltage is a sequence of exponential segments rather than 
a true triangular wave. The duty cycle of the signal can be modulated by 
including the dotted resistor shown in Fig. 12.1la. If the width of the 
hysterisis region is made very small by choosing R1 << R2, the current 
into the capacitor becomes nearly constant in each state, since the circuit 
keeps the capacitor voltage close to zero. In this case, the duty cycle of the 
voltage vo is linearly related to control voltage vC. 

12.3 ANALOG COMPUTATION 

It was mentioned in Chapter 1 that operational amplifiers were initially 
used primarily for analog computation. The objective in analog computa­
tion is to build an electrical network, using operational amplifiers and 

2 A. G. Bose, "A Two-State Modulation System," 1963 Wescon Convention Record, 
Part 6, Paper 7.1. 
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Figure 12.11 One amplifier nonlinear oscillator. (a) Circuit. (b) Inverting Schmitt­
trigger characteristics. (c) Waveforms. 

associated components, that obeys the same differential equation as does 
the system under study. The answers obtained consist of the responses of 
the electrical analog to particular inputs and initial conditions. 

Analog computers are available from several manufacturers. These 
machines incorporate, in addition to the necessary hardware, a considerable 
human-engineering effort. Summing amplifiers and integrators included in 
these machines are normally constructed with fixed scale factors so that 
external components need not be used. For example, several inputs with 
gains of - 1 and - 10 are typically provided for each summing amplifier. 
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Figure 12.11-Continued 

Potentiometers are also included, and these devices are combined with 

fixed-gain amplifiers to provide arbitrary gain levels. Thus a gain of -3.12 

might be realized by preceding a gain of - 10 amplifier with a potentiometer 

set for an attenuation of 0.312. Nonlinear elements such as function gen­

erators and multipliers are frequently included. The inputs and outputs of 

the various elements are usually connected to jacks of some type. The inter­

connections necessary to simulate a particular system are then made with 

patchcords that connect the various jacks. In many cases, the programming 

(inserting the patchcords to establish the proper connection pattern) is 

done on a board physically removed from the computer while other users, 

with their own boards, solve their problems. The board makes the required 

connections when it is inserted into a mating plate located on the machine. 

While the accuracy of solutions obtained via analog computation is limited 
by component tolerances, it normally far exceeds the accuracy required 

for the simulation of physical systems, which are themselves constructed 

with imprecise components. A further consideration is that it is frequently 
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possible to get a good physical feeling for a system via analog computation, 
since many variables are available for observation, and since the effects of 
parameter variations can be quickly investigated. 

Our treatment here can only cover the barest essentials and highlight a 
few of the ancillary circuits that were evolved for analog computation. The 
reader interested in a detailed treatment of this fascinating and powerful 
technique is referred to Korn and Korn.' 

12.3.1 The Approach 

Our objective here is to show how electronic-analog techniques are used 
to simulate differential equations that describe the systems to be studied. 
We initially assume that the differential equation under investigation is 
linear and has the general form 

d~x -x dx 
an dtx + a.-1 dt-x + - + ai - + aox = f(t) (12.34)dtn r- dt 

It is certainly not necessary that the independent variable of the system 
under study be time as implied by Eqn. 12.34. For example, if we were 
investigating the deflection of a bridge under static load, we might be 
interested in vertical displacements from equilibrium as a function of dis­
tance from one end of the bridge. However, since our analog will use time 
as its independent variable, we substitute time for the independent variable 
if necessary in the original equation. Similarly, we realize that any dependent 
variables in our analog will have to be voltages, regardless of the variables 
they actually represent in the system under study. 

Equation 12.34 is rewritten so that the highest derivative of x is expressed 
in terms of the other variables in the form 

dx an_ 1 d"- 1 x a1 dx aox 1
 
dtn andt~ dt-~ 1 

- a~ d a~ + - f(t) (12.35)
dt--1 an dt an an 

Equation 12.35 can be represented as the block diagram shown in Fig. 
12.12. In this representation, the variable dnx/dtn appears as the output of 
a summation point. Inputs to the summation point are scaled multiples of 
the driving function and the lower-order derivatives of x. The lower-order 
derivatives are obtained by successive integrations of dnx/dtn, with a total 
of n integrations required to complete the block diagram. 

Note that the only elements included in the block diagram are a multiple-
input summation point, inverters to precede some inputs on the summer, 

I G. A. Korn and T. M. Korn, Electronic Analog and Hybrid Computers, 2nd Edition, 
McGraw-Hill, New York, 1972. 
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Figure 12.12 Block diagram of Eqn. 12.35. 
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gain blocks, and integrators. Since each of these elements can be readily 
constructed using operational amplifiers and passive components, the block 
diagram can be implemented using these devices. When the analog realiza­
tion is excited with a voltage equal tof(t), voltages equal in value to x and 
its derivatives will be available as the outputs of the integrators. 

As an example of this process, consider the differential equation 

dex d3x d2x dx
 
- + 2.61 d + 3.42 d2 + 2.61 + x = f(t) (12.36)

dt4 dt' dts dt 

(We recall from Section 3.3.2 that this equation represents a fourth-order 
Butterworth filter.) Solving for d 4x/dt yields 

dex d3x d2x dx 
-= -2.61 - 3.42 - - 2.61 - x + f(t) (12.37)

dt4 dt3 dt2 dt 

One possible simulation of this equation is shown in Fig. 12.13. The 
voltages expected at the output of various amplifiers are indicated by 
writing the value of the variable the voltage represents at appropriate nodes. 
Note that in contrast to traditional analog-computer methods, gains are 
established by selecting impedances 4 used around operational amplifiers 
rather than by combining potentiometers with fixed-gain amplifiers and 
integrators. Also, functions have been combined in order to reduce the 
number of amplifiers required. The use of inverting connections only is 
traditional in analog computation, and reflects that fact that an opera­
tional-amplifier design technique frequently used to improve d-c perform­
ance results in an amplifier that can only be used in inverting connections. 
(See Section 12.3.3.) It may, of course, be possible to use noninverting 
integrators or summing amplifiers (realized with resistive summing at the 
input to a noninverting-amplifier connection) if general-purpose opera­
tional amplifiers are used for this simulation. 

The four integrators appear along the top of the diagram. Since it is 
assumed that there is no need to have a voltage representing d 4x/dt4 avail­
able, the summing operation is included in the first integrator connection. 
The output of this integrator is - (dlx/dt) when the indicated current is 
equal to (10-6 A) d 4x/dt4. Since inverting integrators are used, the signs 
associated with successive derivatives alternate. The scaling and inversions 
required by the coefficients of x and its second derivative are obtained with 
the bottom amplifier. 

4The relative impedance levels shown in Fig. 12.13 are high if general-purpose opera­
tional amplifiers such as the LM101A are used. Since only ratios are important in estab­
lishing the transfer function, all impedance levels can be scaled to reduce errors that result 
from amplifier input currents. 
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The number of amplifiers required in Fig. 12.13 indicates the general 
rule. If this topology is used, simulating an nth-order linear differential 
equation requires n integrators and one amplifier that inverts appropriate 
signals as necessary to complete feedback paths. 

Analog-computing techniques can also be used to solve a variety of non­
linear differential equations by including hardware that implements the 
nonlinearity in the simulation. As an example, consider Van der Pol's 
differential equation 

dsx dx 
+ y(x 2 - 1) + x = 0 (12.38)

dt2 dt 

where y is a positive constant. 
For small values of x, the coefficient of the first derivative term is nega­

tive, and increasing-amplitude oscillations result. When the amplitude of 
the oscillation becomes large enough, the coefficient of the first derivative 
will be positive over part of the cycle, and a limit cycle can result. Equation 
12.38 is rewritten in a form convenient for simulation as 

d 2 x dx dx 
= - - x (12.39)

dtz dt dt 

2Multipliers are required to generate x and form the x 2(dx/dt) product 
necessary for the simulation of Eqn. 12.39. Two techniques for analog 
multiplication were described in Sections 11.5.5 and 12.2.2. Practical multi­
pliers based on these methods are often designed to have an output voltage 
equal to the product of the two input voltages divided by 10 volts for com­
patibility with the dynamic range of most solid-state operational amplifiers. 
Figure 12.14 shows a possible simulation of Eqn. 12.39 assuming that 
multipliers with this scale factor are used. 

Van der Pol's equation is an example of an undriven differential equa­
tion, and excitation is by initial conditions only. While initial conditions 
were not mentioned in our earlier discussion of the simulation of linear 
differential equations, we recognize that we must specify n initial conditions 
in order to determine the complete (homogeneous plus driven) solution of 
an nth-order differential equation. These initial conditions can be set 
simply by establishing the voltages on the integrating capacitors at time 
t = 0, since these voltages are proportional to the values of x and its first 
n - I derivatives. A circuit for setting initial conditions is described in 
Section 12.3.3. 

The value of x as a function of time for Van der Pol's equation with 
y = 0.25 is shown in Fig. 12.15. The initial conditions used for parts a and b 
of this figure are x(0) = 0.5, (dx/dt)(0) = 0 and x(0) = 3, (dx/dt)(0) = 0, 
respectively. We see that in both cases the amplitude of the limit cycle con­
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Figure 12.14 Simulation of Van der Pol's equation. 

verges to a peak-to-peak value of approximately 4. Part c of this figure is a 
plot of dx/dt versus x(t). This representation, in which time is a parameter 

along the curve, is called a phase-plane plot. The responses for both values 

of initial conditions are included. The convergence to equal-amplitude 

limit-cycles for both sets of initial conditions is evident in this figure. 

The formal procedure described here is certainly not the only one which 

results in a correct analog representation of a problem. While it does lead 

to a compact realization, other realizations may maintain better corre­

spondence with the physical system that is being modeled. One popular 

alternative technique involves simply drawing a block diagram for the 

system under study, and then implementing the block diagram on a block­

by-block basis without ever writing down the complete system differential 

equation. While this approach often requires more hardware to complete 

the simulation, it is convenient in that voltages proportional to the actual 

variables of interest in the problem under study are avaliable. Furthermore, 
it is generally possible using this alternative to associate scale factors with 

the parameters of physical elements in the simulated systems on a one-to­

one basis. 
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12.3.2 Amplitude and Time Scaling 

Practical considerations constrain the amplitude and frequency range 
of the signals that arise in analog computation. We normally prefer maxi­
mum signal levels that are comfortably below amplifier saturation levels, 
but well above noise and offset uncertainties. Similarly, very low-frequency 
signals are difficult to integrate accurately, while the limited gain of an 
operational amplifier at high frequencies compromises accuracy in this 
frequency range. Amplitude scaling and time scaling are used to standardize 
signals to convenient amplitude levels and spectral content. 

Amplitude scaling involves little more than some additional bookkeeping 
effort. Since we are using voltages for all of the dependent variables in our 
simulation, there must be a dimensioned scale factor that relates the ma­
chine variables to the problem variables when the problem variables are 
quantities other than voltages. For example, if x is a displacement in 
meters and some voltage in a simulation represents this variable on a 
1 meter = 1 volt basis, the machine variable should really be labeled 
(1 volt/meter)x rather than simply x as is frequently done. We should realize 
that the number associated with the scale factor can readily be selected 
to be other than unity. Thus we might use lOx as the label for some voltage, 
or, preferably (10 volts/meter)x. If this voltage were 7 volts, the corre­
sponding displacement would be x = (7 volts) (1 meter/ 10 volts) = 0.7 
meter. The appropriate values for scale factors can only be determined with 
a knowledge of approximate problem-variable levels, since the correspond­
ing machine variables should have peak values slightly below the saturation 
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level. Once scale factors have been selected, they are implemented by modi­
fying the gains of amplifiers and integrators from their initially selected 
values. 

Time scaling has advantages beyond those of centering signal-frequency 
components within the range of optimum operational-amplifier perform­
ance. Consider, for example, the simulation of a planetary motion problem 
that may require years of "real time" to complete. Using a faster "machine 
time" scale permits us to obtain the solution in a more reasonable time 
interval. Similarly, the use of a slower than real time scaling procedure 
allows us to display the buildup of charge in the base region of a transistor 
at a rate comfortable for viewing on a display oscilloscope. 

The technique used for time scaling involves the substitution 

t = or (12.40) 

where r is machine time and is equal to real time divided by a scale factor 0. 
A value of a-greater than one implies that the machine solution is faster 
than the actual solution so that one second of real time is represented by a 
shorter period r of machine time. 

This process is illustrated using the form for a differential equation given 
in Eqn. 12.34 and repeated here for convenience. 

dux ux dx 
an dt + an_1 dtx + + a, dt + aox = f(t) (12.34)

dtn dr-1dt 

In order to apply the substitution of Eqn. 12.40, we change f(t) tof(-r) 
and change dmx/dtm to (l/um)(d'x/drm). Thus the time-scaled version of 
Eqn. 12.34 is 

an dax an_1 du'x dxa1 
-. d+x± d + -'lx ±- + aox = f(r) (12.41) 
e-ndr an- 1 dr- o dr 

The equation when simulated will have a solution identical in form to that 
of Eqn. 12.34, but will run a factor of a-faster than the original equation. 

A second way to implement time scaling is to realize that the dynamics 
of the simulation are implemented by means of integrations, and that chang­
ing the scale factor of every integrator in the simulation by some factor 
must change the time scale of the simulation by precisely the same factor. 
Thus problems can be time scaled by first simulating the problem for a 

real-time solution and then dividing the value of every capacitor by a 

factor of a. Alternatively, every resistor used to implement all integrators 
can be reduced in value by a factor of a, or the scale-factor change can be 
apportioned between resistors and capacitors. The net result of any of these 
modifications will be to make the problem on the machine run a factor ofa 
faster than the real-time solution. It is, of course, still necessary to increase 
the speed of driving functions applied to the system by a factor of a if these 
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signals are derived from sources that are not implemented using scaled 
integrators. 

The coefficients of the original differential equation often can be used 
to determine the time scale appropriate to a particular problem. If the 
roots of the characteristic equation have approximately equal magnitudes, 
the natural frequencies of the undriven solution will be the order of 

w - (12.42)(a 
Conversely, if the system is dominated by one pole, the characteristic fre­
quency is the order of 

ao (12.43) 
ai 

The characteristic frequencies given by Eqn. 12.42 or 12.43 can be changed 
to values convenient for display and compatible with operational-amplifier 
performance by appropriate selection of a. 

The element values that occur in a problem simulation often provide 
clear indications of the need to modify amplitude or time scales. If, for 
example, we find that high gain is required at the input of every amplifier 
being supplied with some particular signal, the scale factor of that signal 
is probably too small relative to other amplitude scale factors used. Simi­
larly, if one input resistor to a summing amplifier or an integrator is much 
larger than all other input resistors associated with the amplifier, the 
implication is that the term applied to the input in question contributes 
little to the output of the summer or integrator. In the case of time-scale 
selection, an inappropriate choice is usually reflected by unreasonable 
resistor values, capacitor values, or both associated with integrators. 

The Van der Pol equation simulated earlier (Eqn 12.38) is used as a 
simple example of time and amplitude scaling. For the range of initial 
conditions used previously and with A = 0.25, the maximum magnitudes 
of x and dx/dt are approximately 3 and 3 sec-1, respectively, while the 
maximum magnitude of d 2x/dt2 is slightly greater than 3 sec-2. Accord­

ingly, if 10-volt maximum amplifier outputs are assumed, scale factors of 
3 volts per unit for x and dx/dt, combined with a scale factor of 2 volts 
per unit for d 2x/dt2 are reasonable. If Eqn. 12.39 is rewritten using these 
scale factors, we obtain 

d2
x 2 dx\ 2 dx 2 

2 -= - y(3x)2 3 + - 3- - (3x) (12.44)
dt2 27 \ dt 3 dt 3 

The simulation diagram, again assuming that multipliers with outputs 
equal to the product of the inputs divided by 10 are used, is shown in Fig. 
12.16. It has also been assumed in forming this diagram that a voltage 
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proportional to d2x/dt2 is required. Note that the input signals applied 
to the first amplifier are negatives of the right-hand side of Eqn. 12.44 
because of the inversion associated with this amplifier. The transfer func­
tion of the first integrator is -(3/2s) so that it provides an output of 
-3(dx/dt) when driven with 2(d 2x/dt2). Alternate scaling may be advan­
tageous if different values of y are used to keep the maximum magnitudes 
of the voltages proportional to dx/dt and d 2x/dt2 at optimum levels. 

If a value of RC = 1 second is used, the solution will run at real time, 
and the oscillation frequency will be about one radian per second. Changing 
this product will time scale the solution. For example, the use of RC = 1 ms 
results in limit-cycle oscillation at approximately 1000 radians per second. 

12.3.3 Ancillary Circuits 

There are several interesting circuit configurations that are frequently 
employed in analog computation and that also can be used in other more 
general applications. 

One of these topologies is the three-mode integrator. We have seen that 
it is necessary to apply initial conditions to integrators in order to obtain 
complete (homogeneous plus driven) solutions for simulated differential 

1MG 
C 

C 

2 X 
dt2 -3 yx

dt 

3 + R 3 

Figure 12.16 Scaled simulation of Van der Pol's equation. 
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equations. Another useful computing mode results if all integrators are 
simultaneously switched to a state where their outputs become time in­
variant and thus hold the values that were present at the switching time. 
The values of problem variables at the switching time can then be deter­
mined accurately with a digital voltmeter. 

The three-mode integrator shown in Fig. 12.17 permits application of 
initial conditions and allows holding an output voltage in addition to 
functioning as an integrator. The reset (or initial condition), operate, and 
hold modes are selected by appropriate choice of switch positions. With 
switch D open and switch o closed, the amplifier closed-loop transfer 
function is 

V0(s) __ 1
 
V(S) RC(12.45)
 
V-(s) R2Cs + 1 

If VA is time invariant in this mode, the capacitor will charge so that the 
output voltage eventually becomes the negative of VA. The capacitor voltage 
can then provide initial conditions for subsequent operations. 

If switch o is closed and switch o is open, the amplifier integrates VB in 
the usual fashion. 

With both switches open, capacitor current is limited to operational-
amplifier input current and capacitor self-leakage; thus capacitor voltage 
is ideally time invariant. 

C 

R|| 

VB 

R2 R2 

VA 

Figure 12.17 Three-mode integrator. 
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The required reset time of the connection shown in Fig. 12.17 can be 
quite long if reasonable values are used for the resistors labeled R2. The 
use of a second operational amplifier connected as a voltage follower and 
supplying a low-resistance drive for the inverting input of the integrator 
can substantially shorten reset times. A practical three-mode integrator 
circuit that incorporates this feature is shown in Fig. 12.18. 

The bipolar-transistor drivers are compatible with T2L logic signals, and 
drive the gate potential of field-effect-transistor switches to ground on 
inputs that exceed two diode forward voltages. With a high level for the 
"operate" signal and the "reset" signal at ground, Q1 is on and Q2 is off. 
This combination puts the circuit in the normal integrating mode. FET Qi 
has a drain-to-source on resistance of approximately 25 ohms, and this 
value is compensated for by reducing the integrating-resistor size by a 

+15V +15V +15V 

10 kE2 

Reseton 
high 

-15 V 

Input to be Q1 2N4391
 
integrated
 

Output 

Initial-condition input 

Figure 12.18 Circuit for three-mode integrator. 
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corresponding amount. Diode D1 does not conduct significant current in 
this state. Diodes D2 and D3 keep the output of the follower within approxi­
mately 0.6 volt of ground. One benefit of this clamping is that the source 
of Q2 cannot become negative enough to initiate conduction with its 
gate at - 15 volts, since the maximum pinchoff voltage of the 2N4391 is 
10 volts. Clamping the follower input level also keeps its signal levels near 
those anticipated during reset thus avoiding long slewing periods when the 
circuit is switched to apply initial conditions. 

With the gate of Q1 at - 15 volts (corresponding to a low level on the 
"operate" control line), diode D1 prevents source potentials that would 
initiate conduction of transistor Q1. If Q2 is on, the output voltage is driven 
toward the negative of the initial-condition input-signal level. The details 
of the transient for a large error depend on diode, FET, and amplifier 
characteristics. As the error signal becomes smaller, the reset loop enters 
its linear operating region. The reader should convince himself that the 
linear-region transmission of the reset loop (assuming ideal operational 
amplifiers) is - l/2rdCs, where rd, is the incremental drain-to-source on 
resistance of the FET. Thus the low FET resistance, rather than R2, deter­
mines linear-region dynamics. 

The hold mode results with both the "operate" and the "reset" signals 
at ground so that both FET's are off. In this state the current supplied to 
the capacitor is determined by FET leakage and amplifier input current. 

One application for this type of circuit in addition to its use in analog 
computation is as a sample-and-hold circuit. In this case the operate switch 
is not needed, and the circuit is switched from sampling the negative of an 
input voltage to hold with Q2. 

Sinusoidal signals are frequently used as test inputs in analog-computer 
simulations. A quadrature oscillator that includes limiting and that is 
easily assembled using components available on most analog computers is 
shown in Fig. 12.19. The diagram implies a simulated differential equation, 
prior to limiting, of 

- 2 C2 d RCdv + v0 (12.46) 
dt2 K dt 

We recognize this equation as a linear, second-order differential equation 
with c = 1/RC and = - 1/2K. The value of K is chosen small enough 

to guarantee oscillation with anticipated capacitor losses and amplifier 
imperfections, thus insuring that signal amplitudes will be determined 
primarily by the diode-resistor networks shown. 

A precisely known voltage reference is required in many simulations to 
apply constant input signals, provide initial-condition voltages, function .as 
a bias level for nonlinearities, or for other purposes. Voltage references are 
also used regularly in a host of applications unrelated to analog simulation. 
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Figure 12.19 Quadrature oscillator with limiting. 
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The circuit shown in Fig. 12.20 is a simple yet highly stable voltage refer­
ence. The operational amplifier is connected for a noninverting gain of 
slightly more than 1.5 so that a 10-volt output results with 6.4 volts applied 
to the noninverting amplifier input. 

With the topology as shown, the voltage across the resistor connected 
from the amplifier output to its noninverting input is constrained by the 
amplifier closed-loop gain to be 0.562 Vz where Vz is the forward voltage 
of the Zener diode. The current through this resister is the bias current ap­
plied to the Zener diode. Zener-diode current is thus established by the 
stable value of the Zener voltage itself. The Zener output resistance does not 
deteriorate voltage regulation since the diode is operated at constant current 
in this connection. The filter following the Zener diode helps to attentuate 
noise fluctuations in its output voltage. 

An emitter follower is included inside the operational-amplifier loop to 
increase output current capacity (current limiting circuitry as discussed in 
Section 8.4 is often a worthwhile precaution) and to lower output imped­
ance, particularly at higher frequencies. While the low-frequency output 
impedance of the circuit would be small even without the follower because 
of feedback, this impedance would increase to the amplifier open-loop 
output impedance at frequencies above crossover. The emitter follower 
reduces open-loop output impedance to improve performance when 
pulsed or high-frequency load-current changes are anticipated. A shunt 
capacitor at the output may also be used to lower high-frequency output 
impedance. (See Section 5.2.2.) 

Start-up diode 

V 
+5 V 

6.4 V 

Temperature ­
compensated 0.562 R1
 
Zener diode
 

Trim to 
-adjust output

voltage 

Figure 12.20 Voltage reference. 
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The bootstrapping used to excite the Zener diode is of course a form of 
positive feedback and would deteriorate performance if the magnitude of 
this feedback approached unity. The low-frequency transmission of the 
positive feedback loop is 

L = 1.562 rd - (12.47)
R + rd 

where rd is the incremental resistance of the Zener diode. This expression 
is evaluated using parameters for a 1N829A, a temperature-compensated 
Zener diode. The diode is designed for an operating current of 7.5 mA, 
and thus R will be approximately 500 Q. The incremental resistance of the 
diode is specified as a maximum of 10 Q. Thus the loop transmission is, 
from Eqn. 12.47, 0.03. This small amount of positive feedback does not 
significantly affect performance. 

The positive feedback can result in the circuit operating with the diode 
in its forward-conducting state rather than its normal reverse-breakdown 
mode. This state, which leads to a negative output of approximately one 
volt, can be eliminated with the start-up diode shown. The start-up diode 
insures that the Zener diode is forced into its reverse region, but does not 
contribute to Zener current under normal operating conditions. 

The expected operational-amplifier imperfections have relatively little 
effect on the overall performance of the reference circuit. A value of 30,000 
for supply-voltage rejection ratio (typical for integrated-circuit amplifiers) 
causes a change in output voltage of approximately 50 AV per volt of 
supply change. (This 33 yV/V sensitivity is amplified by the closed-loop 
gain of 1.5.) The typical input-voltage drift for many inexpensive opera­
tional amplifiers is the order of 5 MV per degree Centigrade. This figure is 
not significant compared to the temperature coefficient of 5 parts per 
million per degree Centigrade or approximately 32 MV per degree Centi­
grade of a high-quality Zener diode such as the 1N829A. 

The designers of the large analog computers that evolved during the 
period from the early 1950s to the mid-1960s often devoted almost fanatical 
effort to achieving high static accuracy in their computing elements. Toward 
this end, operational amplifiers were surrounded with high-precision wire-
wound resistors and capacitors that could be accurately trimmed to desired 
values. These passive components were often placed in temperature-stable 
ovens to eliminate variations with ambient temperature. 

The low-frequency errors (particularly input voltage offset) characteristic 
of vacuum-tube operational amplifiers were largely eliminated by means 
of an imaginative technique known as chopper stabilization.5 This method 

IE. A. Goldberg, "Stabilization of Wide-Band Direct Current Amplifiers for Zero and 
Gain," RCA Review, Vol. II, No. 2, June 1950, pp. 296-300. 



Figure 12.21 Chopper-stabilized amplifier. 
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is still incorporated into some modern operational-amplifier designs, and 
it provides a way of reducing the voltage drift and input current of an 
amplifier to vanishingly small levels. The usual implementation of this 
technique can be viewed as an extreme example of feedforward (see Section 
8.2.2) and thus results in an amplifier that can only be used in inverting 
connections. 

Figure 12.21 illustrates the concept. Assume that the optional network 
is eliminated so that the junction of Zf and Z, is connected directly to the 
inverting input of the top amplifier. The resulting connection clearly func­
tions as an inverting amplifier if the voltage vc is zero. Observe that one 
necessary condition for the amplifier closed-loop gain to be equal to its 
ideal value is that VA = 0. The objective of chopper stabilization is to 
reduce VA to nearly zero by applying an appropriate signal to the non-
inverting input of the top amplifier. 

The d-c component of the voltage VA is determined with a low-pass filter, 
and this component (VB) is "chopped" (converted to a square wave with 
peak-to-peak amplitude VB) using a periodically operated switch. (Early 
designs used vibrating-reed mechanical switches, while more modern units 
often use periodically illuminated photoresistors or field-effect transistors 
as the switch.) The chopped a-c signal can be amplified without offset by 
an a-c amplifier and demodulated to produce a signal yc proportional to 
VB. If the gain of the a-c amplifier is high, the low-frequency gain VC/VA = a0 2 

will be high. If a02 is negative, the signal applied to the positive gain input 
of the top amplifier will be of the correct polarity to drive VA toward zero. 
Arbitrarily small d-c components of VA can theoretically be obtained by 
having a sufficiently high magnitude for a02, although in practice achievable 
offsets are limited by errors such as thermally induced voltages in the switch 
itself. The low-pass filter is necessary to prevent sampling errors that arise if 
signals in excess of half the chopping frequency are applied to the chopper. 

An alternative way to view the operation of a chopper-stabilized amplifier 
is to notice that high-frequency signals pass directly through the top ampli­
fier, while components below the cutoff frequency of the low-pass filter are 
amplified by both the bottom amplifier and the top amplifier in cascade. 
(It is interesting to observe that low-frequency open-loop gain magnitudes 
in excess of 10 have been achieved in this way.) It is therefore not necessary 
to apply low-frequency signals directly to the top amplifier, and a high-
pass filter (shown as the optional network) can be included in series with 
the inverting input of the top amplifier. As a result, both voltage offset and 
input current to the operational amplifier can be reduced by chopper 
stabilization, yielding an amplifier with virtually ideal low-frequency 
characteristics. 

Several manufacturers offer packages that combine discrete-component 
choppers with integrated-circuit amplifiers. More recently, integrated­
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C1 v 

Figure 12.22 Second-order low-pass active filter. 

circuit manufacturers have been able to fabricate complete chopper-
stabilized amplifiers either in monolothic form or by combining several 
monolithic chips to form a hybrid circuit. These circuits incorporate 
topological improvements that permit true differential operation. The large 
capacitors required are connected externally to the package. Drifts of a 
fraction of a microvolt per degree Centigrade, coupled with input currents 
in the picoampere range, are available at surprisingly low cost. 

12.4 ACTIVE FILTERS 
There are numerous applications that require the realization of a particu­

lar transfer function. One of the many limitations of the design of filter 
networks using only passive components is that inductors are required to 
obtain complex pole locations. This restriction is removed if active elements 
are included in the designs, and the resultant activefilterspermit the realiza­

tion of complex poles using only resistors and capacitors in addition to the 
active elements. Further advantages of active-filter synthesis include the 
possibility of a wide range of relative input and output impedances, and the 
use of smaller, less expensive reactive components than is normally possible 
with passive designs. 

There is a fair amount of present research devoted toward improving 
techniques for active-filter synthesis, and the probability is that better de­
signs, particularly with respect to sensitivity (the dependence of the transfer 
function on variations in parameter values), will evolve. This section de­
scribes two presently popular topologies that can be used to realize active 
filters. 

12.4.1 The Sallen and Key Circuit6 

Figure 12.22 shows an active-filter circuit that uses a unity-gain-con­
nected operational amplifier. Node equations for the circuit are easily 

I R. P. Sallen and E. L. Key, "A Practical Method of Designing RC Active Filters," Insti­
tute of Radio Engineers, Transactions on Circuit Theory, March, 1955, pp. 74-85. 
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written by noting that the voltage at the noninverting input of the amplifier 
is equal to the output voltage and are 

G1Vi =(G 1 + G2 + C2s)V. - (G2 + C2 s)Vo (12.48) 

0 = -G 2 V. + (G2 + C1s)V 

Solving for the transfer function yields 

V0(s) 1
V,(S ­CC2S2(12.49) 

Vi(s) R1 R 2C1 C2s
2 + (R 1 + R2 )Cls + 1 

This equation represents a second-order transfer function with standard-
form parameters 

n VR 1R2C1C2 (12.50) 

and 

R1 + R 2 (12.51) 

2VR 1 R 2 C2 

Since only two quantities are required to characterize the second-order 
filter, the four degrees of freedom represented by the four passive-com­
ponent values are redundant. Part of this redundancy is frequently elimi­
nated by choosing R1 = R2 = R. In this case, the standard-form param­
eters become 

on (12.52)
R -\/C1C2 

and 

,= (12.53) 

The addition of another section to the second-order low-pass active filter 
as shown in Fig. 12.23 allows the synthesis of a third-order transfer function 
with a single amplifier. If equal-value resistors are used as shown, the 
transfer function is 

V 0(s) _ _____1________ 
V-(S - I 2S2(12.54) 

C1C2 
2 (C1Vi(s) C3 R's 3 + 2(C 1C3 + C2C3)R2s + + 3C3)Rs + 1 

An nth-order low-pass filter is often designed by combining n/2 second-
order sections in the case of n even, or one third-order section with 
n/2 - 3/2 second-order sections when n is odd. Tables7 that simplify 

I Farouk Al-Nasser, "Tables Speed Design of Low-Pass Active Filters," EDN, March 15, 
1971, pp. 23-32. 
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Figure 12.23 Third-order low-pass active filter. 

element-value selection are available for filters up to the tenth order with 
a number of different pole patterns. 

Interchanging resistors and capacitors as shown in Fig. 12.24 changes 
the second-order low-pass filter to a high-pass filter. The transfer function 
for this configuration is 

2Vo(s) _ R1 R 2C1C 2s

Vi(s) R1R2C1C2s
2 + R2(C1 + C2)s + 1 

If, in a development analogous to that used for the low-pass filter, we 
choose C1 = C2 = C, Eqn. 12.55 reduces to 

V 0(s) s2_____________2 _

V-(S S2 W,2(12.56) 
V1(s) (s2/, 2) + (2 s/o.,) + 1 

where 

I 

CVR1 R 2 
and 

R2 

R 1 

R2 

Cy C2 

7 ++ 

+iR -V 0~-1 

Figure 12.24 Second-order high-pass active filter. 
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The Sallen and Key circuit can be designed with an amplifier gain other 
than unity (see Problem P12.8). This modification allows greater flexibility, 
since the low- or high-frequency gain of the circuit can be made other than 
one. However, the damping ratio of transfer functions realized in this way is 
dependent on the values of resistors that set the closed-loop amplifier gain; 
thus poles may be somewhat less reliably located. A further advantage of 
the unity-gain version is that it may be constructed using the LM 110 inte­
grated circuit (see Section 10.4.4). The bandwidth of this amplifier far 
exceeds that of most general-purpose integrated-circuit units, and corner 
frequencies in the low megahertz range can be obtained using it. 

12.4.2 A General Synthesis Procedure 

The Sallen and Key configuration, together with many other active-
filter topologies, allows-complete freedom in the choice of pole location, 
but does not permit arbitrary placement of transfer-function zeros. The 
application of the analog-computation concepts described in Section 12.3.1 
allows the synthesis of any realizable transfer function that is expressable 
as a ratio of polynomials in s, provided that the number of poles is equal 
to or greater than the number of zeros in the transfer function. 

Consider the transfer function 

V(s) _ b s" + bn_1 s"-1 + -. + b1s + bo (12.57) 
Vi(s) as" + ans" 1 + - + ais + ao 

The first step is to introduce an intermediate variable V(s) such that 
Vj(s)/ Vi(s) contains only the poles of the transfer function, or 

Va(S) 1(12.58)
Vi(s) ans + a._s"--1 + + ais + ao 

Proceeding in a way exactly parallel to the time-domain development of 
Section 12.3.1, we write 

S"Va(S-(s) - -a s V(s) - ao Va(S) + Vi(s) (12.59) 
a, an an a, 

The block-diagram representation of Eqn. 12.59 is shown in Fig. 12.25. 
This block diagram can be readily implemented using summers and inte­
grators. In order to complete the synthesis of our transfer function (Eqn. 
12.57) we recognize that 

V,(s) = Va(s) (b s + bs"--' + - + bis + bo) (12.60) 

The essential feature of Eqn. 12.60 is that it indicates V,(s) is a linear com­
bination of Va(s) and its first n derivatives. Since all of the necessary vari­



Figure 12.25 Block diagram representation of transfer function that contains only poles. 
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ables appear in the block diagram, V,(s) can be generated by simply scaling 
and summing these variables, without the need for differentiation. 

This synthesis procedure is illustrated for an approximation to a pure 
time delay known as the Pad6 approximate. The time delay has a transfer 
function e-1, where r is the length of the delay. The magnitude of this trans­
fer function is one at all frequencies, while its negative phase shift is linearly 
proportional to frequency. The time delay has an essential singularity at the 
origin, and thus cannot be exactly represented as a ratio of polynomials in s. 

The Taylor's series expansion of e- 7 is 

s22 SmnTm 
e- = 1 - sr + - + - - - + (-1)" + - (12.61)

2! M! 

The Pade approximates locate an equal number of poles and zeros so as 
to agree with the maximum possible number of terms of the Taylor's 
series expansion. This approximation always leads to an all-pass network 
that has right-half-plane zeros and left-half-plane poles located symmetrically 
with respect to the imaginary axis. This type of singularity pattern results 
in a frequency-independent magnitude for the transfer function. 

Since we can always frequency or time scale at a later point, we consider 
a unit time delay e- to simplify the development. The first-order Padd 
approximate to this function is 

I - (s/2) s2 s 3 

= 1-s± - +-- + - + (12.62)
1 + (s/2) 2 4 

The expansion for e-" is 

2 5 
s s3 s4 s s6 

e-= 1- s +-- + + - + (12.63)
2 6 24 120 720 

The first-order approximation matches the first two coefficients of s of the 
complete expansion, and is in reasonable agreement with the third coefficient. 
This match is all that can be expected, since only two degrees of freedom 
(the location of the pole and the location of the zero) are available for the 
first-order approximation. The second-order Pad6 approximate to a one-
second time delay is 

1 - (s/2) + (s2/12)
 

1 + (s/2) + (S2/12)
 

s4S2 s 
3 s5 

-s+ + - - - - ---+ (12.64)
2 6 24 144 
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Figure 12.26 Singularity locations for second-order Pade approximate to one-

second time delay. 

As expected, the first four time-delay coefficients of s are matched by the 

approximation. The s-plane plot for P 2(s) is shown in Fig. 12.26. Simple 

vector manipulations confirm the fact that the magnitude of this function 

is one at all frequencies. 
The phase shift of the approximating function is (from Eqn. 12.64) 

4 P2(jo) = 2 4 1 - + (I] 2 tan- 1 
2 [1 - C2/12)] (12.65) 

This function is compared with an angle of - 57.3cr (the value for a one-

second time delay) in Fig. 12.27. We note excellent agreement to frequencies 

of approximately 2 radians per second implying that the approximation 

represents the actual function well for sinusoidal excitation to this fre­

quency, with increasing discrepancy at higher frequencies. The error re­

flects the fact that the maximum negative phase shift of the Pad6 approxi­

mate is 360', while the time delay provides unlimited negative phase shift 

at sufficiently high frequency. 

Synthesis is initiated by defining an intermediate variable Va(s) in accord­

ance with Eqns. 12.58 and 12.59, or 

V-(s) -1 (12.66)
V,(s) (s2/12) + (s/2) + 1 

and 

S2 
Va(S) = -- 6sVa(s) - 12 V,(s) + 12Vi(s) (12.67) 
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Figure 12.27 Comparison of time delay and Pad6 approximate phase characteristics. 

The output voltage is 

S2 s 
V0(s) - V(S) - - Va(S) + Va(S) (12.68)

12 2 

The operational-amplifier synthesis shown in Fig. 12.28 provides the 
required transfer function if RC = 1 second. The reader should convince 
himself that the liberties taken with inversions and various resistor values 
do in fact lead to the desired relationship. 

Anticipated amplitudes depend on the input-signal level and its spectral 
content. For example, if a step is applied to the input of the circuit, the 
magnitude of the signal out of the first amplifier must initially be 12 times 
as large as the step amplitude, since the outputs of the integrators cannot 
change instantaneously to subtract from the input-signal level. Note, how­
ever, that the input-to-output transfer function of the circuit remains the 
same for any values of R1 = R2. If, for example, 10-V step changes are 
expected at the input, selection of R1 = R2 = 120 kQ will limit the signal 
level at the output of the first amplifier to 10 volts while maintaining the 
correct input-to-output gain. 

The circuit shown in Fig. 12.28 was constructed using R = 100 kQ and 
C = 0.01 MF, values resulting in an approximation to a 1-ms time delay. 
This choice of time scale is convenient for oscilloscope presentation. The 
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Figure 12.28 Synthesis of second-order Pade approximate to a time delay. 
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Figure 12.29 Input and output signals for second-order Padd approximate to a 
1-ms time delay. (a) Sine-wave excitation. (b) Triangular-wave excitation. (c) Square-
wave excitation. 
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Figure 12.29-Continued 

input and output signals for 100-Hz sine-wave excitation are shown in Fig. 
12.29a. The time delay between these two signals is 1 ms to within instru­
mentation tolerances. This performance reflects the prediction of Fig. 12.27, 
since good agreement to 2000 rad/sec or 300 Hz is anticipated for the ap­
proximation to a 1-ms delay. 

Input and output signals for 100-Hz triangular-wave excitation are com­
pared in Fig. 12.29b. The triangular wave contains only odd harmonics, and 
these harmonics fall off as the square of their frequency. Thus the amplitude 
of the third harmonic of the triangular wave is approximately 11 % of the 
amplitude of the fundamental, the amplitude of the fifth harmonic is 4% of 
the fundamental, while higher harmonics are further attentuated. We notice 
that the circuit does very well in approximating a 1-ms time delay most of 
the time. The aberration that results immediately following a change in 
slope reflects the inability of the circuit to provide proper phase shift to 
the higher-frequency components. 

The performance of the circuit when excited with an 100-Hz square wave 
is shown in Fig. 12.29c. The relatively poorer behavior in the vicinity of a 
transition in this case results from the higher harmonic content of the square 
wave. (Recall that the square wave contains odd harmonics that fall off 
only as the first power of the frequency.) 
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12.5 FURTHER EXAMPLES 

It was mentioned in the introduction to Chapter 11 that the objective of 

the application portion of this book was to illustrate concepts for design 

rather than to provide specific, detailed examples in the usually futile 

hope that the reader could apply them directly to his own problems. 

Successful design almost always involves combining bits and pieces, a 

concept here, a topology there, to ultimately arrive at the optimum solution. 

In this section we will see how some of the ideas introduced earlier are 

combined into relatively more sophisticated configurations. The three 

examples that are presented are all "real world" in that they reflect actual 

requirements that the author has encountered recently in his own work. 

12.5.1 A Frequency-Independent Phase Shifter 

There are a number of operational-amplifier connections, such as the 

approximation to a time delay described in the previous section, that have 

a transfer-function magnitude independent of frequency combined with 

specified phase characteristics. The phase shifter shown in Fig. 12.30 is 

another example of this type of circuit. We recognize this circuit as a differ­

ential-amplifier connection, and thus realize that its transfer function is 

V__s = 2RCsRs-1V0(s) = _2RC - 1 = RCs -1 (12.69) 
Vi(s) RCs + 1 RCs + 1 

This transfer function (which is the negative of a first-order Pade approxi­

mate to a time delay of 2RC seconds) produces a phase shift that varies from 

- 1800 at low frequencies to 0' at high frequencies. If a potentiometer or a 

field-effect transistor is used for R, the phase shift can be manually or 

electronically varied. 

R1 

R1 

+ c 
RVi n 

Figure 12.30 Adjustable phase shifter. 
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multiplier 

Figure 12.31 Constant phase shifter using a phase detector. 

One technique for converting resolver8 signals to digital form requires 
that a fixed 900 phase shift be applied to a sinusoidal signal with no change 
in its amplitude. The frequency of the signal to be phase shifted may change 
by a few percent. Unfortunately, there are no finite-polynomial linear 
transfer functions that combine frequency-independent magnitude charac­
teristics with a constant 900 phase shift. While approximating functions do 
exist over restricted frequency ranges, the arc-minute phase-shift constancy 
required in this application precluded the use of such functions. We note 
that since a very specific class of input signals (single-frequency sinusoids) 
is to be applied to the phase shifter, linearity may not be a necessary con­
straint. Nonlinear circuits, in spite of our inability to analyze them syste­
matically, often have very interesting properties. 

Consider the configuration shown diagrammatically in Fig. 12.31 as a 
possible solution to our problem. In this circuit, an all-pass phase shifter 
with a voltage-variable amount of phase shift is the central element. The 
circuit shown in Fig. 12.30 with a field-effect transistor used for the resistor 
R can perform this function. The multiplier is used as a phase detector. If 
the magnitude of the phase shift between the input and output signals is 
less than 900, the average value of the multiplier output will be positive, 
while if this magnitude is between 90' and 1800, the average multiplier out­
put signal will be negative. The integrator, which provides the control 

8 A resolver is basically a transformer with a primary-to-secondary coupling that can be 
varied by mechanically changing the relative alignment of these windings. This device is 
used as a rugged and highly accurate mechanical-angle transducer. 
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voltage for the FET in the phase shifter, filters the second harmonic that 
results from the multiplication and supplies the loop gain necessary to keep 
the average value of the multiplier output at zero, thus forcing a 900 phase 
shift between input and output signals. Although the circuit described 
above can result in moderate accuracy, a detailed investigation indicated 
that meeting the required specifications probably was not practical with 
this topology. 

It is worth noting that while the basic approach described above was not 
used in this case, it is a valuable technique that has a number of interesting 
and useful variations. For example, the phase shift of a second-order high-
or low-pass active filter is ±90' when excited at its corner frequency. 
Tracking filters can be realized by replacing the fixed resistors in an active 
filter with voltage-controlled resistors and using a phase comparison to 
locate the corner frequency of the filter at its excitation frequency. 

In some applications, other types of phase detectors are used. One possi­
bility involves high-gain limiters that produce square waves with zero cross­
ing synchronized to those of the sine waves of interest. The duty cycle of an 
exclusive OR gate operating on the square waves indicates the relative phase 
of the original signals. 

The previous circuit combined an all-pass network that provides a 
transfer-function magnitude that is independent of frequency with feedback 
which forces 90* of phase shift at the operating frequency. An alternative 
approach is to combine a network that provides 90' of phase shift at all 
frequencies (an integrator) with feedback that forces its gain magnitude to 
be one at the operating frequency. 

The circuit that evolved to implement the above concept is shown in only 
slightly simplified form in Fig. 12.32. The signal integrator provides the 
required 90' of phase shift. Its scale factor is adjusted by means of the field-
effect transistor so that a gain magnitude of one is provided at frequencies 
close to the nominal operating value of 400 Hz. Half of the drain-to-source 
voltage of the field-effect transistor is applied to its gate to linearize the 
drain-to-source resistance as described in Section 12.1.4. The unity-gain 
buffer amplifier prevents current flowing through the FET-gate network from 
being integrated. The capacitor in series with the signal-integrator input re­
sistor and the resistor shunting the integrating capacitor are required to keep 
this integrator from saturating as a consequence of input voltage offset and 
bias current. While they change the ideal phase shift by a total of approxi­
mately eight arc minutes, this value is trimmed out along with other phase-
shift errors with a network (not shown) following the integrator. 

The two full-wave precision-rectifier connections combine with the loop-
gain integrator to provide an average current into the capacitor of this 
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Figure 12.32 Precision phase shifter with amplitude control. 
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integrator that is proportional to the difference between the magnitudes of 

the input and output signals. If, for example, the output-signal magnitude 

exceeds the input-signal magnitude, the voltage out of the loop-gain inte­

grator is driven negative. This action increases the incremental resistance 

of the FET, thus decreasing the signal-integrator scale factor and lowering 

the magnitude of the output signal. The inputs to the precision rectifiers are 

a-c coupled so that d-c components of these signals do not influence the 

rectifier output signals. A two-pole low-pass filter follows the loop-gain 

integrator to further filter harmonics that would degrade signal-integrator 

performance. 
The maximum positive output level of the loop-gain integrator is clamped 

via an internal node to a maximum output level of zero volts in order to 

eliminate a latch-up mode. If this voltage became positive, the FET would 

conduct gate current, and this current could cause the signal-integrator 

output to saturate. As a result, the a-c component of the signal-integrator 

output would be eliminated, and the loop, in an attempt to restore equi­

librium, would drive the output of the loop-gain integrator further positive. 

The diode clamp prevents initiation of this unfortunate chain of events. 

The circuit shown in Fig. 12.32 has been built and tested at operating 

frequencies between 395 and 405 Hz over the temperature range of 00 to 

50* Centigrade. (The feedback also eliminates the effects of signal-integrator 

component-value changes with temperature.) The input- and output-signal 
amplitudes remain equal within I mV peak-to-peak at any input-signal 

level up to 20 volts peak-to-peak. The phase shift of the circuit with a 20­

volt peak-to-peak input remains constant within one arc minute. While the 

actual phase shift is not precisely 90*, the constant component of the phase 

error can be trimmed out as described earlier. 

12.5.2 A Sine-Wave Shaper 

We have discussed certain aspects of a function-generator circuit that 

combines an integrator and a Schmitt trigger to produce square and triangle 

waves in Sections 6.3.3 and 12.2.1. Commercial versions of this circuit 

usually also provide a sine-wave output that is synthesized by the seemingly 

improbable .method of shaping the triangle wave with a piecewise-linear 

network. This technique is practical because of the ease of generating 

variable-frequency triangular waves, and because the use of relatively few 

segments in the shaping network gives surprisingly good sine-wave fidelity. 

Part of the design problem is to determine how the characteristics of the 

shaping network should be chosen to best approximate a sine wave. The 

parameters that define the network are shown in Fig. 12.33. A total of n 

break points are located over the input-variable range of 00 to 90'. The 
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Figure 12.33 Piecewise-linear network characteristics. 

slope of the input-output transfer relationship is KSm between 0 = 0m and 

o = 6m+1. The multiplying constant K reflects the fact that only relative 
slopes are important, since a multiplicative change in all slopes changes 
only the magnitude of the input-output transfer characteristics. The sym­

metry of the transfer characteristics about the origin insures that the output 
signal will have no d-c component and will contain no even harmonics when 
a zero-average-value triangular signal is used as the input. 

The network specification involves the choice of n values of 0 (the break­
point locations) and n + 1 relative slopes. It can be shown that if the O's 

are selected such that 

m 1800 
Om = M 80 0 < M < n7 (12.70)

2n + 1 ­

and slopes selected as
 

Sm = sin 0m+1 - sin Om 0 < m < n (12.71a) 

Sm= 0 m = n (12.71b) 

the first n odd harmonics will be eliminated from the output signal. 

The decision to use four break points in the realization of the sine shaper 
was based on two considerations. With this number of break points, out­
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put distortion resulting from imprecise break-point locations and slope 
values is comparable to the distortion associated with the piecewise-linear 
approximation unless expensive components are used to establish these 
parameters. Furthermore, an inexpensive integrated-circuit five-diode array 
is available. This matched-diode array can be used for the four break points, 
with the fifth diode providing temperature compensation as described in 
material to follow. Equations 12.70 and 12.71 evaluated for n - 4 suggest 
break points located at input-variable values of 20', 400, 60', and 800, with 
relative segment slopes (normalized to a minimum nonzero slope of one) 
of 2.879, 2.532, 1.879, 1, and 0, respectively. 

With the transfer characteristics of the shaping network determined, it 
is necessary to design the circuit that synthesizes the required function. The 
discussion of Section 11.5.3 mentioned the use of superdiode connections 
to improve the sharpness of break points compared to that which can be 
achieved with diodes alone. This technique was not used for the sine 
shaper, since the rounding associated with the normal diode forward 
characteristics actually improves the quality of the fit to the sine curve. 

The compressive type nonlinearities described in Section 11.5.3 were 
realized using diodes to increase the feedback around an operational 
amplifier, thus reducing its incremental closed-loop gain when a break­
point level was exceeded. An alternative is to use diodes to decrease the 
drive signal applied to the amplifier to lower incremental gain. This ap­
proach simplifies temperature compensation. The topology used is shown 
in Fig. 12.34. 

The input-signal level of 20 volts peak-to-peak corresponds to the input 
variable range of z90* shown in Fig. 12.33. Thus the break-point loca­
tions of L20, ±40, -60*, and L800 correspond to input-voltage levels 
of ±2.22 volts, ±4.44 volts, ±6.67 volts, and ±-+.89 volts, respectively. 
Resistor values are determined as follows. It is initially assumed that the 
diodes are ideal, in that they have a threshold voltage of zero volts, zero 
resistance in the forward direction, and zero conductance in the reverse 
direction. Assume that the R1-R2 path is to provide the break points at 
input voltages of ± 8.89 volts. Since the inverting input of the operational 
amplifier is at ground potential, the resistor ratio necessary to make the 
voltage at the midpoint of these two resistors ± 1.5 volts with ± 8.89 volts 
at the input is 

R21.5 
R2 1 .5 = 0.1687 (12.72)

R1 + R2 8.89 

The ratios of resistor pairs R3-R 4, R5-R6, and RrRs are chosen in a similar 
way to locate the remaining break points. 
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Figure 12.34 Simplified sine-wave shaper. 
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The relative conductances of the resistive paths between the triangular-
wave signal source and the inverting input of the operational amplifier are 
constrained by the relative slopes of the desired transfer characteristics as 
follows. The closed-loop incremental gain of the connection is proportional 
to the incremental transfer conductance from the signal source to the 
current iA defined in Fig. 12.34. With the ratio of the two resistors in each 
path chosen in accordance with relationships like Eqn. 12.72, the incre­
mental transfer conductance is zero (for ideal diodes) when the input-
signal magnitude exceeds 8.89 volts, increases to 1/(R1 + R 2) for input-
signal magnitudes between 6.67 and 8.89 volts,, increases further to 
[1/(R 1 + R 2)] + [1/(R 3 + R 4)] for input-signal magnitudes between 4.44 
and 6.67 volts, etc. If we define 1/(R1 + R2 ) = G, realizing the correct 
relative slope for input-signal magnitudes between 4.44 and 6.67 volts re­
quires 

1 1 
' 2 = 1.S79G (12.73)R, +R 2 R 3 -+FR 4 

The satisfaction of Eqn. 12.73 makes the slope in this input signal range 
1.879 times as large as the slope for input signals between 6.67 and 8.89 
volts. Corresponding relationships couple other resistor-pair values to the 
R1 -R 2 pair. 

The sets of equations that parallel Eqns. 12.72 and 12.73, together with 
the selection of any one resistor value, determine reistors R1 through R 8 . 
The general resistance level set by choosing the one free resistor value is 
selected based on loading considerations and to insure that stray capacitance 
does not deteriorate dynamic performance. 

The circuit used for the sine shaper (Fig. 12.35) uses the standard 1"7o­
tolerance resistor values that best approximate calculated values. The five 
diodes labeled A and those labeled B are from two CA3039 integrated-
circuit diode arrays. One member of each array modifies the bias voltages 
to account for the diode threshold voltages and to provide temperature 
compensation. The compensating diodes are operated at a current level of 
approximately half the maximum operating current level of the shaping 
diodes. While this type of compensation clearly has no effect on the con­
ductance characteristics of the shaping diodes, the exponential diode charac­
teristics actually improve the performance of the circuit as described earlier. 

Since this circuit is intended to operate to 1 MHz (a high-speed integrated-
circuit operational amplifier with a discrete-component buffer to increase 
output-current capacity is used), capacitors are necessary at the output of 
the reference-voltage amplifiers to lower their output impedance at the 
switching frequency of the diodes. The 1.5-V levels are derived from the 
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Figure 12.35 Sine-wave shaper. 
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200 Ts 

Figure 12.36 Output from sine-wave shaper. 

voltages that establish triangle-wave amplitude so that any changes in this 

amplitude cause corresponding break-point location changes. 

The circuit produces approximate sine waves with the amplitude of any 
individual harmonic in the output signal at least 40 dB (a voltage ratio of 
100:1) below the fundamental. This performance is obtained with no 
trimming. If adjustments are made to null the offset of the operational 

.amplifier, and empirical adjustments (guided by a spectrum analyzer) are 

used to counteract component-value errors and to compensate for finite 
diode forward resistance, the amplitude of individual output-signal 
harmonics can be reduced to 55 dB below the fundamental at low frequen­
cies. Performance deteriorates somewhat at frequencies above approxi­

mately 10 kHz because of reduced signal-amplifier open-loop gain. 

A 1-kHz output signal from the circuit is shown in Fig. 12.36. 

12.5.3 A Nonlinear Three-Port Network 

The realization of a device analog that may be of value in teaching the 
dynamic behavior of bipolar transistors requires a three-port network 
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Figure 12.37 Three-port network. 

defined by Fig. 12.37. The synthesis of this network is initiated by first 

designing a circuit that provides the relationship 

VN = VB - V0 exp [(VB- VE) (12.74) 

The parameter Vo, as we might expect, is related to the quantity Is for the 

transistor being simulated, and consequently a corresponding temperature 

dependence is desirable. 
There are a number of ways to simulate Eqn. 12.74. One topology that 

is adaptable to further requirements is shown in Fig. 12.38. Since an even­

tual constraint is that the current at the VB input be zero, a buffer amplifier 

is used at this terminal. The second amplifier is differentially connected 

with an output voltage. 

VA = 2VE - VB (12.75) 

The third amplifier is also connected as a differential amplifier, so that 

VN = VE - (iT + iA)R (12.76) 

Since feedback keeps the inverting input terminal of the third amplifier at 

potential VE, 

A A - VE VE -B (1.77)
R R 
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Figure 12.38 Synthesis of exponential relationship. 
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If we assume the usual transistor characteristics, 

ir Is jexp [(VB- 1i (12.78) 

Substituting Eqns. 12.77 and 12.78 into Eqn. 12.76 yields the form re­
quired by Eqn. 12.75: 

VN = VB - RIs exp VE)] -(VB- (12.79) 

In order to complete the synthesis, it is necessary to sample the current 
flowing at terminal N and make the current flowing at terminal E the nega­
tive of this current. A modification of the Howland current source (see 
Section 11.4.3) can be used. The basic circuit with differential inputs is 
shown in Fig. 12.39a. (The reason for the seemingly strange input-voltage 
connection and the split resistor will become apparent momentarily.) The 
current io for these parameter values is 

22 
(VA - vc) (VA - VA - vr) -2vr 

o - (12.80)
R R R 

In Fig. 12.39b, the voltage source vr and half of the split resistor are re­
placed with a Norton-equivalent circuit. For equivalence, it is necessary 
to make ir = 2vr/R. Expressing Eqn. 12.80 in terms of ir shows 

io = -i (12.81) 

The topology of Fig. 12.39b shows that the iT current source can be re­
turned to ground rather than to voltage source VA. This modification is 
shown in Fig. 12.39c, the current-controlled current source necessary in 
our present application. Note that the output is independent of VA, the 
common-mode input voltage applied to the current source. 

The circuits of Figs. 12.38 and 12.39c are combined to form the three-
port network as shown in Fig. 12.40. In this circuit, the feedback for the 
voltage vN is taken from the output side of the current-sampling resistor so 
that voltage drops in this resistor do not influence vN. It is necessary to 
buffer the 100-kQ feedback resistor with a unity-gain follower to insure that 
current through this resistor does not flow through the current-sampling 
resistor and thus alter iE. 

The trim potentiometer allows precise matching of resistor ratios to 
make current iE independent of common-mode voltage levels at various 
points in the current source and thus dependent only on iN. In this applica­
tion, it was not necessary to have exactly unity gain between iN and - iE, 
so no trim is included for this ratio. The general magnitude of the resistors 
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Figure 12.39 Current-controlled current source. (a) Basic Howland current source. 
(b) Current source following Norton substitution. (c) Final configuration. 
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Figure 12.40 Complete nonlinear three-port network. 

in the current source is chosen for compatibility with required current 
levels and amplifier characteristics and is not important for purposes of 
this discussion. 

PROBLEMS 

P12.1 
Consider a Wien-Bridge oscillator as shown in Fig. 12.1. Show that if 

the output signal is of the general form vo = E sin [(t/RC) + 0] where 0 
is a constant, the signals applied to the two inputs of the operational ampli­
fier are virtually identical, a necessary condition for satisfactory perform­
ance. Note that if the inverting and noninverting inputs are interchanged 
and it is assumed that the output has the form indicated above, the signals 
at the two inputs will also be identical. However, this modified topology 
will not function as an oscillator. Explain. 

P12.2 
A Wien-Bridge oscillator is constructed using the basic topology shown 

in Fig. 12.1. Because of component tolerances, the time constants of the 
series and parallel arms of the frequency-dependent feedback network 
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differ by 5 %. How must component values in the frequency-independent 
feedback path be related to guarantee oscillation? 

P12.3 
Use a describing-function approach to analyze the circuit shown in Fig. 

12.3, assuming that the operational amplifier is ideal and that the diodes 
have zero conductance until a forward voltage of 0.6 volt is reached and 
zero resistance in the forward-conducting state. In particular, determine the 
magnitude of the signal applied to the noninverting input of the amplifier 
and the third-harmonic distortion present at the amplifier output. 

P12.4 
A sinusoidal oscillator is constructed by connecting the output of a 

double integrator (see Fig. 11.12) to its input. Show that amplitude can be 
controlled by varying the magnitude of the (R/2)-valued resistor shown in 
this figure. Design a complete circuit that can produce a 20-V peak-to-peak 
output signal at 1 kHz. Use a FET with parameters given in Section 12.1.4 
for the control element. Analyze your amplitude-control loop to show that 
it has acceptable stability and a crossover frequency compatible with the 
1-kHz frequency of oscillation. If you have confidence in your design, 
build it. The 2N4416 field-effect transistor is reasonably well characterized 
by the parameters referred to above. 

P12.5 
The discussions of Sections 12.2.2 and 12.2.3 suggest operating electronic 

switches connected to symmetrical, variable voltages from the output of a 

t
 
+v F 

VI­

_VF 

Figure 12.41 Infinite-gain limiter. 
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Schmitt trigger for two different applications. An alternative to the use of 

switches is to use a circuit that has the transfer characteristic shown in 

Fig. 12.41 for the necessary shaping function. (In this diagram, the voltage 

VF is a positive variable.) Design a circuit that uses operational amplifiers 

to synthesize this transfer characteristic. Your output levels should be 

insensitive to temperature variations. 

P12.6 

A magnetic-suspension system was described in Section 6.2.3. Develop 

an electronic analog simulation of this system that permits determination 

of the transients that result from disturbing forces applied to the ball. 

Assume that, in addition to operational amplifiers and appropriate passive 

components, multipliers with a scale factor vo = vxvy 10 volts are available. 

A way to perform the division required in this simulation using a multi­

plier and an operational amplifier is outlined in Section 6.2.2. 
You may leave the various element values in the simulation defined in 

terms of system parameters, without developing final amplitude-scaled 
values. 

P12.7 

A circuit intended for use as a precision voltage reference for an analog-

to-digital converter is shown in Fig. 12.42. The circuit uses a fraction of the 

Zener-diode voltage as its output. While this method involving resistive 

attenuation results in relatively high output resistance compared with using 

the voltage at the output of the amplifier as the reference, the output 

voltage becomes essentially independent of operational-amplifier offset 
voltage. 

R1 

1N4779A- + 

9 k2 

Figure 12.42 Voltage reference. 
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Figure 12.43 Low-pass Sallen and Key circuit with voltage gain. 

The specified breakdown voltage of the 1N4779A is 8.5 volts 5% . The 
indicated resistor is selected during testing to obtain the required output 
voltage independent of the actual value of the Zener-diode voltage. 

The breakdowh voltage range and the temperature coefficient of the 
device are guaranteed at an operating current of 0.500 mA. By proper 
choice of R1 and R 2, it is possible to make the current through the Zener 
diode independent of the actual Zener voltage after the single indicated 
selection has been completed. Such a choice is advantageous since it sim­
plifies circuit calibration as opposed to methods that require two or more 

interdependent adjustments to set output voltage and Zener-diode operat­
ing current. Find values for R1 and R 2 that result in this simplification. 
(Please excuse the somewhat unwieldy numbers involved in this problem, 
but it is drawn directly from an existing application.) 

P12.8 
A Sallen and Key low-pass circuit with an amplifier closed-loop voltage 

gain greater than unity is shown in Fig. 12.43. Determine the transfer 
function V 0(s)/Vi(s) for this circuit. Compare the sensitivity of this circuit 
to component variations with that of the unity-gain version. 

P12.9 

One way to analyze the Sallen and Key circuit shown in Fig. 12.43 is to 

recognize the configuration as a positive-feedback circuit. If the loop is 

broken at the noninverting input to the operational amplifier, analysis 

techniques based on loop-transmission properties can be used. 

(a) 	 Indicate the loop-transmission singularity pattern that results when the 

loop is broken at the point mentioned above. It is not necessary to 
determine singularity locations exactly in terms of element values. 
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(b) 	 Show how the closed-loop poles of the system move as a function of 
the closed-loop gain of the operational amplifier by using root-locus 
methods that have been appropriately modified for positive feedback 
systems. 

P12.10 
Design a sixth-order Butterworth filter with a 1 kHz corner frequency 

by cascading three unity-gain Sallen and Key circuits. 

P12.11 
The fifth-order Pad6 approximate to a one-second time delay is 

1 - 0.5s + 0.111s 2 
- 1.39 X 10-2 s3 

+ 9.92 X 10- 4s4 - 3.31 X 10- 5s5 

1 + 0.5s + 0.111s2 - 1.39 X 10- 2s3 

+ 9.92 X 10- 4s4 + 3.31 X 10- 5s 

Design an active filter that synthesizes this transfer function. 

P12.12 
Develop a linearized block-diagram for the system shown in Fig. 12.32, 

assuming that the FET is characterized by the parameters given in Section 
12.1.4. Show that the loop crossover frequency is low compared to 400 Hz 
for any input-voltage level up to 20 volts peak-to-peak. Estimate the time 
required for the system to restore equilibrium following an incremental 
perturbation (initiated, for example, by a change in input frequency) when 
the input-signal amplitude is 100 mV peak-to-peak. Note that the system 
is not significantly disturbed by a change in input amplitude when operating 
under equilibrium conditions, and that therefore this relatively long settling 
time does not deteriorate performance. 





CHAPTER XIII
 

COMPENSATION REVISITED
 

13.1 INTRODUCTION 

Proper compensation is essential for achieving optimum performance 
from virtually any sophisticated feedback system. Objectives extend far 
beyond simply guaranteeing acceptable stability. If stability is our only 
concern, the relatively unimaginative approaches of lowering loop-trans­
mission magnitude or creating a sufficiently low-frequency dominant pole 
usually suffice for systems that do not have right-half-plane poles in their 
loop transmissions. More creative compensation is required when high de-
sensitivity over an extended bandwidth, wideband frequency response, ideal 
closed-loop transfer functions with high-pass characteristics, or operation 
with uncertain loop parameters is essential. The type of compensation used 
can also influence quantities such as noise, drift, and the class of signals for 
which the system remains linear. 

A detailed general discussion has already been presented in Chapter 5. 
In this chapter we become more specific and look at the techniques that 
are most appropriate in the usual operational-amplifier connections. It is 
assumed that the precautions suggested in Section 11.3.2 have been ob­
served so that parasitic effects resulting from causes such as inadequate 
power-supply decoupling or feedback-network loading at the input of the 
amplifier do not degrade performance. 

It is cautioned at the outset that there is no guarantee that particular 
specifications can be met, even with the best possible compensation. For 
example, earlier developments have shown how characteristics such as the 
phase shift from a pure time delay or a large number of high-frequency 
poles set a very real limit to the maximum crossover frequency of an 
amplifier-feedback network combination. Somewhat more disturbing is the 
reality that there is usually no way of telling when the best compensation 
for a particular application has been realized, so there is no clear indication 
when the trial-and-error process normally used to determine compensation 
should be terminated. 

The attempt in this chapter is to introduce the types of compensation that 
are most likely to succeed in a variety of applications, as well as to indicate 

557 
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some of the hazards associated with various compensating techniques. The 
suggested techniques for minor-loop compensation are illustrated with ex­
perimental results. 

13.2 	 COMPENSATION WHEN THE OPERATIONAL­
AMPLIFIER TRANSFER FUNCTION IS FIXED
 

Many available operational amplifiers have open-loop transfer functions 
that cannot be altered by the user. This inflexibility is the general rule in the 
case of discrete-component amplifiers, and many integrated-circuit designs 
also include internal (and thus fixed) compensating networks. If the manu­
facturers' choice of open-loop transfer function is acceptable in the in­
tended application, these amplifiers are straightforward to use. Conversely, 
if loop dynamics must be modified for acceptable performance, the choices 
available to the designer are relatively limited. This section indicates some 
of the possibilities. 

13.2.1 Input Compensation 

Input compensation consists of shunting a passive network between the 
input terminals of an operational amplifier so that the characteristics of the 
added network, often combined with the properties of the feedback net­
work, alter the loop transmission of the system advantageously. This form 
of compensation does not change the ideal closed-loop transfer function of 
the amplifier-feedback network combination. We have already seen an ex­
ample of this technique in the discussion of lag compensation using the 
topology shown in Fig. 5.13. That particular example used a noninverting 
amplifier connection, but similar results can be obtained for an inverting 
amplifier connection by shunting an impedance from the inverting input 
terminal to ground. 

Figure 13.1 illustrates the topology for lag compensating the inverting 
connection. The loop transmission for this system (assuming that loading at 
the input and the output of the amplifier is insignificant) is 

L(s) a(s)R1 (RCs + 1)
(R1 + R2) [(R1 | R 2 + R)Cs + 1] 

The dynamics of this loop transmission include a lag transfer function with 
a pole located at s = -[l/(R 1lR2 + R)C] and a zero located at s 
-1 'RC. 

The example of lead compensation using the topology shown in Fig. 5.11 
obtained the lead transfer function by paralleling one of the feedback-
network resistors with a capacitor. A potential difficulty with this approach 

1 
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C 

Figure 13.1 Lag compensation for the inverting amplifier connection. 

is that the ideal closed-loop transfer function is changed. An alternative is 

illustrated in Fig. 13.2. Since component values are selected so that R 1C = 

R 2 C 2, the ideal closed-loop transfer function is 

V0(s) R 2/(R 2C 2s + 1) R2 (1. 
Vi(s) Ri/(R1Cis + 1) R1 

The loop transmission for this connection in the absence of loading and 
following some algebraic manipulation is 

a(s)R1R [(R 1C1 )s + 1) 
(R1R2 + R1R + R 2R) [(R1 \R2 \ R)(C 1 + C2)s + 1]1 

A disadvantage of this method is that it lowers d-c loop-transmission mag­
nitude compared with the topology that shunts R 2 only with a capacitor. 
The additional attenuation that this method introduces beyond that pro­
vided by the R 1 -R 2 network is equal to the ratio of the two break fre­
quencies of the lead transfer function. 

c2 = C 
2 

FI 
C, R2 

R 

Vi +R + a(s) -- VV ­

Figure 13.2 Lead compensation for the inverting amplifier connection. 
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-) R 

R 

R R 

C C2 R2 C1 

Figure 13.3 Lead and lag compensation for the noninverting amplifier connection. 

This basic approach can also be used to combine lead and lag transfer 
functions in one loop transmission. Figure 13.3 illustrates one possibility 
for a noninverting connection. The equality of time constants in the feed­
back network insures that the ideal gain for this connection is 

V0(s) + R 2
R1 

Vi(s) R1 

Some algebraic reduction indicates that the loop transmission (assuming 
negligible loading) is 

a(s)R1 (RCs + 1)(R 1Cis + 1) 
(R 1 + R 2) { RR 1CC1s

2 + [(R 1 1R 2 + R)C + R1 C1 ]s + 1} 

The constraints among coefficients in the transfer function related to the 
feedback and shunt networks guarantee that this expression can be fac­
tored into a lead and a lag transfer function, and that the ratios of the 
singularity locations will be identical for the lead and the lag functions. 

The way that topologies of the type described above are used depends 
on the dynamics of the amplifier to be compensated and the load connected 
to it. For example, the HA2525 is a monolithic operational amplifier (made 
by a process more involved than the six-mask epitaxial process) that com­
bines a unity-gain frequency of 20 MHz with a slew rate of 120 volts per 
microsecond. The dynamics of this amplifier are such that stability is guar­
anteed only for loop transmissions that combine the amplifier open-loop 
transfer function with an attenuation of three or more. Figure 13.4 shows 
how a stable, unity-gain follower can be constructed using this amplifier. 
Component values are selected so that the zero of the lag network is lo­
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1 kn 

2 kS 

Figure 13.4 Unity-gain follower with input compensation. 

cated approximately one decade below the compensated loop-transmission 
crossover frequency. Of course, the capacitor could be replaced by the 
short circuit, thereby lowering loop-transmission magnitude at all fre­
quencies. However, advantages of the lag network shown include greater 
desensitivity at intermediate and low frequencies and lower output offset 
for a given offset referred to the input of the amplifier. 

There are many variations on the basic theme of compensating with a 
network shunted across the input terminals of an operational amplifier. 
For example, many amplifiers with fixed transfer functions are designed to 
be stable with direct feedback provided that the unloaded open-loop transfer 
function of the amplifier is not altered by loading. However, a load capaci­
tor can combine with the openloop output resistance of the amplifier to 
create a pole that compromises stability. Performance can often be im­
proved in these cases by using lead input compensation to offset the effects 
of the second pole in the vicinity of the crossover frequency or by using 
lag input compensation to force crossover below the frequency where the 
pole associated with the load becomes important. 

In other connections, an additional pole that deteriorates stability re­
sults from the feedback network. As an example, consider the differentiator 
shown in Fig. 13.5a. The ideal closed-loop transfer function for this con­
nection is 

(s)= -s (13.6)
Vi(s) 

It should be noted at the outset that this connection is not recommended 
since, in addition-to its problems with stability, the differentiator is an in­
herently noisy circuit. The reason is that differentiation accentuates the 
input noise of the amplifier because the ideal gain of a differentiator is a 
linearly increasing function of frequency. 

Many amplifiers are compensated to have an approximately single-pole 
open-loop transfer function, since this type of transfer function results in 
excellent stability provided that the load element and the feedback network 
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100 ki 

10 pF 

+ a(s)­

V 

(a) 

10 pF 100 kE2 

+ 0.02 pF90 k 2 

Vb 

(b) 

Figure 13.5 Differentiator. (a) Uncompensated. (b) With input lead compensation. 

do not introduce additional poles. Accordingly, we assume that for the 
amplifier shown in Fig. 13.5a 

10O5 
a(s) O (13.7)0.01s 5+ I 

If loading is negligible, the feedback network and the amplifier open-loop 
transfer function combine to produce the loop transmission 

105
L(s) = - O - (13.8)

(0.01s + 1)(s + 1) 

The unity-gain frequency of this function is 3.16 X 103 radians per second 
and its phase margin is less than 20. 

Stability is improved considerably if the network shown in Fig. 13.5b is 
added at the input of the amplifier. In the vicinity of the crossover fre­
quency, the impedance of the 10-yF capacitor (which is approximately 
equal to the Thevenin-equivalent impedance facing the compensating net­
work) is much lower than that of the network itself. Accordingly the trans­
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fer function from V0(s) to Va(s) is not influenced by the input network at 
these frequencies. The lead transfer function that relates Vb(s) to Va(S) 

combines with other elements in the loop to yield a loop transmission in 
the vicinity of the crossover frequency 

L(s) - _ 106(1.8 X 10-3s + 1) (13.9)
s2(1.8 X 10-s + 1) 

(Note that this expression has been simplified by recognizing that at fre­
quencies well above 100 radians per second, the two low-frequency poles can 
be considered located at the origin with appropriate modification of the 
scale factor.) The unity-gain frequency of Eqn. 13.9 is 1.8 X 103 radians per 
second, or approximately the geometric mean of the singularities of the lead 
network. Thus (from Eqn. 5.6) the phase margin of this system is 55'. 

One problem with the circuit shown in Fig. 13.5b is that its output volt­
age offset is 20 times larger than the offset referred to the input of the ampli­
fier. The output offset can be made equal to amplifier input offset by in­
cluding a capacitor in series with the 10-kQ resistor, thereby introducing 
both lead and lag transfer functions with the input network. If the added 
capacitor has negligibly low impedance at the crossover frequency, phase 
margin is not changed by this modification. In order to prevent conditional 
stability this capacitor should be made large enough so that the phase 
shift of the negative of the loop transmission does not exceed - 180' at 
low frequencies. 

13.2.2 Other Methods 

The preceding section focused on the use of a shunt network at the input 
of the operational amplifier to modify the loop transmission. In certain 
other cases, the feedback network can be changed to improve stability 
without significantly altering the ideal closed-loop transfer function. As an 
example, consider the circuit shown in Fig. 13.6. The ideal closed-loop 
transfer function for this circuit is 

V0(s) s 
(13.10)Vi(s) 3 X 10-4s + 1 

and thus it functions as a differentiator at frequencies well below 3.3 X 103 

radians per second. The transfer function from the output of the operational 
amplifier to its inverting input via the feedback network includes a zero 
because of the 30-9 resistor. The resulting loop transmission is 

L(s) a(s)(3 X 10-Is + 1) (13.11) 
s + I 
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100 k2 

10 yF 30 

V 

Figure 13.6 Differentiator with feedback-network compensation. 

If it is assumed that the amplifier open-loop transfer function is the same 
as in the previous differentiator example [a(s) = 105/(0.Ols + 1)], Eqn. 
13.11 becomes 

L(s) - 107(3 X 10-4s + 1) (13.12)
S

2 

in the vicinity of the unity-gain frequency. The unity-gain frequency for 
Eqn. 13.12 is approximately 4 X 10 radians per second and the phase 
margin is 500. Thus the differentiator connection of Fig. 13.6 combines 
stability comparable to that of the earlier example with a higher crossover 
frequency. While the ideal closed-loop gain includes a pole, the pole loca­
tion is above the crossover frequency of the previous connection. Since 
the actual closed-loop gain of any feedback system departs substantially 
from its ideal value at the crossover frequency, this approach can yield 
performance superior to that of the circuit shown in Fig. 13.5. 

In the examples involving differentiation, loop stability was compro­
mised by a pole introduced by the feedback network. Another possibility 
is that a capacitive load adds a pole to the loop-transmission expression. 
Consider the capacitively loaded inverter shown in Fig. 13.7. The additional 

pole results because the amplifier has nonzero output resistance (see the 
amplifier model of Fig. 13.7b). If the resistor value R is much larger than 
R, and loading at the input of the amplifier is negligible, the loop transmis­

sion is 

L(s) -- - (13.13)
2(ROCLS 1) 

The feedback-path connection can be modified as shown in Fig. 13.8a to 

improve stability. It is assumed that parameter values are selected so that 
R >> R, + Rc and that the impedance of capacitor CF is much larger in 
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R 

RV 

(a) 

-a(s)v 
va 

+ C 

(b) 

Figure 13.7 Capacitively loaded inverter. (a) Circuit. (b) Amplifier model. 

magnitude than Ro at all frequencies of interest. With these assumptions, 
the equations for the circuit are 

(Vi + VO) Vb(RCF 2)s 
2[(RCF 2)s + 1] (RCF/2)s + I 

Vb = a(s)Va(RCCLS + 1) (13.14b)
(Ro + RC)CLS + 1 

a(s)V0
VO - - RC)V (13.14c)

(R 0 + Rc)CLs +I 

These equations lead to the block diagram shown in Fig. 13.8b. 
Two important features are evident from the block diagram or from 

physical arguments based on the circuit configuration. First, since the trans­
fer functions of blocks 1 and o are identical and since the outputs of both 

of these blocks are summed with the same sign to obtain Va, the ideal out­
put is the negative of the input at frequencies where the signal propagated 
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R 

CF 

AVR 

VgVa a (s)Va R, R c 

Vb cL 

(a) 

Figure 13.8 Feedback-network compensation for capacitively loaded inverter. 
(a) Circuit. (b) Block diagram. 

through path 1 is insignificant. We can argue the same result physically, 
since Fig. 13.8a indicates an ideal transfer function V, = - Vi if feedback 
through CF is negligible. 

The second conclusion involves the stability of the system. If the loop is 
broken at the indicated point, the loop transmission is 

[(RCF/2)s] (RCCLS + 1) 
[(RCF/2)s + 1] [(R. + RC)CLS + 1] 

term from feedback via path 1 

a(s) 
(13.15)

2[(R, + RC)CLS + 1][(RCF/2)s + 

term from feedback via path 2 

At sufficiently high frequencies, Eqn. 13.15 reduces to 

L(s) ~ a(s)Rc (13.16)
R., + R c 

because path transmission of path 1 reaches a constant value, while that 
of path 2 is progressively attenuated with frequency. If parameters are 
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Figure 13.8-Continued 
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chosen so that crossover occurs where the approximation of Eqn. 13.16 is 
valid, system stability is essentially unaffected by the load capacitor. The 
same result can be obtained directly from the circuit of Fig. 13.8a. If pa­
rameters are chosen so that at the crossover frequency wc 

1 R?<< R + Rc and Ro << << 
C12e CFWc 2 

the feedback path around the amplifier is frequency independent at cross­
over. 

Previous examples have indicated how dynamics related to the feedback 
network or the load can deteriorate stability. Stability may also suffer if 
an active element that provides voltage gain greater than one is used in the 
feedback path, since this type of feedback element will result in a loop-
transmission crossover frequency in excess of the unity-gain frequency of 
the operational amplifier itself. Additional negative phase shift then occurs 
at crossover because the higher-frequency poles of the amplifier open-loop 
transfer function are significant at the higher crossover frequency. 

The simple log circuit described in Section 11.5.4 demonstrates this type 
of difficulty. The basic circuit is illustrated in Fig. 13.9a. We recall that the 
ideal input-output transfer relationship for this circuit is 

kT vr 
vo - In (13.17)

q RIs 

where the quantity I, characterizes the transistor. 
A linearized block diagram for the connection, formed assuming that 

loading at the input and the output of the amplifier is negligible, is shown 
in Fig. 13.9b. Since the quiescent collector current of the transistor is re­
lated to the operating-point value of the input voltage Vr by IF V/R, the 
transistor transconductance is 

q V1
gM = kTR (13.18) 

Consequently, the loop transmission for the linearized system is 

L(s) -a(s) qV1 (13.19)
kT 

If it is assumed that the maximum operating-point value of the input signal 
is 10 volts, the feedback network can provide a voltage gain of as much as 
400. It is clear that few amplifiers with fixed open-loop transfer functions 
will be compensated conservatively enough to remain stable with this in­
crease in loop-transmission magnitude. 
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Figure 13.9 Evaluation of log-circuit stability. (a) Circuit. (b) Linearized block 

diagram. 

A method that can be used to reduce the high voltage gain of the feed­

back network is illustrated in Fig. 13.10. By including a transistor emitter 

resistor equal in value to the input resistor, we find that the maximum 
voltage gain of the resultant common-base amplifier is reduced to one. 
Note that the feedback effectively constrains the voltage at the emitter of 
the transistor to be logarithmically related to input voltage independent of 
load current, and thus the ideal transfer relationship of the circuit is inde­
pendent of load. Also note that at least in the absence of significant output-
current drain, the maximum voltage across the emitter resistor is equal to 
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Figure 13.10 Reduction of loop-transmission magnitude for log circuit. (a) Use of 
emitter resistor. (b) Emitter resistor combined with input lag compensation. 

the maximum input voltage so that output-voltage range is often unchanged 
by this modification. 

It was mentioned in Section 11.5.4 that the log circuit can exhibit very 
wide dynamic range when the input signal is supplied from a current source, 
since the voltage offset of the amplifier does not give rise to an error cur­
rent in this case. Figure 13.10b shows how input lag compensation can be 
combined with emitter degeneration to constrain loop-transmission mag­
nitude without deteriorating dynamic range for current-source inputs. 
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13,3 	 COMPENSATION BY CHANGING THE AMPLIFIER
 
TRANSFER FUNCTION
 

If the open-loop transfer function of an operational amplifier is fixed, 
this constraint, combined with the requirement of achieving a specified 

ideal closed-loop transfer function, severely restricts the types of modifica­

tions that can be made to the loop transmission of connections using the 

amplifier. Significantly greater flexibility is generally possible if the open-

loop transfer function of the amplifier can be modified. There are a number 

of available integrated-circuit operational amplifiers that allow this type of 

control. Conversely, very few discrete-component designs are intended to 

be compensated by the user. The difference may be historical in origin, in 

that early integrated-circuit amplifiers used shunt impedances at various 

nodes for compensation (see Section 8.2.2) and the large capacitors required 

could not be included on the chip. Internal compensation became practical 

as the two-stage design using minor-loop feedback for compensation 

evolved, since much smaller capacitors are used to compensate these ampli­

fiers. Fortunately, the integrated-circuit manufacturers choose to continue 

to design some externally compensated amplifiers after the technology 

necessary for internal compensation evolved. 

In this section, some of the useful open-loop amplifier transfer functions 

that can be obtained by proper external compensation are described, and 

a number of different possibilities are analytically and experimentally evalu­

ated for one particular integrated-circuit amplifier. 

13.3.1 General Considerations 

An evident question concerning externally compensated amplifiers is 

why they should be used given that internally compensated units are avail­

able. The answer hinges on the wide spectrum of applications of the opera­

tional amplifier. Since this circuit is intended for use in a multitude of feed­

back applications, it is necessary to choose its open-loop transfer function 

to insure stability in a variety of connections when this quantity is fixed. 

The compromise most frequently used is to make the open-loop transfer 

function of the amplifier dominated by one pole. The location of this pole 

is chosen such that the amplifier unity-gain frequency occurs below fre­

quencies where other singularities in the amplifier transfer function con­

tribute excessive phase shift. 

This type of compensation guarantees stability if direct, frequency-inde­

pendent feedback is applied around the amplifier. However, it is overly 

conservative if considerable resistive attenuation is provided in the feed­

back path. In these cases, the crossover frequency of the amplifier with feed­

back drops, and the bandwidth of the resultant circuit is low. Conversely, 
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if the feedback network or loading adds one or more intermediate-frequency 
poles to the loop transmission, or if the feedback path provides voltage gain,
stability suffers. 

However, if compensation can be intelligently selected as a function of 
the specific application, the ultimate performance possible from a given 
amplifier can be achieved in all applications. Furthermore, the compensa­
tion terminals make available additional internal circuit nodes, and at 
times it is possible to exploit this availability in ways that even the manu­
facturer has not considered. The creative designer working with linear inte­
grated circuits soon learns to give up such degrees of freedom only 
grudgingly. 

In spite of the clear advantages of user-compensated designs, internally 
compensated amplifiers outsell externally compensated units. Here are 
some of the reasons offered by the buyer for this contradictory preference. 

(a) The manufacturers' compensation is optimum in my circuit. (This is 
true in about 1 % of all applications.) 

(b) It's cheaper to use an internally compensated amplifier since compo­
nents and labor associated with compensation are eliminated. (Several 
manufacturers offer otherwise identical circuits in both internally and ex­
ternally compensated versions. For example, the LM107 series of opera­
tional amplifiers is identical to the LM1OA family with the single excep­
tion that a 30-pF compensating capacitor is included on the LM107 chip. 
The current prices of this and other pairs are usually identical. However, 
this excuse has been used for a long time. As recently as 1970, unit prices 
ranged from $0.75 to $5.00 more for the compensated designs depending 
on temperature range. A lot of 30-pF capacitors can be bought for $5.00.) 

(c) Operational amplifiers can be destroyed from the compensating ter­
minals. (Operational amplifiers can be destroyed from any terminals.) 

(d) The compensating terminals are susceptible to noise pickup since 
they connect to low-signal-level nodes. (This reason is occasionally valid. 
For example, high-speed logic can interact with an adjacent operational 
amplifier through the compensating terminals, although inadequate power-
supply bypassing is a far more frequent cause of such coupling.) 

(e) Etc. 

After sufficient exposure to this type of rationalization, it is difficult to 
escape the conclusion that the main reason for the popularity of internally 
compensated amplifiers is the inability of many users to either determine 
appropriate open-loop transfer functions for various applications or to im­
plement these transfer functions once they have been determined. A pri­
mary objective of this book is to eliminate these barriers to the use of ex­
ternally compensated operational amplifiers. 
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Figure 13.11 Operational amplifier compensated with a two-port network. 

Any detailed and specific discussion of amplifier compensating methods 

must be linked to the design of the amplifier. It is assumed for the re­

mainder of this chapter that the amplifier to be compensated is a two-stage 

design that uses minor-loop feedback for compensation. This assumption 

is realistic, since many modern amplifiers share the two-stage topology, and 

since it is anticipated that new designs will continue this trend for at least 

the near future. 

It should be mentioned that the types of open-loop transfer functions 

suggested for particular applications can often be obtained with other than 

two-stage amplifier designs, although the method used to realize the desired 

transfer function may be different from that described in the material to 

follow. 
Figure 13.11 illustrates the topology for an amplifier compensated with 

a two-port network. This basic configuration has been described earlier in 

Sections 5.3 and 9.2.3. While the exact details depend on specifics of the 
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amplifier involved, the important general conclusions introduced in the 
earlier material include the following: 

(a) The unloaded open-loop transfer function of a two-stage amplifier 
compensated this way (assuming that the minor loop is stable) is 

VK(s) Ka(s) = -(s - - Y- -s (13.20) 
Va(s) - Vb(s) Ye(s) 

over a wide range of frequencies. 
The quantity K is related to the transconductance of the input-stage 

transistors, while Ye(s) is the short-circuit transfer admittance of the net­
work. 

I,(s)
Ye(s) = ---- (13.21)

VK(s) V" = 0 

This result can be justified by physical reasoning if we remember that at 
frequencies where the transmission of the minor loop formed by the second 
stage and the compensating network is large, the input to the second stage 
is effectively a virtual incremental ground. Furthermore, the current re­
quired at the input to the second stage is usually very small. Thus it can 
be shown by an argument similar to that used to determine the ideal closed-
loop gain of an operational amplifier that incremental changes in current 
from the input stage must be balanced by equal currents into the compen­
sating network. System parameters are normally selected so that major-
loop crossover occurs at frequencies where the approximation of Eqn. 
13.20 is valid and, therefore, this approximation can often be used for 
stability calculations. 

(b) The d-c open-loop gain of the amplifier is normally independent of 
compensation. Accordingly, at low frequencies, the approximation of Eqn. 
13.20 is replaced by the constant value ao. The approximation fails because 
the usual compensating networks include a d-c zero in their transfer admit­
tances, and at low frequencies this zero decreases the magnitude of the 
minor-loop transmission below one. 

(c) The approximation fails at high frequencies for two reasons. The 
minor-loop transmission magnitude becomes less than one, and thus the 
network no longer influences the transfer function of the second stage. 
This transfer function normally has at least two poles at high frequencies, 
reflecting capacitive loading at the input and output of the second stage. 
There may be further departure from the approximation because of singu­
larities associated with the input stage and the buffer stage that follows the 
second stage. These singularities cannot be controlled by the minor loop 
since they are not included in it. 
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(d) The open-loop transfer function of the compensated amplifier can 
be estimated by plotting both the magnitude of the approximation (Eqn. 
13.20) and of the uncompensated amplifier transfer function on common 
log-magnitude versus log-frequency coordinates. If the dominant amplifier 
dynamics are associated with the second stage, the compensated open-loop 
transfer-function magnitude is approximately equal to the lower of the two 
curves at all frequencies. The uncompensated amplifier transfer function 
must reflect loading by the compensating network at the input and the out­
put of the second-stage. In practice, designers usually determine experi­
mentally the frequency range over which the approximation of Eqn. 13.20 
is valid for the amplifier and compensating networks of interest. 

Several different types of compensation are described in the following 
sections. These compensation techniques are illustrated using an LM301A 
operational amplifier. This inexpensive, popular amplifier is the commer­
cial-temperature-range version of the LM1OA amplifier described in Sec­

tion 10.4.1. Recall from that discussion that the quantity K is nominally 
2 X 104 mho for this amplifier, and that its specified d-c open-loop gain 
is typically 160,000. Phase shift from elements outside the minor loop (pri­
marily the lateral-PNP transistors in the input stage) becomes significant at 
1 MHz, and feedback connections that result in a crossover frequency in 
excess of approximately 2 MHz generally are unstable. 

A number of oscilloscope photographs that illustrate various aspects of 
amplifier performance are included in the following material. A single 
LM301A was used in all of the test circuits. Thus relative performance re­
flects differences in compensation, loading, and feedback, but not in the 
uncompensated properties of the amplifier itself. (The fact that this ampli­
fier survived the abuse it received by being transferred from one test circuit 
to another and during testing is a tribute to the durability of modern inte­
grated-circuit operational amplifiers.) 

13.3.2 One-Pole Compensation 

The most common type of compensation for two-stage amplifiers in­
volves the use of a single capacitor between the compensating terminals. 
Since the short-circuit transfer admittance of this "network" is Ces where 
C, is the value of the compensating capacitor, Eqn. 13.20 predicts 

K 
a(s) ~- (13.22)

Ces 

The approximation of Eqn. 13.22 is plotted in Fig. 13.12 along with a 
representative uncompensated amplifier transfer function. As explained in 
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Figure 13.12 Open-loop transfer function for one-pole compensation. 

the previous section, the compensated open-loop transfer function is very 

nearly equal to the lower of the two curves at all frequencies. 

The important feature of Fig. 13.12, which indicates the general-purpose 

nature of this type of one-pole compensation, is that there is a wide range 

of frequencies where the magnitude of a(jw) is inversely proportional to 

frequency and where the angle of this open-loop transfer function is ap­

proximately -90'. Accordingly, the amplifier exhibits essentially identical 

stability (but a variable speed of response) for many different values of 

frequency-independent feedback connected around it. 

Two further characteristics of the open-loop transfer function of the 

amplifier are also evident from Fig. 13.12. First, the approximation of 
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Eqn. 13.22 can be extended to zero frequency if the d-c open-loop gain of 
the amplifier is known, since the geometry of Fig. 13.12 shows that 

a(s) ~ ao (13.23)
(aoCc/K)s + 1 

at low and intermediate frequencies. Second, if the unity-gain frequency of 
the amplifier is low enough so that higher-order singularities are unimpor­
tant, this frequency is inversely related to Cc and is 

K 
W - (13.24)

Ce 

Stability calculations for feedback connections that use this type of 

amplifier are simplified if we recognize that provided the crossover fre­

quency of the combination lies in the indicated region, these calculations 
can be based on the approximation of Eqn. 13.22. 

Several popular internally compensated amplifiers such as the LM107 
and the yA741 combine nominal values of K of 2 X 104 mho with 30-pF 

capacitors for Cc. The resultant unity-gain frequency is 6.7 X 106 radians 

per second or approximately 1 MHz. This value insures stability for any 

resistive feedback networks connected around the amplifier, since, with 
this type of feedback, crossover always occurs at frequencies where the 

loop transmission is dominated by one pole. 
The approximate open-loop transfer function for either of these internally 

compensated amplifiers is a(s) = 6.7 X 106/s. This transfer function, which 
is identical to that obtained from an LM101A compensated with a 30-pF 

capacitor, may be optimum in applications that satisfy the following con­
ditions: 

(a) The feedback-network transfer function from the amplifier output to 

its inverting input has a magnitude of one at the amplifier unity-gain fre­

quency. 
(b) Any dynamics associated with the feedback network and output load­

ing contribute less than 30' of phase shift to the loop transmission at the 

crossover frequency. 
(c) Moderately well-damped transient response is required. 
(d) Input signals are relatively noise free. 

If one or more of the above conditions are not satisfied, performance 

can often be improved by using an externally compensated amplifier that 

allows flexibility in the choice of compensating-capacitor value. Consider, 
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Figure 13.13 Step response of unity-gain follower as a function of compensating-
capacitor value. (Input-step amplitude is 40 mV.) (a) Ce = 30 pF. (b) C, = 18 pF. 
(c) C, = 68 pF. 
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Figure 13.13-Continued 

for example, a feedback connection that combines a(s) as approximated by 
Eqn. 13.22 with frequency-independent feedback fo. The closed-loop trans­

fer function for this combination is 

A(s) as) + 1 (13.25)
1 + a(s)fo o (Cc/Kfo)s + 

The closed-loop corner frequency (in radians per second) is 

_ 	 Kfo (13.26) 
Ce 

This equation shows that the bandwidth can be maintained at the maxi­
mum value consistent with satisfactory stability (recall the phase shift of 

terms ignored in the approximation of Eqn. 13.22) if C, is changed with fo 
to keep the ratio of these two quantities constant. Alternatively, the closed-

loop bandwidth can. be lowered to provide improved filtering for noisy 

input signals by increasing the size of the compensating capacitor. A similar 

increase in capacitor size can also force crossover at lower frequencies to 
keep poles associated with the load or a frequency-dependent feedback 

network from deteriorating stability. 
Figure 13.13 shows the small-signal step responses for the LM301A test 

amplifier connected as a unity-gain follower (fo = 1). Part a of this figure 



580 Compensation Revisited 

illustrates the response with a 30-pF compensating capacitor, the value 
used in similar, internally compensated designs. This transient response is 
quite well damped, with a 10 to 90 % rise time of 220 ns, implying a closed-
loop bandwidth (from Eqn. 3.57) of approximately 107 radians per second 
or 1.6 MHz.1 

The response with a 18-pF compensating capacitor (Fig. 13.13b) trades 
considerably greater overshoot for improved rise time. Comparing this re­
sponse with the second-order system responses (Fig. 3.8) shows that the 
closed-loop transient is similar to that of a second-order system with = 
0.47 and o, = 13.5 X 106 radians per second. Since the amplifier open-loop 
transfer function satisfies the conditions used to develop the curves of Fig. 
4.26, we can use these curves to approximate loop-transmission properties. 
Figure 4.26a estimates a phase margin of 50* and a crossover frequency of 
11 X 106 radians per second. Since the value of f is one in this connection, 
these quantities correspond to compensated open-loop parameters of the 
amplifier itself. 

Figure 13.13c illustrates the step response with a 68-pF compensating 
capacitor. The response is essentially first order, indicating that crossover 
now occurs at a frequency where only the dominant pole introduced by 
compensation is important. Equation 13.25 predicts an exponential time 
constant 

Ce 
r f- (13.27)
Kfo 

under these conditions. The zero to 63 % rise time shown in Fig. 13.12c is 
approximately 300 ns. Solving Eqn. 13.27 for K using known parameter 
values yields 

K C, = 68 pF 2.3 X 10-4 mho (13.28)
Tfo 300 ns 

We notice that this value for K is slightly higher than the nominal value of 
2 X 10-4 mho, reflecting (in addition to possible experimental errors) a 
somewhat higher than nominal first-stage quiescent current for this par­
ticular amplifier.2 Variations of as much as 50% from the nominal value 

1If the amplifier open-loop transfer function were exactly first order, the closed-loop half-
power frequency in this connection would be identically equal to the unity-gain frequency 
of the amplifier itself. However, the phase shift of higher-frequency singularities ignored 
in the one-pole approximation introduces closed-loop peaking that extends the closed-loop 
bandwidth. 

2 The quiescent first-stage current of this amplifier can be measured directly by connect­
ing an ammeter from terminals I and 5 to the negative supply (see Fig. 10.19). The esti­
mated value of K is in excellent agreement with the measured total (the sum of both sides) 
quiescent current of 24 ,A for the test amplifier. 
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Figure 13.14 Noninverting amplifier. 

for K are not unusual as a consequence of uncertainties in the integrated-

circuit process. 
The amplifier was next connected in the noninverting configuration 

shown in Fig. 13.14. The value of R1 was kept less than or equal to 1 ko 
in all connections to minimize the loading effects of amplifier input capaci­

tance. Figure 13.15a shows the step response for a gain-of-ten connection 

(R1 = 1 kQ, R 2 = 9 kQ) with Ce = 30 pF. The 10 to 90% rise time has 
increased significantly compared with the unity-gain case using identical 

compensation. This change is expected because of the change in fo (see 

Eqn. 13.25). 
Figure 13.15b is the step response when the capacitor value is lowered to 

get an overshoot approximately equal to that shown in Fig. 13.13a. While 

this change does not return rise time to exactly the same value displayed in 

Fig. 13.13a, the speed is dramatically improved compared to the transient 

shown in Fig. 13.15a. (Note the difference in time scales.) 
Our approximate relationships predict that the effects of changing fo 

from 1 to 0.1 could be completely offset by lowering the compensating 

capacitor from 30 pF to 3 pF. The actual capacitor value required to ob­

tain the response shown in Fig. 13.15b was approximately 4.5 pF. At least 

two effects contribute to the discrepancy. First, the approximation ignores 

higher-frequency open-loop poles, which must be a factor if there is any 

overshoot in the step response. Second, there is actually some positive 

minor-loop capacitive feedback in the amplifier. The schematic diagram 

for the LM101A (Fig. 10.19) shows that the amplifier input stage is loaded 
with a current repeater. The usual minor-loop compensation is connected 

to the output side of this current repeater. However, the input side of the 
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Figure 13.15 Step responses of gain-of-ten noninverting amplifier. (Input-step 
amplitude is 40 mV.) (a) Ce = 30 pF. (b) Ce = 4.5 pF. 
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repeater is also brought out on a pin to be used for balancing the amplifier. 
Any capacitance between a part of the circuit following the high-gain stage 
and the input side of the current repeater provides positive minor-loop 
feedback because of the inversion of the current repeater. An excellent 
stray-capacitance path exists between the amplifier output (pin 6) and the 
balance terminal connected to the input side of the current repeater (pin 5).3 
Part of the normal compensating capacitance is "lost" cancelling this posi­
tive feedback capacitance. 

The important conclusion to be drawn from Fig. 13.15 is that, by prop­
erly selecting the compensating-capacitor value, the rise time and band­
width of the gain-of-ten amplifier can be improved by approximately a 
factor of 10 compared to the value that would be obtained from an amplifier 
with fixed compensation. Furthermore, reasonable stability can be retained 
with the faster performance. 

Figures 13.16 and 13.17 continue this theme for gain-of-100 (R1 = 100 0, 
R2 = 10 ko) and gain-of-1000 (R 1 = 10 Q, R 2 = 10 kQ) connections, re­
spectively. The rise time for 30-pF compensation is linearly related to gain, 
and has a 10 to 90% value of approximately 350 microseconds in Fig. 
13.17a, implying a closed-loop bandwidth of 1 kHz for an internally com­
pensated amplifier in this gain-of-1000 connection. Compensating-capaci­
tor values of 1 pF for the gain-of-100 amplifier and just a pinch (obtained 
with two short, parallel wires spaced for the desired transient response) for 
the gain-of-1000 connection result in overshoot comparable to that of the 
unity-gain follower compensated with 30 pF. The rise time does increase 
slightly at higher gains reflecting the fact that the uncompensated amplifier 
high-frequency open-loop gain is limited. However, a rise time of approxi­
mately 2 us is obtained in the gain-of-1000 connection. The corresponding 
closed-loop bandwidth of 175 kHz represents a nearly 200:1 improvement 
compared with the value expected from an internally compensated general-
purpose amplifier. 

It is interesting to note that the closed-loop bandwidth obtained by 
properly compensating the inexpensive LM301A in the gain-of-1000 con­
nection compares favorably with that possible from the best available dis­
crete-component, fixed-compensation operational amplifiers. Unity-gain 
frequencies for wideband discrete units seldom exceed 100 MHz; conse­
quently these single-pole amplifiers have closed-loop bandwidths of 100 
kHz or less in the gain-of-1000 connection. The bandwidth advantage com­

3A wise precaution that reduces this effect is to clip off pin 5 close to the can when the 
amplifier is used in connections that do not require balancing. This modification was not 
made to the demonstration amplifier in order to retain maximum flexibility. Even with pin 
5cut close to the can, there is some header capacitance between it and pin 6. 
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Figure 13.16 Step responses of gain-of-100 noninverting amplifier. (Input-step 
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Figure 13.17 Step responses of gain-of-1000 noninverting amplifier. (Input-step 
amplitude is 4 mV.) (a) C, = 30 pF. (b) Very small Ce. 
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pared with wideband internally compensated integrated-circuit amplifiers 

such as the LM 118 is even more impressive. 
We should realize that obtaining performance such as that shown in 

Fig. 13.17b requires careful adjustment of the compensating-capacitor value 
because the optimum value is dependent on the characteristics of the par­
ticular amplifier used and on stray capacitance. Although this process is 
difficult in a high-volume production situation, it is possible, and, when all 

costs are considered, may still be the least expensive way to obtain a high-
gain wide-bandwidth circuit. Furthermore, compensation becomes routine 
if some decrease in bandwidth below the maximum possible value is 

acceptable. 

13.3.3 Two-pole Compensation 

The one-pole compensation described above is a conservative, general-
purpose compensation that is widely used in a variety of applications. There 
are, however, many applications where higher desensitivity at intermediate 
frequencies than that afforded by one-pole magnitude versus frequency char­
acteristics is advantageous. Increasing the intermediate-frequency magni­
tude of a loop transmission dominated by a single pole necessitates a cor­
responding increase in crossover frequency. This approach is precluded in 

systems where irreducible phase shift constrains the maximum crossover 
frequency for stable operation. 

The only way to improve intermediate-frequency desensitivity without 
increasing the crossover frequency is to use a higher-order loop-transmission 
rolloff at frequencies below crossover. For example, consider the two 
amplifier open-loop transfer functions 

105 
a(s) = (13.29)

10-2s + 1 

and 

a'(s) = 1) (13.30)
(10-4 + 1)2 

The magnitude versus frequency characteristics of these two transfer func­

tions are compared in Fig. 13.18. 
Both of these transfer functions have unity-gain frequencies of 107 ra­

dians per second and d-c magnitudes of 105. However, the magnitude of 

a'(jw) exceeds that of a(jw) at all frequencies between 100 radians per sec­

ond and 106 radians per second. The advantage reaches a factor of 100 at 
104 radians per second. 
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Figure 13.18 Comparison of magnitudes of one- and two-pole open-loop trans­
fer functions. 

The same advantage can be demonstrated using error coefficients. If 
amplifiers with open-loop transfer functions given by Eqns. 13.29 and 13.30 
are connected as unity-gain followers, the respective closed-loop gains are 

_ a(s) 105
102A(s) a(s) (13.31)

1 + a(s) 10-2s + I + 10, 
and 

6A'(s) a'(s) 105(10- s + 1)
1 + a'(s) (10- 4s + 1)2 + 105(10-6s + 1) 

The corresponding error series are 

10-2 s + 1 
1 - A(s) z = 10-5 + 10--s -- + (13.33)

10- 2 s + 10, 

and 

10--8s2 + 2 X 104s -+ 1
1 - A'(s) 10s+ X 0S + = 10-5 + 2 X 10- 9s + - -+ (13.34)10-8s2 + 0.lIs + 105 

Identifying error coefficients shows that while these two systems have 
identical values for eo, the error coefficient ei is a factor of 50 times smaller 
for the system with the two-pole rolloff. Thus, dramatically smaller errors 



588 Compensation Revisited 

Two-port network 

This side from output--- - -- This side to input of 
of high-gain C C2 high-gain stage 

stage 

+RI 

I R 

- -I 

Figure 13.19 Network for two-pole compensation. 

result with the two-pole system for input signals that cause the ei term of 
the error series to dominate. 

It is necessary to use a true two-port network to implement this com­
pensation, since the required s2 dependence of Ye cannot be obtained with 
a two-terminal network. The short-circuit transfer admittance of the net­
work shown in Fig. 13.19, 

Ia(s) RC1 C2s 2 

V.(s) R(C 1 + C2)s + 1 

has the required form. The approximate open-loop transfer function with 
this type of compensating network is (from Eqn. 13.20) 

K K'(rs + 1) (13.36)
a(s) ~~ -- 1.6 

where r = R(C 1 + C 2) and K' = K RC 1 C2. 
An estimation of the complete open-loop transfer function based on 

Eqn. 13.36 and a representative uncompensated transfer function are shown 
in Fig. 13.20. We note that while this type of transfer function can yield 
significantly improved desensitivity and error-coefficient magnitude com­
pared to a one-pole transfer function, it is not a general-purpose compen­
sation. The zero location and constant K' must be carefully chosen as a 
function of the attenuation provided by the feedback network in a particu­
lar application in order to obtain satisfactory phase margin. While lowering 
the frequency of the zero results in a wider frequency range of acceptable 
phase margin, it also reduces desensitivity, and in the limit leads to a one-
pole transfer function. This type of open-loop transfer function is also in­
tolerant of an additional pole introduced in the feedback network or by 
capacitive loading. If the additional pole is located at an intermediate fre­
quency below the zero location, instability results. Another problem is that 
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Figure 13.20 Open-loop transfer function for two-pole compensation. 

there is a wide range of frequencies where the phase shift of the transfer 
function is close to - 1800. While this transfer function is not conditionally 
stable by the definition given in Section 6.3.4, the small phase margin that 
results when the crossover frequency is lowered (in a describing-function 
sense) by saturation leads to marginal performance following overload. 

In spite of its limitations, two-pole compensation is a powerful technique 
for applications where signal levels and the dynamics of additional elements 
in the loop are well known. This type of compensation is demonstrated 
using the unity-gain inverter shown in Fig. 13.21. The relatively low feed-
back-network resistors are chosen to reduce the effects of capacitance at 
the inverting input of the amplifier. This precaution is particularly important 
since the voltage at this input terminal is displayed in several of the oscillo­
scope photographs to follow. An LM310 voltage follower (see Section 
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Figure 13.21 Unity-gain inverter with two-pole compensation. 

10.4.4) was used to isolate this node from the relatively high oscilloscope 
input capacitance for these tests. The input capacitance of the LM310 is 
considerably lower than that of a unity-gain passive oscilloscope probe, 
and its bandwidth exceeds that necessary to maintain the fidelity of the 
signal of interest. 

The approximate open-loop transfer function for the amplifier with 
compensating-network values as shown in Fig. 13.21 is (from Eqn. 13.36 
using the previously determined value of K = 2.3 X 10-4 mho) 

1.7 X 1013(9 X 10-s + 1) (13.37)
a~s) 

Since the value of fo for the unity-gain inverter is 1/2, the approximate 
loop transmission for this system is 

L(s) _ 0.85 X 1013(9 X 10-s + 1) (13.38) 

The crossover frequency predicted by Eqn. 13.38 is 7.7 X 101 radians 
per second, and the zero is located at 1.1 X 101 radians per second, or a 

factor of 7 below the crossover frequency. Consequently, the phase margin 

of this system is tan- (1/7) = 80 less than that of a unity-gain inverter 

using one-pole compensation adjusted for the same crossover frequency. 

Figure 13.22 compares the step responses of the inverter-connected 

LM301A with one- and two-pole compensation. Part a of this figure was 

obtained with the lower end of the 15-ku resistor removed from ground 

as indicated in Fig. 13.21. In this case the compensating element is equiv­
alent to a single 15-pF capacitor. Note that Eqn. 13.22 combined with the 
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value fo = 1/2, which applies to the unity-gain inverter, predicts a 7.7 X 
106-radian-per-second crossover frequency for 15-pF compensation. The 
same result can be obtained by realizing that at frequencies beyond the 
zero location the parallel impedance of the capacitors in the two-pole com­
pensating network must be smaller than that of the resistor, and thus re­
moving the resistor does not alter the amplifier open-loop transfer function 
substantially in the vicinity of crossover. 

The response shown in Fig. 13.22a is quite similar to that shown previ­
ously in Fig. 13.13a. Recall that Fig. 13.13a was obtained with a unity-gain 
follower (fo = 1) and Ce = 30 pF. As anticipated, lowering fo and Ce by 
the same factor results in comparable performance for single-pole systems. 

There is a small amount of initial undershoot evident in the transient of 
Fig. 13.22a. This undershoot results from the input step being fed directly 
to the output through the two series-connected resistors. This fed-forward 
signal can drive the output negative initially because of the nonzero output 
impedance and response time of the amplifier. The magnitude of the initial 
undershoot would shrink if larger-value resistors were used around the 
amplifier. 

10 mV 

1T
 
T
 

(a) 100 ns 

Figure 13.22 Step responses of unity-gain inverter. (Input-step amplitude is 
-40 mV.) (a) One-pole compensation. (b) Two-pole compensation. (c) Repeat of 
part b with slower sweep speed. 
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The step response of Fig. 13.22b results with the 15-k resistor connected 
to ground and is the response for two-pole compensation. Three effects 
combine to speed the rise time and increase the overshoot of this response 
compared to the single-pole case. First, the phase margin is approximately 
80 less for the two-pole system. Second, the T network used for two-pole 
compensation loads the output of the second stage of the amplifier to a 
greater extent than does the single capacitor used for one-pole compensa­
tion, although this effect is small for the element values used in the present 
example. The additional loading shifts the high-frequency poles associated 
with limited minor-loop transmission toward lower frequencies. Third, a 
closed-loop zero that results with two-pole compensation also influences 
system response. 

The root-locus diagram shown in Fig. 13.23 clarifies the third reason. 
(Note that this diagram is not based on the approximation of Eqn. 13.38, 
but rather on a more complete loop transmission assuming a representative 
amplifier using these compensating-network values.) With the value of aofo 
used to obtain Fig. 13.22b, one closed-loop pole is quite close to the zero at 

to 

Dominant pol 
pair in this re 
for low ao fo 

High-frequency
 
amplifier poles
 

s plane 

Figure 13.23 Root-locus diagram for inverter with two-pole compensation. 
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Figure 13.24 Unity-gain inverting-amplifier response with triangle-wave input. 
(Input amplitude is 20 volts peak-to-peak.) (a) One-pole compensation-upper 
trace: output; lower trace: inverting input of operational amplifier. (b) Two-pole 
compensation-upper trace: output; lower trace: inverting input of operational 
amplifier. (c) Repeat of lower trace, part b, with faster sweep speed. 

- 1.1 X 106 sec- 1 regardless of the exact details of the diagram. Since the 
zero is in the forward path of the system, it appears in the closed-loop 
transfer function. The resultant closed-loop doublet adds a positive, long-
duration "tail" to the response as explained in Section 5.2.6. The tail is 
clearly evident in Fig. 13.22c, a repeat of part b photographed with a slower 
sweep speed. The time constant of the tail is consistent with the doublet 
location at approximately - 106 sec- 1. 

We recall that this type of tail is characteristic of lag-compensated sys­
tems. The loop transmission of the two-pole system combines a long 1/s 2 

region with a zero below the crossover frequency. This same basic type of 
loop transmission results with lag compensation. 

The root-locus diagram also shows that satisfactory damping ratio is 
obtained only over a relative small range of aofo. As aofo falls below the op­
timum range, system performance is dominated by a low-frequency poorly 
damped pole pair as indicated in Fig. 13.23. As aofo is increased above the 
optimum range, a higher-frequency poorly damped pole pair dominates 
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performance since the real-axis pole closest to the origin is very nearly 
cancelled by the zero. 

The error-reducing potential of two-pole compensation is illustrated in 
Fig. 13.24. The most important quantity included in these photographs is 
the signal at the inverting input of the operational amplifier. The topology 
used (Fig. 13.21) shows that the signal at this terminal is (in the absence of 
loading) half the error between the actual and the ideal amplifier output. 
Part a of this figure indicates performance with single-pole compensation 
achieved via a 15-pF capacitor. The upper trace indicates the.amplifier out­
put when the signal applied from the source is a 20-volt peak-to-peak, 
10-kHz triangle wave. This signal is, to within the resolution of the mea­
surement, the negative of the signal applied by the source. The bottom trace 
is the signal at the inverting input terminal of the operational amplifier. 

The approximate open-loop transfer function from the inverting input 
to the output of the test amplifier is 

2.3 X 10-1 1.5 X 10(
-a(s) -1511s- - s(13.39)

1.5 X 10-Is s 

with a 15-pF compensating capacitor. The input-terminal signal illustrated 
can be justified on the basis of a detailed error-coefficient analysis using 
this value for a(s). A simplified argument, which highlights the essential 
feature of the error coefficients for this type of compensation, is to recog­
nize that Eqn. 13.39 implies that the operational amplifier itself functions 
as an integrator on an open-loop basis. Since the amplifier output signal is a 
triangle wave, the signal at the inverting input terminal (proportional to 
the derivative of the output signal) must be a square wave. The peak mag­
nitude of the square wave at the input of the operational amplifier should 
be the magnitude of the slope of the output, 4 X 101 volts per second, di­
vided by the scale factor 1.5 X 107 volts per second per volt from Eqn. 
13.39, or approximately 27 mV. This value is confirmed by the bottom 
trace in Fig. 13.24a to within experimental errors. 

Part b of Fig. 13.24 compares the output signal and the signal applied to 
the inverting input terminal of the operational amplifier with the two-pole 
compensation described earlier. A substantial reduction in the amplifier 
input signal, and thus in the error between the actual and ideal output, is 

clearly evident with this type of compensation. There are small-area error 

pulses that occur when the triangle wave changes slope. These pulses are 
difficult to observe in Fig. 13.24b. The time scale is changed to present one 
of these error pulses clearly in Fig. 13.24c. Note that this pulse is effectively 

an impulse compared to the time scale of the output signal. As might be 

anticipated, when compensation that makes the amplifier behave like a 

double integrator is used, the signal at the amplifier input is approximately 
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the second derivative of its output, or a train of alternating-polarity im­
pulses. 

Eqn. 13.37 shows that 
1.7 X 1013 

a(s) ~ 1 (13.40) 

at frequencies below approximately 106 radians per second for the two-pole 
compensation used. A graphically estimated value for the area of the im­
pulse shown in Fig. 13.24c is 5 X 10- volt-seconds. Multiplying this 
area by the scale factor 1.7 X 101 volts per second squared per volt from 
Eqn. 13.40 predicts a change in slope of 8.5 X 101 volts per second at each 
break of the triangle wave. This value is in good agreement with the actual 
slope change of 8 X 101 volts per second. 

We should emphasize that the comparisons between one- and two-pole 
compensation presented here were made using one-pole compensation 
tailored to the attenuation of the feedback network. Had the standard 
30-pF compensating-capacitor value been used, the error of the one-pole­
compensated configuration would have been even larger. 

13.3.4 Compensation That Includes a Zero 

We have seen a number of applications where the feedback network or 
capacitive loading at the output of the operational amplifier introduces a 
pole into the loop transmission. This pole, combined with the single domi­
nant pole often obtained via minor-loop compensation, will deteriorate 
stability. 

Figure 13.25 shows how capacitive loading decreases the stability of the 
LM301A when single-pole compensation is used. The amplifier was con­
nected as a unity-gain follower and compensated with a single 30-pF ca­
pacitor to obtain these responses. The load-capacitor values used were 
0.01 yuF and 0.1 pF for parts a and b, respectively. 

These transient responses can be used to estimate the open-loop output 
resistance of the operational amplifier. We know that the open-loop trans­
fer function for this amplifier compensated with a 30-pF capacitor is 

a(s) ~ 7.7 X 101 (13.41)
S 

in the absence of loading. This transfer function is also the negative of the 
unloaded loop transmission for the follower connection. When capacitive 
loading is included, the loop transmission changes to 

7.7 X 106 
L(s) ~ - (13.42)

s(ROCLS + 1) 
where R. is the open-loop output resistance of the amplifier and CL is the 
value of the load capacitor. 
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(b) 5ys 

Figure 13.25 Step response of capacitively loaded unity-gain follower with one-
pole compensation. (Input-step amplitude is 40 mV.) (a) 0.01-yF load capacitor.
(b) 0.1-pAF load capacitor. 
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The ringing frequency shown in Fig. 13.25b is approximately 1.1 X 106 
radians per second. Since this response is poorly damped, the ringing fre­
quency must closely approximate the crossover frequency. Furthermore, 
the poor damping also indicates that crossover occurs well above the break 
frequency of the second pole in Eqn. 13.42. 

These relationships, combined with the known value for CL, allow Eqn. 
13.42 to be solved for R0, with the result 

7.7 X 106
Ro _ = 65 Q (13.43) 

co2CL 

One simple way to improve stability is to include a zero in the unloaded 
open-loop transfer function of the amplifier to partially offset the negative 
phase shift of the additional pole in the vicinity of crossover. If a series 
resistor-capacitor network with component values R, and Ce is used for 
compensation, the short-circuit transfer admittance of the network is 

Ces
Ye = Cs (13.44)

ReCes + I 

The approximate value for the corresponding unloaded open-loop transfer 
function of the amplifier is 

a(s) ~K(RCs + 1) (13.45)
Ces 

An estimation of the complete, unloaded open-loop transfer with this 
type of compensation, based on Eqn. 13.45 and representative uncompen­
sated amplifier characteristics, is shown in Fig. 13.26. Note that in this 
case the slope of the approximating function is zero when it intersects the 
uncompensated transfer function. The geometry involved shows that the 
approximation fails at lower frequencies than was the case with other 
types of compensation. 

The approximate loop transmission for the unity-gain follower with 
capacitive loading and this type of compensation is 

K(R cCes + 1)
L(s) ~ (ROCLs + 1) (13.46)

Ces(RCLs + 1) 

Appropriate Re and Ce values for the LM301A loaded with a 0.1-yF ca­
pacitor are 33 k and 30 pF, respectively. Substituting these and other pre­
viously determined values into Eqn. 13.46 yields 

L(s) 7.7 X 106(10-6s + 1) (13.47)
s(6.5 X 10-6s + 1) 
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Figure 13.26 Unloaded open-loop transfer function for compensation that in­

cludes a zero. 

The crossover frequency for Eqn. 13.47 is 1.4 X 106 radians per second and 
the phase margin is approximately 550, although higher-frequency poles 
ignored in the approximation will result in a lower phase margin for the 

actual system. 

The step response of the test amplifier connected this way is shown in Fig. 
13.217a. Although the basic structure of the transient response is far superior 
to that shown in Fig. 13.25b, there is a small-amplitude high-frequency 

ringing superimposed on the main transient. This component, at a fre­

quency well above the major-loop crossover frequency, reflects potential 

minor-loop instability. 
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Figure 13.27 Step response of unity-gain inverter loaded with 0.1 4F capacitor and 
compensated with a zero. (Input-step amplitude is 40 mV for parts a and b, 2 mV 
for part c.) (a) With series resistor-capacitor compensation. (b) With compensating 
network of Fig. 13.29. (c) Smaller amplitude input signal. 
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Figure 13.27-Continued 

Figure 13.28 illustrates the mechanism responsible for the instability. 
This diagram combines an idealized model for the second stage of a two-
stage amplifier with a compensating network. (The discussion of Section 
9.2.3 justifies this general model for a high-gain stage.) When the crossover 
frequency of the loop formed by the compensating network is much higher 
than l/RiCi, the second stage input looks capacitive at crossover. If the 
compensating-network transfer admittance is capacitive in the vicinity of 
crossover, the phase margin of the inner loop approaches 900. Alternatively, 
if the compensating network is resistive, the input capacitance introduces 
a second pole into the inner-loop transmission and the phase margin of 
this loop drops. 

The solution is to add a small capacitor to the compensating network as 
indicated in Fig. 13.29. The additional element insures that the network 
transfer admittance is capacitive at the minor-loop crossover frequency, 
thus improving stability. The approximate loop transmission of the major 
loop is changed from that given in Eqn. 13.47 to 

L(s) -_ 7.7 X 106(10- 6s + 1) (13.48) 
s(6.5 X 10- 6s + 1)(10- 7 s + 1) 

The effect on the major loop is to introduce a pole at a frequency approxi­
mately a factor of 7 above crossover, thereby reducing phase margin by 8*. 
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Input to -
second stage +second 

Output from 
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Figure 13.28 Model for second stage of a two-stage amplifier. 

The step response shown in Fig. 13.27b results with this modification. 
An interesting feature of this transient is that it also has a tail with a dura­
tion that seems inconsistent with the speed of the initial rise. While there is 
a zero included in the closed-loop transfer function of this connection since 

the zero in Eqn. 13.48 occurs in the forward path, the zero is close to the 

crossover frequency of the major loop. Consequently, any tail that resulted 
from a doublet formed by a closed-loop pole combining with this zero 
would have a decay time consistent with the crossover frequency of the 
major loop. In fact, the duration of the tail evident in Fig. 13.27b is reason­
able in view of the 1.4 X 1 0 6 radian-per-second crossover frequency of the 
major loop. The inconsistency stems from an initialrise that is too fast. 

The key to explaining this phenomenon is to note that the output-
signal slope reaches a maximum value of approximately 6 X 104 volts per 
second, implying a 6-mA charging current into the 0.1-yF capacitor. This 
current level is substantially above the quiescent current of the output stage 
of the LM301A, and results in a lowered output resistance from the active 
emitter follower during the rapid transition. Consequently, the pole asso­

3 pF 

30 pF 

33 k92 

Figure 13.29 Compensating network used to obtain transients shown in Figs. 
13.27b and 13. 2 7c. 
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ciated with capacitive loading moves toward higher frequencies during the 
initial high-current transient, and the speed of response of the system im­
proves in this portion. 

Figure 13.27c verifies this reasoning by illustrating the response of the 
capacitively loaded follower to a 2-mV input signal step. A gain-of-10 
amplifier (realized with another appropriately compensated LM301A) am­
plified the output signal to permit display at the 5 mV-per-division level 
indicated in the photograph. While this transient is considerably more 
noisy (reflecting the lower-amplitude signals), the relative speed of various 
portions of the transient is more nearly that expected of a linear system. 

The fractional change in output resistance with output current level is 
probably less than 25 % for this amplifier because the dominant component 
of output resistance is the value at the high-resistance node divided by the 
current gain of the buffer amplifier. Consequently, the differences between 
Figs. 13.27b and 13.27c are minor. It should also be noted that the esti­
mated value for R. (Eqn. 13.43) is probably slightly low because of this 
effect. 

Many applications, such as sample-and-hold circuits or voltage regu­
lators, apply capacitive loading to an operational amplifier. Other connec­
tions, such as a differentiator, add a pole to the loop transmission because 
of the transfer function of the feedback network. The method of adding a 
zero to single-pole compensation can improve performance substantially 
in these types of applications. 

The comparison between Figs. 13.25b and 13.27b shows how changing 
from 30-pF compensation to compensation that includes a zero can greatly 
improve stability and can reduce settling time by more than a factor of 10 
for a capacitively loaded voltage follower. 

It should be emphasized that this type of compensation is not suggested 
for general-purpose use, since the compensating-network element values 
must be carefully chosen as a function of loop-parameter values for accept­

able stability. If, for example, the pole that introduced the need for this type 

of compensation is eliminated or moved to a higher frequency, the cross­

over frequency increases and instability may result. 

13.3.5 Slow-Rolloff Compensation 

The discussion of the last section showed how compensation can be de­

signed to introduce a zero into the compensated open-loop transfer func­

tion of an operational amplifier. The zero can be used to offset the effects 

of a pole associated with other elements in the loop. Since the zero location 

is selected as a function of other loop parameters, this type of compensa­



605 Compensation by Changing the Amplifier Transfer Function 

tion is effectively specifically tailored for one fixed feedback network and 
load. 

There are applications where the transfer functions of certain elements 
in an operational-amplifier loop vary as a function of operating conditions 
or as the components surrounding the amplifier change. The change in 
amplifier open-loop output resistance described in connection with Figs. 
13.27b and 13.27c is one example of this type of parameter variation. 

Operational amplifiers that are used (often with the addition of high-
current output stages) to supply regulated voltages are another example. 
The total capacitance connected to the output of a supply is often dominated 
by the decoupling capacitors included with the circuits it powers. The out­
put resistance of the power stage may also be dependent on load current, 
and these two effects can combine to produce a major uncertainty in the 
location of the pole associated with capacitive loading. One approach to 
stabilizing this type of regulator was described in Section 5.2.2. 

A third example of a variable-parameter loop involves the use of an 
operational amplifier, an incandescent lamp, and a photoresistor in a feed­
back loop intended to control the intensity of the lamp. In this case, the 
dynamics of both the lamp and the photoresistor as well as the low-fre­
quency "gain" of the combination depend on light level. 

The stabilization of variable-parameter systems is often difficult and 
compromises, particularly with respect to settling time and desensitivity, 
are frequently necessary. This section describes one approach to the sta­
bilization of such systems and indicates the effect of the necessary com­
promises on performance. 

Consider a variable-parameter system that has a loop transmission 

L(s) = -a(s) (13.49) 
rs + 1 

where k and r represent the uncertain values associated with elements ex­
ternal to the operational amplifier. It is assumed that these parameters can 
have any positive values. If the amplifier open-loop transfer function is 
selected such that 

K' 
a(s) = - (13.50) 

the phase margin of Eqn. 13.49 will be at least 45' for any values of k and 

T, since the phase shift of the function 1/V/s is -45' at all frequencies. 
In order to obtain the open-loop transfer function indicated by Eqn. 

13.50 from a two-stage amplifier, it is necessary to use a network that has 
a short-circuit transfer admittance proportional to /s. While the required 
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C 

Figure 13.30 Network used to approximate an admittance proportional to Vs. 

admittance cannot be realized with a lumped, finite network, it can be 
approximated by the ladder structure shown in Fig. 13.30. The driving-
point admittance of this network (which is, of course, equal to its short-
circuit transfer admittance) is 

(C/a 2)s (C/a)s ± Cs 
(RC/a')s + 1 (RC/a2 )s + 1 RCs + 1 

axCs ax2Cs 
+ + + - - + (13.51)

a2RCs + 1 a4RCs + 1 

The poles of Eqn. 13.51 are located at 

Pn±2 =-RC 

2 a 
Pn+1 - RC 

1 
Pn =- RC 
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1 
Pn-1 2= a RC 

1 
Pn-2 = 4RC (13.52) 

while its zeros are located at 

3 a 

a 
z = - R 

aRC 

Zn 1 = - a3RC 

Zn_2 = - a1RC (13.53) 

This admittance function has poles and zeros that alternate along the nega­
tive real axis, with the ratio of the locations of any two adjacent singu­
larities a constant equal to a. On the average, the magnitude of this func­
tion will increase proportionally to the square root of frequency since on 
an asymptotic log-magnitude versus log-frequency plot it alternates equal-
duration regions with slopes of zero and one. 

If this network is used to compensate a two-stage amplifier, the amplifier 
open-loop transfer function 

K 
a(s) Ye(s) (13.54) 

will approximate the relationship given in Eqn. 13.50. If the magnitude of 
uncompensated amplifier open-loop transfer function is adequately high, 
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the range of frequencies over which the approximation is valid can be made 

arbitrarily wide by using a sufficiently large number of sections in the ladder 

network. Note that it is also possible to make the compensated transfer 

function be proportional to 1/sr, where r is between zero and one, by 
appropriate selection of relative pole-zero spacing in the compensating 

network. 
Since the usual objective of this type of compensation is to maintain 

satisfactory phase margin in systems with uncertain parameter values, 
guidelines for selecting the frequency ratio between adjacent singularities 
a are best determined by notihg how the phase of the actual transfer func­
tion is influenced by this quantity. If the poles and zeros are closely spaced, 
the phase shift of the compensated open-loop transfer function will be 

approximately - 450 over the effective frequency range of the network. 

As a is increased, the magnitude of the phase ripple with frequency, which 

is symmetrical with respect to - 45', increases. The maximum negative 

phase shift of a(jwo) (see Eqns. 13.51 and 13.54) is plotted as a function of 

a in Fig. 13.31. 
This plot shows that reasonably large values of a can be used without 

the maximum negative phase shift becoming too large. If, for example, a 

spacing between adjacent singularities of a factor of 10 in frequency is 

1 10 100 
-45' 

-50 ­

-70 -6 

-650"
 
E
 
E 
x 
Z -70" 

Figure 13.31 Maximum negative phase shift as a function of a for 1 IvIs compen­

sation. 
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LM301A LM310 V 0 

C, 

Figure 13.32 Circuit used to evaluate slow-rolloff compensation. 

used, the maximum negative phase shift is - 580. Since the phase ripple is 
symmetrical with respect to - 450, the phase shift varies from - 32* to 
- 580 as a function of frequency for this value of a. If an amplifier com­
pensated using a network with a = 10 is combined in a loop with an ele­
ment that produces an additional -900 of phase shift at crossover, the 
system phase margin will vary from 580 to 320. 

The performance of a 1/Vs system is compared with that of alterna­
tively compensated systems using the-,connection shown in Fig. 13.32. Pro­
viding that the open-loop output resistance of the operational amplifier is 
much lower than R1, the R1-C1 network adds a pole with a well-determined 
location to the loop transmission of the system. The LM310 unity-gain 
follower is used to avoid loading the network. The 3.3-kQ resistor included 
in series with the LM310 input is recommended by the manufacturer to 
improve the stability of this circuit. The bandwidth of this follower is high 
enough to have a negligible effect on loop dynamics. 

The circuit shown in Fig. 13.32 has a forward-path transfer function equal 
to a(s)/(RCs + 1) and a feedback transfer function of one. 

Three different types of compensation were evaluated with this connec­
tion. One type was single-pole compensation using a 220-pF capacitor. 
The approximate open-loop transfer function of the LM301A is 

106 
a(s) ~ - (13.55)

S 

with this compensation. The corresponding loop transmission is 

106 
L(s) = - 0(13.56)

s(RiCis + 1) 
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The closed-loop transfer function is 

V0(s) 1 
2Vi(s) = A(s) = 10- 6 R1 C1s + 10- 6s + 1 (13.57) 

Second-order parameters for Eqn. 13.57 are 

10 5 X 10-4 
on = and = -6 I_

VR1C'1 and VR1C1 

As expected, increasing the R-C 1 time constant lowers both the natural 
frequency and the damping ratio of the system. 

The second compensating network was an 11 "rung" ladder network of 

the type shown in Fig. 13.30. The sequence of resistor-capacitor values 

used for the rungs was 330 Q-10 pF, 1k-33 pF, 3.3 k-100 pF... 10 MQ­
0.33 AF, 33 MQ-1 yF. 

This network combines with operational-amplifier parameters to yield 

an approximate open-loop transfer function 

103 
a'(s) ~ -- (13.58) 

over a frequency range that extends from below 0.1 radian per second to 

above 106 radians per second. The value of a for the approximation is 

-\/Fl. The curve of Fig. 13.31 shows that the maximum negative phase 

shift of the open-loop transfer function at intermediate frequencies should 

be -46.5*, corresponding to a peak-to-peak phase ripple of 3'. 
The approximate loop transmission that results with this compensation 

is 

103 
L'(s) =- (13.59)

VIs(R1Cis + 1) 

The third compensation used the two-rung slow-rolloff network shown 

in Fig. 13.33. The resultant amplifier open-loop transfer function is 

a"'(s) 105(10-s + 1) (13.60)
s(10s + 1) 

This transfer function is a very crude approximation to a 1/Vs rolloff 

that combines a basic 1/s rolloff with a decade-wide zero-slope region 

realized by placing a zero two decades and a pole one decade below the 

unity-gain frequency. Alternatively, the open-loop transfer function can 

be viewed as the result of adding a lead network located well below the 

unity-gain frequency to a single-pole transfer function. 
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220 pF 

51 kt2 2000 pF 

Figure 13.33 Slow-rolloff network. 

The loop transmission in this case is 

L"(S) - 105(10-s + 1) (13.61)
s(10-5s + 1)(RiCis + 1) 

Bode plots for the three compensated open-loop transfer functions of 
Eqns. 13.55, 13.58, and 13.60 are shown in Fig. 13.34. Note that param­
eters are selected so that unity-gain frequencies are identical for the three 
transfer functions. 

The step responses for the test system with R 1 C1 = 0 are compared for 
the three types of compensation in Fig. 13.35. Part a shows the step re­
sponse for one-pole compensation. The expected exponential response with 
a 1-ys 0 to 63 % rise time is evident. 

Part b shows the response with the 1//s compensation. An interesting 
feature of this response is that while it actually starts out faster than that 
of the previous system with the same crossover frequency (compare, for 
example, the times required to reach 25% of final value), it settles much 
more slowly. Note that the transient shown in part b has only reached 75 % 
of final value after 4.5 us (the input-step amplitude is 40 mV for both parts 
a and b), while the system using one-pole compensation has settled to within 
2% of final value by this time. Part c is a repeat of part b with a slower 
sweep speed. Note that even after 180 ps, the transient has reached only 
95 % of final value. This type of very slow creep toward final value is char­
acteristic of many types of distributed systems. Long transmission lines, 
for example, often exhibit step responses similar in form to that illustrated. 

Parts d and e of Fig. 13.35 show the response for the system using slow­
rolloff compensation at two different time scales. The transient consists of 
a 1-ys time constant exponential rise to 90% of final value, followed by a 
100-us time constant rise to final value. The reader should use Eqn. 13.61 
to convince himself that the long tail is anticipated in view of the location 
of the closed-loop pole-zero doublet that results in this case. Note that 
even with this tail, settling to a small fraction of final value is substantially 
shorter than for the 1/V/s system. 
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Figure 13.34 Comparison of approximate open-loop transfer functions for three 
types of compensation. 

Figure 13.36 indicates responses for R 1 C1 = 1 ys for the three different 
types of compensation. This R-C 1 product adds a pole slightly above the 
resultant crossover frequency of the loop for all of the compensations. The 
phase margin of the system with one pole compensation is about 50', with 
the resulting moderate damping shown in part a. The phase margin for 
1/Vs compensation exceeds 90 in this case, and the main effect of the 
extra pole is to make the initial portion of the response (see part b) look 
somewhat more exponential. The very slow tail is not altered substantially. 
The step response of the system with slow-rolloff compensation (Fig. 13.36c) 
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Figure 13.35 Comparison of step responses as a function of compensation with 
R1C1 = 0. (Input-step amplitude is 40 mV.) (a) One-pole compensation. (b) 1/vs 
compensation. (c) Repeat of part b with slower sweep speed. (d) Slow-rolloff com­
pensation. (e) Repeat of part d with slower sweep speed. 

613 



10 mV 

T 

(c) 2OAs 

10 mV 

(d) 500 ns 

Figure 13.35--Continued 
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Figure 13.35-Continued 

has slightly less peak overshoot (measured from the final value shown in 
the figure) than does the system shown in part a. The difference reflects 
the 5* phase-margin advantage of the slow-rolloff system. The tail is un­
altered by the additional pole. 

The experimentally measured step response of the system with one-pole 
compensation is shown in Fig. 13.37 for a number of values of the R 1-C 1 

time constant. The deterioration of stability and settling time that results 
as R 1 C1 is increased is clearly evident in this sequence. The value for natural 
frequency predicted by Eqn. 13.57 can be verified to within experimental 
tolerances. However, the actual system is actually somewhat better damped 
than the analysis indicates, particularly in the relatively lower-damped 
cases. The unit-step response for a second-order system is 

v(t) = [1 - e-en sin (V1 - -2 wOt + <b (13.62) 

where 

2]<b = tan-1 
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Figure 13.36 Comparison of step responses as a function of compensation for 
R1 C1 =1 s. (Input-step amplitude is 40 mV.) (a) One-pole compensation. (b) 1/v's 
compensation. (c) Slow-rolloff compensation. 
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Figure 13.36--Continued 

This relationship shows that the exponential time constant of the enve­
lope of the transient should have a. value of l/rw., or, from Eqn. 13.57, 
2RiC1 . Thus, for example, the transient illustrated in Fig. 13.37e, which 
has analytically determined values of w. = 3.1 X 101 radians per second 
and = 1.6 X 10-, should have a decay time approximately five times 
longer than that actually measured. 

The reason for this discrepancy is as follows. An extension of the curves 
shown in Fig. 4.26 estimates that a damping ratio of 1.6 X 10- corresponds 
to a phase margin of 0.184*. Accordingly, very small changes in the angle 
of the loop transmission at the crossover frequency can change damping 
ratio by a substantial factor. 

There are at least three effects, which (in apparent violation of Murphy's 
laws) combine to improve phase margin in the actual system. First, the 
compensated amplifier open-loop pole is not actually at the origin, and thus 
contributes less than 900 of negative phase shift to the loop transmission 
at crossover. Second, any series resistance associated with the connections 
made to the capacitor adds a zero to the loop transmission that contributes 
positive phase shift at crossover. Third, the losses associated with dielectric 
absorption or dissipation factor of the capacitor also improve the phase 
margin of the system. 
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Figure 13.37 Step response of system with one-pole compensation as a function 
of R1C1. (Input-step amplitude is 40 mV.) (a) R1C1 = 10 ps. (b) R1 C1 = 100 ps. 

(c) R1 C1 = 1 ms. (d) R1C1 = 10 ms. (e) R1 C1 = 100 ms. (f) R1 C1 = 100 ms with 
polystyrene capacitor. 
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Figure 13.37-Continued 
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Figure 13.37-Continued 
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The importance of the third effect can be seen by comparing parts e and f 
of Fig. 13.37. For part e (and all preceding photographs) a ceramic capaci­
tor was used. The transient indicated in part f, with a decay time approxi­
mately three times that of part e and within 60%. of the analytically pre­
dicted value, results when a low-loss polystyrene capacitor is used in place 
of the ceramic unit. This comparison demonstrates the need to use low-loss 
capacitors in lightly damped systems such as oscillators. 

It should also be noted that, in addition to very low damping, this type 
of connection can lead to inordinately high signal levels with the possibility 
of saturation at certain points inside the loop. Since the frequency of the 
ringing at the system output is higher than the cutoff frequency of the 
R-C 1 low-pass network, the signal out of the LM301A will be larger than 
the system output signal during the oscillatory period. In fact, the peak sig­
nal level at the output of the LM301A exceeded 20 volts peak-to-peak during 
the transients shown in Figs. 13.37e and 13.37f. Longer R1-C1 time constants 
would have resulted in saturation with the 40-mV step input. 

Figure 13.38 shows the responses of the system compensated with a 

1//s amplifier rolloff as a function of the R-C 1 product. Several ana­
lytically predictable features of this system are demonstrated by these re­
sponses. Since the magnitude of the loop transmission falls as I/ws/ 2 at 
frequencies above the pole of the Rr-C1 network and as Ico1/2 below the 
pole location, the loop crossover frequency decreases as 1/R 1C1

21 3 . A 
factor of 10 increase in the R-C 1 product lowers crossover by a factor 
of 102/3 = 4.64, while a three-decade change in this product changes 
crossover by two decades. Comparing, for example, parts c and f or d 
and g of Fig. 13.38 shows that while the general shapes of these responses 
are similar, the speeds differ by a factor of 100, reflecting the change in 

crossover frequency that occurs for a factor of 1000 change in the R-C 1 

product. Part h is somewhat faster than predicted by the above relation­
ship because, with an R-C 1 value of 100 seconds, the corresponding pole 
lies at frequencies below the 1/Vs region of the compensation. (Recall 
that the longest time constant in the compensating network is 33 seconds.) 
The 1//s rolloff could be extended to lower frequencies by using more 
sections in the network, but very long time constants would be required. 
The amplifier d-c gain of approximately 105 would permit a 1/Vs rolloff 
from 10-4 radian per second to unity gain at 106 radians per second. 

The crossover frequencies for parts a, b, and c are located at factors of 
approximately 2.16, 4.64, and 10, respectively, above the break frequency of 
the R-C 1 network. Accordingly, the pole associated with the R-C 1 net­
work produces somewhat less than - 900 of phase shift in these cases, with 
the result that the phase margin is above 45*. This effect is negligible in 
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Figure 13.38 Step response of system with 1/v s compensation as a function of 
R1C1. (Input-step amplitude is 40 mV.) (a) R1C1 = 10s. (b) = 100 ps.R1 C1 
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Figure 13.38-Continued 
(g) R1C1 = 10 seconds. (h) R1 C1 = 100 seconds. (i) Comparison of part d with 
second-order system. 
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Figure 13.38--Continued 

part d through h, and the slight differences in damping evident in these 
transients arise because of the phase ripple of the compensating network. 
The actual ripple is probably larger than the 3* peak-to-peak value pre­
dicted in Fig. 13.31 as a consequence of component tolerances. 

The transient shown in Fig. 13.38d results from a phase margin of ap­
proximately 450 and a crossover frequency of 2.16 X 101 radians per sec­
ond. The curves of Fig. 4.26 indicate that the appropriate approximating 
second-order system in this case is one with = 0.42 and w, = 2.5 X 10' 
radians per second. The two responses shown in Fig. 13.38i compare the 
transient shown in part d with a second-order response using the param­
eters developed with the aid of Fig. 4.26. The reader is invited to guess 
which transient is which. 

The remarkable similarity of these two transients is a further demonstra­
tion of the validity of approximating the response of a complex system with 
a far simpler transient. Note that while the actual system includes 12 ca­
pacitors (exclusive of device capacitances internal to the operational ampli­
fier), its transient response can be accurately approximated by that of a 
second-order system. 

The transient responses shown in Fig. 13.38 and Fig. 13.36b illustrate 
how 1/vI compensation can maintain remarkably constant relative sta­
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bility as a system pole location is varied over eight decades of frequency. 
Actually, even lower values for the R-C1 break frequencies 3 yield com­
parable results, although difficulties associated with obtaining the very long 
time constants required and photographing the resulting slow transients 
prevented including additional responses. 

Since this type of compensation eliminates the relatively high-frequency 
oscillations of the output signal, the signal levels at the output of the 
LM301A are considerably smaller than when one-pole compensation is used. 

The step response of the system with slow-rolloff compensation is indi­
cated in Fig. 13.39 for values of R1 C1 from 10 ps to 100 ms. The important 
point illustrated in these photographs is that the response of the system 
remains moderately well damped for R-C 1 products as large as 1 ms, and 
that the damping is superior to that of the system using single-pole compen­
sation for any R-C 1 value shown. The reason is explained with the aid of 
Fig. 13.40, which is a plot of phase margin as a function of l/R 1 C1 for this 
system. Note that the phase margin exceeds 300 for any value of R1C1 less 
than approximately 3 ms. 

While the variation in phase margin with R1C1 is larger for this system 
than for the system with 1/VIs compensation, this type of compensation can 
result in reasonable stability as the location of the variable pole changes 
from more than three decades below the unity-gain frequency of the ampli­
fier upward. In exchange for the somewhat greater variation in phase margin 
as a function of the R-C 1 time constant and a more limited range of this 
product for acceptable stability, the complexity of the amplifier compensat­
ing network is reduced from 22 to three components. 

Simple slow rolloff networks typified by that described above provide 
useful compensation in many practical variable-parameter systems because 
the range of parameter variation is seldom as great as that used to illustrate 
the performance of the system with 1/Vs compensation. Furthermore, 
other effects may combine with slow-rolloff compensation to increase its 
effectiveness in actual systems. Consider the voltage regulator with an 
arbitrarily large capacitive load mentioned earlier as an example of a vari­
able parameter system. The series resistance and dissipation characteristic of 
electrolytic capacitors add a zero to the pole associated with the capacitive 
load, and this zero can aid slow-rolloff compensation in stabilizing a regu­
lator for a very wide range of load-capacitor values. 

It is also evident that adding one or more rungs to the compensating net­
work can increase the range of this type of compensation when required. 

I While R1-C1 time constants in excess of about 10 seconds cause some deviation from 
1 /vi characteristics in the vicinity of the R1-C pole, the phase margin is determined by 
the network characteristics at the crossover frequency. The system phase margin will 
remain approximately 450 for R 1-C time constants as large as 104 seconds. 
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Figure 13.39 Step response for system with slow-rolloff compensation as a func­
tion of R1 C1 . (Input-step amplitude = 40 mV.) (a) R1 C1 = 10 As. (b) R1C1 = 100 us. 
(c) R1 C1 = 1 ms. (d) R1C1 = 10 ms. (e) R1 C1 = 100 ms. 
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Figure 13.39-Continued 

13.3.6 Feedforward Compensation 

Feedforward compensation was described briefly in Section 8.2.2. This 
method, which differs in a fundamental way from minor-loop compensa­
tion, involves capacitively coupling the signal at the inverting input terminal 
of an operational amplifier to the input of the final voltage-gain stage. This 
final stage is assumed to provide an inversion. The objective is to eliminate 
the dynamics of all but the final stage from the amplifier open-loop transfer 
function in the vicinity of the unity-gain frequency. 

This approach, which has been used since the days of vacuum-tube opera­
tional amplifiers, is not without its limitations. Since only signals at the 
inverting input terminal are coupled to the output stage, the feedforward 
amplifier has much lower bandwidth for signals applied to its noninverting 
input and generally cannot be effectively used in noninverting configu­
rations.4 

4There have been several attempts at designing amplifiers that use dual feed-forward 
paths to a differential output stage. One of the. difficulties with this approach arises from 
mismatches in the feedforward paths. A common-mode input results in an output signal 
because of such mismatches. The time required for the error to settle out is related to the 
dynamics of the bypassed amplifier, and thus very long duration tails result when these 
amplifiers are used differentially. 
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Figure 13.40 Phase margin as a function of 1/R1 C1 for L"(s) =- [105(10-4s + 1)/ 
s(10-s + 1)(R 1 Cis + 1)]. 

Another difficulty is that the phase shift of a feedforward amplifier often 

approaches - 1800 at frequencies well below its unity-gain frequency. Ac­
cordingly, large-signal performance may be poor because the amplifier is 
close to conditional stability. The excessive phase shift also makes feed-
forward amplifiers relatively intolerant of capacitive loading. 

Feedforward is normally most useful for three or more stage amplifiers, 
and results in relatively little performance improvement for many two-stage 
designs because the first stage of these amplifiers is often faster than the 
rest of the amplifier. The LM 101A 5 is an exception to this generality. Recall 
that the input stage of this amplifier includes lateral-PNP transistors. Be­
cause NPN transistors are used for voltage gain in the second stage, the first 
stage represents the bandwidth bottleneck for the entire amplifier.I Since 
the input to the second amplifier stage is available as a compensating ter­

5R. C. Dobkin, FeedforwardCompensation Speeds Op Amp, Linear Brief 2, National 
Semiconductor Corporation. 

6 The unity-gain output stage of this amplifier also uses lateral-PNP transistors. However, 
the buffer stage has approximately unity small-signal voltage gain even at frequencies where 
the common-emitter current gain of the lateral PNP's in this stage is zero. Thus these tran­
sistors do not have the dominant effect on amplifier bandwidth that the input transistors do. 
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Figure 13.41 Unity-gain inverter with feedforward compensation. 

minal, feedforward that bypasses the narrow-bandwidth stage can be im­
plemented by connecting a capacitor from the inverting input terminal of 
the amplifier to this compensation terminal. 

The LM301A was connected as shown in Fig. 13.41. Low-value resistors 
and the 5-pF capacitor are used to reduce the effects of amplifier input 
capacitance on loop transmission. The 150-pF feedforward capacitor is 
the value recommended by National Semiconductor Corporation, although 
other values may give better performance in some applications. This 

capacitor value can be selected to minimize the signal at the inverting input 

terminal (which is proportional to the error between actual and ideal out­
put) if optimum performance is required. 

The step response of this inverter is shown in Fig. 13.42. There is sub­

stantial overshoot evident in the figure, as well as some "teeth" on the rising 

portion of the waveform that are probably at least partially related to high-

speed grounding problems in the test set up. The 10 to 90% rise time of the 

circuit is approximately 50 ns, or a factor of three faster than the fastest 

rise time obtained with minor-loop compensation (see Fig. 13.13b). 

13.3.7 Compensation to Improve Large-Signal Performance 

The discussion in earlier parts of this chapter has focused on how com­

pensation influences the linear-region performance of an operational ampli­

fier. The compensation used in a particular connection also has a profound 

effect on the large-signal performance of the amplifier, particularly the 
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Figure 13.42 Step response of unity-gain inverter with feedforward compensation. 
(Input-step amplitude is -80 mV.) 

slew rate or maximum time rate of change of output signal and how grace­
fully the amplifier recovers from overload. 

The simplified two-stage amplifier representation shown in Fig. 13.43 
illustrates how compensation can determine the linear operating region of 
the amplifier. This model, which includes a current repeater, can be slightly 
modified to represent many available two-stage integrated-circuit opera­
tional amplifiers such as the LM101A. Elimination of the current repeater, 
which does not alter the essential features of the following argument, re­
sults in a topology adaptable to the discrete designs that do not include 
these transistors. 

The key to understanding the performance of this amplifier is to recog­
nize that, with a properly designed second stage, the input current required 
by this stage is negligible when it is in its linear operating region. Ac­
cordingly, 

iN :C4 - C2 (13.63) 

This relationship, coupled with the fact that the incremental voltage change 
at the input of the second stage is also small under many operating con­
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Figure 13.43 Operational-amplifier model. 

ditions, is sufficient to determine the open-loop transfer function of the 

amplifier as a function of the compensating network. 

Since the second stage normally operates at current levels large com­

pared to those of the first stage, the limits of linear-region operation 

are usually determined by the first stage. Note that first-stage currents are 

related to the total quiescent bias current of this stage, IB, and the differ­

ential input voltage. For the topology shown, the relationship between the 

relative input-stage collector currents and input voltage becomes highly 

nonlinear when the differential input voltage v exceeds approximately 

kT/q. At room temperature, for example, a +25-mV value for vr raises 

the collector current of Q2 a factor of 1.46 above its quiescent level, while 

input voltages of 60 mV and 120 mV increase ic2 by factors of 1.82 and 1.98, 

respectively, above the quiescent value. 

When a differential input-voltage level in excess of 100 mV is applied to 

the amplifier, the magnitude of the current ic4 - ic2 will have nearly its 

maximum value of IB. Regardless of how much larger the differential input 
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signal to the amplifier becomes, the current from the input stage and, thus, 
the current iN, remains relatively constant. 

Even if series emitter resistors are included (as they are in some ampli­
fiers at the expense of drift referred to the input of the amplifier), or if 
more junctions are connected in the input-signal path as in the LM10A 
amplifier, the maximum magnitude of the current supplied by the first 
stage is bounded by its bias level. Since the value of iN cannot exceed the 
current supplied by the first stage (at least if the second stage remains linear), 
the output voltage can not have characteristics that cause iN to exceed a 
fixed limit. If, for example, a capacitor with a value Cc is used for com­
pensation, 

iN CibO (13.64) 

where the dot indicates time differentiation. Thus, for the values shown 
in Fig. 13.43, the maximum magnitude of bo is 

IoV max = (13.65) 

One of the more restrictive design interrelationships for a two-stage 
amplifier is that with single-capacitor compensation and without emitter 
degeneration in the input stage, both the maximum time rate of change of 
output voltage and the unity-gain frequency of the amplifier are directly 
proportional to first-stage bias current. Hence increases in slew rate can 
only be obtained in conjunction with identical increases in unity-gain fre­
quency. Since stability considerations generally bound the unity-gain fre­
quency, the maximum slew rate is also bounded. 

The large-signal performance of the LM301A operational amplifier used 
in all previous tests is demonstrated using the connection shown in Fig. 
13.44. This connection is identical to the inverter used with feedforward 
compensation, except for the addition of Schottky diodes that function as 
an input clamp. If clamping were not used, the voltage at the inverting in­
put of the amplifier would become approximately half the magnitude of a 
step input-voltage change immediately following the step because of direct 
resistive coupling. This type of transient would add currents to the output 
of the first stage because of signals fed through the collector-to-base junc­
tions of the input transistors and because of transient changes in current-
source levels. The Schottky diodes are used in preference to the usual sili­
con P-N junction diodes because they have superior dynamic characteris­
tics and because their threshold voltage of approximately 0.3 volt is closer 
to the minimum value that guarantees complete input-stage current steering 
for the LM301A. 
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Figure 13.44 Inverter used to evaluate large-signal response. 

The square-wave response of the circuit of Fig. 13.44 with a 30-pF com­

pensating capacitor is shown in Fig. 13.45a. The positive and negative slew 

rates are equal and have a magnitude of approximately 0.85 volt per 

microsecond. Note that there is no discernible overshoot as the amplifier 

output voltage reaches final value, indicating that the amplifier with this 

compensation recovers quickly and cleanly from the overload associated 

with a 20-volt step input signal. 
The transient of Fig. 13.45b is the response of a unity-gain voltage fol­

lower, compensated with a 30-pF capacitor, to the same input. In this case, 
the positive transition has a step change followed by a slope of approxi­

mately 0.8 volt per microsecond, while the negative-transition slew rate is 

somewhat slower. The lack of symmetry reflects additional first-stage cur­

rents related to rapidly changing common-mode signals. Figure 13.43 indi­

cates that a common-mode input applied to this type of amplifier forces 

voltage changes across the collector-to-base capacitances of the input tran­

sistors and the current source. The situation for the LM301A is somewhat 

worse than that depicted in Fig. 13.43 because of the gain provided to bias 

current source variations by the lateral PNP's used in the input stage (see 

Section 10.4.1). The nonsymmetrical slewing that results when the amplifier 

is used differentially is the reason that the inverter connection was selected 

for the following demonstrations. 

An earlier development showed that slew rate is related to input-stage 

bias current and compensating-capacitor size with single-pole compensa­
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Figure 13.45 Large-signal response of LM301A with a 30-pF compensating capac­
itor. (Input square-wave amplitude is 20 volts peak-to-peak.) (a) Unity-gain inverter. 
(b) Unity-gain voltage follower. 
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tion. Solving Eqn. 13.65 for IB using values associated with Fig. 13.45a 
yields a bias current of 25.5 yA, with half this current flowing through each 
side of the input-stage differential connection under quiescent conditions. 
The transconductance of the input-stage transistors, based on this esti­
mated value of quiescent current, is approximately 5 X 104 mho. 

Recall that the constant which relates the linear-region open-loop trans­
fer function of the LM301A to the reciprocal of the compensating-network 
transfer admittance is one-half the transconductance of the input transis­
tors. The value for gm/2 of 2.3 X 10- mho determined in Eqn. 13.28 from 
linear-region measurements is in excellent agreement with the estimate 
based on slew rate. 

Since slew rate with single-pole compensation is inversely related to 
compensating-capacitor size, one simple way to increase slew rate is to de­
crease this capacitor size. The transient shown in Fig. 13.46a results with a 
15-pF compensating capacitor, a value that yields acceptable stability in 
the unity-gain inverter connection. As anticipated, the slew rate is twice 
that shown in Fig. 13.45a. 

In order to maintain satisfactory stability with smaller values of com­
pensating capacitor, it is necessary to lower the transmission of the ele­
ments surrounding the amplifier. The connection shown in Fig. 13.47 uses 
input lag compensation to increase the attenuation from the output of the 
amplifier to its inverting input to approximately a factor of 10 at intermedi­
ate and high frequencies. It was shown in Section 13.3.2 that well-damped 
linear-region performance results with a 4.5-pF compensating capacitor 
when the network surrounding the amplifier provides this degree of at­
tenuation. 

The response of Fig. 13.46b results with a 5-pF compensating capacitor 
and input lag compensation as shown in Fig. 13.47. The slew rate increases 
to the value of 5 volts per microsecond predicted by Eqn. 13.65 with this 
value for Cc. 

The large capacitor is used in the lag network to move the two-pole roll-
off region that results from lag compensation well below crossover. This 
location improves recovery from the overload that results during the slew­
ing period because large gain changes (in a describing-function sense) are 
required to reduce crossover to a value that results in low phase margin. 
The clean transition from nonlinear- to linear-region performance shown 
in Fig. 13.46b indicates the success of this precaution. 

It should be pointed out that the large-signal equivalent of the linear-
region tail associated with lag compensation exists with this connection, 
although the scale factor used in Fig. 13.46b is not sensitive enough to dis­
play this effect. The voltage VA reaches its clamped value of approximately 
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Figure 13.46 Slew rate as a function of compensating capacitor for unity-gain 
inverter. (Input square-wave amplitude is 20 volts peak-to-peak.) (a) C, = 15 pF. 
(b) C, = 5 pF and input lag compensation. 
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Figure 13.47 Unity-gain inverter with input lag compensation. 

0.3 volt for the slewing period of 4 ys following a 20-volt transition at the 
input. Accordingly, the 1-yF capacitor charges to approximately 4 mV 
during this overloaded interval. The capacitor voltage is amplified by a fac­
tor of 2.2 kQ/270 2 ~8, with the result that the output voltage is in error by 
32 mV immediately following the transition. The decay time associated with 
the error is 270 Q X 1 AF = 270 ps. Note that increasing the lag-network 
capacitor value decreases the amplitude of the nonlinear tail but increases 
its duration. 

We might suspect that two-pole compensation could improve the slew 
rate because the network topology shown in Fig. 13.19 has the property that 
the steady-state value of the current iN is zero for any magnitude ramp of VN-

The output using a 30 pF-15 kQ-30 pF two-pole compensating network 
(the values indicated earlier in Fig. 13.21) with the inverter connection is 
shown in Fig. 13.48a for a 20-volt peak-to-peak, 50 kHz sine-wave input 
signal. The maximum slew rate demonstrated in this photograph is ap­
proximately 3.1 volts per microsecond, a value approximately twice that 
obtained with a single 15-pF compensating capacitor. 

Unfortunately, the large negative phase shift close to the crossover fre­
quency that results from two-pole compensation proves disastrous when 
saturation occurs because the system approaches the conditions necessary 
for conditional stability. The poor recovery from the overload that results 
with large-signal square-wave excitation is illustrated in Fig. 13.48b. The 
collector-to-base junctions of the second-stage transistors are forward 
biased during part of the cycle because of the overshoot, and the resultant 
charge storage further delays recovery from overload. 
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Figure 13.48 Large-signal performance of unity-gain inverter with two-pole com­
pensation. (a) Sine-wave input. (b) Square-wave input. 
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It is of passing interest to note that the circuit using two-pole compensa­
tion exhibits a phenomenon called jump resonance. If the frequency of the 
20-volt peak-to-peak sinusoid is raised slightly above the 50-kHz value 
used in Fig. 13.48a, the output signal becomes severely distorted. Further 
increases in excitation frequency result in an abrupt jump to a new mode 
of limiting with a recognizably different (though equally distorted) output 
signal. The process exhibits hysteresis, in that it is necessary to lower the 
excitation frequency measurably below the original jump value to reestab­
lish the first type of nonlinear output signal. One of the few known virtues 
of jump resonance is that it can serve as the basis for very difficult academic 
problems in advanced describing-function analysis.7 

Feedforward compensation results in a high value for slew rate because 
capacitive feedback around the second stage is eliminated. The response of 
the inverter with 150-pF feedforward compensation to a 20-volt peak-to­
peak, 200-kHz triangle wave is shown in Fig. 13.49a. While some distor­
tion is evident in this photograph, the amount is not excessive considering 
that a slew rate of 8 volts per microsecond is achieved. The square-wave 
response shown in Fig. 13.49b indicates problems similar to those associated 
with two-pole compensation. The response also indicates that the negative 
slew rate is substantially faster than the positive slew rate with this compen­
sation. The reason for the nonsymmetry is that with feedforward compen­
sation, the slew rate of the amplifier is limited by the current available to 
charge the node at the output of the second stage (the collector of Qio in 
Fig. 10.19). The current to charge this node in a negative direction is de­
rived from Q1o, and relatively large currents are possible from this device. 
Conversely, postive slew rate is established by the relatively lower bias cur­
rents available. The way to improve symmetry is to increase the collector 
bias current of Qio. While this increase could be accomplished with an ex­
ternal current source applied via a compensation terminal, a simpler method 
is available because of the relationship between the voltage at the collector 

of Qio and the output voltage of the amplifier. Level shifting in the buffer 
stage raises the output voltage one diode potential above the collector volt­
age of Qio in the absence of load. If a resistor is connected between the 
amplifier output and the compensation terminal at the output of second 
stage, the resistor will act like a current source because the voltage across 
it is "bootstrapped" by the buffer amplifier. Furthermore, the level shift in 

the buffer is of the correct polarity to improve slew-rate symmetry when 

the resistor is used. 
The square-wave response of Fig. 13.49c illustrates the performance of 

the inverter with feedforward compensation when a 1-kQ resistor is con­

7G. J. Thaler and M. P. Pastel, Analysis and Design of Nonlinear Feedback Control 
Systems, McGraw-Hill, New York, 1962, pp. 221-225. 



5 V 

(a) 1MS.m [4.s.. 

T 

IA 

(b) 1s 

Figure 13.49 Slew rate of inverter with feed-forward compensation. (a) Triangle-
wave input. (b) Square-wave input. (c) Square-wave input with increased second-
stage bias current. (d) Triangle-wave input with increased second-stage current. 
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nected from the amplifier output to the collector side of the second stage. 
The positive-going slew rate is increased to approximately 20 volts per 
microsecond. Furthermore, the overload recovery characteristics improve, 
probably as a result of better second-stage dynamics at higher bias currents. 
The response to a 400-kHz triangle wave with feedforward compensation 
and increased bias current is illustrated in Fig. 13.49d. This signal is reason­
ably free of distortion and has a slew rate of 16 volts per microsecond. 

While the method of combining feedforward compensation with in­
creased operating levels is not necessarily recommended for routine use, 
it does illustrate the flexibility that often accompanies the availability of 
external compensating terminals. In this case, it is possible to raise the dy­
namic performance of an inexpensive, general-purpose integrated-circuit 
amplifier to levels usually associated with more specialized wideband units 
by means of appropriate connections to the compensating terminals. 

13.3.8 Summary 
The material presented earlier in this section has given some indication 

of the power and versatility associated with the use of minor-loop compen­
sation for two-stage operational amplifiers. We should recognize that the 
relative merits of various forms of open-loop transfer functions remain the 
same regardless of details specific to a particular feedback system. For ex­
ample, tachometric feedback is often used around a motor-amplifier com­
bination to form a minor loop included as part of a servomechanism. This 
type of compensation is entirely analogous to using a minor-loop feedback 
capacitor for one-pole compensation. Similarly, if a tachometer is followed 
with a high-pass network, two-pole minor-loop compensation results. It 
should also be noted that in many cases transfer functions similar to those 
obtained with minor-loop compensation can be generated via forward-
path compensation. 

While the compensation networks have been illustrated in connections 
that use relatively simple major-loop feedback networks, this limitation is 
unnecessary. There are many sophisticated systems that use operational 
amplifiers to provide gain and to generate compensating transfer functions 
for other complex elements. The necessary transfer functions can often be 
realized either with major-loop feedback around the operational amplifier, 
or by compensating the amplifier to have an open-loop transfer function 
of the required form. The former approach results in somewhat more stable 
transfer functions since it is relatively less influenced by amplifier param­
eters, while the latter often requires fewer components, particularly when 
a differential-input connection is necessary. 

It is emphasized that a fair amount of experience with a particular ampli­
fier is required to obtain the maximum performance from it in demanding 
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applications. Quantities such as the upper limit to crossover frequency for 
reliably stable operation and the uncompensated open-loop transfer func­
tion are best determined experimentally. Furthermore, many amplifiers 
have peculiarities that, once understood, can be exploited to enhance per­
formance. The feedforward connection used with the LM101A is an ex­
ample. Another example is that the performance of certain amplifiers is 
enhanced when the compensating network (or some portion of the com­
pensation) is connected to the output of the complete amplifier rather than 
to the output of the high-gain stage because effects of loading by the net­
work are reduced and because more of the amplifier is included inside the 
minor loop. The time a system designer spends understanding the subtleties 
of a particular amplifier is well rewarded in terms of the performance that 
he can obtain from the device. 

Important features of the various types of compensation discussed in 
this section are summarized in Table 13.1. This table indicates the open-loop 
transfer functions obtained with the different compensations. The solid 
lines represent regions where the transfer function is controlled by the com­
pensating network, while dotted lines are used when uncompensated ampli­
fier characteristics dominate. The minor-loop feedback networks used to 
obtain the various transfer functions from two-stage amplifiers are also 
shown. Comments indicating relative advantages and disadvantages are 
included. 

Table 13.1 Implementation and Effects of Various Types of Compensation 

One Pole 

Transfer Function Network 

Conservative, general-purpose compensation for systems with frequency-independent 
feedback and loading. Changing capacitor value optimizes bandwidth as a function of 
attenuation provided by feedback network. Slew rate inversely proportional to capacitor 
size. 



Table 13.1-(Continued) 

Two Pole 

Transfer Function Network 

Improved desensitivity and lower error coefficients compared with one-pole systems 
with identical crossover frequencies. Loop parameters must be selected to insure that 
crossover occurs in the 1/s region of the characteristics for adequate stability. Instability 
generally results with capacitive loading or low-pass major-loop feedback networks. 
Poor recovery from overload. 

With Zero 

Transfer Function Network 

Zero is used to offset effects of pole associated with load or feedback network, and 
must be located as a function of this pole. Major loop becomes unstable if pole is eliminated. 
A small-value capacitor, indicated with dotted lines, improves minor-loop stability. 
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Table 13.1-(Continued) 

Slow Rolloff 
Transfer Function Network 

Useful for systems with an additional loop-transmission pole at an uncertain location. 
Adding more rungs to ladder network increases the range of frequencies over which the 
additional pole can be located and results in greater uniformity of phase-shift character­
istics. Prolonged settling time compared to one-pole compensation when additional loop-
transmission pole not present. 

Feedforward 

Transfer Function Typology 
input Output 
stages stage 

(noninverting) (inverting) 

Feedforward Capacitor 

Highest bandwidth. Most useful when bandwidth of first stage or stages is less than 
that of rest of amplifier. Can result in substantial slew-rate improvement. Limits amplifier 
to use in inverting connections only. Values and results critically dependent on specific 
details of amplifier performance. Sensitive to capacitive loading or other sources of nega­
tive loop-transmission phase shift. 

PROBLEMS 

P13.1 
An operational amplifier is available with a fixed, unloaded open-loop 

transfer function 

10 
a(s) ~ 0 4s + 1 
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This amplifier is to be used as a unity-gain inverter. A load capacitor adds 
a pole at s = -106 sec-' to the unloaded open-loop transfer function. 
Compensate this configuration with an input lead network so that its loop-
transmission magnitude is inversely proportional to frequency from low 
frequencies to a factor of five beyond the crossover frequency. Choose 
element values to maximize crossover frequency subject to this constraint. 
You may assume high input impedance for the amplifier. 

P13.2 

Design an input lag network and an input lead-lag network to compen­
sate the capacitively loaded inverter described in Problem P13.1. Maximize 
crossover frequency for your designs subject to the constraint that the loop 
transmission is inversely proportional to frequency over a frequency range 
that extends from a factor of five below to a factor of five above the cross­
over frequency. 

P13.3 
An operational amplifier is connected as shown in Fig. 13.50 in an at­

tempt to obtain a closed-loop transfer function 

V0(s)_
V =(s)-s(0.1s + 1)
Vi(s) 

Determine element values that yield an ideal closed-loop gain given by 
this expression. 

Measurements indicate that the open-loop transfer function of the ampli­
fier is approximately single pole and that the transfer-function magnitude 
is 104 at w = 103 radians per second. Needless to say, the configuration 
shown in Fig. 13.50 is hopelessly unstable with this amplifier. 

R R 

C2 

vi r _- -0 V 

Figure 13.50 Double differentiator. 
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Find appropriate topological modifications that will stabilize the system 
(without changing the amplifier) and will result in a closed-loop transfer 
function that approximates the desired one at frequencies below 100 radians 
per second. 

P13.4 
A sample-and-hold circuit is constructed as shown in Fig. 13.51. The 

unloaded open-loop transfer function of the amplifier is 

a(s) -10 
(0.ls + 1)(10 7 s + 1) 

The sum of the open-loop output resistance of the amplifier and the on 
resistance of the switch is 100 Q. 
(a) 	 With R = 0, is this circuit stable in the sample mode (switch closed)? 
(b) 	 Determine a value for R that results in approximately 450 of phase 

margin in the sample mode. 
(c) 	 Estimate the time required for vo(t) to reach 1% of final value following 

initiation of sampling when the value of R determined in part b is 
used. You may assume that the capacitor is initially discharged, that 
vr is time invariant, and that the circuit remains linear during the 
transient. 

P13.5 
An externally compensated operational amplifier that uses minor-loop 

feedback to generate an approximate open-loop transfer function 

2 X 10-4 
a(s) 

Ye(s) 

is available. The amplifier is connected as a unity-gain voltage follower. 
The spectral content of anticipated input signals is such that a closed-loop 

V, 

R 

1 pP 1_ vF o-

Figure 13.51 Sample-and-hold circuit. 
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bandwidth in excess of 106 radians per second degrades the noise perform­
ance of the connection. Determine a compensating element that will result 
in a closed-loop transfer function 

A(s) 10- 6s + 1 

for the voltage-follower connection. 

P13.6 
An operational amplifier of the type described in Problem P13.5 is con­

nected in the log circuit shown in Fig. 13.9a. Experimental evaluation shows 
that this connection will be acceptably stable if the loop crossover frequency 
is limited to 1 MHz. Determine a compensating element that insures sta­
bility for any input-signal level between 0 and +10 volts. Estimate the 
time required for the incremental output signal of the circuit to settle to 
1% of final value when a small step change in input voltage is applied at an 
operating point Vr = 0.1 volt. 

P13.7 
A two-stage operational amplifier has a d-c open-loop gain of 106 and 

is acceptably stable in connections involving frequency-independent feed­
back provided that compensation is selected which limits the crossover 
frequency to 1 MHz. This amplifier is used as a unity-gain inverter to 
amplify 10-kHz sinusoids, and a major design objective is to have the 
input and the output signals of the inverter exactly 180* out of phase. 

Discuss the relative merits of one- and two-pole compensation in this 
application. Also indicate the effect that the two types of compensation 
have on the magnitude of the closed-loop transfer function at 10 kHz. 

P13.8 
The uncompensated, open-loop transfer function of a two-stage amplifier 

is 
10, 

a(s) (10- 4s + 1)(10-5s + 1)(5 X 10- 8s + 1)2 

The two lowest-frequency poles result from dynamics that can be modified 
by compensation, while the location of the higher-frequency pole pair is 
independent of the compensation that is used. 

The amplifier is compensated and connected for a noninverting gain of 
10. You may assume that the compensation used does not cause significant 
loading of the minor loop. This closed-loop connection is excited with an 
input ramp having a slope of 104 volts per second. The differential input 
signal applied to the amplifier is observed, and it is found that after a 
starting transient, the steady-state value of the signal is 10 mV. 
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(a) 	 Determine a single-pole approximation to the amplifier open-loop 
transfer function. 

(b) 	 Refine your estimate of part a, taking advantage of all the information 
you have available about the amplifier. 

(c) 	 Assuming that this amplifier described is an LM301A, what compen­
sating element is used? 

(d) 	Suggest alternate compensation that results in the same crossover fre­
quency as obtained with the compensation described, a phase margin 
in excess of 60*, and essentially zero steady-state ramp error. Deter­
mine element values that implement the required compensation for an 
LM301A. 

P13.9 
The material discussed in connection with Fig. 13.24 indicated that the 

steady-state error of a closed-loop operational-amplifier connection in re­
sponse to a ramp can be reduced to insignificant levels by using two-pole 
compensation. An extension of this line of reasoning implies that if three-
pole compensation is used, the steady-state error will be nearly zero for 
parabolic excitation. Linear-system considerations show that stability is 
possible if two zeros are combined with a three-pole rolloff. For example, 
a loop transmission 

L(s) = 10"(10-5 s + 1)2 
S

3 

has approximately 80* of phase margin at its crossover frequency. 
Find a compensating-network topology that can be used in conjunction 

with minor-loop compensated amplifiers to provide this general type of 
open-loop transfer function. Discuss practical difficulties you anticipate 
with this form of transfer function. 

P13.10 
A two-stage operational amplifier that uses minor-loop compensation is 

loaded with a capacitor that adds a pole at s = - 106 sec- 1 to the unloaded 
open-loop transfer function of the amplifier. The desired open-loop trans­
fer function including loading effects is 

2 X 1011(5 X 10- 6s + 1)
a(s) ~ 

Find a compensating-network topology that can be used to effect this form 
of compensation. Determine appropriate element values assuming that the 
effective input-stage transconductance of the operational amplifier used is 
2 X 10-4 mho. 
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P13.11 
A two-stage operational amplifier is connected as an inverting differen­

tiator with a feedback resistor of 100 ko and an input capacitor of 1 AF. 
What type of minor-loop compensating network should be used to stabilize 
this configuration? Determine element values that result in a predicted 
crossover frequency of 104 radians per second with a value of 2 X 10-4 mho 
for input-stage transconductance. 

When this type of compensation is tried using an LM301A operational 
amplifier, minor loop stability is unacceptable, and it is necessary to shunt 
the compensation terminals with a 3-pF capacitor in addition to the network 
developed above for satisfactory performance. Describe the effect of this 
modification on closed-loop pe-formance. 

P13.12 
A certain application necessitates an operational amplifier with an ap­

proximate open-loop transfer function 

104 
a(s) 2/3 

Find a compensating network that can be used in conjunction with an 
LM301A to approximate this transfer function. The phase shift of the 
approximating transfer function should be - 60* i 50 over a frequency 
range from 1 radian per second to 106 radians per second. 
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Absolute-value circuit, 458
 
Active filters, 525
 
All-pass transfer function, 530, 536
 
Amplitude scaling, 513
 
Amplitude stabilization, 487
 
Analog computation, 502
 
Analog multiplier, 501
 
Analog-signal switching, 471
 
Antilog circuit, 462
 
Automatic gain control, 488
 
Auxiliary equation, 115
 

Band-gap voltage, 252
 
Band-gap voltage reference, 288
 
Bandpass amplifier, 135
 
Bandwidth, 94
 
Base-to-emitter voltage temperature
 

coefficient, 252
 
Base-width modulation, 310
 
Base-width modulation factor, 313
 
Block diagram, 22
 
Bode plot, 85
 
Bose oscillator, 502
 
Butterworth filter, 508
 
Butterworth transfer function, 80
 

frequency response of, 89
 
step response of, 83
 

Bypass capacitors, 343
 

CA3039 integrated circuit, 544
 
Capacitive load, 169, 564, 597
 
Capacitor selection, 448
 
Cascode amplifier, current-source
 

loaded, 320
 
Characteristic equation, 44, 112
 
Chopper stabilization, 522
 
Closed-loop gain, 2
 
Closed-loop zeros, 133
 
Cofactor, 44
 
Collector FET, 390
 
Common-emitter amplifier, 33
 

current-cource loaded, 315
 
Common-mode input, 256
 
Common-mode rejection ratio, 259,
 

434
 
Compensating capacitor, 199
 
Compensation, 165, 557
 

nonlinear, 240
 
series, 165
 

Compensation that includes zero, 597
 
Complementary Darlington con­

nection, 292, 397
 
Complementary emitter follower, 328
 
Conditional stability, 234
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Convolution, 68
 
Crossover distortion, 329
 
Crossover frequency, 148
 
Current repeater, 392
 
Current source, 322, 452
 

Darlington connection, 275
 
Deadzone, 26
 
Decibel, 84
 
Decoupling capacitor, 171
 
Demodulator, 474
 
Describing function, 217
 

table of, 223
 
Desensitivity, 25
 
Determinant, 44, 46
 
Differential amplifier, 254, 397, 449
 
Differential input, 256
 
Differential output, 255
 
Differentiator, 561
 
Diode-connected transistor, 390
 
Direct-coupled amplifiers, 249
 
Divider, 211, 244
 
Dominant pole, 78, 168
 
Double integrator, 452
 
Drift referred to the input, 250
 

from resistor mismatches, 266
 
from transistor mismatches, 262,
 

268
 
Duty-cycle modulation, 500
 

Electronic switch, 518
 
Emitter follower, 326, 327
 
Error coefficients, 97
 
Estimating open-loop gain, 65
 
Exponentiating circuit, 547
 

Feedback compensation, 196
 
Feedback-network compensation, 563
 
Feedforward, 304, 421, 630
 
FET preamplifier, 424
 
Field-effect transistor, 323, 471, 491
 

Final-value theorem, 69
 
First-order system, 78
 

frequency response of, 86
 
step response of, 79
 

Fourier series, 218
 
Frequency modulation, 502
 
Frequency response, 81
 
Function generator, 234, 428, 497,
 

540
 

Gain adjustment, 165
 
Gain margin, 147
 
Gain-phase plot, 88
 
Gated operational amplifier, 472
 
Gaussian pulse, 104
 
Goldberg amplifier, 522
 
Grounding problems, 446
 
Gyrator, 456
 

High-gain stages, 309
 
Howland current source, 454, 549
 
Hybrid-pi model, 310
 
Hysteresis, 220, 234
 

Impedance scaling, 46
 
Initial-value theorem, 68
 
Inner loop, 197
 
Input bias current, 434
 
Input common-mode range, 434
 
Input compensation, 558
 
Input current, 269
 
Input-current cancellation, 271
 
Input-current measurement, 438
 
Input differential range, 434
 
Input offset current, 434
 
Input offset voltage, 434
 
Integrator, 11
 
Inverting amplifier, 4
 
Inverted-transistor connection, 472
 

Jump resonance, 642
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Lag network, 173, 179
 
Lag transfer function, 558
 
Laplace transforms, 67
 

properties of, 68
 
table of, 70
 

Lateral-PNP transistor, 386
 
Lead network, 172, 178
 
Lead transfer function, 558
 
Leakage current, 268
 
Limit cycle, 217, 510
 
Limiter, 232
 
Linearization, 209
 
LM 101 operational amplifier, 401
 

LM101 A operational amplifier, 63,
 
206, 406
 

LM108 operational amplifier, 415
 

LM1 10 operational amplifier, 416
 

LM 118 operational amplifier, 421
 

LM121, 425
 
Load capacitor, 169, 564, 597
 
Load regulation, 169
 
Log circuit, 12, 18, 462, 568
 
Loop, 44
 
Loop transmission, 6, 24
 
Low-current operation, 270
 

Magnetic suspension, 214
 
Major loop, 197
 
MC1533 operational amplifier, 374
 

MC1538R, 425
 
MC1539 operational amplifier, 375
 
yA702 operational amplifier, 421
 

pA715 operational amplifier, 421
 

yA726, 422
 
yA727, 422
 
pA733, 374
 
pA740 operational amplifier, 424
 

yA741 operational amplifier, 375
 
yA776 operational amplifier, 410
 

Miller effect, 300, 354
 
Minor loop, 197
 

Minor-loop compensation, 573
 
Minor-loop instability, 600
 
Modulator, 474
 
MOS capacitor, 391
 
Multiplexer, 473
 
Multiplier, 211, 468
 

Negative feedback, 24
 
Negative impedance converter, 455
 
Nichols chart, 150
 
Node equations, 33
 
Noninverting amplifier, 4
 
Nonlinear oscillators, 496
 
Nyquist criterion, 139
 

Offset voltage, 251, 472
 
Offset-voltage measurement, 438
 
One-pole compensation, 575
 
One-stage amplifier, 417
 
Open-loop gain, 3
 

measurement of, 440
 
Open-loop transfer function, 3
 

estimation of, 65
 
Operational-amplifier specifications,
 

433
 
Output amplifiers, 327
 
Output impedance, 36
 
Output resistance, 49, 169
 
Output stages, 425
 
Output voltage range, 434
 

Pade approximate, 530
 
Path, 44
 
Peak detector, 459
 
Phase detector, 537
 
Phase margin, 147
 
Phase plane, 5 11
 
Phase-shift oscillator, 116, 231
 
Phase shifter, 536
 
Piecewise-linear circuit, 461
 
Piecewise-linear network, 540
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Pinched resistor, 389
 
Positive feedback, 9, 497
 
Power amplifier, 202
 
Power ground, 447
 
Power-supply decoupling, 444
 
Precision rectifier, 457
 
Pulse signal, 71, 72
 

Quadrature osdillator, 486, 519
 
Quarter-square multiplier, 468
 

Ramp error, 101
 
Rejection amplifier, 134
 
Resistor selection, 447
 
Resolver, 243, 537
 
Right-half-plane singularities, 130,
 

143
 
Rise time, 92
 
Root contours, 136
 
Root-locus construction rules, 121
 
Root-locus diagram, 119
 
Routh criterion, 112
 

Sallen and Key circuit, 525
 
Sample-and-hold circuit, 103, 475,
 

519, 650
 
Saturating nonlinearity, 219
 
Schmitt trigger, 234, 497
 
Second-order system, 79, 119
 

frequency response of, 87
 
step response of, 81
 

Second-stage drift contributions, 279
 
Settling time, 94
 

with lag compensation, 193
 
709 operational amplifier, 305
 
Signal-flow graph, 44
 
Signal ground, 447
 
Sine-wave shaping circuit, 540
 
Single-ended output, 255
 
Sinusoidal oscillators, 485
 
Six-mask process, 383
 

Slew rate, 364, 371, 435, 633
 
Slew-rate measurement, 440
 
Slow-rolloff compensation, 604
 
Soft saturation, 224
 
Speed regulator, 203
 
Split collector transistor, 387, 393
 
Square-rooting circuit, 244
 
Stable-amplitude oscillation, 231
 
Stability, defined, 109
 
Step response, 187
 
Substrate PNP transistor, 387
 
Summing amplifier, 10
 
Summation point, 22
 
Super-3 transistor, 385, 415
 
Superdiode, 457
 
Supply-voltage-rejection ratio, 434
 

measurement of, 439
 
Supply-voltage sensitivity, 434
 

Tangent approximation, 210
 
Taylor's series, 210
 
Thermal protection, 422
 
Thermal runaway, 330, 339
 
Three-stage amplifier, 296
 
Three-mode integrator, 516
 
Time delay, 192, 530
 
Time-division multiplier, 501
 
Time scaling, 513
 
Tracking filter, 538
 
Transconductance multiplier, 468
 
Transient response, 76
 
Two-pole compensation, 586
 
Two-port network, 359
 
Two-stage amplifier, 198, 305
 

compensation of, 356
 

Unity-gain frequency, 148
 

Van der Pol's equation, 510
 
Vertical-PNP transistor, 387
 
Voltage reference, 286, 519, 553
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Voltage regulator, 169, 292 Zener diode, 227 

Wien-bridge oscillator, 485 
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