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PREFACE

The operational amplifier is responsible for a dramatic and continuing
revolution in our approach to analog system design. The availability of
high performance, inexpensive devices influences the entire spectrum of
circuits and systems, ranging from simple, mass-produced circuits to highly
sophisticated equipment designed for complex data collection or processing
operations. At one end of this spectrum, modern operational amplifiers
have lowered cost and improved performance; at the other end, they allow
us to design and implement systems that were previously too complex for
consideration.

An appreciation of the importance of this component, gained primarily
through research rather than academic experience, prompted me in 1969
to start a course at M.L.T. focusing on the operational amplifier. Initially
the course, structured as part of an elective sequence in active devices,
concentrated on the circuit techniques needed to realize operational ampli-
fiers and on the application of these versatile elements.

As the course evolved, it became apparent that the operational ampli-
fier had a value beyond that of a circuit component; it was also an excellent
instructional vehicle. This device supplied a reason for studying a collection
of analytic and design techniques that were necessary for a thorough under-
standing of operational amplifiers and were also important to the general
area of active-circuit design. For example, if we study direct-coupled ampli-
fiers in detail, with proper attention given to transistor-parameter variation
with temperature, to loading, and to passive-component peculiarities, we
can improve our approach to the design of a large class of circuits depen-
dent on these concepts and also better appreciate operational amplifiers.
Similarly, the use of an active load to increase dramatically the voltage
gain of a stage is a design technique that has widespread applicability. The

vii



viii Preface

integrated-circuit fabrication and design methods responsible for the
economical realization of modern operational amplifiers are the same as
those used for other linear integrated circuits and also influence the design
of many modern discrete-component circuits.

Chapters 7 to 10 reflect the dual role of the operational-amplifier circuit.
The presentation is in greater detail than necessary if our only objective is
to understand how an operational amplifier functions. However, the depth
of the presentation encourages the transfer of this information to other
circuit-design problems.

A course based on circuit-design techniques and some applications
material was taught for two years. During this period, it became clear that
in order to provide the background necessary for the optimum use of
operational amplifiers in challenging applications, it was necessary to teach
material on classical feedback concepts. These concepts explain the evolu-
tion of the topology used for modern amplifiers, suggest configurations that
should be used to obtain specific closed-loop transfer functions, and indi-
cate the way to improve the dynamics of operational-amplifier connections.

The linear-system theory course that has become an important part of
most engineering educational programs, while providing valuable back-
ground, usually does not develop the necessary facility with techniques for
the analysis and synthesis of feedback systems. When courses are offered in
feedback, they normally use servomechanisms for their examples. Although
this material can be transferred to a circuits context, the initial assimilation
of these ideas is simplified when instruction is specifically tailored to the
intended field of application.

Chapters 2 to 6 and Chapter 13 present the techniques necessary to
model, analyze, and design electronic feedback systems. As with the circuit-
related material, the detail is greater than the minimum necessary for a
background in the design of connections that use operational amplifiers.
This detail is justifiable because I use the operational amplifier as a vehicle
for presenting concepts valuable for the general area of electronic circuit
and system design.

The material included here has been used as the basis for two rather
different versions of the M.L.T. course mentioned earlier. One of these
concentrates on circuits and applications, using material from Chapters 7
to 10. Some application material is included in the examples in these
chapters, and further applications from Chapters 11 and 12 are included as
time permits. Some of the elementary feedback concepts necessary to
appreciate modern operational-amplifier topologies are also discussed in
this version.

The second variation uses the feedback material in Chapters 2 to 6 and
Chapter 13 as its central theme. A brief discussion of the topology used
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for modern operational amplifiers, such as that presented in portions of
Chapters 8 and 10, is included in this option. The applications introduced
as examples of feedback connections are augmented with topics selected
from Chapters 11 and 12.

A laboratory has been included as an integral part of both options. In the
circuits variation, students investigate specific circuits such as direct-
coupled amplifiers and high-gain stages, and conclude their laboratory
experience by designing, building, and testing a simple operational ampli-
fier. In the feedback version, connections of operational amplifiers are
used to verify the behavior of linear and nonlinear feedback systems, to
compare time-domain and frequency-domain performance indices, and to
investigate stability.

We have found it helpful to have ready access to some kind of compu-
tational facilities, particularly when teaching the feedback material. The
programs made available to the students reduce the manual effort required
to draw the various plots and to factor polynomials when exact singularity
locations are important.

Both versions of the course have been taught at least twice from notes
essentially identical to the book. The student population consisted pri-
marily of juniors and seniors, with occasional graduate students. The neces-
sary background includes an appreciation of active-circuit concepts such
as that provided in Electronic Principles by P. E. Gray and C. L. Searle
(Wiley, New York, 1969), Chapters 1 to 14. An abbreviated circuits
preparation is acceptable for the feedback version of the course. Although
a detailed linear-systems background stressing formal operational calculus
and related topics is not essential, familiarity with concepts such as pole-
zero diagrams and elementary relationships between the time and the
frequency domain is necessary.

Some of the more advanced applications in Chapters 11 and 12 have
been included in a graduate course in analog and analog/digital instru-
mentation. The success with this material suggests a third possible varia-
tion of the course that stresses applications, with feedback and circuit
concepts added as necessary to clarify the applications. I have not yet had
the opportunity to structure an entire course in this way.

It is a pleasure to acknowledge several of the many individuals who
contributed directly or indirectly to this book. High on the list are three
teachers and colleagues, Dr. F. Williams Sarles, Jr., Professor Campbell L.
Searle, and Professor Leonard A. Gould, who are largely responsible for
my own understanding and appreciation of the presented material.

Two students, Jeffrey T. Millman and Samuel H. Maslak, devoted sub-
stantial effort to reviewing and improving the book.
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illustrated by Mrs. Janet Lague and Mrs. Rosalind Wood. Miss Susan
Garland carefully proofread the final copy.

James K. Roberge

Cambridge, Massachusetts
February, 1975
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CHAPTER 1

BACKGROUND AND
OBJECTIVES

1.1 INTRODUCTION

An operational amplifier is a high-gain direct-coupled amplifier that is
normally used in feedback connections. If the amplifier characteristics are
satisfactory, the transfer function of the amplifier with feedback can often
be controlled primarily by the stable and well-known values of passive
feedback elements.

The term operational amplifier evolved from original applications in
analog computation where these circuits were used to perform various
mathematical operations such as summation and integration. Because of
the performance and economic advantages of available units, present
applications extend far beyond the original ones, and modern operational
amplifiers are used as general purpose analog data-processing elements.

High-quality operational amplifiers! were available in the early 1950s.
These amplifiers were generally committed to use with analog computers
and were not used with the flexibility of modern units. The range of opera-
tional-amplifier usage began to expand toward the present spectrum of
applications in the early 1960s as various manufacturers developed modu-
lar, solid-state circuits. These amplifiers were smaller, much more rugged,
less expensive, and had less demanding power-supply requirements than
their predecessors. A variety of these discrete-component circuits are cur-
rently available, and their performance characteristics are spectacular when
compared with older units.

A quantum jump in usage occurred in the late 1960s, as monolithic
integrated-circuit amplifiers with respectable performance characteristics
evolved. While certain performance characteristics of these units still do
not compare with those of the better discrete-component circuits, the inte-
grated types have an undeniable cost advantage, with several designs
available at prices of approximately $0.50. This availability frequently
justifies the replacement of two- or three-transistor circuits with operational

1 An excellent description of the technology of this era is available in G. A. Korn and
T. M. Korn, Electronic Analog Computers, 2nd Ed., McGraw-Hill, New York, 1956.
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amplifiers on economic grounds alone, independent of associated perform-
ance advantages. As processing and designs improve, the integrated circuit
will invade more areas once considered exclusively the domain of the
discrete design, and it is probable that the days of the discrete-component
circuit, except for specials with limited production requirements, are
numbered.

There are several reasons for pursuing a detailed study of operational
amplifiers. We must discuss both the theoretical and the practical aspects
of these versatile devices rather than simply listing a representative sample
of their applications. Since virtually all operational-amplifier connections
involve some form of feedback, a thorough understanding of this process
is central to the intelligent application of the devices. While partially under-
stood rules of thumb may suffice for routine requirements, this design
method fails as performance objectives approach the maximum possible
use from the amplifier in question.

Similarly, an appreciation of the internal structure and function of opera-
tional amplifiers is imperative for the serious user, since such information
is necessary to determine various limitations and to indicate how a unit
may be modified (via, for example, appropriate connections to its com-
pensation terminals) or connected for optimum performance in a given
application. The modern analog circuit designer thus needs to understand
the internal function of an operational amplifier (even though he may
never design one) for much the same reason that his counterpart of 10 years
ago required a knowledge of semiconductor physics. Furthermore, this
is an area where good design practice has evolved to a remarkable degree,
and many of the circuit techniques that are described in following chapters
can be applied to other types of electronic circuit and system design.

1.2 THE CLOSED-LOOP GAIN OF AN OPERATIONAL
AMPLIFIER

As mentioned in the introduction, most operational-amplifier connec-
tions involve feedback. Therefore the user is normally interested in deter-
mining the closed-loop gain or closed-loop transfer function of the amplifier,
which results when feedback is included. As we shall see, this quantity can
be made primarily dependent on the characteristics of the feedback ele-
ments in many cases of interest.

A prerequisite for the material presented in the remainder of this book
is the ability to determine the gain of the amplifier-feedback network com-
bination in simple connections. The techniques used to evaluate closed-loop
gain are outlined in this section.
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a

. \ 5V, o
" - 1

Figure 1.1 Symbol for an operational amplifier.

1.2.1 Closed-Loop Gain Calculation

The symbol used to designate an operational amplifier is shown in Fig.
1.1. The amplifier shown has a differential input and a single output. The
input terminals marked — and + are called the inverting and the non-
inverting input terminals respectively. The implied linear-region relationship
among input and output variables? is

Vo = a(Va - Vb) (1'1)

The quantity @ in this equation is the open-loop gain or open-loop transfer
Sfunction of the amplifier. (Note that a gain of a is assumed, even if it is not
explicitly indicated inside the amplifier symbol.) The dynamics normally
associated with this transfer function are frequently emphasized by writ-
ing a(s).

It is also necessary to provide operating power to the operational ampli-
fier via power-supply terminals. Many operational amplifiers use balanced
(equal positive and negative) supply voltages. The various signals are
usually referenced to the common ground connection of these power sup-

2 The notation used to designate system variables consists of a symbol and a subscript.
This combination serves not only as a label, but also to identify the nature of the quantity
as follows:

Total instantaneous variables:

lower-case symbols with upper-case subscripts.
Quiescent or operating-point variables:
upper-case symbols with upper-case subscripts.
Incremental instantaneous variables:
lower-case symbols with lower-case subscripts.
Complex amplitudes or Laplace transforms of incremental variables:
upper-case symbols with lower-case subscripts.
Using this notation we would write v; = ¥; + v;, indicating that the instantaneous value of
vy consists of a quiescent plus an incremental component. The transform of v; is ¥;. The
notation V.(s) is often used to reinforce the fact that V; is a function of the complex vari-
able s.
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plies. The power connections are normally not included in diagrams in-
tended only to indicate relationships among signal variables, since elimi-
nating these connections simplifies the diagram.

Although operational amplifiers are used in a myriad of configurations,
many applications are variations of either the inverting connection (Fig.
1.2a) or the noninverting connection (Fig. 1.26). These connections com-
bine the amplifier with impedances that provide feedback.

The closed-loop transfer function is calculated as follows for the invert-
ing connection. Because of the reference polarity chosen for the inter-
mediate variable V,,

V,= —aV, (1.2)
Z,
-
Iy
Z
—=VW—r .
oL l o V, O
v, * _l_
‘ Va -
) (a)
+ + —
+ a —O V,
v -
S| 1
Z,
= — M ——

Va
(b)

Figure 1.2 Operational-amplifier connections. (a) Inverting. (b) Noninverting.
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where it has been assumed that the output voltage of the amplifier is not
modified by the loading of the Z;-Z, network. If the input impedance of the
amplifier itself is high enough so that the Z;-Z, network is not loaded
significantly, the voltage V, is

V—( Zs >V+< Z )V (1.3)
C\zi+z/) " \a+z) '
Combining Eqns. 1.2 and 1.3 yields
Z V4
VD=—<a2)V,~—<a1>VO (1.4)
Zl + ZQ Zl + Z2
or, solving for the closed-loop gain,
Vo —022/(21 + ZQ)

Vi 1+ [aZ\/(Zy + Zv)] (2

The condition that is necessary to have the closed-loop gain depend

primarily on the characteristics of the Z;-Z, network rather than on the

performance of the amplifier itself is easily determined from Eqn. 1.5. At

any frequency w where the inequality |a( J)Z\(jw)/[Z:1(Jw) + Z(jw)] I >1
is satisfied, Eqn. 1.5 reduces to

Vo) _ Zu(jo)
Vi(jo) — Zi(jw)

The closed-loop gain calculation for the noninverting connection is simi-
lar. If we assume negligible loading at the amplifier input and output,

(1.6)

a21 )
Ve =alV; — V,) = aV; — V, 1.7
( ) (21 e (1.7)

or
E, _ a
V; 1 + [@Z,/(Z, + Z5)]

This expression reduces to

Voljo) _ Zi(jo) + Za(jw)

(1.8)

~ 9
Vi(jw) Z(jw) 4
when |a(jo)Z:(jw)/[Zi(jw) + Za(jw)]| > 1.
The quantity
—a21
L (1.10)

T Z + 2,
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is the loop transmission for either of the connections of Fig. 1.2. The loop
transmission is of fundamental importance in any feedback system because
it influences virtually all closed-loop parameters of the system. For ex-
ample, the preceding discussion shows that if the magnitude of loop trans-
mission is large, the closed-loop gain of either the inverting or the non-
inverting amplifier connection becomes virtually independent of a. This
relationship is valuable, since the passive feedback components that deter-
mine closed-loop gain for large loop-transmission magnitude are normally
considerably more stable with time and environmental changes than is the
open-loop gain a.

The loop transmission can be determined by setting the inputs of a feed-
back system to zero and breaking the signal path at any point inside the
feedback loop.® The loop transmission is the ratio of the signal returned by
the loop to a test applied at the point where the loop is opened. Figure 1.3
indicates one way to determine the loop transmission for the connections
of Fig. 1.2. Note that the topology shown is common to both the inverting
and the noninverting connection when input points are grounded.

It is important to emphasize the difference between the loop transmission,
which is dependent on properties of both the feedback elements and the
operational amplifier, and the open-loop gain of the operational amplifier
itself.

1.2.2 The Ideal Closed-Loop Gain

Detailed gain calculations similar to those of the last section are always
possible for operational-amplifier connections. However, operational ampli-
fiers are frequently used in feedback connections where loop characteristics
are such that the closed-loop gain is determined primarily by the feedback
elements. Therefore, approximations that indicate the ideal closed-loop gain
or the gain that results with perfect amplifier characteristics simplify the
analysis or design of many practical connections.

It is possible to calculate the ideal closed-loop gain assuming only two
conditions (in addition to the implied condition that the amplifier-feedback
network combination is stable4) are satisfied.

1. A negligibly small differential voltage applied between the two input
terminals of the amplifier is sufficient to produce any desired output
voltage.

3 There are practical difficulties, such as insuring that the various elements in the loop
remain in their linear operating regions and that loading is maintained. These difficulties
complicate the determination of the loop transmission in physical systems. Therefore, the
technique described here should be considered a conceptual experiment. Methods that are
useful for actual hardware are introduced in later sections.

4 Stability is discussed in detail in Chapter 4.
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Z, Z,

[

Input set to zero Vr_

if inverting connection -
Vi

Signal returned

by loop = = Input set to zero if

Test generator noninverting connection

Figure 1.3 Loop transmission for connections of Fig. 1.2, Loop transmission is
VilVe= —aZ,[(Z, + Z>).

2. The current required at either amplifier terminal is negligibly small.

The use of these assumptions to calculate the ideal closed-loop gain is
first illustrated for the inverting amplifier connection (Fig. 1.2a). Since the
noninverting amplifier input terminal is grounded in this connection, condi-
tion 1 implies that

Vo~ 0 (1.11)
Kirchhoff’s current law combined with condition 2 shows that
I+ 1,~0 (1.12)

With Eqn. 1.11 satisfied, the currents I, and I, are readily determined in
terms of the input and output voltages.

¢ Z, )
I - 1.14
b_ 2 ( . )

Combining Eqns. 1.12, 1.13, and 1.14 and solving for the ratio of V, to ¥;
yields the ideal closed-loop gain
Vo 2y

= 1.15
7 Z (1.15)

The technique used to determine the ideal closed-loop gain is called the
virtual-ground method when applied to the inverting connection, since in
this case the inverting input terminal of the operational amplifier is as-
sumed to be at ground potential.
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The noninverting amplifier (Fig. 1.2b) provides a second example of
ideal-gain determination. Condition 2 insures that the voltage V, is not
influenced by current at the inverting input. Thus,

4

Vi~ ——
Z, + Z,

v, (1.16)

Since condition 1 requires equality between V, and ¥V, the ideal closed-
loop gain is
Ve — it 2 (1.17)
Vi Z,

The conditions can be used to determine ideal values for characteristics
other than gain. Consider, for example, the input impedance of the two
amplifier connections shown in Fig. 1.2. In Fig. 1.2a, the inverting input
terminal and, consequently, the right-hand end of impedance Z,, is at
ground potential if the amplifier characteristics are ideal. Thus the input
impedance seen by the driving source is simply Z,. The input source is
connected directly to the noninverting input “of the operational amplifier
in the topology of Fig. 1.2b. If the amplifier satisfies condition 2 and has
negligible input current required at this terminal, the impedance loading
the signal source will be very high. The noninverting connection is often used
as a buffer amplifier for this reason.

The two conditions used to determine the ideal closed-loop gain are
deceptively simple in that a complex combination of amplifier characteris-
tics are required to insure satisfaction of these conditions. Consider the
first condition. High open-loop voltage gain at anticipated operating fre-
quencies is necessary but not sufficient to guarantee this condition. Note
that gain at the frequency of interest is necessary, while the high open-loop
gain specified by the manufacturer is normally measured at d-c. This speci-
fication is somewhat misleading, since the gain may start to decrease at a
frequency on the order of one hertz or less. )

In addition to high open-loop gain, the amplifier must have low voltage
offset® referred to the input to satisfy the first condition. This quantity,
defined as the voltage that must be applied between the amplifier input
terminals to make the output voltage zero, usually arises because of mis-
matches between various amplifier components.

Surprisingly, the incremental input impedance of an operational ampli-
fier often has relatively little effect on its input current, since the voltage
that appears across this impedance is very low if condition 1 is satisfied.

5 Offset and other problems with d-c amplifiers are discussed in Chapter 7.
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A more important contribution to input current often results from the bias
current that must be supplied to the amplifier input transistors.

Many of the design techniques that are used in an attempt to combine the
two conditions necessary to approach the ideal gain are described in sub-
sequent sections.

The reason that the satisfaction of the two conditions introduced earlier
guarantees that the actual closed-loop gain of the amplifier approaches the
ideal value is because of the negative feedback associated with operational-
amplifier connections. Assume, for example, that the actual voltage out of
the inverting-amplifier connection shown in Fig. 1.2a is more positive than
the value predicted by the ideal-gain relationship for a particular input
signal level. In this case, the voltage ¥V, will be positive, and this positive
voltage applied to the inverting input terminal of the amplifier drives the
output voltage negative until equilibrium is reached. This reasoning shows
that it is actually the negative feedback that forces the voltage between
the two input terminals to be very small.

Alternatively, consider the situation that results if positive feedback is
used by interchanging the connections to the two input terminals of the

% A
——— ———
+ I; 1y
Vx‘l
Ziy
— -
+ I, O+
+
.
V|2 VO
: I_
. =
ZtN
—_—
+ Iin
VzN

Figure 1.4 Summing amplifier.
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amplifier. In this case, the voltage V, is again zero when V, and V, are
related by the ideal closed-loop gain expression. However, the resulting
equilibrium is unstable, and a small perturbation from the ideal output
voltage results in this voltage being driven further from the ideal value
until the amplifier saturates. The ideal gain is not achieved in this case in
spite of perfect amplifier characteristics because the connection is unstable.
As we shall see, negative feedback connections can also be unstable. The
ideal gain of these unstable systems is meaningless because they oscillate,
producing an output signal that is often nearly independent of the input
signal.

1.2.3 Examples

The technique introduced in the last section can be used to determine the
ideal closed-loop transfer function of any operational-amplifier connec-
tion. The summing amplifier shown in Fig. 1.4 illustrates the use of this
technique for a connection slightly more complex than the two basic
amplifiers discussed earlier.

Since the inverting input terminal of the amplifier is a virtual ground, the
currents can be determined as

Vil
1i1 =
Z;
V;
11‘2 = :
Zi2
Vin
Ly =
Y Z
Ve
I, = — 1.18
r=7 (1.18)

These currents must sum to zero in the absence of significant current at the
inverting input terminal of the amplifier. Thus

In+Tle+ - 4+In+1I;=0 (1.19)
Combining Eqns. 1.18 and 1.19 shows that

Z Z V4
Vo= = 2 V= Vo= o = 25

V. 1.20
Za Za Ziy " (120
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We see that this amplifier, which is an extension of the basic inverting-
amplifier connection, provides an output that is the weighted sum of several
input voltages.

Summation is one of the “operations” that operational amplifiers per-
form in analog computation. A subsequent development (Section 12.3) will
show that if the operations of gain, summation, and integration are com-
bined, an electrical network that satisfies any linear, ordinary differential
equation can be constructed. This technique is the basis for analog com-
putation.

Integrators required for analog computation or for any other application
can be constructed by using an operational amplifier in the inverting con-
nection (Fig. 1.2a) and making impedance Z, a capacitor C and impedance
Z, a resistor R. In this case, Eqn. 1.15 shows that the ideal clos~d-loop
transfer function is

Vs) _  Z«Ls) _ 1 (1.21)

so that the connection functions as an inverting integrator.

It is also possible to construct noninverting integrators using an opera-
tional amplifier connected as shown in Fig. 1.5. This topology precedes a
noninverting amplifier with a low-pass filter. The ideal transfer function
from the noninverting input of the amplifier to its output is (see Eqn. 1.17)

Vis) RCs+ 1
V.s)  RCs

(1.22)

Since the conditions for an ideal operational amplifier preclude input cur-

o

R,

VWA ' | "

+ J_ l _ ——O+*
v Clj[: +V Yo

Figure 1.5 Noninverting integrator.
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Figure 1.6 Log circuit.

rent, the transfer function from ¥, to ¥, can be calculated with no loading,
and in this case

Vis) 1
Vi(s) B R, Cis 4+ 1

Combining Eqgns. 1.22 and 1.23 shows that the ideal closed-loop gain is

V(s) _ 1 RCs + 1
Viis) |jR1C15 + I:H: RCs j' (1.24)

If the two time constants in Eqn. 1.24 are made equal, noninverting inte-
gration results.

The comparison between the two integrator connections hints at the
possibility of realizing most functions via either an inverting or a non-
inverting connection. Practical considerations often recommend one ap-
proach in preference to the other. For example, the noninverting integrator
requires more external components than does the inverting version. This
difference is important because the high-quality capacitors required for
accurate integration are often larger and more expensive than the opera-
tional amplifier that is used.

The examples considered up to now have involved only linear elements,
at least if it is assumed that the operational amplifier remains in its linear
operating region. Operational amplifiers are also frequently used in inten-
tionally nonlinear connections. One possibility is the circuit shown in Fig.
1.6.6 It is assumed that the diode current-voltage relationship is

ip = Is(e?n/*T — 1) (1.25)

(1.23)

s Note that the notation for the variables used in this case combines lower-case variables
with upper-case subscripts, indicating the total instantaneous signals necessary to describe
the anticipated nonlinear relationships.
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where Is is a constant dependent on diode construction, g is the charge
of an electron, k is Boltzmann’s constant, and T is the absolute temperature.

If the voltage at the inverting input of the amplifier is negligibly small,
the diode voltage is equal to the output voltage. If the input current is
negligibly small, the diode current and the current i sum to zero. Thus,
if these two conditions are satisfied,

— ’% = Ig(eaohT — 1) (1.26)

Consider operation with a positive input voltage. The maximum negative
value of the diode current is limited to —/Is. If v;/R > Is, the current
through the reverse-biased diode cannot balance the current /z. Accordingly,
the amplifier output voltage is driven negative until the amplifier saturates.
In this case, the feedback loop cannot keep the voltage at the inverting
amplifier input near ground because of the limited current that the diode
can conduct in the reverse direction. The problem is clearly not with the
amplifier, since no solution exists to Eqn. 1.26 for sufficiently positive
values of v;.

This problem does not exist with negative values for v;. If the magnitude
of iz is considerably larger than Ig (typical values for I are less than 10~°
A), Eqn. 1.26 reduces to

Ur
— L~ IgearolkT 1.27
R se ( )
or
kT —Vr
~ —] —_— 1.28
=gt (RIS> (1.28)

Thus the circuit provides an output voltage proportional to the log of the
magnitude of the input voltage for negative inputs.

1.3 OVERVIEW

The operational amplifier is a powerful, multifaceted analog data-proc-
essing element, and the optimum exploitation of this versatile building
block requires a background in several different areas. The primary objec-
tive of this book is to help the reader apply operational amplifiers to his
own problems. While the use of a “handbook™ approach that basically
tabulates a number of configurations that others have found useful is
attractive because of its simplicity, this approach has definite limitations.
Superior results are invariably obtained when the designer tailors the circuit
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he uses to his own specific, detailed requirements, and to the particular
operational amplifier he chooses.

A balanced presentation that combines practical circuit and system design
concepts with applicable theory is essential background for the type of
creative approach that results in optimum operational-amplifier systems.
The following chapters provide the necessary concepts. A second advan-
tage of this presentation is that many of the techniques are readily applied
to a wide spectrum of circuit and system design problems, and the material
is structured to encourage this type of transfer.

Feedback is central to virtually all operational-amplifier applications,
and a thorough understanding of this important topic is necessary in any
challenging design situation. Chapters 2 through 6 are devoted to feedback
concepts, with emphasis placed on examples drawn from operational-
amplifier connections. However, the presentation in these chapters is kept
general enough to allow its application to a wide variety of feedback sys-
tems. Topics covered include modeling, a detailed study of the advantages
and limitations of feedback, determination of responses, stability, and com-
pensation techniques intended to improve stability. Simple methods for the
analysis of certain types of nonlinear systems are also included. This in-
depth approach is included at least in part because I am convinced that a
detailed understanding of feedback is the single most important pre-
requisite to successful electronic circuit and system design.

Several interesting and widely applicable circuit-design techniques are
used to realize operational amplifiers. The design of operational-amplifier
circuits is complicated by the requirement of obtaining gain at zero fre-
quency with low drift and input current. Chapter 7 discusses the design
of the necessary d-c amplifiers. The implications of topology on the dy-
namics of operational-amplifier circuits are discussed in Chapter 8. The
design of the high-gain stages used in most modern operational amplifiers
and the factors which influence output-stage performance are also included.
Chapter 9 illustrates how circuit design techniques and feedback-system
concepts are combined in an illustrative operational-amplifier circuit.

The factors influencing the design of the modern integrated-circuit opera-
tional amplifiers that have dramatically increased amplifier usage are dis-
cussed in Chapter 10. Several examples of representative present-day de-
signs are included.

A variety of operational-amplifier applications are sprinkled throughout
the first 10 chapters to illustrate important concepts. Chapters 11 and 12
focus on further applications, with major emphasis given to clarifying im-
portant techniques and topologies rather than concentrating on minor
details that are highly dependent on the specifics of a given application and
the amplifier used.
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Chapter 13 is devoted to the problem of compensating operational ampli-
fiers for optimum dynamic performance in a variety of applications. Dis-
cussion of this material is deferred until the final chapter because only then
is the feedback, circuit, and application background necessary to fully
appreciate the subtleties of compensating modern operational amplifiers
available. Compensation is probably the single most important aspect of
effectively applying operational amplifiers, and often represents the differ-
ence between inadequate and superlative performance. Several examples
of the way in which compensation influences the performance of a repre-
sentative integrated-circuit operational amplifier are used to reinforce the
theoretical discussion included in this chapter.

PROBLEMS

P1.1
Design a circuit using a single operational amplifier that provides an
ideal input-output relationship

Vo= —Va — 2Via — 3V;

Keep the values of all resistors used between 10 and 100 k.
Determine the loop transmission (assuming no loading) for your design.

P1.2
Note that it is possible to provide an ideal input-output relationship

Vo = Vil + 2Vi2 + 3Vi3

by following the design for Problem 1.1 with a unity-gain inverter. Find a
more efficient design that produces this relationship using only a single
operational amplifier.

P1.3

An operational amplifier is connected to provide an inverting gain with
an ideal value of 10. At low frequencies, the open-loop gain of the ampli-
fier is frequency independent and equal to a,. Assuming that the only source
of error is the finite value of open-loop gain, how large should a, be so that
the actual closed-loop gain of the amplifier differs from its ideal value by
less than 0.197?

P1.4
Design a single-amplifier connection that provides the ideal input-output
relationship

Vo = —100/ (Uﬂ + Uﬂ) df



16 Background and Objectives
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Figure 1.7 Differential-amplifier connections.

Keep the values of all resistors you use between 10 and 100 k.

P1.5

Design a single-amplifier connection that provides the ideal input-output

relationship

v, = +100/ (v + vi2) di

using only resistor values between 10 and 100 k. Determine the loop trans-
mission of your configuration, assuming negligible loading.

P1.6

Determine the ideal input-output relationships for the two connections

shown in Fig. 1.7.
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Figure 1.8 Two-pole system.

P1.7

Determine the ideal input-output transfer function for the operational-
amplifier connection shown in Fig. 1.8. Estimate the value of open-loop
gain required such that the actual closed-loop gain of the circuit approaches
its ideal value at an input frequency of 0.01 radian per second. You may
neglect loading.

P1.8
Assume that the operational-amplifier connection shown in Fig. 1.9
satisfies the two conditions stated in Section 1.2.2. Use these conditions to

determine the output resistance of the connection (i.e., the resistance seen
by the load).

- Load

Figure 1.9 Circuit with controlled output resistance.
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Figure 1.10 Log circuit.

P1.9

Determine the ideal input-output transfer relationship for the circuit
shown in Fig. 1.10. Assume that transistor terminal variables are related as

iC - 10—13e40vBE

where i is expressed in amperes and vgg is expressed in volts.

P1.10

Plot the ideal input-output characteristics for the two circuits shown
in Fig. 1.11. In part a, assume that the diode variables are related by
ip = 10~1%e%  where ip is expressed in amperes and vp is expressed
in volts. In part b, assume that ip = 0, vp < 0, and vp = 0, ip > 0.

P1.11

We have concentrated on operational-amplifier connections involving
negative feedback. However, several useful connections, such as that
shown in Fig. 1.12, use positive feedback around an amplifier. Assume that
the linear-region open-loop gain of the amplifier is very high, but that its
output voltage is limited to 10 volts because of saturation of the ampli-
fier output stage. Approximate and plot the output signal for the circuit
shown in Fig. 1.12 using these assumptions.

P1.12
Design an operational-amplifier circuit that provides an ideal input-
output relationship of the form

vy = K]ev[/Kz

where K; and K, are constants dependent on parameter values used in
your design.



Figure 1.11 Nonlinear circuits.

(b)

vy = 10 sin ¢

Figure 1.12 Schmitt trigger.
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CHAPTER 1I

PROPERTIES AND MODELING
OF FEEDBACK SYSTEMS

2.1 INTRODUCTION

A control system is a system that regulates an output variable with the
objective of producing a given relationship between it and an input variable
or of maintaining the output at a fixed value. In a feedback control system,
at least part of the information used to change the output variable is
derived from measurements performed on the output variable itself. This
type of closed-loop control is often used in preference to open-loop control
(where the system does not use output-variable information to influence
its output) since feedback can reduce the sensitivity of the system to ex-
ternally applied disturbances and to changes in system parameters.
Familiar examples of feedback control systems include residential heating
systems, most high-fidelity audio amplifiers, and the iris-retina combina-
tion that regulates light entering the eye.

There are a variety of textbooks! available that provide detailed treat-
ment on servomechanisms, or feedback control systems where at least one
of the variables is a mechanical quantity. The emphasis in this presentation
is on feedback amplifiers in general, with particular attention given to
feedback connections which include operational amplifiers.

The operational amplifier is a component that is used almost exclusively
in feedback connections; therefore a detailed knowledge of the behavior of
feedback systems is necessary to obtain maximum performance from these
amplifiers. For example, the open-loop transfer function of many opera-
tional amplifiers can be easily and predictably modified by means of external

1 G. S. Brown and D. P. Cambell, Principles of Servomechanisms, Wiley, New York, 1948;
J. G. Truxal, Automatic Feedback Control System Synthesis, McGraw-Hill, New York, 1955;
H. Chestnut and R. W. Mayer, Servomechanisms and Regulating System Design, Vol. 1,
2nd Ed., Wiley, New York, 1959; R. N. Clark, Infroduction fo Automatic Control Systems,
Wiley, New York, 1962; J. J. D’Azzo and C. H. Houpis, Feedback Control System Analysis
and Synthesis, 2nd Ed., McGraw-Hill, New York, 1966; B. C. Kuo, Auromatic Control
Systems, 2nd Ed., Prentice-Hall, Englewood Cliffs, New Jersey, 1967; K. Ogata, Modern
Control Engineering, Prentice-Hall, Englewood Cliffs, New Jersey, 1970.

21
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Disturbance

!

Input Output

variable Error " variable
Comparator Amplifier

Measuring or
feedback element

Figure 2.1 A typical feedback system.

components. The choice of the open-loop transfer function used for a
particular application must be based on feedback principles.

2.2 SYMBOLOGY

Elements common to many electronic feedback systems are shown in
Fig. 2.1. The input signal is applied directly to a comparator. The output
signal is determined and possibly operated upon by a feedback element.
The difference between the input signal and the modified output signal is
determined by the comparator and is a measure of the error or amount by
which the output differs from its desired value. An amplifier drives the out-
put in such a way as to reduce the magnitude of the error signal. The system
output may also be influenced by disturbances that affect the amplifier or
other elements.

We shall find it convenient to illustrate the relationships among variables
in a feedback connection, such as that shown in Fig. 2.1, by means of block
diagrams. A block diagram includes three types of elements.

1. A line represents a variable, with an arrow on the line indicating the
direction of information flow. A line may split, indicating that a single
variable is supplied to two or more portions of the system.

2. A block operates on an input supplied to it to provide an output.

3. Variables are added algebraically at a summation point drawn as
follows:
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Disturbance, V,

+
Input N\ Error, Ve a + Output
Vi u Vo

Amplifier
Feedback f
signal, V;

Feedback

element

Figure 2.2 Block diagram for the system of Fig. 2.1.

One possible representation for the system of Fig. 2.1, assuming that
the input, output, and disturbance are voltages, is shown in block-diagram
form in Fig. 2.2. (The voltages are all assumed to be measured with respect
to references or grounds that are not shown.) The block diagram implies a
specific set of relationships among system variables, including:

1. The error is the difference between the input signal and the feedback
signal,or V, = V; — V.

2. The output is the sum of the disturbance and the amplified error
signal, or V, = V,; + aV..

3. The feedback signal is obtained by operating on the output signal with
the feedback element, or V; = fV,.

The three relationships can be combined and solved for the output in
terms of the input and the disturbance, yielding

a V, Vd

i Tt D

Vo

2.3 ADVANTAGES OF FEEDBACK

There is a frequent tendency on the part of the uninitiated to associate
almost magical properties to feedback. Closer examination shows that
many assumed benefits of feedback are illusory. The principal advantage
is that feedback enables us to reduce the sensitivity of a system to changes
in gain of certain elements. This reduction in sensitivity is obtained only in
exchange for an increase in the magnitude of the gain of one or more of the
elements in the system.

In some cases it is also possible to reduce the effects of disturbances
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applied to the system. We shall see that this moderation can always, at
least conceptually, be accomplished without feedback, although the feedback
approach is frequently a more practical solution. The limitations of this
technique preclude reduction of such quantities as noise or drift at the
input of an amplifier; thus feedback does not provide a method for detect-
ing signals that cannot be detected by other means.

Feedback provides a convenient method of modifying the input and
output impedance of amplifiers, although as with disturbance reduction, it
is at least conceptually possible to obtain similar results without feedback.

2.3.1 Effect of Feedback on Changes in Open-Loop Gain

As mentioned above, the principal advantage of feedback systems com-
pared with open-loop systems is that feedback provides a method for re-
ducing the sensitivity of the system to changes in the gain of certain ele-
ments. This advantage can be illustrated using the block diagram of Fig.
2.2. If the disturbance is assumed to be zero, the closed-loop gain for the
system is
V, a A
Vi 14+af

A (2.2)

(We will frequently use the capital letter 4 to denote closed-loop gain,
while the lower-case a is normally reserved for a forward-path gain.)

The quantity af is the negative of the loop transmission for this system.
The loop transmission is determined by setting all external inputs (and dis-
turbances) to zero, breaking the system at any point inside the loop, and
determining the ratio of the signal returned by the system to an applied
test input.? If the system is a negative feedback system, the loop transmission
is negative. The negative sign on the summing point input that is included
in the loop shown in Fig. 2.2 indicates that the feedback is negative for this
system if @ and f have the same sign. Alternatively, the inversion necessary
for negative feedback might be supplied by either the amplifier or the feed-
back element.

Equation 2.2 shows that negative feedback lowers the magnitude of the
gain of an amplifier since as f is increased from zero, the magnitude of the
closed-loop gain decreases if a and f have this same sign. The result is
general and can be used as a test for negative feedback.

It is also possible to design systems with positive feedback. Such systems
are not as useful for our purposes and are not considered in detail.

The closed-loop gain expression shows that as the loop-transmission
magnitude becomes large compared to unity, the closed-loop gain ap-

2 An example of this type of calculation is given in Section 2.4.1.
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proaches the value 1/f. The significance of this relationship is as follows.
The amplifier will normally include active elements whose characteristics
vary as a function of age and operating conditions. This uncertainty may be
unavoidable in that active elements are not available with the stability re-
quired for a given application, or it may be introduced as a compromise in
return for economic or other advantages.

Conversely, the feedback network normally attenuates signals, and thus
can frequently be constructed using only passive components. Fortunately,
passive components with stable, precisely known values are readily avail-
able. If the magnitude of the loop transmission is sufficiently high, the
closed-loop gain becomes dependent primarily on the characteristics of
the feedback network.

This feature can be emphasized by calculating the fractional change in
closed-loop gain d(V,/V:)/(V,/ V) caused by a given fractional change in
amplifier forward-path gain da/a, with the result

d(Vo/Vf)zgg< 1 ) 23
/vy~ a\I +qf

Equation 2.3 shows that changes in the magnitude of a can be attenuated
to insignificant levels if af is sufficiently large. The quantity 1 4 af that
relates changes in forward-path gain to changes in closed-loop gain is
frequently called the desensitivity of a feedback system. Figure 2.3 illustrates
this desensitization process by comparing two amplifier connections in-
tended to give an input-output gain of 10. Clearly the input-output gain is
identically equal to a in Fig. 2.3a, and thus has the same fractional change
in gain as does a. Equations 2.2 and 2.3 show that the closed-loop gain for
the system of Fig. 2.3b is approximately 9.9, and that the fractional change
in closed-loop gain is less than 197 of the fractional change in the forward-
path gain of this system.

The desensitivity characteristic of the feedback process is obtained only
in exchange for excess gain provided in the system. Returning to the ex-
ample involving Fig. 2.2, we see that the closed-loop gain for the system is
a/(1 + af), while the forward-path gain provided by the amplifier is a.
The desensitivity is identically equal to the ratio of the forward-path gain
to closed-loop gain. Feedback connections are unique in their ability to
automatically trade excess gain for desensitivity.

It is important to underline the fact that changes in the gain of the feed-
back element have direct influence on the closed-loop gain of the system,
and we therefore conclude that it is necessary to observe or measure the
output variable of a feedback system accurately in order to realize the
advantages of feedback.
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Y ——] a=10 —v,
(@)
v, () a = 1000 v,
f=01
)

Figure 2.3 Amplifier connections for a gain of ten. (@) Open loop. (b) Closed loop.

2.3.2 Effect of Feedback on Nonlinearities

Because feedback reduces the sensitivity of a system to changes in open-
Ioop gain, it can often moderate the effects of nonlinearities. Figure 2.4
illustrates this process. The forward path in this connection consists of an
amplifier with a gain of 1000 followed by a nonlinear element that might
be an idealized representation of the transfer characteristics of a power
output stage. The transfer characteristics of the nonlinear element show
these four distinct regions:

1. A deadzone, where the output remains zero until the input magnitude
exceeds 1 volt. This region models the crossover distortion associated with
many types of power amplifiers.

2. A linear region, where the incremental gain of the element is one.

3. A region of soft limiting, where the incremental gain of the element
is lowered to 0.1.
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4. A region of hard limiting or saturation where the incremental gain of
the element is zero.

The performance of the system can be determined by recognizing that,
since the nonlinear element is piecewise linear, all transfer relationships must
be piecewise linear. The values of all the variables at a breakpoint can be
found by an iterative process. Assume, for example, that the variables
associated with the nonlinear element are such that this element is at its
breakpoint connecting a slope of zero to a slope of 1. This condition only
occurs for v, = land vg = 0. If g = vo = O, the signal v must be zero,
since vy = 0.1 vp. Similarly, with v, = 1, vg = 10~%, = 10~3. Since the
relationships at the summing point imply vg = o1 — vr, OT v1 = Ve + VF,
vy must equal 10-3. The values of variables at all other breakpoints can be
found by similar reasoning. Results are summarized in Table 2.1.

Il

Table 2.1 Values of Variables at Breakpoints for System of Fig. 2.4

vr VE = V5 — UF va = 10%g vp = Vo ve = 0.1vo
< —0.258 vr + 0.250 103y, + 250 —-2.5 —0.25
—0.258 —0.008 —8 -2.5 —0.25
—0.203 —0.003 -3 -2 —-0.2
—10-3 —10-3 -1 0 0
10-3 10-3 1 0 0
0.203 0.003 3 2 0.2
0.258 0.008 8 2.5 0.25
> 0.258 v; — 0.250 103y, — 250 2.5 0.25

The input-output transfer relationship for the system shown in Fig. 2.4c
is generated from values included in Table 2.1. The transfer relationship
can also be found by using the incremental forward gain, or 1000 times the
incremental gain of the nonlinear element, as the value for a in Eqn. 2.2.
If the magnitude of signal v, is less than 1 volt, a is zero, and the incremental
closed-loop gain of the system is also zero. If v, is between 1 and 3 volts,
a is 103, so the incremental closed-loop gain is 9.9. Similarly, the incre-
mental closed-loop gain is 9.1 for 3 < v, < 8.

Note from Fig. 2.4c that feedback dramatically reduces the width of the
deadzone and the change in gain as the output stage soft limits. Once the
amplifier saturates, the incremental loop transmission becomes zero, and
as a result feedback cannot improve performance in this region.
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Figure 2.4—Continued

Figure 2.4d provides insight into the operation of the circuit by compar-
ing the output of the system and the voltage v4 for a unit ramp input. The
output remains a good approximation to the input until saturation is
reached. The signal into the nonlinear element is “predistorted” by feedback
in such a way as to force the output from this element to be nearly linear.

The technique of employing feedback to reduce the effects of nonlinear
elements on system performance is a powerful and widely used method
that evolves directly from the desensitivity to gain changes provided by
feedback. In some applications, feedback is used to counteract the un-
avoidable nonlinearities associated with active elements. In other applica-
tions, feedback is used to maintain performance when nonlinearities result
from economic compromises. Consider the power amplifier that provided
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the motivation for the previous example. The designs for linear power-
handling stages are complex and expensive because compensation for the
base-to-emitter voltages of the transistors and variations of gain with
operating point must be included. Economic advantages normally result if
linearity of the power-handling stage is reduced and low-power voltage-gain
stages (possibly in the form of an operational amplifier) are added prior to
the output stage so that feedback can be used to restore system linearity.

While this section has highlighted the use of feedback to reduce the
effects of nonlinearities associated with the forward-gain element of a sys-
tem, feedback can also be used to produce nonlinearities with well-con-
trolled characteristics. If the feedback element in a system with large loop
transmission is nonlinear, the output of the system becomes approximately
vo = f~'(vr). Here f~! is the inverse of the feedback-element transfer rela-
tionship, in the sense that f~![f(V)] = V. For example, transistors or diodes
with exponential characteristics can be used as feedback elements around
an operational amplifier to provide a logarithmic closed-loop transfer
relationship.

2.3.3 Disturbances in Feedback Systems

Feedback provides a method for reducing the sensitivity of a system to
certain kinds of disturbances. This advantage is illustrated in Fig. 2.5.
Three different sources of disturbances are applied to this system. The
disturbance V¥, enters the system at the same point as the system input, and
might represent the noise associated with the input stage of an amplifier.
Disturbance V. enters the system at an intermediate point, and might
represent a disturbance from the hum associated with the poorly filtered
voltage often used to power an amplifier output stage. Disturbance V43 enters
at the amplifier output and might represent changing load characteristics.

Vay Va2 Vas
v . */{L . */}\ v
) ! @, ; ®), g
f

Figure 2.5 Feedback system illustrating effects of disturbances.
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The reader should convince himself that the block diagram of Fig. 2.5
implies that the output voltage is related to input and disturbances as

_ aa[(Vi + Va) + (Vd2/al) + (Vda/alaz)]
Vo= 1 + aasf 2.4

Equation 2.4 shows that the disturbance Vg is not attenuated relative to
the input signal. This result is expected since V; and V,; enter the system
at the same point, and reflects the fact that feedback cannot improve quan-
tities such as the noise figure of an amplifier. The disturbances that enter
the amplifier at other points are attenuated relative to the input signal by
amounts equal to the forward-path gains between the input and the points
where the disturbances are applied.

It is important to emphasize that the forward-path gain preceding the
disturbance, rather than the feedback, results in the relative attenuation of
the disturbance. This feature is illustrated in Fig. 2.6. This open-loop sys-
tem, which follows the forward path of Fig. 2.5 with an attenuator, yields
the same output as the feedback system of Fig. 2.5. The feedback system is
nearly always the more practical approach, since the open-loop system
requires large signals, with attendant problems of saturation and power
dissipation, at the input to the attenuator. Conversely, the feedback realiza-
tion constrains system variables to more realistic levels.

2.3.4 Summary

This section has shown how feedback can be used to desensitize a system
to changes in component values or to externally applied disturbances. This
desensitivity can only be obtained in return for increases in the gains of
various components of the system. There are numerous situations where
this type of trade is advantageous. For example, it may be possible to
replace a costly, linear output stage in a high-fidelity audio amplifier with
a cheaper unit and compensate for this change by adding an inexpensive
stage of low-level amplification.

The input and output impedances of amplifiers are also modified by feed-
back. For example, if the output variable that is fed back is a voltage, the

Vi Va2 Vis
+ + +
+ + + 1
Vi a' \—/ a2 1+ a a2f Vo

Attenuator

Figure 2.6 Open-loop system illustrating effects of disturbances.



32 Properties and Modeling of Feedback Systems

feedback tends to stabilize the value of this voltage and reduce its depend-
ence on disturbing load currents, implying that the feedback results in
lower output impedance. Alternatively, if the information fed back is pro-
portional to output current, the feedback raises the output impedance.
Similarly, feedback can limit input voltage or current applied to an ampli-
fier, resulting in low or high input impedance respectively. A quantitative
discussion of this effect is reserved for Section 2.5.

A word of caution is in order to moderate the impression that perform-
ance improvements always accompany increases in loop-transmission
magnitude. Unfortunately, the loop transmission of a system cannot be
increased without limit, since sufficiently high gain invariably causes a sys-
tem to become unstable. A stable system is defined as one for which a
bounded output is produced in response to a bounded input. Conversely,
an unstable system exhibits runaway or oscillatory behavior in response to
a bounded input. Instability occurs in high-gain systems because small
errors give rise to large corrective action. The propagation of signals around
the loop is delayed by the dynamics of the elements in the loop, and as a
consequence high-gain systems tend to overcorrect. When this overcorrec-
tion produces an error larger than the initiating error, the.system is unstable.

This important aspect of the feedback problem did not appear in this
section since the dynamics associated with various elements have been ig-
nored. The problem of stability will be investigated in detail in Chapter 4.

2.4 BLOCK DIAGRAMS

A block diagram is a graphical method of representing the relationships
among variables in a system. The symbols used to form a block diagram
were introduced in Section 2.2. Advantages of this representation include
the insight into system operation that it often provides, its clear indication
of various feedback loops, and the simplification it affords to determining
the transfer functions that relate input and output variables of the system.
The discussion in this section is limited to linear, time-invariant systems,
with the enumeration of certain techniques useful for the analysis of non-
linear systems reserved for Chapter 6.

2.4.1 Forming the Block Diagram

Just as there are many complete sets of equations that can be written
to describe the relationships among variables in a system, so there are many
possible block diagrams that can be used to represent a particular system.
The choice of block diagram should be made on the basis of the insight it
lends to operation and the ease with which required transfer functions can
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be evaluated. The following systematic method is useful for circuits where
all variables of interest are node voltages.

1. Determine the node voltages of interest. The selected number of
voltages does not have to be equal to the total number of nodes in the circuit,
but it must be possible to write a complete, independent set of equations
using the selected voltages. One line (which may split into two or more
branches in the final block diagram) will represent each of these variables,
and these lines may be drawn as isolated segments.

2. Determine each of the selected node voltages as a weighted sum of
the other selected voltages and any inputs or disturbances that may be
applied to the circuit. This determination requires a set of equations of the
form

V= Z#: @niVn + 2 biEn (2.5
n#j m
where V; is the kth node voltage and E, is the kth input or disturbance.

3. The variable V; is generated as the output of a summing point in the
block diagram. The inputs to the summing point come from all other vari-
ables, inputs, and disturbances via blocks with transmissions that are the
a’s and b’s in Eqn. 2.5. Some of the blocks may have transmissions of zero,
and these blocks and corresponding summing-point inputs can be elimi-
nated.

The set of equations required in Step 2 can be determined by writing
node equations for the complete circuit and solving the equation written
about the jth node for V; in terms of all other variables. If a certain node
voltage ¥V, is not required in the final block diagram, the equation relating
V. to other system voltages is used to eliminate V', from all other members
of the set of equations. While this degree of formality is often unnecessary,
it always yields a correct block diagram, and should be used if the desired
diagram cannot easily be obtained by other methods.

As an example of block diagram construction by this formal approach,
consider the common-emitter amplifier shown in Fig. 2.7a. (Elements used
for bias have been eliminated for simplicity.) The corresponding small-
signal equivalent circuit is obtained by substituting a hybrid-pi® model for
the transistor and is shown in Fig. 2.7b. Node equations are*

3 The hybrid-pi model will be used exclusively for the analysis of bipolar transistors
operating in the linear region. The reader who is unfamiliar with the development or use
of this model is referred to P. E. Gray and C. L. Searle, Electronic Principles: Physics,
Models, and Circuits, Wiley, New York, 1969.

1 G’s and R’s (or g’s and r’s) are used to identify corresponding conductances and re-
sistances, while Y’s and Z’s (or y’s and z’s) are used to identify corresponding admittances
and impedances. Thus for example, G4 = 1/R4 and z, = 1/y,.
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GSVi = (GS + ga:) Va - g: Vb (2.6)
0= — 8 Vot [(8:+ &) + (Cu + Co)s] Vs —Cus 'V,
0= (&n — Cus) Vs + (G + Cus)V,

If the desired block diagram includes all three node voltages, Eqn. 2.6
is arranged so that each member of the set is solved for the voltage at the
node about which the member was written. Thus,

= G
Vo = £y, + 22y, @.7)
8a a
= C
v, =5, + =2,
Yo Yo
vo_  Cs-gd,
Yo
Where
8a = GS + 8=
Yo =1[(g: + g-) + (Cy + Co)s]
Yo = GL + C“S
The block diagram shown in Fig. 2.7¢ follows directly from this set of
equations.

Figure 2.8 is the basis for an example that is more typical of our intended
use of block diagrams. A simple operational-amplifier medel is shown con-
nected as a noninverting amplifier. It is assumed that the variables of
interest are the voltages V, and V,. The voltage V, can be related to the
other selected voltage, V,, and the input voltage, V;, by superposition.

with V; = 0,
V,= —aV, 2.8)
while with ¥V, = 0,
V, = aV; 2.9)

The equation relating ¥V, to other selected voltages and inputs is simply the
superposition of the responses represented by Eqns. 2.8 and 2.9, or

Va = aVi - aVb (2.10)
The voltage V', is independent of V; and is related to V, as

Z,

Ve= ———
Zi+ 2

Ve .11
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V;
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Rg r. C,
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Vv; v, vy Ty ]: C, lgmvb R, _
(b)
G + Vo [ ¢ +/\ Vs Cs—g
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(c)

Figure 2.7 Common-emitter amplifier. (@) Circuit. (b) Incremental equivalent
circuit. (¢) Block diagram.

Equations 2.10 and 2.11 are readily combined to form the block diagram
shown in Fig. 2.8b.

It is possible to form a block diagram that provides somewhat greater

insight into the operation of the circuit by replacing Eqn. 2.10 by the pair
of equations

Vi=V;— V, (2.12)
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and
Ve, = aV, (2.13)

Note that the original set of equations were not written including ¥, since
Vi, Vs, and V,; form a Kirchhoff loop and thus cannot all be included in an
independent set of equations.

The alternate block diagram shown in Fig. 2.8¢ is obtained from Eqns.
2.11, 2.12, and 2.13. In this block diagram it is clear that the summing point
models the function provided by the differential input of the operational
amplifier. This same block diagram would have evolved had V, and V,
been initially selected as the amplifier voltages of interest.

The loop transmission for any system represented as a block diagram can
always be determined by setting all inputs and disturbances to zero, break-
ing the block diagram at any point inside the loop, and finding the signal
returned by the loop in response to an applied test signal. One possible
point to break the loop is illustrated in Fig. 2.8c. With V; = 0, it is evident
that

KO _ —aZl
Vi Zi+ Z,

(2.14)

The same result is obtained for the loop transmission if the loop in Fig. 2.8¢
is broken elsewhere, or if the loop in Fig. 2.8b is broken at any point.

Figure 2.9 is the basis for a slightly more involved example. Here a-fairly
detailed operational-amplifier model, which includes input and output im-
pedances, is shown connected as an inverting amplifier. A disturbing current
generator is included, and this generator can be used to determine the
closed-loop output impedance of the amplifier V,/1,.

It is assumed that the amplifier voltages of interest are ¥, and V,. The
equation relating ¥, to the other voltage of interest V,, the input V;, and
the disturbance /,, is obtained by superposition (allowing all other signals
to be nonzero one at a time and superposing results) as in the preceding
example. The reader should verify the results

Zi|| Z Zi || Z,
= V; vV, 2.15
zZ+zz" " z+z2 1)
and
_aZZ + Zo
0o = a ° Z))I, 216
Z. 1 Z. Vo + (Z, || Z2)14 (2.16)

The block diagram of Fig. 2.9b follows directly from Eqns. 2.15 and 2.16.
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Figure 2.8 Noninverting amplifier. (a) Circuit. () Block diagram. (¢) Alternative
block diagram.
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Figure 2.9 Inverting amplifier. (a) Circuit. (b) Block diagram.

2.4.2 Block-Diagram Manipulations

There are a number of ways that block diagrams can be restructured or
reordered while maintaining the correct gain expression between an input or
disturbance and an output. These modified block diagrams could be ob-
tained directly by rearranging the equations used to form the block diagram
or by using other system variables in the equations. Equivalences that can
be used to modify block diagrams are shown in Fig. 2.10.
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It is necessary to be able to find the transfer functions relating outputs
to inputs and disturbances or the relations among other system variables
from the block diagram of the system. These transfer functions can always
be found by appropriately applying various equivalences of Fig. 2.10 until
a single-loop system is obtained. The transfer function can then be deter-
mined by loop reduction (Fig. 2.104). Alternatively, once the block diagram
has been reduced to a single loop, important system quantities are evident.
The loop transmission as well as the closed-loop gain approached for large
loop-transmission magnitude can both be found by inspection.

Figure 2.11 illustrates the use of equivalences to reduce the block diagram
of the common-emitter amplifier previously shown as Fig. 2.7¢. Figure 2.11a
is identical to Fig. 2.7¢, with the exceptions that a line has been replaced
with a unity-gain block (see Fig. 2.10a) and an intermediate variable V', has
been defined. These changes clarify the transformation from Fig. 2.11a to
2.11b, which is made as follows. The transfer function from ¥V, to V, is
determined using the equivalance of Fig. 2.104, recognizing that the feed-
back path for this loop is the product of the transfer functions of blocks
1 and 2. The transfer function ¥,/ V. is included in the remaining loop, and
the transfer function of block 1 links V, to V,.

The equivalences of Figs. 2.10b and 2.10k using the identification of
transfer functions shown in Fig. 2.1156 (unfortunately, as a diagram is re-
duced, the complexities of the transfer functions of residual blocks increase)
are used to determine the overall transfer function indicated in Fig. 2.11c.

The inverting-amplifier connection (Fig. 2.9) is used as another example
of block-diagram reduction. The transfer function relating ¥, to ¥; in
Fig. 2.9 can be reduced to single-loop form by absorbing the left-hand
block in this diagram (equivalence in Fig. 2.10d). Figure 2.12 shows the
result of this absorption after simplifying the feedback path algebraically,
eliminating the disturbing input, and using the equivalence of Fig. 2.10e to
introduce an inversion at the summing point. The gain of this system ap-
proaches the reciprocal of the feedback path for large loop transmission;
thus the ideal closed-loop gain is

—==-Z 2.17)

The forward gain for this system is
Vo _ [ Zi|| Z, ][—a& + Z,,:l
Ve Zi+ 2| Z. ]| Z. + Z,

_ Zi H Z; —aZ, Z, ” Z, Z,
= [zl + Z || zj [Zz + ZJ + [zl +Zi z;l [22 n ZJ (2.18)
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Figure 2.10 Block-diagram equivalences. (a) Unity gain of line. (b) Cascading.
(¢) Summation. (d) Absorption. (¢) Negation. (f) Branching. (g) Factoring. (4) Loop
reduction.
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b V, ab Vs
Va a = Yy ——
c v, ac v,
()]
v ac Ve—> a
a + e +
Vc = c Vc
+ +
Vb bc Vb—> b
g)
() _ a
v, a v, = v, T+af v,

f

(h)
Figure 2.10—Continued

The final term on the right-hand side of Eqn. 2.18 reflects the fact that
some fraction of the input signal is coupled directly to the output via the
feedback network, even if the amplifier voltage gain a is zero. Since the
impedances included in this term are generally resistive or capacitive, the
magnitude of this coupling term will be less than one at all frequencies.
Similarly, the component of loop transmission attributable to this direct
path, determined by setting a = 0 and opening the loop is

-Gl
- Z]lz+z 2]z 1 Z,

_ [ ZiZl :| [: Zu :| (219)
272+ ZZy + 212, | Z, + Z,

and will be less than one in magnitude at all frequencies when the im-
pedances involved are resistive or capacitive.
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Figure 2.11 Simplification of common-emitter block diagram. (a) Original block diagram. (b) After
eliminating loop generating V.. (¢) Reduction to single block.
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Figure 2.12 Reduced diagram for inverting amplifier.

If the loop-transmission magnitude of the operational-amplifier connec-
tion is large compared to one, the component attributable to direct coupling
through the feedback network (Eqn. 2.19) must be insignificant. Conse-
quently, the forward-path gain of the system can be approximated as

Vo - i
V. Zo+ Zoj | Zi+ 2. ]| Z,
in this case. The corresponding loop transmission becomes
V —aZ Z; | Z
—fg_[ “1][ I 2: } (2.21)
Ve Z+Z, || Zi+ Z: || Z,

It is frequently found that the loop-transmission term involving direct
coupling through the feedback network can be neglected in practical
operational-amplifier connections, reflecting the reasonable hypothesis that
the dominant gain mechanism is the amplifier rather than the passive
network. While this approximation normally yields excellent results at
frequencies where the amplifier gain is large, there are systems where sta-
bility calculations are incorrect when the approximation is used. The reason
is that stability depends largely on the behavior of the loop transmission
at frequencies where its magnitude is close to one, and the gain of the
amplifier may not dominate at these frequencies.

2.4.3 The Closed-Loop Gain

It is always possible to determine the gain that relates any signal in a
block diagram to an input or a disturbance by manipulating the block
diagram until a single path connects the two quantities of interest. Alter-
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natively, it is possible to use a method developed by Mason® to calculate
gains directly from an unreduced block diagram.

In order to determine the gain between an input or disturbance and any
other points in the diagram, it is necessary to identify two topological
features of a block diagram. A path is a continuous succession of blocks,
lines, and summation points that connect the input and signal of interest
and along which no element is encountered more than once. Lines may
be traversed only in the direction of information flow (with the arrow). It
is possible in general to have more than one path connecting an input to an
output or other signal of interest. The path gain is a product of the gains
of all elements in a path. A loop is a closed succession of blocks, lines, and
summation points traversed with the arrows, along which no element is
encountered more than once per cycle. The loop gain is the product of gains
of all elements in a loop. It is necessary to include the inversions indicated
by negative signs at summation points when calculating path or loop gains.

The general expression for the gain or transmission of a block diagram is

ZP,,(l — > Lo+ > LLa— > LLL,+ --- —>
T = a b c,d ef,g (222)
1— > L+ > LiL; — k; Lilil, + -+ —
h 1,7 W,m

The numerator of the gain expression is the sum of the gains of all paths
connecting the input and the signal of interest, with each path gain scaled
by a cofactor. The first sum in a cofactor includes the gains of all loops that
do not touch (share a common block or summation point with) the path;
the second sum includes all possible products of loop gains for loops that
do not touch the path or each other taken two at a time; the third sum in-
cludes all possible triple products of loop gains for loops that do not touch
the path or each other; etc.

The denominator of the gain expression is called the.determinant or
characteristic equation of the block diagram, and is identically equal to one
minus the loop transmission of the complete block diagram. The first sum
in the characteristic equation includes all loop gains; the second all possible
products of the gains of nontouching loops taken two at a time; etc.

Two examples will serve to clarify the evaluation of the gain expression.
Figure 2.13 provides the first example. In order to apply Mason’s gain
formula for the transmission ¥,/ V., the paths and loops are identified and
their gains are evaluated. The results are:

P, = ace

§S. J. Mason and H. J. Zimmermann, Electronic Circuits, Signals, and Systems, Wiley,
New York, 1960, Chaptér 4, “Linear Signal-Flow Graphs.”
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P, = ag

Py = —h
L, = —ab
L, = cd

L; = —ef
L, = —acei

The topology of Fig. 2.13 shows that path P, shares common blocks with
and therefore touches all loops. Path P, does not touch loops L, or'Ls, while
path P; does not touch any loops. Similarly, loops L,, L,, and L; do not
touch each other, but all touch loop Ls. Equation 2.22 evaluated for this
system becomes

P+ P:(1 — Ly — Ly + LoLy)
+ P3(l - Ll el L2 —_ L3 - L4 + L1L2 + L2L3 + L1L3 - L1L2L3)
1 —L —Ly— Ly — Ly + LiLy + LyLs + LiLy — LiLsLs

(2.23)

Ve _
v,

A second example of block-diagram reduction and some reinforcement
of the techniques used to describe a system in block-diagram form is pro-
vided by the set of algebraic equations

X+Y+Z=6 (2.24)
X+Y-Z=0
2X 4+ 3Y +Z =11
h
e
L]
a ‘ c , e *+ +_ v,
b d f e

i

Figure 2.13 Block diagram for gain-expression example.
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In order to represent this set of equations in block-diagram form, the three
equations are rewritten

X = - Y—-Z+6 (2.25)
Y= —X +Zz
Z=—2X-3Y + 11

This set of equations is shown in block-diagram form in Fig. 2.14. If we
use the identification of loops in this figure, loop gains are

L,=1
L,= -3
L; = -3
Ly=2
Ly=2

Since all loops touch, the determinant of any gain expression for this sys-
tem is

l—Ll—Lg—Lg—L4—L5=2 (2.26)

(This value is of course identically equal to the determinant of the coeffi-
cients of Eqn. 2.24.)

Assume that the value of X is required. The block diagram shows one
path with a transmission of 41 connecting the excitation with a value of
6 to X. This path does not touch L,. There are also two paths (roughly
paralleling L; and L;) with transmissions of — 1 connecting the excitation
with a value of 11 to X. These paths touch all loops. Linearity allows us
to combine the X responses related to the two excitations, with the result
that

_ 6 — (=3 — 11— 11 _

X
2

1 (2.27)

The reader should verify that this method yields the values ¥ = 2 and
Z = 3 for the other two dependent variables.

2.5 EFFECTS OF FEEDBACK ON INPUT AND
OUTPUT IMPEDANCE

The gain-stabilizing and linearizing effects of feedback have been de-
scribed earlier in this chapter. Feedback also has important effects on the
input and output impedances of an amplifier, with the type of modification
dependent on the topology of the amplifier-feedback network combination.
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resistor

% Current—sampling

—— ]
Feedback to Load
input
(a) B
Load
Feedback to
input
b)

Figure 2.15 Two possible output topologies. (@) Feedback of load-voltage infor-
mation. (b) Feedback of load-current information.

Figure 2.15 shows how feedback might be arranged to return information
about either the voltage applied to the load or the current flow through it.
It is clear from physical arguments that these two output topologies must
alter the impedance facing the load in different ways. If the information fed
back to the input concerns the output voltage, the feedback tends to reduce
changes in output voltage caused by disturbances (changes in load current),
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thus implying that the output impedance of the amplifier shown in Fig.
2.15a is reduced by feedback. Alternatively, if information about load
current is fed back, changes in output current caused by disturbances
(changes in load voltage) are reduced, showing that this type of feedback
raises output impedance.

Two possible input topologies are shown in Fig. 2.16. In Fig. 2.164, the
input signal is applied in series with the differential input of the amplifier. If
the amplifier characteristics are satisfactory, we are assured that any re-
quired output signal level can be achieved with a small amplifier input
current. Thus the current required from the input-signal source will be
small, implying high input impedance. The topology shown in Fig. 2.16b
reduces input impedance, since only a small voltage appears across the
parallel input-signal and amplifier-input connection.

The amount by which feedback scales input and output impedances is
directly related to the loop transmission, as shown by the following example.
An operational amplifier connected for high input and high output resis-
tances is shown in Fig. 2.17. The input resistance for this topology is simply
the ratio V;/I;. Output resistance is determined by including a voltage
source in series with the load resistor and calculating the ratio of the change
in the voltage of this source to the resulting change in load current, V,/1,.
If it is assumed that the components of I; and the current through the
sampling resistor Rg attributable to I; are negligible (implying that the

Input o~——————
P +

Feedback from output

(a)

Feedback from output

Input O————4

®)

Figure 2.16 Two possible input topologies. (a) Input signal applied in series with
amplifier input. () Input signal applied in parallel with amplifier input.



50 Properties and Modeling of Feedback Systems

Figure 2.17 Amplifier with high input and output resistances.

amplifier, rather than a passive network, provides system gain) and that
R; > Rg, the following equations apply.

V.= Vi — Rs (2.28)
Va V
I = _aVet+ Vi (2.29)
R, + Ry + Rs
L= (2.30)
i R,‘ .

These equations are represented in block-diagram form in Fig. 2.18. This
block diagram verifies the anticipated result that, since the input voltage is
compared with the output current sampled via resistor Rg, the ideal trans-
conductance (ratio of I; to ¥;) is simply equal to Gs. The input resistance is
evaluated by noting that

I; 1 1
Vi R Ri{l + [aRs/(R, + RL + Rg)]}

2.31)
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% h
v, .
){
+ v, + 1
v—) ’ / R, ¥R, * Ry h
Rs
Figure 2.18 Block diagram for amplifier of Fig. 2.17.
or
aRs
Rin=R; 1+ —i> 2.32)
< R, + Ry + Rs ¢

The output resistance is determined from®

L_ 1 1 (2.33)
Vi Rt (R, + Ry + Rs){l + [aRs/(R. + R. + Rs)l}

yielding

aRS
Rois = (R, + R RHY{\1 4+ — 77— 2.34
«= (R, + Ry + S)(+R0+RL+RS) (2.34)
The essential features of Eqns. 2.32 and 2.34 are the following. If the
system has no feedback (e.g., if @ = 0), the input and output resistances
become
R'in = R, (2.35)

and
R'ous = R, + Rz + R (2.36)

Feedback increases both of these quantities by a factor of 1 4 [aRs/
(R, + R, + Rgs)], where —aRs/(R, + RL + Ry) is recognized as the loop
transmission. Thus we see that the resistances in this example are increased
by the same factor (one minus the loop transmission) as the desensitivity

¢ Note that the output resistance in this example is calculated by including a voltage
source in series with the load resistor. This approach is used to emphasize that the loop
transmission that determines output resistance is influenced by R;. An alternative develop-
ment might evaluate the resistance facing the load by replacing Ry with a test generator.
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increase attributable to feedback. The result is general, so that input or
output impedances can always be calculated for the topologies shown in
Figs. 2.15 or 2.16 by finding the impedance of interest with no feedback
and scaling it (up or down according to topology) by a factor of one minus
the loop transmission.

While feedback offers a convenient method for controlling amplifier input
or output impedances, comparable (and in certain cases, superior) results
are at least conceptually possible without the use of feedback. Consider,
for example, Fig. 2.19, which shows three ways to connect an operational
amplifier for high input impedance and unity voltage gain.

The follower connection of Fig. 2.19a provides a voltage gain

V, a

V. 1+4+a

(2.37)

or approximately unity for large values of a. The relationship between input
impedance and loop transmission discussed earlier in this section shows that
the input impedance for this connection is

V.
7= Z(1 + a) (2.38)

1

The connection shown in Fig. 2.196 precedes the amplifier with an im-
pedance that, in conjunction with the input impedance of the amplifier,
attenuates the input signal by a factor of 1/(1 4+ a). This attenuation com-
bines with the voltage gain of the amplifier itself to provide a composite
voltage gain identical to that of the follower connection. Similarly, the
series impedance of the attenuator input element adds to the input im-
pedance of the amplifier itself so that the input impedance of the combina-
tion is identical to that of the follower.

The use of an ideal transformer as impedance-modifying element can
lead to imrproved input impedance compared to the feedback approach.
With a transformer turns ratio of (@ + 1):1, the overall voltage gain of the
transformer-amplifier combination is the same as that of the follower
connection, while the input impedance is

}I; =Z{(1 + a)? (2.39)
This value greatly exceeds the value obtained with the follower for large
amplifier voltage gain.

The purpose of the above example is certainly not to imply that atten-
uators or transformers should be used in preference to feedback to modify
impedance levels. The practical disadvantages associated with the two
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Figure 2.19 Unity-gain amplifiers. (a) Follower connection. (b) Amplifier with
input attenuator. (c) Amplifier with input transformer.
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former approaches, such as the noise accentuation that accompanies large
input-signal attenuation and the limited frequency response characteristic
of transformers, often preclude their use. The example does, however,
serve to illustrate that it is really the power gain of the amplifier, rather
than the use of feedback, that leads to the impedance scaling. We can
further emphasize this point by noting that the input impedance of the
amplifier connection can be increased without limit by following it with a
step-up transformer and increasing the voltage attenuation of either the
network or the transformer that precedes the amplifier so that the overall
gain is one. This observation is a reflection of the fact that the amplifier
alone provides infinite power gain since it has zero output impedance.

One rather philosophical way to accept this reality concerning impedance
scaling is to realize that feedback is most frequently used because of its
fundamental advantage of reducing the sensitivity of a system to changes
in the gain of its forward-path element. The advantages of impedance
scaling can be obtained in addition to desensitivity simply by choosing an
appropriate topology.

PROBLEMS

P2.1

Figure 2.20 shows a block diagram for a linear feedback system. Write
a complete, independent set of equations for the relationships implied by
this diagram. Solve your set of equations to determine the input-to-output
gain of the system.

P2.2

Determine how the fractional change in closed-loop gain

da\v,/V;)
V.V

is related to fractional changes in ai, @, and f for the system shown in
Fig. 2.21.

P2.3

Plot the closed-loop transfer characteristics for the nonlinear system
shown in Fig. 2.22,

P2.4

The complementary emitter-follower connection shown in Fig. 2.23 is a
simple unity-voltage-gain stage that has a power gain approximately equal
to the current gain of the transistors used. It has nonlinear transfer charac-
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Vv v
+r-\ ;" . a .

Vb
:

4 v
N\ &

Figure 2.20 Two-loop feedback system.

a4

a2

Figure 2.21 Feedback system with parallel forward paths.

teristics, since it is necessary to apply approximately 0.6 volts to the base-
to-emitter junction of a silicon transistor in order to initiate conduction.

(a) Approximate the input-output transfer characteristics for the emitter-
follower stage.

(b) Design a circuit that combines this power stage with an operational
amplifier and any necessary passive components in order to provide
a closed-loop gain with an ideal value of +S5.

(c) Approximate the actual input-output characteristics of your feedback
circuit assuming that the open-loop gain of the operational amplifier
is 105,

P2.5

(a) Determine the incremental gain v,/v; for ¥ = 0.5 and 1.25 for the
system shown in Fig. 2.24.
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v - m 1000

Yo

B Nonlinear V4
feedback -
element

(a)

—-_——

(b)

Figure 2.22 Nonlinear feedback system. (a) System. (b) Transfer characteristics
for nonlinear element.

(b) Estimate the signal v, for vz, a unit ramp [v,(f) = 0,7 < 0, = ¢,
t > 0]

(c) For v; = 0, determine the amplitude of the sinusoidal component
of Vo.

P2.6
Determine V, as a function of V;; and V;, for the feedback system shown
in Fig. 2.25.

P2.7
Draw a block diagram that relates output voltage to input voltage for an
emitter follower. You may assume that the transistor remains linear, and
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o1 b

_VC

Figure 2.23 Complementary emitter follower.

use a hybrid-pi model for the device. Include elements r., r., C., and C,,
in addition to the dependent generator, in your model. Reduce the block
diagram to a single input-output transfer function.

P2.8

Draw a block diagram that relates V, to V; for the noninverting connec-
tion shown in Fig. 2.26. Also use block-diagram techniques to determine
the impedance at the output, assuming that Z; is very large.

P2.9

A negative-feedback system used to rotate a roof-top antenna is shown
in Fig. 2.27a.

The total inertia of the output member (antenna, motor armature, and
pot wiper) is 2 kg-m?2. The motor can be modeled as a resistor in series with
a speed-dependent voltage generator (Fig. 2.27b).

The torque provided by the motor that accelerates the total output-mem-
ber inertia is 10 N-m per ampere of /,. The polarity of the motor de-
pendent generator is such that it tends to reduce the value of /, as the motor
accelerates so that /, becomes zero for a motor shaft velocity equal to
V../10 radians per second.

Draw a block diagram that relates 6, to ;. You may include as many
intermediate variables as you wish, but be sure to include ¥,, and 7, in your
diagram. Find the transfer function 6,/6..

Modify your diagram to include an output disturbance applied to the
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vy = sin 377t
v +/-\ m YA Nonlinear ’c
1 Nt W element ‘o
Signal limited to * 30 volts
0.1
(a)
j\C'
154
10—
| | 1
T 1 | 1 v
-20 -10 10 20 B—>
-10—1
—15—
(b)

Figure 2.24 Nonlinear system. (a) System. (b) Transfer characteristics for nonlinear
element.

antenna by wind. Calculate the angular error that results from a 1 N-m
disturbance.

P2.10

Draw a block diagram for this set of equations:

W+ X
X+Y =
Y+Z-=
W+ X+ Y+Z=

—_ ] W W



) a ) .
Vl1 \j— 1 +\{ 2
f2

fi

Figure 2.25

Linear block diagram.

Figure 2.26

Noninverting amplifier.
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Antenna
Amplifier

Motor
{housing fixed)

Input 9:
applied

to poten—
tiometer

B, Output shaft angle

Potentiometer coupled
to antenna and motor
shaft.

Error signal =
10 volts/radian (6, —0,)

(a)

10 volts/radian/sec X motor speed

®)

Figure 2.27 Antenna rotator System. (@) System configuration. () Model for motor.

Use the block-diagram reduction equation (Eqn. 2.22) to determine the
values of the four dependent variables.

P2.11

The connection shown in Fig. 2.28 feeds back information about both
load current and load voltage to the amplifier input. Draw a block dia-
gram that allows you to calculate the output resistance V,/I..

You may assume that R 3> Rg and that the load can be modeled as a
resistor Rz. What is the output resistance for very large a?

P2.12

An operational amplifier connected to provide an adjustable output
resistance is shown in Fig. 2.29. Find a Thévenin-equivalent circuit facing
the load as a function of the potentiometer setting «. You may assume that
the resistance R is very large and that the operational amplifier has ideal
characteristics.



R
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1

Figure 2.28 Operational-amplifier connection with controlled output resistance.

+

Load

(1-a) R

Figure 2.29 Circuit with adjustable output resistance.
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CHAPTER 1II
LINEAR SYSTEM RESPONSE

3.1 OBJECTIVES

The output produced by an operational amplifier (or any other dynamic
system) in response to a particular type or class of inputs normally pro-
vides the most important characterization of the system. The purpose of
this chapter is to develop the analytic tools necessary to determine the re-
sponse of a system to a specified input.

While it is always possible to determine the response of a linear system
to a given input exactly, we shall frequently find that greater insight into
the design process results when a system response is approximated by the
known response of a simpler configuration. For example, when designing
a low-level preamplifier intended for audio signals, we might be interested
in keeping the frequency response of the amplifier within 5% of its mid-
band value over a particular bandwidth. If it is possible to approximate the
amplifier as a two- or three-pole system, the necessary constraints on pole
location are relatively straightforward. Similarly, if an oscilloscope vertical
amplifier is to be designed, a required specification might be that the over-
shoot of the amplifier output in response to a step input be less than 37
of its final value. Again, simple constraints result if the system transfer
function can be approximated by three or fewer poles.

The advantages of approximating the transfer functions of linear systems
can only be appreciated with the aid of examples. The LM301A integrated-
circuit operational amplifier! has 13 transistors included-in its signal-trans-
mission path. Since each transistor can be modeled as having two capaci-
tors, the transfer function of the amplifier must include 26 poles. Even this
estimate is optimistic, since there is distributed capacitance, comparable to
transistor capacitances, associated with all of the other components in the
signal path.

Fortunately, experimental measurements of performance can save us
from the conclusion that this amplifier is analytically intractable. Figure
3.1a shows the LM301A connected as a unity-gain inverter. Figures 3.1b
and 3.1c show the output of this amplifier with the input a —50-mV step

1 This amplifier is described in Section 10.4.1.
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4.7 kS

4.7 kS2

+ LM301A ] o Oj_
Vv

+
; =
] Compensating

capacitor

(a)

(b) 2.“5—»-{ |4_

Figure 3.1 Step responses of inverting amplifier. (@) Connection. () Step response
with 220-pF compensating capacitor. (c) Step response with 12-pF compensating
capacitor.

for two different values of compensating capacitor.” The responses of an
R-C network and an R-L-C network when excited with +50-mV steps
supplied from the same generator used to obtain the previous transients
are shown in Figs. 3.2a and 3.2b, respectively. The network transfer func-
tions are

Vu(s) 1

= 3
Vis) 2.5 X 107% + 1 (1)
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Figure 3.1—Continued

for the response shown in Fig. 3.2a and

Vus) 1 3
Vis) 2.5 X 10~4s2 4+ 7 X 10-8s + 1 ©:2)
for that shown in Fig. 3.2b. We conclude that there are many applications
where the first- and second-order transfer functions of Egns. 3.1 and 3.2
adequately model the closed-loop transfer function of the LM301A when
connected and compensated as shown in Fig. 3.1.

This same type of modeling process can also be used to approximate the
open-loop transfer function of the operational amplifier itself. Assume that
the input impedance of the LM301A is large compared to 4.7 kQ and that
its output impedance is small compared to this value at frequencies of
interest. The closed-loop transfer function for the connection shown in
Fig. 3.1 is then

V,,_{s) . —a(s)
Vs) 2+ a(s)

* Compensation is a process by which the response of a system can be modified advan-
tageously, and is described in detail in subsequent sections.



20 mV

20 mV

() 0.5 #s‘| |~—

Figure 3.2  Step responses for first- and second-order networks. (a) Step response
for Vu(s)/Vi(s) = 1/(2.5 X 10-% + 1). (b) Step response for V(s)/Vis) =
1/(2.5 X 10-M52 + 7 X 10-%s + 1).
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where a(s) is the unloaded open-loop transfer function of the amplifier.
Substituting approximate values for closed-loop gain (the negatives of
Eqns. 3.1 and 3.2) into Eqn. 3.3 and solving for a(s) yields

105
a(s) ~ 8XT (.4)
and
2.8 X 107

a(s) ~

3.5
s35 X 1077s + 1) 3.5)
as approximate open-loop gains for the amplifier when compensated with
220-pF and 12-pF capacitors, respectively. We shall see that these approxi-
mate values are quite accurate at frequencies where the magnitude of the
loop transmission is near unity.

3.2 LAPLACE TRANSFORMS?3

Laplace Transforms offer a method for solving any linear, time-invariant
differential equation, and thus can be used to evaluate the response of a
linear system to an arbitrary input. Since it is assumed that most readers
have had some contact with this subject, and since we do not intend to
use this method as our primary analytic tool, the exposure presented here
is brief and directed mainly toward introducing notation and definitions
that will be used later.

3.2.1 Definitions and Properties

The Laplace transform of a time function f(¢) is defined as
SLA0] = F(s) = f SOt di (3.6)
0

where s is a complex variable ¢ + jw. The inverse Laplace transform of the
complex function F(s) is

01 270 2 o [ R a (3.7)

8 A complete discussion is presented in M. F. Gardner and J. L. Barnes, Transients in
Linear Systems, Wiley, New York, 1942,

In this section we temporarily suspend the variable and subscript notation used else-
where and conform to tradition by using a lower-case variable to signify a time function
and the corresponding capital for its transform.
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The direct-inverse transform pair is unique* so that

LL[f(D] =1 (D) (3.8)
iff(#)=0,1<0,and iff | £ (2) | e~ dt is finite for some real value of gy.

0

A number of theorems useful for the analysis of dynamic systems can
be developed from the definitions of the direct and inverse transforms for
functions that satisfy the conditions of Eqn. 3.8. The more important of
these theorems include the following.

1. Linearity
Llaf(1) + bg(n)] = [aF(s) + bG(s)]

where a and b are constants.

2. Differentiation

£ [de(tE)] = sF(s) — lin} f@

(The limit is taken by approaching ¢t = 0 from positive ¢.)

t F
£[/0f(r)d1-:l = g
4. Convolution

£ [[Otf(f)g(t - 7) dr} =& [/Olf(t — 7)8(7) dr] = F(s)G(s)

5. Time shift

3. Integration

Lf(t — 1] = F(s)er
if f(t — 1) = 0for (t — r) < 0, where 7 is a positive constant.
6. Time scale
Lif(an] = ! F 3
[fa] = F|-
where a is a positive constant.
7. Initial value

lim+ f() = lim sF(s)

t—0 §— 00

4 There are three additional constraints called the Direchlet conditions that are satisfied
for all signals of physical origin. The interested reader is referred to Gardner and Barnes.
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8. Final value
lim £ () = lim sF(s)
t—co 8—0
Theorem 4 is particularly valuable for the analysis of linear systems,
since it shows that the Laplace transform of a system output is the prod-
uct of the transform of the input signal and the transform of the impulse
response of the system.

3.2.2 Transforms of Common Functions

The defining integrals can always be used to convert from a time func-
tion to its transform or vice versa. In practice, tabulated values are fre-
quently used for convenience, and many mathematical or engineering ref-
erences® contain extensive lists of time functions and corresponding Laplace
transforms. A short list of Laplace transforms is presented in Table 3.1.

The time functions corresponding to ratios of polynomials in s that are
not listed in the table can be evaluated by means of a partial fraction ex-
pansion. The function of interest is written in the form

pGs) p(S) (.9)

o) = q(s) (S + s + s2) o (s + sa)

It is assumed that the order of the numerator polynomial is less than that
of the denominator. If all of the roots of the denominator polynomial are
first order (i.e., s; # s;, 1 # j),

"4
F(s) = ,; p +ksk (3.10)

where
Ap = lim [(s + $)F()] (3.11)

s—~—s

k

If one or more roots of the denominator polynomial are multiple roots,
they contribute terms of the form

2_‘, 7 + : )k (3.12)

5 See, for example, A. Erdeyli (Editor) Tables of Integral Transforms, Vol. 1, Bateman
Manuscript Project, McGraw-Hill, New York, 1954 and R. E. Boly and G. L. Tuve,
(Editors), Handbook of Tables for Applied Engineering Science, The Chemical Rubber
Company, Cleveland, 1970.
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Table 3.1 Laplace Transform Pairs

f0,1 >0
F 3
© [ = 0,1 < 0]
1 Unit impulse uo(r)
1 Unit step u_(?)
s f(n =11t >0]
1 Unit ramp u_o(¢)
s [f() =1t > 0]
1 "
sntl n
1
e—at
s+ a
‘__1__ vt_n_ —at
s + ar (n)!
__1~ 1 — et
s(rs + 1)
_.._—w__ —at g1
G+ a)2 T o? e SN w?
sta t cos wt
— e w
(s + a)? + ?
1 Wn

e 4 2sfen F 1 AT g€ i V1= <l

1 e Swnt . R _\/] _ {2
s 2 _
5(52 Jwn? + 288 Jon + 1) 1 V1-¢ Sin l:wn\/l ¢2r+ tan™! (——{ ,

¢ <1
where m is the order of the multiple root located at s = —s;. The B’s are
determined from the relationship
B = Ii LI nF 1
¥ = lim (m = k)l ds* [(s + s)mF(s)] (3.13)

§=*—s .
k)
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Because of the linearity property of Laplace transforms, it is possible to
find the time function f(¢¥) by summing the contributions of all components
of F(s).

The properties of Laplace transforms listed earlier can often be used to
determine the transform of time functions not listed in the table. The rec-
tangular pulse shown in Fig. 3.3 provides one example of this technique.
The pulse (Fig. 3.3a¢) can be decomposed into two steps, one with an
amplitude of + 4 starting at ¢+ = #,, summed with a second step of ampli-

f®

t——>

(a)

fe)

=

—A——_——————— —

(b)
Figure 3.3 Rectangular pulse. (@) Signal. (b) Signal decomposed in two steps.
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f)

sin wt, 0 <t < 5 0 otherwise

€13

(a)

fte)

sin wt, t > 0 sinwit— Z), t—2)>0

t—

(b)

Figure 3.4 Sinusoidal pulse. (a) Signal. (b) Signal decomposed into two sinusoids.
(¢) First derivative of signal. (¢) Second derivative of signal.

tude — A starting at 1 = £,. Theorems 1 and 5 combined with the transform
of a unit step from Table 3.1 show that the transform of a step with ampli-
tude A that starts at t+ = ¢, is (4/s)es4. Similarly, the transform of the
second component is —(A4/s)e*4. Superposition insures that the transform
of f(¢) is the sum of these two functions, or

F(s) = g(e“"“ — e (3.14)

The sinusoidal pulse shown in Fig. 3.4 is used as a second example.
One approach is to represent the single pulse as the sum of two sinusoids
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fie
w m -
w cos wt, 0 < t < g, 0 otherwise
m
@
0
t ——
—wh—
(c)
[
l Impulse of area w
0
z t—a
—W?2 —w? sin wt, 0 < t < Z, 0 otherwise

d)
Figure 3.4—Continued

exactly as was done for the rectangular pulse. Table 3.1 shows that
the transform of a unit-amplitude sinusoid starting at time r = O is
w/(s* + w?). Summing transforms of the components shown in Fig. 3. 4b
yields

- ; [Fem ] (3.15)

F(s) =
(s) Pt e

An alternative approach involves differentiating f(¢) twice. The derivative
of f(1), f'(1),is shown in Fig. 3.4c. Since f(0) = 0, theorem 2 shows that

SLf (D] = sF(s) (3.16)
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The second derivative of f(#) is shown in Fig. 3.4d. Application of theorem
2 to this function® leads to

L] = self' (] — lim f(1) = s2F(s) — w (3.17)

t— 0+

However, Fig. 3.4d indicates that

[t = —@¥(t) + wuo (z — Z) (3.18)

Thus
LIf'(D] = —w?F(s) + we™ s/ (3.19)

Combining Eqns. 3.17 and 3.19 yields
S?F(s) — w = —wF(s) + we s (3.20)

Equation 3.20 is solved for F(s) with the result that

F(s) = [l + e=®o)] (3.21)

24 w
Note that this development, in contrast to the one involving superposition,
does not rely on knowledge of the transform of a sinusoid, and can even
be used to determine this transform.

3.2.3 Examples of the Use of Transforms

Laplace transforms offer a convenient method for the solution of linear,
time-invariant differential equations, since they replace the integration and
differentiation required to solve these equations in the time domain by
algebraic manipulation. As an example, consider the differential equation

d*x d

E+3~d§+2x=e—‘ (>0 (3.22)

subject to the initial conditions
dx
)y =2 — (0" =0
X(0%) o @

The transform of both sides of Eqn. 3.22 is taken using theorem 2 (applied
twice in the case of the second derivative) and Table 3.1 to determine the
Laplace transform of e—.

s2X(s) — sx(0) — Z—;(O‘f) + 35X(s) — 3x(0%) + 2X(s) = (3.23)

s+ 1
6 The portion of this expression involving lim 7—0" could be eliminated if a second im-
pulse wi(7) were included in f''(r).
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B 7 x 10°
T (s + 1)(0.7 X 1065 + 1)

+ r——0+

Figure 3.5 Unity-gain follower.

a(s)

Collecting terms and solving for X(s) yields

2+ 847
9= s + 2)

Equations 3.10 and 3.12 show that since there is one first-order root and
one second-order root,

3.249)

A B, B,
(s+2)+(s+ 1)+(s+ 1)?

The coefficients are evaluated with the aid of Eqns. 3.11 and 3.13, with
the result that

X(s) =

(3.25)

-1 3 1
X(s) = .26
o= tsriter ©.26)
The inverse transform of X(s), evaluated with the aid of Table 3.1, is

() = —e 2 + et + e 3.27)

The operational amplifier connected as a unity-gain noninverting ampli-
fier (Fig. 3.5) is used as a second example illustrating Laplace techniques.
If we assume loading is negligible,

V(s) _ _a(s) 7 X 10°
Vids) 1+ a(s) (s+ 1X0.7 X 10~8s + 1) + 7 X 105
1
1071252 + 1.4 X 10-8s + 1 (3.28)
If the input signal is a unit step so that V(s) is 1/s,
Vs) = L
49 = (10717 & 1.4 X 1055 + 1)
|
(3.29)

= s[s2/(10% + 2(0.7)s/10° + 1]
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The final term in Eqn. 3.29 shows that the quadratic portion of the ex-
pression has a natural frequency w, = 10° and a damping ratio { = 0.7.
The corresponding time function is determined from Table 3.1, with the
result

e— 0.7 X 10%

SU@) = 1= 5o sin (07 X 107 + 45°) (3.30)

3.3 TRANSIENT RESPONSE

The transient response of an element or system is its output as a function
of time following the application of a specified input. The test signal chosen
to excite the transient response of the system may be either an input that
is anticipated in normal operation, or it may be a mathematical abstrac-
tion selected because of the insight it lends to system behavior. Commonly
used test signals include the impulse and time integrals of this function.

3.3.1 Selection of Test Inputs

The mathematics of linear systems insures that the same system infor-
mation is obtainable independent of the test input used, since the transfer
function of a system is clearly independent of inputs applied to the system.
In practice, however, we frequently find that certain aspects of system per-
formance are most easily evaluated by selecting the test input to accentuate
features of interest.

For example, we might attempt to evaluate the d-c gain of an operational
amplifier with feedback by exciting it with an impulse and measuring the
net area under the impulse response of the amplifier. This approach is
mathematically sound, as shown by the following development. Assume
that the closed-loop transfer function of the amplifier is G(s) and that the
corresponding impulse response [the inverse transform of G(s)] is g(¥).
The properties of Laplace transforms show that

/t g() dt = 5 G(s) (3.31)

The final value theorem applied to this function indicates that the net area
under impulse response is

lim /t g(t) dt = lim sé G(s) = G(0) (3.32)

=00 5= 0

Unfortunately, this technique involves experimental pitfalls. The first of
these is the choice of the time function used to approximate an impulse.
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In order for a finite-duration pulse to approximate an impulse satisfactorily,
it is necessary to have’

1

— 3.33
5| (3.:33)

f, K
where 7, is the width of the pulse and s, is the frequency of the pole of G(s)
that is located furthest from the origin.

It may be difficult to find a pulse generator that produces pulses narrow
enough to test high-frequency amplifiers. Furthermore, the narrow pulse
frequently leads to a small-amplitude output with attendant measurement
problems. Even if a satisfactory impulse response is obtained, the tedious
task of integrating this response (possibly by counting boxes under the
output display on an oscilloscope) remains. It should be evident that a
far more accurate and direct measurement of d-c gain is possible if a con-
stant input is applied to the amplifier.

Alternatively, high-frequency components of the system response are not
excited significantly if slowly time-varying inputs are applied as test inputs.
In fact, systems may have high-frequency poles close to the imaginary axis
in the s-plane, and thus border on instability; yet they exhibit well-behaved
outputs when tested with slowly-varying inputs.

For systems that have neither a zero-frequency pole nor a zero in their
transfer function, the step response often provides the most meaningful
evaluation of performance. The d-c gain can be obtained directly by
measuring the final value of the response to a unit step, while the initial
discontinuity characteristic of a step excites high-frequency poles in the
system transfer function. Adequate approximations to an ideal step are
provided by rectangular pulses with risetimes

1
< 3.39)
| $m |
(s as defined earlier) and widths
1
te > : (3.35)
| $n |

where s, is the frequency of the pole in the transfer function located closest
to the origin. Pulse generators with risetimes under 1 ns are available, and
these generators can provide useful information about amplifiers with
bandwidths on the order of 100 MHz.

7 While this statement is true in general, if only the d-c gain of the system is required,
any pulse can be used. An extension of the above development shows that the area under
the response to any unit-area input is identical to the area under the impulse response.
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3.3.2 Approximating Transient Responses

Examples in Section 3.1 indicated that in some cases it is possible to
approximate the transient response of a complex system by using that of
a much simpler system. This type of approximation is possible whenever
the transfer function of interest is dominated by one or two poles.

Consider an amplifier with a transfer function

Vo(s) ~ aogl (Tu'S + 1)
Vis) ¢
© s+ 1)

j=1

n>m alr >0 (3.36)

The response of this system to a unit-step input is

oot | LV | N 4otk
vt) = £ L Vi(s)} =a, + E%Ake / (3.37)

The A’s obtained from Eqn. 3.11 after slight rearrangement are

ﬂ<~ L 1)

= — = Tpk
A= —a0 = T:,- (3.38)
I (— -+ 1)
J=1 Tpk

Jkk

Assume that 7, >> all other 7’s. In this case, which corresponds to one pole
in the system transfer function being much closer to the origin than all
other singularities, Eqn. 3.38 can be used to show that 4; ~ a, and all
other A’s =~ 0 so that

V(1) = ao(l — e~t/ry) (3.39)

This single-exponential transient response is shown in Fig. 3.6. Experience
shows that the single-pole response is a good approximation to the actual
response if remote singularities are a factor of five further from the origin
than the dominant pole.

The approximate result given above holds even if some of the remote
singularities occur in complex conjugate pairs, providing that the pairs are
located at much greater distances from the origin in the s plane than the
dominant pole. However, if the real part of the complex pair is not more
negative than the location of the dominant pole, small-amplitude, high-
frequency damped sinusoids may persist after the dominant transient is
completed.
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Figure 3.6 Step response of first-order system,

Another common singularity pattern includes a complex pair of poles
much closer to the origin in the s plane than all other poles and zeros. An
argument similar to that given above shows that the transfer function of an
amplifier with this type of singularity pattern can be approximated by the
complex pair alone, and can be written in the standard form

Vs) a,
Vis) s w.?+ 20s/wn + 1

(3.40)

The equation parameters w, and { are called the natural frequency (expressed
in radians per second) and the damping ratio, respectively. The physical
significance of these parameters is indicated in the s-plane plot shown as
Fig. 3.7. The relative pole locations shown in this diagram correspond to
the underdamped case (¢ < 1). Two other possibilities are the critically
damped pair ({ = 1) where the two poles coincide on the real axis and the
overdamped case ({ > 1) where the two poles are separated on the real axis.
The denominator polynomial can be factored into two roots with real
coeflicients for the later two cases and, as a result, the form shown in Eqn.
3.40 is normally not used. The output provided by the amplifier described
by Eqn. 3.40 in response to a unit step is (from Table 3.1).

v(f) = ao {1 - T/_ll——s“? e $wnt gin (\/1 — Tt + q:):l (3.41)

& = tan-! [L/%f}

where
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Figure 3.7 s-plane plot of complex pole pair.

Figure 3.8 is a plot of v,(¢) as a function of normalized time w,? for various
values of damping ratio. Smaller damping ratios, corresponding to com-
plex pole pairs with the poles nearer the imaginary axis, are associated with
step responses having a greater degree of overshoot.

The transient responses of third- and higher-order systems are not as
easily categorized as those of first- and second-order systems since more
parameters are required to differentiate among the various possibilities.
The situation is simplified if the relative pole positions fall into certain
patterns. One class of transfer functions of interest are the Butterworth
filters. These transfer functions are also called maximally flat because of
properties of their frequency responses (see Section 3.4). The step responses
of Butterworth filters also exhibit fairly low overshoot, and because of
these properties feedback amplifiers are at times compensated so that their
closed-loop poles form a Butterworth configuration.

The poles of an nth-order Butterworth filter are located on a circle cen-
tered at the origin of the s-plane. For n even, the poles make angles 4
(2k + 1) 90°/n with the negative real axis, where k takes all possible in-
tegral values from 0 to (n/2) — 1. For n odd, one pole is located on the
negative real axis, while others make angles of -k (180°/n) with the nega-
tive real axis where k takes integral values from 1 to (n/2) — (1/2). Thus,
for example, a first-order Butterworth filter has a single pole located at
s = — w,. The second-order Butterworth filter has its poles located +45°
from the negative real axis, corresponding to a damping ratio of 0.707.
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Figure 3.8 Step responses of second-order system.

The transfer functions for third- and fourth-order Butterworth filters are

1
Bi(s) = $3/wnd + 25%wn? + 25/wn + 1 (3.42)

and
1

st/ wnt + 2.615%/w,3 + 3.425%/w,* + 2.61s/w, + 1
respectively. Plots of the pole locations of these functions are shown in

Fig. 3.9. The transient outputs of these filters in response to unit steps are
shown in Fig. 3.10.

By(s) = (3.43)

3.4 FREQUENCY RESPONSE

The frequency response of an element or system is a measure of its
steady-state performance under conditions of sinusoidal excitation. In
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Figure 3.10 Step responses for third- and fourth-order Butterworth filters.

steady state, the output of a linear element excited with a sinusoid at a
frequency w (expressed in radians per second) is purely sinusoidal at fre-
quency ». The frequency response is expressed as a gain or magnitude
M(w) that is the ratio of the amplitude of the output to the input sinusoid
and a phase angle ¢(w) that is the relative angle between the output and
input sinusoids. The phase angle is positive if the output leads the input.
The two components that comprise the frequency response of a system
with a transfer function G(s) are given by

M(w) = | G(jw) | (3.44a)

Im[G(jw)]

3.44b
Re[G(jw)] (3.440)

$(w) = % G(jw) = tan™!

It is frequently necessary to determine the frequency response of a sys-
tem with a transfer function that is a ratio of polynomials in s. One pos-
sible method is to evaluate the frequency response by substituting jw for s
at all frequencies of interest, but this method is cumbersome, particularly
for high-order polynomials. An alternative approach is to present the in-
formation concerning the frequency response graphically, as described
below.
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The transfer function is first factored so that both the numerator and
denominator consist of products of first- and second-order terms with real
coefficients. The function can then be written in the general form

n

G(s):E;B II s+ II (iz+2§‘s+ 1)

first- complex Wni Wni
order zero
Zeros pairs

X I l I, | | 3.45
ﬁr;t- (Tjs + 1) co{nplex (52/wnk2 + 2§‘ks/wnk + 1) ( )
order pole
poles pairs

While several methods such as Lin’s method?® are available for factoring
polynomials, this operation can be tedious unless machine computation is
employed, particularly when the order of the polynomial is large. Fortu-
nately, in many cases of interest the polynomials are either of low order
or are available from the system equations in factored form.

Since G(jw) is a function of a complex variable, its angle ¢(w) is the sum
of the angles of the constituent terms. Similarly, its magnitude M(w) is the
product of the magnitudes of the components. Furthermore, if the magni-
tudes of the components are plotted on a logarithmic scale, the log of M
is given by the sum of the logs corresponding to the individual com-
ponents.®

Plotting is simplified by recognizing that only four types of terms are
possible in the representation of Eqn. 3.45:

1. Constants, a.

2. Single- or multiple-order differentiations or integrations, s*, where n
can be positive (differentiations) or negative (integrations).

3. First-order terms (rs + 1), or its reciprocal.

4. Complex conjugate pairs s2/w,? + 2¢{s/w. + 1, or its reciprocal.

8S. N. Lin, “A Method of Successive Approximations of Evaluating the Real and Com-
plex Roots of Cubic and Higher-Order Equations,” J. Math. Phys., Vol. 20, No. 3, August,
1941, pp. 231-242.

2 The decibel, equal to 20 log,, [magnitude] is often used for these manipulations. This
usage is technically correct only if voltage gains or current gains between portions of a
circuit with identical impedance levels are considered. The issue is further confused when
the decibel is used indiscriminately to express dimensioned quantities such as transcon-
ductances. We shall normally reserve this type of presentation for loop-transmission
manipulations (the loop transmission of any feedback system must be dimensionless), and
simply plot signal ratios on logarithmic coordinates.
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It is particularly convenient to represent each of these possible terms as
a plot of M (on a logarithmic magnitude scale) and ¢ (expressed in degrees)
as a function of w (expressed in radians per second) plotted on a logarith-
mic frequency axis. A logarithmic frequency axis is used because it provides
adequate resolution in cases where the frequency range of interest is wide
and because the relative shape of a particular response curve on the log
axis does not change as it is frequency scaled. The magnitude and angle of
any rational function can then be determined by adding the magnitudes
and angles of its components. This representation of the frequency response
of a system or element is called a Bode plot.

The magnitude of a term a, is simply a frequency-independent constant,
with an angle equal to 0° or 180° depending on whether the sign of a, is
positive or negative, respectively.

Both differentiations and integrations are possible in feedback systems.
For example, a first-order high-pass filter has a single zero at the origin
and, thus, its voltage transfer ratio includes a factor s. A motor (frequently
used in mechanical feedback systems) includes a factor 1/s in the transfer
function that relates mechanical shaft angle to applied motor voltage, since
a constant input voltage causes unlimited shaft rotation. Similarly, various
types of phase detectors are examples of purely electronic elements that
have a pole at the origin in their transfer functions. This pole results be-
cause the voltage out of such a circuit is proportional to the phase-angle
difference between two input signals, and this angle is equal to the integral
of the frequency difference between the two signals. We shall also see that
it is often convenient to approximate the transfer function of an amplifier
with high d-c gain and a single low-frequency pole as an integration.

The magnitude of a term s” is equal to w", a function that passes through
1 at o = 1 and has a slope of n on logarithmic coordinates. The angle of
this function is n X 90° at all frequencies.

The magnitude of a first order pole 1/(rs + 1) is

1

\/1'2(.02 +1 (
while the angle of this function is
¢ = —tan"lrw (3.47)

The magnitude and angle for the first-order pole are plotted as a function
of normalized frequency in Fig. 3.11. An essential feature of the magnitude
function is that it can be approximated by two straight lines, one lying
along the M = 1 line and the other with a slope of — 1, which intersect at
w = 1/7. (This frequency is called the corner frequency.) The maximum
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Figure 3.11 Frequency response of first-order system.

departure of the actual curves from the asymptotic representation is a

factor of 0.707 and occurs at the corner frequency. The magnitude and

angle for a first-order zero are obtained by inverting the curves shown for

the pole, so that the magnitude approaches an asymptotic slope of +1

beyond the corner frequency, while the angle changes from 0 to 4-90°.
The magnitude for a complex-conjugate pole pair

1
s/ wat 4 208/wn + 1

is

o Y (3.48)
(-'-’n2 + (1 B w_n2)

with the corresponding angle

b= —tan /on (3.49)

1 — w?/w,?

These functions are shown in Bode-plot form as a parametric family of
curves plotted against normalized frequency w/w, in Fig. 3.12. Note that
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the asymptotic approximation to the magnitude is reasonably accurate
providing that the damping ratio exceeds 0.25. The corresponding curves
for a complex-conjugate zero are obtained by inverting the curves shown
in Fig. 3.12.

It was stated in Section 3.3.2 that feedback amplifiers are occasionally
adjusted to have Butterworth responses. The frequency responses for third-
and fourth-order Butterworth filters are shown in Bode-plot form in Fig.
3.13. Note that there is no peaking in the frequency response of these
maximally-flat transfer functions. We also see from Fig. 3.12 that the damp-
ing ratio of 0.707, corresponding to the two-pole Butterworth configuration,
divides the second-order responses that peak from those which do not. The
reader should recall that the flatness of the Butterworth response refers to
its frequency response, and that the step responses of all Butterworth filters
exhibit overshoot.

The value associated with Bode plots stems in large part from the ease
with which the plot for a complex system can be obtained. The overall
system transfer function can be obtained by the following procedure.
First, the magnitude and phase curves corresponding to all the terms in-
cluded in the transfer function of interest are plotted. When the first- and
second-order curves (Figs. 3.11 and 3.12) are used, they are located along
the frequency axis so that their corner frequencies correspond to those of
the represented factors. Once these curves have been plotted, the magnitude
of the complete transfer function at any frequency is obtained by adding
the linear distances from unity magnitude of all components at the fre-
quency of interest. The same type of graphical addition can be used to ob-
tain the complete phase curve. Dividers, or similar aids, can be used to per-
form the graphical addition.

In practice, the asymptotic magnitude curve is usually sketched by draw-
ing a series of intersecting straight lines with appropriate slope changes at
intersections. Corrections to the asymptotic curve can be added in the
vicinity of singularities if necessary.

The information contained in a Bode plot can also be presented as a
gain-phase plot, which is a more convenient representation for some op-
erations. Rectangular coordinates are used, with the ordinate representing
the magnitude (on a logarithmic scale) and the abscissa representing the
phase angle in degrees. Frequency expressed in radians per second is a
parameter along the gain-phase curve. Gain-phase plots are frequently
drawn by transferring data from a Bode plot.

The transfer function

107(10~%s + 1)
s(0.01s + 1) (s2/10'2 + 2(0.2)s/10% + 1)

G(s) = (3.50)
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is used to illustrate construction of Bode and gain-phase plots. This func-
tion includes these five factors:

1. A constant 107,

2. A single integration.

3. A first-order pole with a time constant of 0.01 second, corresponding
to a corner frequency of 100 radians per second.
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4. A first-order zero with a time constant of 10~* seconds, corresponding
to a corner frequency of 10* radians per second.

5. A complex-conjugate pole pair with a natural frequency of 10%
radians per second and a damping ratio of 0.2.

The individual factors are shown in Bode-plot form on a common fre-
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quency scale in Fig. 3.14a. These factors are combined to yield the Bode
plot for the complete transfer function in Fig. 3.14b. The same information
is presented in gain-phase form in Fig. 3.15.

3.5 RELATIONSHIPS BETWEEN TRANSIENT RESPONSE
AND FREQUENCY RESPONSE

It is clear that either the impulse response (or the response to any other
transient input) of a linear system or its frequency response completely
characterize the system. In many cases experimental measurements on a
closed-loop system are most easily made by applying a transient input.
We may, however, be interested in certain aspects of the frequency response
of the system such as its bandwidth defined as the frequency where its gain
drops to 0.707 of the midfrequency value.

Since either the transient response or the frequency response completely
characterize the system, it should be possible to determine performance in
one domain from measurements made in the other. Unfortunately, since
the measured transient response does not provide an equation for this
response, Laplace techniques cannot be used directly unless the time re-
sponse is first approximated analytically as a function of time. This section
lists several approximate relationships between transient response and fre-
quency response that can be used to estimate one performance measure
from the other. The approximations are based on the properties of first-
and second-order systems.

It is assumed that the feedback path for the system under study is fre-
quency independent and has a magnitude of unity. A system with a fre-
quency-independent feedback path f, can be manipulated as shown in Fig.
3.16 to yield a scaled, unity-feedback system. The approximations given
are valid for the transfer function V,/V,, and V, can be determined by
scaling values for V, by 1/fs.

It is also assumed that the magnitude of the d-c loop transmission is very
large so that the closed-loop gain is nearly one at d-c. It is further assumed
that the singularity closest to the origin in the s plane is either a pole or a
complex pair of poles, and that the number of poles of the function exceeds
the number of zeros. If these assumptions are satisfied, many practical
systems have time domain-frequency domain relationships similar to those
of first- or second-order systems.

The parameters we shall use to describe the transient response and the
frequency response of a system include the following.

(a) Rise time ¢,. The time required for the step response to go from 10
to 909 of final value.
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Figure 3.16 System topology for approximate relationships. (4) System with
frequency-independent feedback path. (b) System represented in scaled, unity-
feedback form.

(b) The maximum value of the step response P,.

(c) The time at which P, occurs ¢,.

(d) Settling time z,. The time after which the system step response re-
mains within 2% of final value.

(e) The error coefficient e;. (See Section 3.6.) This coefficient is equal
to the time delay between the output and the input when the system has
reached steady-state conditions with a ramp as its input.

(f) The bandwidth in radians per second w, or hertz f; (fi = w/2m).
The frequency at which the response of the system is 0.707 of its low-
frequency value.

(g) The maximum magnitude of the frequency response M.

(h) The frequency at which M, occurs w,,.

These definitions are illustrated in Fig. 3.17.
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For a first-order system with V,(s)/V(s) = 1/(rs + 1), the relationships
are

f, = 2.2r = i—hz = O’ths (3.51)
Po=M,=1 (3.52)
1y = (3.53)
t, = 4r (3.54)
er =1 (3.55)
wp = 0 (3.56)

For a second-order system with V,(s)/Vi(s) = 1/(s?/w.? 4+ 2{s/wa + 1)
and § £ cos~!{ (see Fig. 3.7) the relationships are

22202 3.57)
T wa fa '
P, =14+ ex ___i = 1 4 g-rltand (3.58)
’ PVi— '
™ i
= = 3.59
t Wn \/1_5-2 wy, sin @ ( )
4 4
e~ — = (3.60)
Cwn w, COS 0
2 2
o = 5 _ 2cosé (.61)
Wn Wn
1 1 .
M, = ¢ < 0707, 6 > 45 (3.62)

T2a1- sin29
w, = wn V1—202=w,V—cos20 <0707, 6>45 (3.63)
on = wn (1 = 202 4+ V2 —4p2 4 4¢4) 172 (3.64)

If a system step response or frequency response is similar to that of an
approximating system (see Figs. 3.6, 3.8, 3.11, and 3.12) measurements of
t,, Po, and ¢, permit estimation of w, w,, and M, or vice versa. The steady-
state error in response to a unit ramp can be estimated from either set of
measurements.
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Figure 3.17 Parameters used to describe transient and frequency responses.
(a) Unit-step response. (b) Frequency response. (c¢) Ramp response.
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One final comment concerning the quality of the relationship between
0.707 bandwidth and 10 to 909 step risetime (Eqns. 3.51 and 3.57) is in
order. For virtually any system that satisfies the original assumptions, in-
dependent of the order or relative stability of the system, the product ¢,fs
is within a few percent of 0.35. This relationship is so accurate that it really
isn’t worth measuring f; if the step response can be more easily determined.

3.6 ERROR COEFFICIENTS

The response of a linear system to certain types of transient inputs may
be difficult or impossible to determine by Laplace techniques, either be-
cause the transform of the transient is cumbersome to evaluate or because
the transient violates the conditions necessary for its transform to exist.
For example, consider the angle that a radar antenna makes with a fixed
reference while tracking an aircraft, as shown in Fig. 3.18. The pointing
angle determined from the geometry is

v
6 = tan™! [7 t:l (3.65)
Line of flight

Aircraft
velocity = v

Radar

antenna %

\S v 7

Length =/

Figure 3.18 Radar antenna tracking an airplane.
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assuming that 8 = 0 at r = 0. This function is not transformable using our
form of the Laplace transform, since it is nonzero for negative time and
since no amount of time shift makes it zero for negative time. The expansion
introduced in this section provides a convenient method for evaluating
the performance of systems excited by transient inputs, such as Eqn. 3.65,
for which all derivatives exist at all times.

3.6.1 The Error Series

Consider a system, initially at rest and driven by a single input, with a
transfer function G(s). Furthermore, assume that G(s) can be expanded in
a power series in s, or that

G(s) =go+ g15s + gos* + -+ + (3.66)
If the system is excited by an input »:(¢), the output signal as a function of
time is
vo(1) = £7G(s)Vi(s)]
= L7[goVil(s) + gisVi(s) + gus*Vi(s) + --- +]1 (3.67)
If Eqn. 3.66 is inverse transformed term by term, and the differentiation
property of Laplace transforms is used to simplify the result, we see that?

dvi(? 0]
a T8 g

The complete series yields the correct value for v,(¢) in cases where the func-
tion v,(¢) and all its derivatives exist at all times.

In practice, the method is normally used to evaluate the error (or dif-
ference between ideal and actual output) that results for a specified input.
If Eqn. 3.68 is rewritten using the error e(7) as the dependent parameter,
the resultant series

vt) = govd(t) + g1 + -+ (3.68)

dv(t) d?v,(1)
e(t) = et —

() €o ()+el di + e dr
is called an error series, and the e’s on the right-hand side of this equation
are called error coefficients.

The error coefficients can be obtained by two equivalent expansion
methods. A formal mathematical approach shows that

_ L d VL)
e = 1 o [ Vi(s)]sﬂ (3.70)

ot (3.69)

8 A mathematically satisfying development is given in G. C. Newton, Jr., L. A. Gould,
and J. F. Kaiser, Analytical Design of Linear Feedback Controls, Wiley, New York, 1957,
Appendix C. An expression that bounds the error when the series is truncated is also
given in this reference.
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where V (s)/Vi(s) is the input-to-error transfer function for the system.
Alternatively, synthetic division can be used to write the input-to-error
transfer function as a series in ascending powers of s. The coefficient of
the s* term in this series is e.

While the formal mathematics require that the complete series be used to
determine the error, the series converges rapidly in cases of practical in-
terest where the error is small compared to the input signal. (Note that if
the error is the same order of magnitude as the input signal in a unity-
feedback system, comparable results can be obtained by turning off the
system.) Thus in reasonable applications, a few terms of the error series
normally suffice. Furthermore, the requirement that all derivatives of the
input signal exist can be usually relaxed if we are interested in errors at times
separated from the times of discontinuities by at least the settling time of
the system. (See Section 3.5 for a definition of settling time.)

3.6.2 Examples

Some important properties of feedback amplifiers can be illustrated by
applying error-coefficient analysis methods to the inverting-amplifier con-
nection shown in Fig. 3.19a. A block diagram obtained by assuming neg-
ligible loading at the input and output of the amplifier is shown in Fig.
3.19b. An error signal is generated in this diagram by comparing the actual
output of the amplifier with the ideal value, — V. The input-to-error trans-
fer function from this block diagram is

V) -1
Vis) 1+ a(s)/2

Operational amplifiers are frequently designed to have an approximately
single-pole open-loop transfer function, implying

3.7

1)

rs + 1

The error coefficients assuming this value for a(s) are easily evaluated by
means of synthetic division since

a(s) ~ (3.72)

Vls) -1  =2— s
Vis) 14+ ao/2rs+ 1) ag+ 2+ 2rs

o 2 2r (l 2 )
T T4 +2 at2 a+2)

472
LA b 2., Ni
+(¢10+2)2<1 a0+2)s+ + G.79)
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+ a(s) b0 +
Vi = VU
(a)
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20 v v
Vi 5 —a(s) -
! -/
A
2
(b)

Figure 3.19 Unity-gain inverter. (a) Connection. (b) Block diagram including
error signal.

If a,, the amplifier d-c gain, is large, the error coefficients are

2
€y X — —
ay
2r
e X~ — —
ayp

472

€y Y —
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— N)npn
e, =T uxi (3.74)
aop®

The error coefficients are easily interpreted in terms of the loop transmis-
sion of the amplifier-feedback network combination in this example. The
magnitude of the zero-order error coefficient is equal to the reciprocal of the
d-c loop transmission. The first-order error-coefficient magnitude is equal
to the reciprocal of the frequency (in radians per second) at which the loop
transmission is unity, while the magnitude of each subsequent higher-order
error coefficient is attenuated by a factor equal to this frequency. These
results reinforce the conclusion that feedback-amplifier errors are reduced
by large loop transmissions and unity-gain frequencies.

If this amplifier is excited with a ramp v,(¢) = Rt, the error after any
start-up transient has died out is

dvi(t) 2Rt 2Rt

= e —_— — '7
7 + + s s (3.75)

v(t) = eowi(t) + e

Because the maximum input-signal level is limited by linearity considera-
tions, (the voltage Rt must be less than the voltage at which the amplifier
saturates) the second term in the error series frequently dominates, and in
these cases the error is

v(t) ~ — 2R (3.76)
ao

implying the actual ramp response of the amplifier lags behind the ideal
output by an amount equal to the slope of the ramp divided by the unity-
loop-transmission frequency. The ramp response of the amplifier, assuming
that the error series is dominated by the e; term, is compared with the
ramp response of a system using an infinite-gain amplifier in Fig. 3.20.
The steady-state ramp error, introduced earlier in Eqns. 3.55 and 3.61 and
illustrated in Fig. 3.17¢, is evident in this figure.

One further observation lends insight into the operation of this type of
system. If the relative magnitudes of the input signal and its derivatives are
constrained so that the first-order (or higher) terms in the error series domi-
nate, the open-loop transfer function of the amplifier can be approximated
as an integration.

a(s) ~ ao (3.77)

TS
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v,(t)

Actual v,(t) Rt + 2R7

ual v, = —

2RT ° 90
L)

t——>

Ideal v,(t) = —Rt

Figure 3.20 Ideal and actual ramp responses.

In order for the output of an amplifier with this type of open-loop gain
to be a ramp, it is necessary to have a constant error signal applied to the
amplifier input.

Pursuing this line of reasoning further shows how the open-loop transfer
function of the amplifier should be chosen to reduce ramp error. Error is
clearly reduced if the quantity ao/7 is increased, but such an increase re-
quires a corresponding increase in the unity-loop-gain frequency. Unfor-
tunately oscillations result for sufficiently high unity-gain frequencies. Al-
ternatively, consider the result if the amplifier open-loop transfer function
approximates a double integration

ag(TS + 1)

a(s) ~ =

(3.78)
(The zero is necessary to insure stability. See Chapter 4.) The reader should
verify that both e, and e, are zero for an amplifier with this open-loop
transfer function, implying that the steady-state ramp error is zero. Further
manipulation shows that if the amplifier open-loop transfer function in-
cludes an nth order integration, the error coefficients e, through e,_, are
Zero.
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+ 1 7 4+ b e _] l "
v, (t) Buffer v,(t) vp(t)
amplifier _

Figure 3.21 Sample-and-hold circuit.

The use of error coefficients to analyze systems excited by pulse signals
is illustrated with the aid of the sample-and-hold circuit shown in Fig.
3.21. This circuit consists of a buffer amplifier followed by a switch and
capacitor. In practice the switch is frequently realized with a field-effect
transistor, and the 100-Q resistor models the on resistance of the transistor.
When the switch is closed, the capacitor is charged toward the voltage vy
through the switch resistance. If the switch is opened at a time ¢4, the volt-
age vo(?) should ideally maintain the value v;(z4) for all time greater than
t4. The buffer amplifier is included so that the capacitor charging current
is supplied by the amplifier rather than the signal source. A second buffer
amplifier is often included following the capacitor to isolate it from loads,
but this second amplifier is not required for the present example.

There are a variety of effects that degrade the performance of a sample-
and-hold circuit. One important source of error stems from the fact that
vo(f) is generally not equal to v(¢) unless v,(¢) is time invariant because of
the dynamics of the buffer amplifier and the switch-capacitor combination.
Thus an incorrect value is held when the switch is opened.

Error coefficients can be used to predict the magnitude of this tracking
error as a function of the input signal and the system dynamics. For
purposes of illustration, it is assumed that the buffer amplifier has a single-
pole transfer function such that

Vs) 1
Vis) 10-%s + 1

(3.79)

Since the time constant associated with the switch-capacitor combination
is also 1 us, the input-to-output transfer function with the switch closed
(in which case the system is linear, time-invariant) is

Vs) 1
Vi(s) (10755 + 1)

(3.80)
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With the switch closed the output is ideally equal to the input, and thus
the input-to-error transfer function is

Vs) | Vos) 1071%* + 2 X 10~
Vs) Vs)  (10~%s + 1)

(3.81)

The first three error coefficients associated with Eqn. 3.81, obtained by
means of synthetic division, are

ey = 0
e; = 2 X 10~ % sec (3.82)
ey = —3 X 1012 sec?

Sample-and-hold circuits are frequently used to process pulses such as
radar echos after these signals have passed through several amplifier stages.
In many cases the pulse following amplification can be well approximated
by a Gaussian signal, and for this reason a signal

vi(t) = e~ A0 (3.83)

is used as a test input.
The first two derivatives of v,(¢) are

d—l;'f’) = — 10107e~10/D (3.84)
and
‘”;;fi’ = — 1010710 4 102072~ 10%/D) (3.85)

The maximum magnitude of dv./dt is 6.07 X 10* volts per second occurring
at ¢t = =+10-% seconds, and the maximum magnitude of d%v./dr? is 10'°
volts per second squared at ¢ = 0. If the first error coefficient is used to
estimate error, we find that a tracking error of approximately 0.12 volt
(129 of the peak-signal amplitude) is predicted if the switch is opened at
t = 4105 seconds. The error series converges rapidly in this case, with
its second term contributing a maximum error of 0.03 volt at ¢t = 0.

PROBLEMS

P3.1

An operational amplifier is connected to provide a noninverting gain of
10. The small-signal step response of the connection is approximately first
order with a 0 to 6397 risetime of 1 us. Estimate the quantity a(s) for the
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amplifier, assuming that loading at the amplifier input and output is in-
significant.

P3.2
The transfer function of a linear system is
1
(s*+ 0.554 1)0.1s 4+ 1)

A(s) =

Determine the step response of this system. Estimate (do not calculate ex-
actly) the percentage overshoot of this system in response to step excitation.

P3.3
Use the properties of Laplace transforms to evaluate the transform of
the triangular pulse signal shown in Fig. 3.22.

P3.4
Use the properties of Laplace transforms to evaluate the transform of the
pulse signal shown in Fig. 3.23.

P3.5

The response of a certain linear system is approximately second order,
with a d-c gain of one. Measured performance shows that the peak value
of the response to a unit step is 1.38 and that the time for the step response
to first pass through one is 0.5 us. Determine second-order parameters
that can be used to model the system. Also estimate the peak value of the
output that results when a unit impulse is applied to the input of the sys-
tem and the time required for the system impulse response to first return
to zero. Estimate the quantities M, and f; for this system.

P3.6

A high-fidelity audio amplifier has a transfer function

100s
(0.05s + 1)(s2/4 X 101 4 5/2 X 10° 4 1)(0.5 X 1085 4 1)

A(s) =

fir)

t—

Figure 3.22 Triangular pulse.
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fte)

flt) =1—cost, 0 <t < 2m
0 otherwise

2n

Figure 3.23 Raised cosine pulse.

Plot this transfer function in both Bode and gain-phase form. Recognize
that the high- and low-frequency singularities of this amplifier are widely
spaced and use this fact to estimate the following quantities when the
amplifier is excited with a 10-mV step.

(a) The peak value of the output signal.

(b) The time at which the peak value occurs.

(c) The time required for the output to go from 2 to 18 V.
(d) The time until the output. droops to 7.4 V.

P3.7

An oscilloscope vertical amplifier can be modeled as having a transfer
function equal to 4,/(10~% + 1)°. Estimate the 10 to 90%; rise time of
the output voltage when the amplifier is excited with a step-input signal.

P3.8

An asymptotic plot of the measured open-loop frequency response of
an operational amplifier is shown in Fig. 3.24a. The amplifier is connected
as shown in Fig. 3.24b. (Y ou may neglect loading.) Show that lower values
of « result in more heavily damped responses. Determine the value of «
that results in the closed-loop step response of the amplifier having an
overshoot of 209 of final value. What is the 10 to 90 % rise time in response
to a step for this value of «?

P3.9
A feedback system has a forward gain a(s) = K/s(rs + 1) and a feed-
back gain f = 1. Determine conditions on K and 7 so that e, and e, are
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(b)

Figure 3.24 Inverting amplifier. (@) Amplifier open-loop response. (b) Connection.

both zero. What is the steady-state error in response to a unit ramp for
this system?

P3.10

An operational amplifier connected as a unity-gain noninverting amplifier
is excited with an input signal

v(t) = 5 tan=! 105

Estimate the error between the actual and ideal outputs assuming that the
open-loop transfer function can be approximated as indicated below.
(Note that these transfer functions all have identical values for unity-gain
frequency.)
(a) a(s) = 107/s
(b) a(s) = 10*3(10~%s + 1)/s?
(©) a(s) = 10131065 + 1)2/s3
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bg *+ bys +--++ bys"]

+
V; m Ve > a(s) Vo

Figure 3.25 System with feedforward path.

P3.11

The system shown in Fig. 3.25 uses a feedforward path to reduce errors.
How should the b’s be chosen to reduce error coefficients e, through e, to
zero? Can you think of any practical disadvantages to this scheme?



CHAPTER IV
STABILITY

4.1 THE STABILITY PROBLEM

The discussion of feedback systems presented up to this point has tacitly
assumed that the systems under study were szable. A stable system is defined
in general as one which produces a bounded output in response to any
bounded input. Thus stability implies that

/ lvo()]dt < M < .1
for any input such that
/ lor()|dt < N < (4.2)

If we limit our consideration to linear systems, stability is independent of
the input signal, and the sufficient and necessary condition for stability is
that all poles of system transfer function lie in the left half of the s plane.
This condition follows directly from Eqn. 4.1, since any right-half-plane
poles contribute terms to the output that grow exponentially with time and
thus are unbounded. Note that this definition implies that a system with poles
on the imaginary axis is unstable, since its output is not bounded unless its
input is rather carefully chosen.

The origin of the stability problem can be described in intuitively appeal-
ing through nonrigorous terms as follows. If a feedback system detects an
error between the actual and desired outputs, it attempts to reduce this
error to zero. However, changes in the error signal that result from correc-
tive action do not occur instantaneously because of time delays around the
loop. In a high-gain system, these delays can cause a tendency to over-
correct. If the magnitude of the overcorrection exceeds the magnitude of
the initial error, instability results. Signal amplitudes grow exponentially
until some nonlinearity limits further growth, at which time the system
either saturates or oscillates in a constant-amplitude fashion called a limit
cycle.! The feedback system designer must always temper his desire to

1 The effect of nonlinearities on the steady-state amplitude reached by an unstable system
is investigated in Chapter 6.
109
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Vo (s)

Vi(s) u m a(s)

fts)

Figure 4.1 Block diagram of single-loop amplifier.

provide a large magnitude and a high unity-gain frequency for the loop
transmission with the certain knowledge that sufficiently high values for
these quantities invariably lead to instability.

As a specific example of a system with potentially unstable behavior, con-
sider a simple single-loop system of the type shown in Fig. 4.1, with

=G + 1)3 (4.3)
and
fis) =1 (4.4)
The loop transmission for this system is
—a
—a(s)f(s) = oF ‘;)3 (4.5)
or for sinusoidal excitation,
—dyp —Aay
— = 4.6
a(jo)f(jw) = Got 1~ —jo' — 3 + Yo £ 1 (4.6)
If we evaluate Eqn. 4.6 at w = +/3, we find that
~ . = a
—aUVIHGVI) = ¢ 47

If the quantity a, is chosen equal to 8, the system has a real, positive loop
transmission with a magnitude of one for sinusoidal excitation at three
radians per second.

We might suspect that a system with a loop transmission of 41 is
capable of oscillation, and this suspician can be confirmed by examining
the closed-loop transfer function of the system with a, = 8. In this case,

a(s) _ 8

AS) = o)) s 3t 35 £ 9

8
G+ 3G +A3) 6 = jV3I)

(4.8)
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This transfer function has a negative, real-axis pole and a pair of poles
located on the imaginary axis at s = = j4/3. An argument based on the
properties of partial-fraction expansions (see Section 3.2.2) shows that the
response of this system to many common (bounded) transient signals
includes a constant-amplitude sinusoidal component.

Further increases in low-frequency loop-transmission magnitude move
the pole pair into the right-half plane. For example, if we combine the
forward-path transfer function

()= 2 4.9)
a(s) = Gt Ip .
with unity feedback, the resultant closed-loop transfer function is
64
Als) = s34 352 4+ 35 4+ 65
4
6 (4.10)

TGN —1+2V36 — 1= j24/3)

With this value for a,, the system transient response will include a sinusoidal
component with an exponentially growing envelope.

If the dynamics associated with the loop transmission remain fixed, the
system will be stable only for values of a, less than 8. This stability is
achieved at the expense of desensitivity. If a value of @, = 1 is used so that

a(s)f(s) = G+ 1y (4.11)
we find all closed-loop poles are in the left-half plane, since
A(s) = !
s34 3524 35 + 2
= 1 (4.12)

(s +2) (s + 0.5 + j2/3/2) (s + 0.5 — j/3/2)
in this case.

In certain limited cases, a binary answer to the stability question is
sufficient. Normally, however, we shall be interested in more quantitative
information concerning the ‘“degree’” of stability of a feedback system.
Frequently used measures of relative stability include the peak magnitude
of the frequency response, the fractional overshoot in response to a step
input, the damping ratio associated with the dominant pole pair, or the
variation of a certain parameter that can be tolerated without causing
absolute instability. Any of the measures of relative stability mentioned
above can be found by direct calculations involving the system transfer
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function. While such determinations are practical with the aid of machine
computation, insight into system operation is frequently obscured if this
process is used. The techniques described in this chapter are intended not
only to provide answers to questions concerning stability, but also (and
more important) to indicate how to improve the performance of unsatis-
factory systems.

4.2 THE ROUTH CRITERION

The Routh test is a mathematical method that can be used to determine
the number of zeros of a polynomial with positive real parts. If the test
is applied to the denominator polynomial of a transfer function (also
called the characteristic equation) the absence of any right-half-plane zeros
of the characteristic equation guarantees system stability. One computa-
tional advantage of the Routh test is that it is not necessary to factor the
polynomial to apply the test.

4.2.1 Evaluation of Stability

The test is described for a polynomial of the form
P(s) = aos™ + ais™ ! + -+ 4+ a,_15 + a, 4.13)

A necessary but not sufficient condition for all the zeros of Eqn. 4.13 to
have negative real parts is that all the a’s be present and that they all have
the same sign. If this necessary condition is satisfied, an array of numbers
is generated from the a’s as follows. (This example is for # even. For n
odd, a, terminates the second row.)

dy as ay . . an_o a,
a a; as . . An_1 0
a,ds — Aaopdsy a1dy — doas aa, — 00-0
e R VAN
a; a a;
blas - a1b2 b1a5 - a1b3
—— = (] T = (y 0 0
by b
C1b2 - b1C2
— =4 . . . . 0 0
C1
0 0 0 0

(4.14)



The Routh Criterion 113

As the array develops, progressively more elements of each row become
zero, until only the first element of the n + 1 row is nonzero. The total
number of sign changes in the first column is then equal to the number of
zeros of the original polynomial that lie in the right-half plane.

The use of the Routh criterion is illustrated using the polynomial

P(s) = s* + 9s* + 145 + 266s + 260 (4.15)

Since all coefficients are real and positive, the necessary condition for all
roots of Eqn. 4.15 to have negative real parts is satisfied. The array is

1 14 260
9 266 0
9><14—1><266=~_EQ 9><26O—1><0=260 0
9 / 9 9
(sign change)
—(140/9) X 266 — 9 X 260 2915
= 0
_(140/9/+ 7 0
(sign change)
260 — [—
(2915/7) X 6;)915 [7 (140/9) x 0] — 260 0 0
/ (4.16)

The two sign changes in the first column indicate two right-half-plane
zeros. This result can be verified by factoring the original polynomial,
showing that

54+ 953 + 1452 4+ 2665 +260 = (s — 1 +j5)(s — 1 — j5) (s + 1) (s + 10)

@.17)
A second example is provided by the polynomial
P(s) = st + 13s® + 5852 + 3065 + 260 (4.18)
The corresponding array is
1 58 - 260
13 306 0
13 X 58 — 1 X306 448 13 X260 —1 X0
13 E) 13 =260 0
(448/13) X 306 — 13 X 260 _ 23287 0 0
448/13 112
23287/112) X 260 — (448/13 0
e 23287/112( 0~ 260 0 0
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Factoring verifies the result that there are no right-half-plane zeros for
this polynomial, since

st 4+ 13s5® 4+ 5852 + 306s + 260
=@6+1+5)6+1—=/j5G+ 1D+ 10) (4.20)

Two kinds of difficulties can occur when applying the Routh test. It is
possible that the first element in one row of the array is zero. In this case,
the original polynomial is multiplied by s + «, where « is any positive real
number, and the test is repeated. This procedure is illustrated using the
polynomial

P(s) = 55+ st + 10s® + 10s2 + 20s + § (4.21)
The first element of the third row of the array is zero.
1 10 20
1 10 5
0 15 0 (4.22)

The difficulty is resolved by multiplying Eqn. 4.21 by s + 1, yielding

P'(s) = s8 + 25 + 11s* + 20s® + 30s2 + 255 + 5 4.23)
The array for Eqn. 4.23 is

1 11 30 5
2 20 25 0
1 17.5 5 0
—15 15 0 0
—18.5 5 0 0
10.95 0 0 0

5 0 0 0 (424

Since multiplication by s + 1 did not add any right-half-plane zeros to Eqn.
4.21, we conclude that the two right-half-plane zeros indicated by the array
of Eqn. 4.24 must be contained in the original polynomial.

The second possibility is that an entire row becomes zero. This condition
indicates that there is a pair of roots on the imaginary axis, a pair of real
roots located symmetrically with respect to the origin, or both kinds of
pairs in the original polynomial. The terms in the row above the all-zero
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row are used as coefficients of an equation in even powers of s called the
auxiliary equation. The zeros of this equation are the pairs mentioned above.
The auxiliary equation can be differentiated with respect to s, and the
resultant coefficients are used in place of the all-zero row to continue the
array. This type of difficulty is illustrated with the polynomial

P(s) = st + 118 + 1s2+ 11s + 10 = (s + /) (s — j) (s + 1) (s + 10)

(4.25)
The array is
1 11 10
11 11 0
10 10 0
0 0 0 (4.26)
The auxiliary equation is
Q(s) = 10s2 4 10 (4.27)

The roots of the equation are the two imaginary zeros of Eqn. 4.25.
Differentiating Eqn. 4.27 and using the nonzero coefficient to replace the
first element of row 4 of Eqn. 4.26 yields a new array.

1 11 10
11 11 0
10 10 0
20 0 0
10 0 0

(4.28)

The absence of sign changes in the array verifies that the original poly-
nomial has no zeros in the right-half plane.

Note that, while there are no closed-loop poles in the right-half plane,
a system with a characteristic equation given by Eqn. 4.25 is unstable by
our definition since it has a pair of poles on the imaginary axis. Examining
only the left-hand column of the Routh array only identifies the number
of right-half-plane zeros of the tested polynomial. Imaginary-axis zeros
can be found by the manipulations involving the auxiliary equation.
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—ag

1
(rs + 1)3

Figure 4.2 Block diagram of phase-shift oscillator.

4.2.2 Use as a Design Aid

The Routh criterion is most frequently used to determine the stability
of a feedback system. In certain cases, however, more quantitative design
information is obtainable, as illustrated by the following examples.

A phase-shift oscillator can be constructed by applying sufficient negative
feedback around a network that has three or more poles. If an amplifier
with frequency-independent gain is combined with a network with three
coincident poles, the block diagram for the resultant system is as shown in
Fig. 4.2. The value of a, necessary to sustain oscillations can be determined
by Routh analysis.?2

Stability investigations for Fig. 4.2 are complicated by the fact that the
oscillator has no input; thus we cannot use the poles of an input-to-output
transfer function to determine stability. We should note that the stability
of a linear system is a property of the system itself and is thus independent
of input signals that may be applied to it. Any unstable physical system will
demonstrate its instability with no input, since runaway behavior will be
stimulated by always present noise. Even in a purely mathematical linear
system, stability is determined by the location of the closed-loop poles, and
these locations are clearly input independent.

The analysis of the oscillator is initiated by recalling that the charac-
teristic equation of any feedback system is one minus its loop transmission.
Therefore

ay
Ps)y=1~4+ ——— 4.29
@ =1+ (4.29)
In this and other calculations involving the characteristic equation, it is
possible to clear fractions since the location of the zeros are not altered

2 The Routh test applied to this example offers computational advantages compared to
the direct factoring used for a similar transfer function in the example of Section 4.1.
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by this operation. After clearing fractions and identifying coefficients, the
Routh array is

73 37
32 1 + a
(8 — an)r 0
3
1 + a, 0 (4.30)

Assuming 7 is positive, roots with positive real parts occur for ay < —1
(one right-half-plane zero) and for a, > +8 (two right-half-plane zeros).
Laplace analysis indicates that generation of a constant-amplitude sinu-
soidal oscillation requires a pole pair on the imaginary axis. In practice,
a complex pole pair is located slightly to the right of the imaginary axis. An
intentionally introduced nonlinearity can then be used to limit the ampli-
tude of the oscillation (see Section 6.3.3). Thus, a practical oscillator circuit
is obtained with a, > 8.

The frequency of oscillation with @, = 8 can be determined by examining
the array with this value for a,. Under these conditions the third row be-
comes all zero. The auxiliary equation is

0(s) = 3r2%2 + 9 (4.31)

and the equation has zeros at s = = j+/3/r, indicating oscillation at
+/3/ radians per second for a, = 8.

As a second example of the type of design information that can be ob-
tained via Routh analysis, consider an operational amplifier with an open-
loop transfer function

a(s) =

do
s+ 1)A0 8+ 1) (107s + 1)

It is assumed that this amplifier is connected as a unity-gain noninverting
amplifier, and we wish to determine the range of values of a, for which all
closed-loop poles have real parts more negative than —2 X 10% sec™!. This
condition on closed-loop pole location implies that any pulse response of
the system will decay at least as fast as Ke=2<1"t after the exciting pulse
returns to zero. The constant K is dependent on conditions at the time the
input becomes zero.

The characteristic equation for the amplifier is (after dropping insig-
nificant terms)

P(s) = 101353 4+ 1.1 X 10752 + s + 1 + a, 4.33)

(4.32)
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In order to determine the range of a, for which all zeros of this charac-
teristic equation have real parts more negative than —2 X 10% sec™!, it is
only necessary to make a change of variable in Eqn. 4.33 and apply Routh’s
criterion to the modified equation. In particular, application of the Routh
test to a polynomial obtained by substituting

A=s+c¢ (4.34)

will determine the number of zeros of the original polynomial with real
parts more positive than —c, since this substitution shifts singularities in
the s plane to the right by an amount ¢ as they are mapped into the X plane.
If the indicated substitution is made with ¢ = 2 X 10% sec™!, Eqn. 4.33
becomes

P(A) = 107133 ++ 10-6A2 4 0.57X — 1.57 X 105 + a,  (4.35)
The Routh array is

10-13 0.57
10-¢ —1.57 X 10° + a,
0.59 — 10-7 4 0
~1.57 X 10 + a 0 (4.36)

This array shows that Eqn. 4.33 has one zero with a real part more positive
than —2 X 10%sec! for ao < 1.57 X 105, and has two zeros to the right of
the dividing line for ao > 5.9 X 10¢. Accordingly, all zeros have real parts
more negative than —2 X 10% sec™! only for

1.57 X 10® < a4 < 5.9 X 108 4.37)

4.3 ROOT-LOCUS TECHNIQUES

A single-loop feedback amplifier is shown in the block diagram of Fig.
4.1. The closed-loop transfer function for this amplifier is

Vo(s) _ a(s)
Vis) A6) = + a(s)f(s)

Root-locus techniques provide a method for finding the poles of the closed-
loop transfer function A(s) [or equivalently the zeros of 1 + a(s)f(s)] given
the poles and zeros of a(s)f(s) and the d-c loop-transmission magnitude
aof,.® Notice that since the quantity a,f, must appear in one or more terms

(4.38)

8 If the loop transmission has one or more zeros at the origin so that its d-c magnitude
is zero, the closed-loop poles are found from the midband value of af.
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of the characteristic equation, the locations of the poles of A(s) must depend
on aofs. A root-locus diagram consists of a collection of branches or loci in
the s plane that indicate how the locations of the poles of A(s) change as
aqfo varies.

The root-locus diagram provides useful information concerning the
performance of a feedback system since the relative stability of any linear
system is uniquely determined by its close-loop pole locations. We shall
find that approximate root-locus diagrams are easily and rapidly sketched,
and that they provide readily interpreted insight into how the closed-loop
performance of a system responds to changes in its loop transmission. We
shall also see that root-locus techniques can be combined with simple
algebraic methods to yield exact answers in certain cases.

4.3.1 Forming the Diagram

A simple example that illustrates several important features of root-
locus techniques is provided by the system shown in Fig. 4.1 with a feedback
transfer function f of unity and a forward transfer function

do

a(s) = 4.39
) (s + D(res + 1) ( )
The corresponding closed-loop transfer function is

) = 20 =L (4.40)

1 + a(s)f(s) T rasst + (e + s + (1 + o)

The closed-loop poles can be determined by factoring the characteristic
equation of A(s), yielding

—(1a + ) + V(e + ) — 41 + ag)rats

= 4
5 o (4.412)
5y = _(Ta + Tb) - \/(7112-"_ Tb)2 - 4(1 + aO)TaTb (441b)
TaTb

The root-locus diagram in Fig. 4.3 is drawn with the aid of Eqn. 4.41. The
important features of this diagram include the following.

(a) The loop-transmission pole locations are shown. (Loop-transmission
zeros are also indicated if they are present.)

(b) The poles of A(s) coincide with loop-transmission poles for a, = 0.

(c) As a, increases, the locations of the poles of A(s) change along the
loci as shown. Arrows indicate the direction of changes that result for
increasing aj.
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Figure 4.3 Root-locus diagram for second-order system.

(d) The two poles coincide at the arithmetic mean of the loop-trans-
mission pole locations for zero radicand in Eqn. 4.41, or for

_ (ta + 7)°

41,14

1 (4.42)

(4}

(e) For increases in a, beyond the value of Eqn. 4.42, the closed-loop
pole pair is complex with constant real part and a damping ratio that is a
monotonic decreasing function of a,. Consequently, w, increases with in-
creasing a, in this range.

Certain important features of system behavior are evident from the
diagram. For example, the system does not become unstable for any posi-
tive value of a,. However, the relative stability decreases as a, increases
beyond the value indicated in Eqn. 4.42.
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It is always possible to draw a root-locus diagram by directly factoring
the characteristic equation of the system under study as in the preceding
example. Unfortunately, the effort involved in factoring higher-order poly-
nomials makes machine computation mandatory for all but the simplest
systems. We shall see that it is possible to approximate the root-locus dia-
grams and thus retain the insight often lost with machine computation
when absolute accuracy is not required.

The key to developing the rules used to approximate the loci is to realize
that closed-loop poles occur only at zeros of the characteristic equation or
at frequencies s; such that*

1 + a(s)f(s1) = O (4.432)
or

a(s)f(s)) = —1 (4.43b)

Thus, if the point s, is a point on a branch of the root-locus diagram, the
two conditions

lagsftsy | =1 (4.442)

and
X a(s)f(s1) = 2n + 1) 180° (4.44b)

where n is any integer, must be satisfied. The angle condition is the more
important of these two constraints for purposes of forming a root-locus
diagram. The reason is that since we plot the loci as aof, is varied, it is
possible to find a value for a a,f, that satisfies the magnitude condition at
any point in the s plane where the angle condition is satisfied.

By concentrating primarily on the angle condition, we are able to formu-
late a set of rules that greatly simplify root-locus-diagram construction
compared with brute-force factoring of the characteristic equation. Here
are some of the rules we shall use.

1. The number of branches of the diagram is equal to the number of
poles of a(s)f(s). Each branch starts at a pole of a(s)f(s) for small values of
aofo and approaches a zero of a(s)f(s) either in the finite s plane or at
infinity for large values of aqf,. The starting and ending points are demon-
strated by considering

a(s)f(s) = aofog(s) (4.45)
where g(s) contains the frequency-dependent portion of the loop trans-

4Tt is assumed throughout that the system under study is a negative feedback system with
the topology shown in Fig. 4.1.
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mission and the value of g(0) £ g, is unity. Rearranging Eqn. 4.44 and
using this notation yields

1
o (4.46)
at any point s, on a branch of the root-locus diagram. Thus for small values
of afy, |g(s1) \ must be large, implying that the point s, is close to a pole of
g(s). Conversely, a large value of aqf, requires proximity to a zero of g(s).
2. Branches of the diagram lie on the real axis to the left of an odd
number of real-axis poles and zeros of a(s)f(s).® This rule follows directly
from Eqn. 4.44b as illustrated in Fig. 4.4. Each real-axis zero of a(s)f(s) to
the right of s, adds 180° to the angle of a(s:))f(s:) while each real-axis pole
to the right of s, subtracts 180° from the angle. Real-axis singularities to the
left of point 5; do not influence the angle of a(s)f(s1). Similarly, since com-
plex singularities must always occur in conjugate pairs, the net angle con-

|g(s1)| =
a

5 Special care is necessary for systems with right-half-plane open-loop singularities. See
Section 4.3.3.
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tribution from these singularities is zero. This rule is thus sufficient to satisfy
Eqn. 4.44b. We are further guaranteed that branches must exist on all
segments of the real axis to the left of an odd number of singularities of
a(s)f(s), since there is some value of a.f, that will exactly satisfy Eqn. 4.44a
at every point on these segments, and the satisfaction of Eqns. 4.44a and
4.44b is both necessary and sufficient for the existence of a pole of A(s).
3. The two separate branches of the diagram that must exist between
pairs of poles or pairs of zeros on segments of the real axis that satisfy rule 2
must at some point depart from or enter the real axis at right angles to it.
Frequently the precise break-away point is not required in order to sketch
the loci to acceptable accuracy. If it is necessary to have an exact location,
it can be shown that the break-away points are the solutions of the equation

dig(s)] _

= (4.47)

for systems without coincident singularities.

4. If the number of poles of a(s)f(s) exceeds the number of zeros of this
function by two or more, the average distance of the poles of A(s) from the
imaginary axis is independent of a,fo. This rule evolves from a property of
algebraic polynomials. Consider a polynomial
P(s) = (a1s + ai51) (@25 + a82) (@55 + as83) =+ + (GnS + @nSy)

=(@as - a)(s+ s1)(s+ 52)(s+ 835) -+ (5 + $a)
=(mar - a) s+ (1 + 2+ 55+ -+ )57
+ oo 4 osiSes; - sa] (4.48)

From the final expression of Eqn. 4.48, we see that the ratio of the co-
efficients of the s»—! term and the s» term (denoted as —n5) is

—ns=s51+Ss2+ s34+ - + s (4.49)

Since imaginary components of terms on the right-hand side of Eqn. 4.49
must occur in conjugate pairs and thus cancel, the quantity
(st et st o+ o)

s = (4.50)
n

is the average distance of the roots of P(s) from the imaginary axis. In
order to apply Eqn. 4.50 to the characteristic equation of a feedback
system, assume that

a(s)f(s) = aofo 1‘% 4.51)
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Then

A(s) a(s) a(s) _ _a(s)q(s)

T+ af) T 1+ acfolp(s)/as)]  a(s) + anfop(s)

If the order of g(s) exceeds that of p(s) by two or more, the ratio of the co-
efficients of the two highest-order terms of the characteristic equation of
A(s) is independent of a,fy, and thus the average distance of the poles of
A(s) from the imaginary axis is a constant.

5. For large values of afo, P — Z branches approach infinity, where
P and Z are the number of poles and finite-plane zeros of a(s)f(s), respec-
tively. These branches approach asymptotes that make angles with the
real axis given by

(4.52)

_@n 4 1) 180°

F— (4.53)

n

In Eqn. 4.53, n assumes all integer values from 0 to P — Z — 1. The
asymptotes all intersect the real axis at a point

Z real parts of poles of a(s)f(s) — Zreal parts of zeros of a(s)f(s)
P—-Z
The proof of this rule is left to Problem P4.4.

6. Near a complex pole of a(s)f(s), the angle of a branch with respect to
the pole is

8, =180°+ 2 X z— 2 % p (4.54)

where Xz is the sum of the angles of vectors drawn from all the zeros
of a(s)f(s) to the complex pole in question and T X p is the sum of the
angles of vectors drawn from all other poles of a(s)f(s) to the complex pole.
Similarly, the angle a branch makes with a loop-transmission zero in the
vicinity of the zero is

6. =180°— =X z4+ 2 X p (4.55)

These conditions follow directly from Eqn. 4.44b.

7. If the singularities of a(s)f(s) include a group much nearer the origin
than all other singularities of a(s)f(s), the higher-frequency singularities can
be ignored when determining loci in the vicinity of the origin. Figure 4.5
illustrates this situation. It is assumed that the point s is on a branch if the
high-frequency singularities are ignored, and thus the angle of the low-
frequency portion of a(s)f(s) evaluated at s = s, must be (2n + 1) 180°.
The geometry shows that the angular contribution attributable to remote
singularities such as that indicated as 6, is small. (The two angles from a re-
mote complex-conjugate pair also sum to a small angle.) Small changes in the
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Figure 4.5 Loci in vicinity of low-frequency singularities.

location of s, that can cause relatively large changes in the angle (e.g., 6s)
from low-frequency singularities offset the contribution from remote
singularities, implying that ignoring the remote singularities results in in-
significant changes in the root-locus diagram in the vicinity of the low-
frequency singularities. Furthermore, all closed-loop pole locations will lie
relatively close to their starting points for low and moderate values of aofo.
Since the discussion of Section 3.3.2 shows that A(s) will be dominated by
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its lowest-frequency poles, the higher-frequency singularities of a(s)f(s) can
be ignored when we are interested in the performance of the system for low
and moderate values of a,f;.

8. The value of aof; required to make a closed-loop pole lie at the point
51 on a branch of the root-locus diagram is

B 1
&(s1)|
where g(s) is defined in rule 1. This rule is required to satisfy Eqn. 4.44a.

afo (4.56)

4.3.2 Examples

The root-locus diagram shown in Fig. 4.3 can be developed using the
rules given above rather than by factoring the denominator of the closed-
loop transfer function. The general behavior of the two branches on the
real axis is determined using rules 2 and 3. While the break-away point
can be found from Eqn. 4.47, it is easier to use either rule 4 or rule 5 to
establish off-axis behavior. Since the average distance of the closed-loop
poles from the imaginary axis must remain constant for this system [the
number of poles of a(s)f(s) is two greater than the number of its zeros], the
branches must move parallel to the imaginary axis after they leave the real
axis. Furthermore, the average distance must be identical to that for aofy = 0,
and thus the segment parallel to the imaginary axis must be located at
—3[(1/7) + (1/75)]. Rule 5 gives the same result, since it shows that the
two branches must approach vertical asymptotes that intersect the real axis
at —3[(1/7) + (1/7s)].

More interesting root-locus diagrams result for systems with more loop-
transmission singularities. For example, the transfer function of an ampli-
fier with three common-emitter stages normally has three poles at moderate
frequencies and three additional poles at considerably higher frequencies.
Rule 7 indicates that the three high-frequency poles can be ignored if this
type of amplifier is used in a feedback connection with moderate values of
d-c loop transmission. If it is assumed that frequency-independent negative
feedback is applied around the three-stage amplifier, a representative af
product could be®

_ aofo
AN = Ty 0055 + 1)(0.1s + 1) @.37)

¢ The corresponding pole locations at — 1, —2, and —10 sec™! are unrealistically low
for most amplifiers. These values result, however, if the transfer function for an amplifier
with poles at — 10%, —2 X 10¢, and — 107 sec™ is normalized using the microsecond rather
than the second as the basic time unit. Such frequency scaling will often be used since it
eliminates some of the unwieldy powers of 10 from our calculations.



Root-Locus Techniques 127

The root-locus diagram for this system is shown in Fig. 4.6. Rule 2
determines the diagram on the real axis, while rule 5 establishes the asymp-
totes. Rule 4 can be used to estimate the branches off the real axis, since
the branches corresponding to the two lower-frequency poles must move
to the right to balance the branch going left from the high-frequency pole.
The break-away point can be determined from Eqn. 4.47, with

dlg(s)] —[0.15s2 + 1.3s + 1.6]
ds  [(s+ 1)(©.55 + 1)©O.1s + DP

(4.58)

Zeros of Eqn. 4.58 are at —7.2 sec™! and — 1.47 sec~!. The higher-frequency
location is meaningless for this problem, and in fact corresponds to a break-
away point which results if positive feedback is applied around the ampli-
fier. Note that the break-away point can be accurately estimated using
rule 7. If the relatively higher-frequency pole at 10 sec™! is ignored, a
break-away point at — 1.5 sec~! results for the remaining two-pole transfer
function.

Algebraic manipulations can be used to obtain more quantitative infor-
mation about the system. Figure 4.6 shows that the system becomes un-
stable as two poles move into the right-half plane for sufficiently large
values of aofy. The value of aqf; that moves the pair of closed-loop poles
onto the imaginary axis is found by applying Routh’s criterion to the
characteristic equation of the system, which is (after clearing fractions)

(s + 1) (0.55 + 1) (0.1s + 1) + aofe (4.59)
0.05s° + 0.65s + 1.6s + 1 + aofe

P(s)

The Routh array is

0.05 1.6
0.65 1 + agfo (4.60)
1
%(0.99 — 0.05a.f0) 0
1 + aofo 0

Two sign reversals indicating instability occur for aof; > 19.8. With this
value of ayfy, the auxiliary equation is

O(s) = 0.65s* + 20.8 (4.61)

The roots of this equation indicate that the poles cross the imaginary axis
ats = +j(5.65).
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Figure 4.6 Root-locus diagram for third-order system.

It is also possible to determine values for aofo that result in specified
closed-loop pole configurations. This type of calculation is illustrated by
finding the value of a.f, required to provide a damping ratio of 0.5, corre-
sponding to complex-pair poles located 60° from the real axis. The magni-
tude of the ratio of the imaginary part to the real part of the pole location
for a pole pair with { = 0.5 is 4/3. Thus the characteristic equation for this
system, when the damping ratio of the complex pole pair is 0.5, is

P()y=G6+v)6+B8+V38) 6+ 8—ivV3E)
s34 (v + 28)s? + 28(v + 2B)s + 4482 (4.62)

where —~ is the location of the real-axis pole.
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The parameters are determined by multiplying Eqn. 4.59 by 20 (to make
the coefficient of the s3 term unity) and equating the new equation to P’(s).
s34 1352 + 32s + 20(1 + aofv)
= 5°+ (v + 28)s*> + 28(y + 28)s + 4vB*  (4.63)
Equation 4.63 is easily solved for v, 8, and aofy, with the results

v = 10.54

8= 123
afo = 2.2 (4.64)
Several features of the system are evident from this analysis. Since the
complex pair is located at s = —1.23 (1 = j+/3) when the real-axis pole is
located at s = —10.54, a two-pole approximation based on the pair should

accurately model the transient or frequency response of the system. The
relatively low desensitivity 1 4+ aof, = 3.2 results if the damping ratio of
the complex pair is made 0.5, and any increase in desensitivity will result
in poorer damping. The earlier analysis shows that attempts to increase
desensitivity beyond 20.8 result in instability.

Note that since there was only one degree of freedom (the value of ayfo)
existed in our calculations, only one feature of the closed-loop pole pattern
could be controlled. It is not possible to force arbitrary values for more than
one of the three quantities defining the closed-loop pole locations ({ and w,
for the pair and the location of the real pole) unless more degrees of design
freedom are allowed.

Another example of root-locus diagram construction is shown in Fig.
4.7, the diagram for

a(s)f(s) = aufy

(s + D (/8 + 5/2 + 1)

Rule 5 establishes the asymptotes, while rule 6 is used to determine the loci
near the complex poles. The value of a,f, for which the complex pair of poles
enters the right-half plane and the frequency at which they cross the
imaginary axis are found by Routh’s criterion. The reader should verify that
these poles cross the imaginary axis at s = =+j24/3 for a,f, = 6.5.

The root-locus diagram for a system with

aif(0.5s + 1)
s(s + 1)

is shown in Fig. 4.8. Rule 2 indicates that branches are on the real axis
between the two loop-transmission poles and to the left of the zero. The

(4.65)

a(s)f(s) = (4.66)
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points of departure from and reentry to the real axis are obtained by solving
d [(0.5s + 1)
=0 4.67
ds|: ss+ 1) J (4.67)
yielding s = —2 + /2.
4.3.3 Systems With Right-Half-Plane Loop-Transmission
Singularities

1t is necessary to be particularly careful about the sign of the loop trans-
mission when root-locus diagrams are drawn for systems with right-half-
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plane loop-transmission singularities. Some systems that are unstable with-
out feedback have one or more loop-transmission poles in the right-half
plane. For example, a large rocket does not become aerodynamically stable
until it reaches a certain critical speed, and would tip over shortly after
lift off if the thrust were not vectored by means of a feedback system. It
can be shown that the transfer function of the rocket alone includes a real-
axis right-half-plane pole.

A more familiar example arises from a single-stage common-emitter
amplifier. The transfer function of this type of amplifier includes a pole at
moderate frequency, a second pole at high frequency, and a high-frequency
right-half-plane zero that reflects the signal fed forward from input to
output through the collector-to-base capacitance of the transistor. A repre-
sentative af product for this type of amplifier with frequency-independent
feedback applied around it is

aofo(—10_3S + l)
(103 + D(s+ 1)

a(s)f(s) = (4.68)

The singularities for this amplifier are shown in Fig. 4.9. If the root-locus
rules are applied blindly, we conclude that the low-frequency pole moves
to the right, and enters the right-half plane for d-c loop-transmission
magnitudes in excess of one. Fortunately, experimental evidence refutes
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Figure 4.9 Singularities for common-emitter amplifier.

this result. The difficulty stems from the sign of the low-frequency gain. It
has been assumed throughout this discussion that loop transmission is
negative at low frequency so that the system has negative feedback. The
rules were developed assuming the topology shown in Fig. 4.1 where nega-
tive feedback results when a, and f; have the same sign. If we consider
positive feedback systems, Eqn. 4.44b must be changed to

X a(s1)f(s;) = n 360° (4.69)

where n is any integer, and rules evolved from the angle condition must be
appropriately modified. For example, rule 2 is changed to “branches lie on
the real axis to the left of an even number of real-axis singularities for
positive feedback systems.”
The singularity pattern shown in Fig. 4.9 corresponds to a transfer
function
agfo(1073s — 1) —ayfo(—1073s + 1)

YOO = Qs s D6+ D (st e+ O

because the vector from the zero to s = 0 has an angle of 180°. The sign
reversal associated with the zero when plotted in the s plane diagram has
changed the sign of the d-c loop transmission compared with that of Eqn.
4.68. One way to reverse the effects of this sign change is to substitute Eqn.
4.69 for Eqn. 4.44b and modify all angle-dependent rules accordingly.
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A far simpler technique that works equally well for amplifiers with the
right-half plane zeros located at high frequencies is to ignore these zeros
when forming the root-locus diagram. Since elimination of these zeros
eliminates associated sign reversals, no modification of the rules is neces-
sary. Rule 7 insures that the diagram is not changed for moderate magni-
tudes of loop transmission by ignoring the high-frequency zeros.

4.3.4 Location of Closed-Loop Zeros

A root-locus diagram indicates the location of the closed-loop poles of
a feedback system. In addition to the stability information provided by the
pole locations, we may need the locations of the closed-loop zeros to
determine some aspects of system performance.

The method used to determine the closed-loop zeros is developed with
the aid of Fig. 4.10. Part a of this figure shows the block diagram for a
single-loop feedback system. The diagram of Fig. 4.10b has the same input-
output transfer function as that of Fig. 4.10a, but has been modified so that

+
V; m a(s) v,

fts)

(a)

) i 1
V, a(s)f(s) — v,

(b)

Figure 4.10 System used to determine closed-loop zeros. (a) Single-loop feedback
system. (b) Modified block diagram.
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the feedback path inside the loop has unity gain. We first consider the
closed-loop transfer function

Vo) _ a@)f(s)
Vi) 1+ a()f(s)
A root-locus diagram gives the pole locations for this closed-loop trans-
fer function directly, since the diagram indicates the frequencies at which

the denominator of Eqn. 4.71 is zero. The zeros of Eqn. 4.71 coincide with
the zeros of the transfer function a(s)f(s). However, from Fig. 4.105,

V] [V [Ves)] [V ][ L
A(s) = [Vi(s):l B |:V,~(s):| [Vn(s)] = [ Vi(SJ [ f(s)] (4.72)

Thus in addition to the singularities associated with Eqn. 4.71, A(s) has
poles at poles of 1/f(s), or equivalently at zeros of f(s), and has zeros at
poles of f(s). The additional poles of Eqn. 4.72 cancel the zeros of f(s) in
Eqn. 4.71, with the net result that A4(s) has zeros at zeros of a(s) and at
poles of f(s). It is important to recognize that the zeros of A(s) are inde-
pendent of ayfs.

An alternative approach is to recognize that zeros of A(s) occur at zeros
of the numerator of this function and at frequencies where the denominator
becomes infinite while the numerator remains finite. The later condition is
satisfied at poles of f(s), since this term is included in the denominator of
A(s) but not in its numerator.

Note that the singularities of A(s) are particularly easy to determine if
the feedback path is frequency independent. In this case, (as always)
closed-loop poles are obtained directly from the root-locus diagram. The
zeros of a(s), which are the only zeros plotted in the diagram when f(s) = fo,
are also the zeros of A(s).

These concepts are illustrated by means of two examples of frequency-
selective feedback amplifiers. Amplifiers of this type can be constructed by
combining twin-T networks with operational amplifiers. A twin-T network
can have a voltage transfer function that includes complex zeros with posi-
tive, negative, or zero real parts. It is assumed that a twin-T with a voltage-
transfer ratio?

4.71)

T(s) = > (4.73)

is available.

7 The transfer function of a twin-T network includes a third real-axis zero, as well as a
third pole. Furthermore, none of the poles coincide. The departure from reality repre-
sented by Eqn. 4.73 simplifies the following development without significantly changing the
conclusions. The reader who is interested in the transfer function of this type of network
is referred to J. E. Gibson and F. B. Tuteur, Control System Components, McGraw-Hill,
New York, 1958, Section 1.26.
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Figure 4.11 Rejection amplifier.

Figures 4.11 and 4.12 show two ways of combining this network with an
amplifier that is assumed to have constant gain a, at frequencies of interest.
Since both of these systems have the same loop transmission, they have
identical root-locus diagrams as shown in Fig. 4.13. The closed-loop poles
leave the real axis for any finite value of a, and approach the j-axis zeros
along circular arcs. The closed-loop pole location for one particular value
of ay is also indicated in this figure.

The rejection amplifier (Fig. 4.11) is considered first. Since the connection
has a frequency-independent feedback path, its closed-loop zeros are the
two shown in the root-locus diagram. If the signal ¥, is a constant-ampli-
tude sinusoid, the effects of the closed-loop poles and zeros very nearly
cancel except at frequencies close to one radian per second. The closed-loop
frequency response is indicated in Fig. 4.14a. As a, is increased, the distance
between the closed-loop poles and zeros becomes smaller. Thus the band of
frequencies over which the poles and zeros do not cancel becomes narrower,
implying a sharper notch, as a, is increased.

The bandpass amplifier combines the poles from the root-locus diagram
with a second-order closed-loop zero at s = — 1, corresponding to the pole
pair of f(s). The closed-loop transfer function has no other zeros, since a(s)
has no zeros in this connection. The frequency response for this amplifier is
shown in Fig. 4.14b. In this case the amplifier becomes more selective and
provides higher gain at one radian per second as a, increases, since the
damping ratio of the complex pole pair decreases.

Vi . m L) Vo

s2+1
s2+25+1

Figure 4.12 Bandpass amplifier.
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Figure 4.13 Root-locus diagram for systems of Figs. 4.11 and 4.12.

4.3.5 Root Contours

The root-locus method allows us to determine how the locations of the
closed-loop poles of a feedback system change as the magnitude of the low-
frequency loop transmission is varied. There are many systems where
relative stability as a function of some parameter other than gain is required.
We shall see, for example, that the location of an open-loop singularity in
the transfer function of an operational amplifier is frequently varied to
compensate the amplifier and thus improve its performance in a given
application. Root-locus techniques could be used to plot a family of root-
locus diagrams corresponding to various values for a system parameter
other than gain. It is also possible to extend root-locus concepts so that the
variation in closed-loop pole location as a function of some single param-
eter other than gain is determined for a fixed value of a.f,. The generalized
root-locus diagram that results from this extension is called a root-contour
diagram.

In order to see how the root contours are constructed, we recall that the
characteristic equation for a negative feedback system can be written in the
form

P(s) = q(s) + aofop(s) (4.74)
where it is assumed that

p(s)

a(s)f(s) = acfo )
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Figure 4.14. Frequency responses for selective amplifiers. (@) Rejection amplifier.
(b) Bandpass amplifier.

If the aofo product is constant, but some other system parameter 7 varies,
the characteristic equation can be rewritten

P(s) = q'(s) + 7p'(s) (4.75)

All of the terms that multiply = are included in p’(s) in Eqn. 4.75, so that
q'(s) and p’(s) are both independent of . The root-contour diagram as a
function of r can then be drawn by applying the construction rules to a
singularity pattern that has poles at zeros of g'(s) and zeros at zeros of p’(s).

An operational amplifier connected as a unity-gain follower is used to
illustrate the construction of a root-contour diagram. This connection has
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unity feedback, and it is assumed that the amplifier open-loop transfer

function is
) = 108(rs + 1)
T s+ 1y

The characteristic equation after clearing fractions is
P(s) = s* + 25 + (105 + 1) + 7106s
Identifying terms in accordance with Eqn. 4.75 results in
p'(s) = 108s

q'(s) = s+ 25 + 108 4+ 1 ~ 5% + 25 4 105

(4.76)

4.7

(4.78a)

(4.78b)

Thus the singularity pattern used to form the root contours has a zero at
the origin and complex poles at s = — 1 & j10° The root-contour diagram
is shown in Fig. 4.15. Rule 8 is used to find the value of 7 necessary to locate

jw
Arrows indicate direction X —1 + 1000
of increasing 7
*
\\\
N\
N
N s plane
\\
Pole locations N
for ¢ = 0.707 N
at —500:/2 (1 %j) 4577\
|
—1000 ) 0 —
,/
4
7/
//
4
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/
///
4
//
¥,
\T —1 - j1000

Figure 4.15 Root-contour diagram for p'(s) /g'(s) = 10% /(s* + 2s + 10°).
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the complex pole pair 45° from the negative real axis corresponding to a
damping ratio of 0.707. From Eqn. 4.56, the required value is

q'(s)|
p'(s)
s+ 25 4 10|
B ‘ 108s

T =

s = —500V2 (147

= 4/2 X 10-3 (4.79)

s = —500V'2 (1+47)

4.4 STABILITY BASED ON FREQUENCY RESPONSE

The Routh criterion and root-locus methods provide information con-
cerning the stability of a feedback system starting with either the charac-
teristic equation or the loop-transmission singularities of the system. Thus
both of these techniques require that the system loop transmission be
expressible as a ratio of polynomials in s. There are two possible difficulties.
The system may include elements with transfer functions that cannot be
expressed as a ratio of finite polynomials. A familiar example of this type of
element is the pure time delay of r seconds with a transfer function e—. A
second possibility is that the available information about the system con-
sists of an experimentally determined frequency response. Approximating
the measured data in a form suitable for Routh or root-locus analysis may
not be practical.

The methods described in this section evaluate the stability of a feedback
system starting from its loop transmission as a function of frequency. The
only required data are the magnitude and angle of this transmission, and it
is not necessary that these data be presented as analytic expressions. As a
result, stability can be determined directly from experimental results.

4.4.1 The Nyquist Criterion

It is necessary to develop a method for determining absolute and relative
stability information for feedback systems based on the variation of their
loop transmissions with frequency. The topology of Fig. 4.1 is assumed. If
there is some frequency w at which

a(je)f (Jw) = —1 (4.80)

the loop transmission is 4-1 at this frequency. It is evident that the system
can then oscillate at the frequency w, since it can in effect supply its own
driving signal without an externally applied input. This kind of intuitive
argument fails in many cases of practical interest. For example, a system
with a loop transmission of 410 at some frequency may or may not be



140 Stability

stable depending on the loop-transmission values at other frequencies. The
Nyquist criterion can be used to resolve this and other stability questions.

The test determines if there are any values of s with positive real parts for
which a(s)f(s) = —1. If this condition is satisfied, the characteristic equa-
tion of the system has a right-half-plane zero implying instability. In order
to use the Nyquist criterion, the function a(s)f(s) is evaluated as s takes on
values along the contour shown in the s-plane plot of Fig. 4.16. The contour
includes a segment of the imaginary axis and is closed with a large semi-
circle of radius R that lies in the right half of the s plane. The values of
a(s)f(s) as s varies along the indicated contour are plotted in gain-phase
form in an af plane. A possible af-plane plot is shown in Fig. 4.17. The
symmetry about the 0° line in the af plane is characteristic of all such plots
since Im[a(jw)f(jw)] = —Im[a(—jw)f(—jw)].

Our objective is to determine if there are any values of s that lie in the
shaded region of Fig. 4.16 for which a(s)f(s) = — 1. This determination is
simplified by recognizing that the transformation involved maps closed
contours in the s plane into closed contours in the af plane. Furthermore,

jw
s=0+jR

s plane

s=Rei® I>9> .7
along this path

Starting point

s = 0+;0*
¢ 0 —>
s =0+ ;0
Inside of contour
s =0 —-4R

Figure 4.16 Contour Used to evaluate a(s)f(s).
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Figure 4.17 Plot of a(s)f(s) as s varies along contour of Fig. 4.16.

all values of s that lie on one side of a contour in the s plane must map to
values of af that lie on one side of the corresponding contour in the af plane.
The —1 points are clearly indicated in the af-plane plot. Thus the only
remaining task is to determine if the shaded region in Fig. 4.16 maps to the
inside or to the outside of the contour in Fig. 4.17. If it maps to the inside,
there are two values of s in the right-half plane for which a(s)f(s) = —1,
and the system is unstable.

The form of the af-plane plot and corresponding regions of the two plots
are easily determined from a(s)f(s) as illustrated in the following examples.
Figure 4.18 indicates the general shape of the s-plane and af-plane plots for

104
W) = (T 0 + 1) 0,015 + D (4.81)

Note that the magnitude of af in this example is 10® and its angle is zero
at s = 0. As s takes on values approaching +/R, the angle of af changes
from 0° toward —270°, and its magnitude decreases. These relationships
are readily obtained from the usual vector manipulations in the s plane.
For a sufficiently large value of R, the magnitude of af is arbitrarily small,
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Figure 4.18 Nyquist test for a(s)f(s) = 103/[(s + 1)(0.1s + 1)X0.01s + 1)].
(a) s-plane plot. (b) af-plane plot.

142



Stability Based on Frequency Response 143

and its angle is nearly —270°. As s assumes values in the right-half plane
along a semicircle of radius R, the magnitude of af remains constant (for R
much greater than the distance of any singularities of af from the origin),
and its angle changes from —270° to 0° as s goes from +jR to +R. The
remainder of the af-plane plot must be symmetric about the 0° line.

In order to show that the two shaded regions correspond to each other,
a small detour from the contour in the s plane is made at s = 0 as indi-
cated in Fig. 4.18a. As s assumes real positive values, the magnitude of
a(s)f(s)decreases,since the distance from the point on the test detour to each
of the poles increases. Thus the detour produces values in the af plane that
lie in the shaded region. While we shall normally use a test detour to deter-
mine corresponding regions in the two planes, the angular relationships
indicated in this example are general ones. Because of the way axes are
chosen in the two planes, right-hand turns in one plane map to left-hand
turns in the other. A consequence of this reversal is illustrated in Fig. 4.18.
Note that if we follow the contour in the s plane in the direction of the
arrows, the shaded region is to our right. The angle reversal places the
corresponding region in the af plane to the left when its boundary is fol-
lowed in the direction of the arrows.

Since the two —1 points lie in the shaded region of the af plane, there
are two values of s in the right-half plane for which a(s)f(s) = —1 and the
system is unstable. Note that if a,f; is reduced, the contour in the af plane
slides downward and for sufficiently small values of aof, the system is stable.
A geometric development or the Routh criterion shows that the system is
stable for positive values of aqf; smaller than 122.21.

Contours with the general shape shown in Fig. 4.19 result if a zero is
added at the origin changing a(s)f(s) to

10%
AN = T 015 + 1) 0015 + 1) (4.82)

In order to avoid angle and magnitude uncertainties that result if the s-plane
contour passes through a singularity, a small-radius circular arc is used to
avoid the zero. Two test detours on the s-plane contour are shown. As the
first is followed, the magnitude of af increases since the dominant effect
is that of leaving the zero. As the second test detour is followed, the magni-
tude of af increases since this detour approaches three poles and only one
zero. The location of the shaded region in the af plane indicates that the —1
points remain outside this region for all positive values of a, and, therefore,
the system is stable for any amount of negative feedback.!

The Nyquist test can also be used for systems that have one or more loop-
transmission poles in the right-half plane and thus are unstable without
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feedback. An example of this type of system results for

ao

a()f(s) = (4.83)

s —1

with s-plane and af-plane plots shown in Figs. 4.20a and 4.20b. The line
indicated by 4+ marks in the af-plane plot is an attempt to show that for
this system the angle must be continuous as s changes from j0— to jO*. In
order to preserve this necessary continuity, we must realize that +180° and
—180° are identical angles, and conceive of the af plane as a cylinder
joined at the +180° lines. This concept is made somewhat less disturbing
by using polar coordinates for the af-plane plot as shown in Fig. 4.20c. Here
the —1 point appears only once. The use of the test detour shows that
values of s in the right-half plane map outside of a circle that extends from
0 to —ao as shown in Fig. 4.20c. The location of the —1 point in either af-
plane plot shows that the system is stable only for @, > 1.

Note that the — 1 points in the af plane corresponding to angles of +180°
collapse to one point when the af cylinder necessary for the Nyquist con-
struction for this example is formed. This feature and the nature of the af
contour show that when q, is less than one, there is only one value of s for
which a(s)f(s) = —1. Thus this system has a single closed-loop pole on the
positive real axis for values of a, that result in instability.

This system indicates another type of difficulty that can be encountered
with systems that have right-half-plane loop-transmission singularities. The
angle of a(jw)f(jw) is 180° at low frequencies, implying that the system
actually has positive feedback at these frequencies. (Recall the additional
inversion included at the summation point in our standard representation.)
The s-plane representation (Fig. 4.20a) is consistent since it indicates an
angle of 180° for s = 0. Thus no procedural modification of the type de-
scribed in Section 4.3.3 is necessary in this case.

4.4.2 Interpretation of Bode Plots

A Bode plot does not contain the information concerning values of af
as the contour in the s plane is closed, which is necessary to apply the
Nyquist test. Experience shows that the easiest way to determine stability
from a Bode plot of an arbitrary loop transmission is to roughly sketch a
complete af-plane plot and apply the Nyquist test as described in Section
4.4.1. For many systems of practical interest, however, it is possible to
circumvent this step and use the Bode information directly.

The following two rules evolve from the Nyquist test for systems that
have negative feedback at low or mid frequencies and that have no right-
half-plane singularities in their loop transmission.
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1. If the magnitude of af'is 1 at only one frequency, the system is stable
if the angle of af'is between +180° and — 180° at the unity-gain frequency.

2. If the angle of af passes through +180° or —180° at only one fre-
quency, the system is stable if the magnitude of af is less than 1 at this
frequency.
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Figure 4.20—Continued

Information concerning the relative stability of a feedback system can
also be determined from a Bode plot for the following reason. The values
of s for which af = —1 are the closed-loop pole locations of a feedback
system. The Nyquist test exploits this relationship in order to determine
the absolute stability of a system. If the system is stable, but a pair of —1’s
of af occur for values of s close to the imaginary axis, the system must have
a pair of closed-loop poles with a small damping ratio.

The quantities shown in Fig. 4.21 provide a useful estimation of the
proximity of —1’s of af to the imaginary axis and thus indicate relative
stability. The phase margin is the difference between the angle of af and
—180° at the frequency where the magnitude of af is 1. A phase margin
of 0° indicates closed-loop poles on the imaignary axis, and therefore the
phase margin is a measure of the additional negative phase shift at the
unity-magnitude frequency that will cause instability. Similarly, the gain
margin is the amount of gain increase required to make the magnitude of af
unity at the frequency where the angle of af is — 180°, and represents the
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Figure 4.21 Loop-transmission quantities.

amount of increase in aof, required to cause instability. The frequency at
which the magnitude of af is unity is called the unity-gain frequency or the
crossover frequency. This parameter characterizes the relative frequency re-
sponse or speed of the time response of the system.

A particularly valuable feature of analysis based on the loop-transmission
characteristics of a system is that the gain margin and the phase margin,
quantities that are quickly and easily determined using Bode techniques,
give surprisingly good indications of the relative stability of a feedback
system. It is generally found that gain margins of three or more combined
with phase margins between 30 and 60° result in desirable trade-offs be-
tween bandwidth or rise time and relative stability. The smaller values for
gain and phase margin correspond to lower relative stability and are avoided



Stability Based on Frequency Response 149

if small overshoot in response to a step or small frequency-response peaking
is necessary or if there is the possibility of severe changes in parameter
values.

The closed-loop bandwidth and rise time are almost directly related to
the unity-gain frequency for systems with equal gain and phase margins.
Thus any changes that increase the unity-gain frequency while maintaining
constant 'values for gain and phase margins tend to increase closed-loop
bandwidth and decrease closed-loop rise time.

Certain relationships between these three quantities and the correspond-
ing closed-loop performance are given in the following section. Prior to
presenting these relationships, it is emphasized that the simplicity and
excellence of results associated with frequency-response analysis makes this
method a frequently used one, particularly during the initial design phase.
Once a tentative design based on these concepts is determined, more de-
tailed information, such as the exact location of closed-loop singularities
or the transient response of the system may be investigated, frequently
with the aid of machine computation.

4.4.3 Closed-Loop Performance in Terms of
Loop-Transmission Parameters

The quantity a(jw)f(jw) can generally be quickly and accurately obtained
in Bode-plot form. The effects of system-parameter changes on the loop
transmission are also easily determined. Thus approximate relationships
between the loop transmission and closed-loop performance provide a
useful and powerful basis for feedback-system design.

The input-output relationship for a system of the type illustrated in
Fig. 4.10a is
Vos) a(s)
Viis) 1+ a(s)f(s)

If the system is stable, the closed-loop transfer function of the system can
be approximated for limiting values of loop transmission as

A(s) = (4.84)

A(jw) zfﬁ |a(jw)f(juw)| > 1 (4.85a)
AGo) ~a(je)  |aG)fiie)| < 1 (4.85b)

One objective in the design of feedback systems is to insure that the
approximation of Eqn. 4.85a is valid at all frequencies of interest, so that
the system closed-loop gain is controlled by the feedback element. The
approximation of Eqn. 4.85b is relatively unimportant, since the system is
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effective operating without feedback in this case. While we normally do not
expect to have the system provide precisely controlled closed-loop gain at
frequencies where the magnitude of the loop transmission is close to one,
the discussion of Section 4.4.2 shows that the relative stability of a system
is largely determined by its performance in this frequency range.

The Nichols chart shown in Fig. 4.22 provides a convenient method of
evaluating the closed-loop gain of a feedback system from its loop trans-
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mission, and is particularly valuable when neither of the limiting approxi-
mations of Eqn. 4.85 is valid. This chart relates G/(1 4+ G) to G where G
is any complex number. In order to use the chart, the value of G is located
on the rectangular gain-phase coordinates. The angle and magnitude of
G/(1 4+ G) are than read directly from the curved coordinates that intersect
the value of G selected.

The gain-phase coordinates shown in Fig. 4.22 cover the complete 0° to
—360° range in angle and a ratio of 10° in magnitude. This magnitude range
is unnecessary, since the approximations of Eqn. 4.85 are usually valid
when the loop-transmission magnitude exceeds 10 or is less than O.1.
Similarly, the range of angles of greatest interest is that which surrounds
the —180° value and which includes anticipated phase margins. The
Nichols chart shown in Fig. 4.23 is expanded to provide greater resolution
in the region where it will normally be used.

One effective way to view the Nichols chart is as a three-dimensional
surface, with the height of the surface proportional to the magnitude of the
closed-loop transfer function corresponding to the loop-transmission
parameters that define the point of interest. This visualization shows a
“mountain” (with a peak of infinite height) where the loop transmission
is +1.

The Nichols chart can be used directly for any unity-gain feedback sys-
tem. The transformation indicated in Fig. 4.10b shows that the chart can
be used for arbitrary single-loop systems by observing that

a(jw) _[ a(jw)f(jw) :H 1

= — 4.86
1 + a(jw)f(jw) 1 + a(jw)f(jw) f(jw):] (459

The closed-loop frequency response is determined by multiplying the factor
a(jw)f(Jw)/[1 + a(jw)f(jw)] obtained via the Nichols chart by 1/f(jw) using
Bode techniques.

One quantity of interest for feedback systems with frequency-independent
feedback paths is the peak magnitude M, equal to the ratio of the maxi-
mum magnitude of A(jw) to its low-frequency magnitude (see Section 3.5).
A large value for M, indicates a relatively less stable system, since it shows
that there is some frequency for which the characteristic equation approaches
zero and thus that there is a pair of closed-loop poles near the imaginary
axis at approximately the peaking frequency. Feedback amplifiers are
frequently designed to have M,’s between 1.1 and 1.5. Lower values for
M, imply greater relative stability, while higher values indicate that
stability has been compromised in order to obtain a larger low-frequency
loop transmission and a higher crossover frequency.

The value of M, for a particular system can be easily determined from
the Nichols chart. Furthermore, the chart can be used to evaluate the

A(jw) =
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Figure 4.23 Expanded Nichols chart.
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effects of variations in loop transmission on M, One frequently used
manipulation determines the relationship between M, and aof; for a system
with fixed loop-transmission singularities. The quantity a(jw)f(jw)/aofo is
first plotted on gain-phase coordinates using the same scale as the Nichols
chart. If this plot is made on tracing paper, it can be aligned with the
Nichols chart and slid up or down to illustrate the effects of different values
of aefo. The closed-loop transfer function is obtained directly from the
Nichols chart by evaluating 4(jw) at various frequencies, while the highest
magnitude curve of the Nichols chart touched by a(jw)f{(jw) for a particular
value of aof, indicates the corresponding M.
Figure 4.24 shows this construction for a system with f = 1 and

ay

TG4+ DOIs + 1)

a(s) (4.87)

The values of a, for the three loop transmissions are 8.5, 22, and 50. The
corresponding M,’s are 1, 1.4, and 2, respectively.

While the Nichols chart is normally used to determine the closed-loop
function from the loop transmission, it is possible to use it to go the other
way; that is, to determine a(jw)f(jw) from A(jw). This transformation is
occasionally useful for the analysis of systems for which only closed-loop
measurements are practical. The transformation yields good results when
the magnitude of a(jw)f(jw) is close to one. Furthermore,the approximation
of Eqn. 4.85b shows tha A(jw) ~ a(jw) when the magnitude of the loop
transmission is small. However, Eqn. 4.85a indicates that A(jw) is essen-
tially independent of the loop transmission when the loop-transmission
magnitude is large. Examination of the Nichols chart confirms this result
since it shows that very small changes in the closed-loop magnitude or
angle translate to very large changes in the loop transmission for large loop-
transmission magnitudes. Thus even small errors in the measurement of
A(jw) preclude estimation of large values for a(jw)f(jw) with any accuracy.

The relative stability of a feedback system and many other important
characteristics of its closed-loop response are largely determined by the
behavior of its loop transmission at frequencies where the magnitude of
this quantity is close to unity. The approximations presented below relate
closed-loop quantities defined in Section 3.5 to the loop-transmission
properties defined in Section 4.4.2. These approximations are useful for
predicting closed-loop response, comparing the performance of various
systems, and estimating the effects of changes in loop transmission on
closed-loop performance.

The assumptions used in Section 3.5, in particular that f is one at all
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frequencies, that a, is large, and that the lowest frequency singularity of
a(s) is a pole, are assumed here. Under these conditions,

o}

77 sin ¢m

(4.88)

where ¢., is the phase margin. The considerations that lead to this approxi-
mation are illustrated in Fig. 4.25. This figure shows several closed-loop-
magnitude curves in the vicinity of M, = 1.4 and assumes that the system

phase margin is 45°. Since the point [G[ =1, X G = —135° must exist
10
Mp= 135
G
1—+E.: 1.2

— 1.3 1 Mp= 13
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Figure 4.25 M, for several systems with 45° of phase margin.
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for a system with a 45° phase margin, there is no possible way that M, can
be less than approximately 1.3, and the loop-transmission gain-phase curve
must be quite specifically constrained for M, just to equal this value.
If it is assumed that the magnitude and angle of G are linearly related, the
linear constructions included in Fig. 4.25 show that M, cannot exceed
approximately 1.5 unless the gain margin is very small. Well-behaved sys-
tems are actually most likely to have a gain-phase curve that provides an
extended region of approximate tangency to the M, = 1.4 curve for a
phase margin of 45°. Similar arguments hold for other values of phase
margin, and the approximation of Eqn. 4.88 represents a good fit to the
relationship between phase margin and corresponding M,.

Two other approximations relate the system transient response to its
crossover frequency w..

0.6 2.2
<t <= (4.89)

We We

The shorter values of rise time correspond to lower values of phase margin.

> 4 (4.90)
.
The limit is approached only for systems with large phase margins.

We shall see that the open-loop transfer function of many operational
amplifiers includes one pole at low frequencies and a second pole in the
vicinity of the unity-gain frequency of the amplifier. If the system dynamics
are dominated by these two poles, the damping ratio and natural frequency
of a second-order system that approximates the actual closed-loop system
can be obtained from Bode-plot parameters of a system with a frequency-
independent feedback path using the curves shown in Fig. 4.26a. The curves
shown in Fig. 4.26b relate peak overshoot and M, for a second-order system
to damping ratio and are derived using Eqns. 3.58 and 3.62. While the
relationships of Fig. 4.26a are strictly valid only for a system with two widely
spaced poles in its loop transmission, they provide an accurate approxima-
tion providing two conditions are satisfied.

1. The system loop-transmission magnitude falls off as 1/w at frequencies
between one decade below crossover and the next higher frequency singu-
larity.

2. Additional negative phase shift is provided in the vicinity of the cross-
over frequency by other components of the loop transmission.

The value of these curves is that they provide a way to determine an
approximating second-order system from either phase margin, M, or peak
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Figure 4.26a Closed-loop quantities from loop-transmission parameters for system
with two widely spaced poles. Damping ratio and natural frequency as a function
of phase margin and crossover frequency.

overshoot of a complex system. The validity of this approach stems from
the fact that most systems must be dominated by one or two poles in the
vicinity of the crossover frequency in order to yield acceptable performance.
Examples illustrating the use of these approximations are included in later
sections. We shall see that transient responses based on the approximation
are virtually indistinguishable from those of the actual system in many
cases of interest.



158 Stability

1.8 —

1.0 | I | |
0 0.2 0.4 0.6 0.8 1.0

Damping ratio
Figure 4.26b P, and M, versus damping ratio for second-order system.

The first significant error coefficient for a system with unity feedback can
also be determined directly from its Bode plot. If the loop transmission
includes a wide range of frequencies below the crossover frequency where
its magnitude is equal to k/w®, the error coefficients e, through e,_; are
negligible and e, equals 1/k.

PROBLEMS

P4.1
Find the number of right-half-plane zeros of the polynomial

P(s) = s*+ st + 355+ 452+ 5 + 2
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P4.2
A phase-shift oscillator is constructed with a loop transmission
L) = —
T (s + 1)

Use the Routh condition to determine the value of a, that places a pair of
closed-loop poles on the imaginary axis. Also determine the location of the
poles. Use this information to factor the characteristic equation of the
system, thus finding the location of all four closed-loop poles for the critical
value of a,.

P4.3

Describe how the Routh test can be modified to determine the real parts
of all singularities in a polynomial. Also explain why this modification is
usually of little value as a computational aid to factoring the polynomial.

P4.4

Prove the root-locus construction rule that establishes the angle and
intersection of branch asymptotes with the real axis.

P4.5

Sketch root-locus diagrams for the loop-transmission singularity pattern
shown in Fig. 4.27. Evaluate part ¢ for moderate values of af;, and part d
for both moderate and very large values of afo.

P4.6
Consider two systems, both with f = 1. One of these systems has a
forward-path transfer function
ao(0.5s + 1)
(s + 1) (0.01s + 1) (0.51s + 1)

a(s) =

while the second system has
ay(0.51s + 1)
(s + 1) (0.01s + 1) (0.5s + 1)
Common sense dictates that the closed-loop transfer functions of these

systems should be very nearly identical and, furthermore, that both should
be similar to a system with

a(s) =

Ay
(s+ 1)(©0.01s + 1)
[The closely spaced pole-zero doublets in a(s) and a’(s) should effectively

cancel out.] Use root-locus diagrams to show that the closed-loop responses
are, in fact, similar.

all(s) —
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Figure 4.27 ILoop-transmission singularity patterns.
P4.7
An operational amplifier has an open-loop transfer function

10
(0.1s + 1) (105 + 1)

a(s) =

This amplifier is combined with two resistors in a noninverting-amplifier
configuration. Neglecting loading, determine the value of closed-loop gain
that results when the damping ratio of the complex closed-loop pole pair
is 0.5.

P4.8
An operational amplifier has an open-loop transfer function

10°
(zs + 1) (105 + 1)

a(s) =

The quantity = can be adjusted by changing the amplifier compensation.
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Use root-contour techniques to determine a value of r that results in a
closed-loop damping ratio of 0.707 when the amplifier is connected as a
unity-gain inverter.

P4.9
A feedback system that includes a time delay has a loop transmission

aoe-0.0IJ

s+ 1D

Use the Nyquist test to determine the maximum value of a, for stable
operation. What value of ao should be selected to limit M, to a factor of
1.4? (You may assume that the feedback path of the system is frequency
independent.)

P4.10

We have been investigating the stability of feedback systems that are
generally low pass in nature, since the transfer functions of most opera-
tional-amplifier connections fall in this category. However, stability prob-
lems also arise in high-pass systems. For example, a-c coupled feedback
amplifiers designed for use at audio frequencies sometimes display a low-
frequency instability called “motor-boating.” Use the Nyquist test to
demonstrate the possibility of this type of instability for an amplifier with
a loop transmission

L(s) = —

aos3

(s + 1) (O0.1s + 1)

Also show the potentially unstable behavior using root-locus methods.
For what range of values of a, is the amplifier stable?

P4.11

Develop a modification of the Nyquist test that enables you to determine
if a feedback system has any closed-loop poles with a damping ratio of less
than 0.707. Illustrate your test by forming the modified Nyquist diagram
for a system with a(s) = a,/(s + 1) f(s) = 1. For what value of a, does
the damping ratio of the closed-loop pole pair equal 0.707? Verify your
answer by factoring the characteristic equation for this value of a,.

P4.12

The open-loop transfer function of an operational amplifier is
_ 10°

T (0.1s + 1) (1085 + 1)?

L(s) = —

a(s)

Determine the gain margin, phase margin, crossover frequency, and M,
for this amplifier when used in a feedback connection with f = 1. Also find
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the value of fthat results in an M, of 1.1. What are the values of phase and
gain margin and crossover frequency with this value for f?

P4.13
A feedback system is constructed with

108(0.01s + 1)?
(s + 1)

and an adjustable, frequency-independent value for f. As fis increased from
zero, it is observed that the system is stable for very small values of f, then
becomes unstable, and eventually returns to stable behavior for sufficiently
high values of f. Explain this performance using Nyquist and root-locus
analysis. Use the Routh criterion to determine the two borderline values
for f.

P4.14

An operational amplifier with a frequency-independent feedback path
exhibits 4097 overshoot and 10 to 909 rise time of 0.5 us in response to a
step input. Estimate the phase margin and crossover frequency of the feed-
back connection, assuming that its performance is dominated by two
widely separated loop-transmission poles.

a(s) =

P4.15
Consider a feedback system with
Qg
“© = e + s+ 11
and f(s) = 1.

Show that by appropriate choice of a, the closed-loop poles of the system
can be placed in a third-order Butterworth pattern. Find the crossover
frequency and the phase margin of the loop transmission when a, is selected
for the closed-loop Butterworth response. Use these quantities in conjunc-
tion with Fig. 4.26 to find the damping ratio and natural frequency of a
second-order system that can be used to approximate the transient response
of the third-order Butterworth filter. Compare the peak overshoot and rise
time of the approximating system in response to a step with those of the
Butterworth response (Fig. 3.10). Note that, even though this system is con-
siderably different from that used to develop Fig. 4.26, the approximation
predicts time-domain parameters with fair accuracy.
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CHAPTER V
COMPENSATION

5.1 OBJECTIVES

The discussion up to this point has focused on methods used to analyze
the performance of a feedback system with a given set of parameters. The
results of such analysis frequently show that the performance of the feed-
back system is unacceptable for a given application because of such defi-
ciencies as low desensitivity, slow speed of response, or poor relative sta-
bility. The process of modifying the system to improve performance is
called compensation.

Compensation usually reduces to a trial-and-error procedure, with the
experience of the designer frequently playing a major role in the eventual
outcome. One normally assumes a particular form of compensation and
then evaluates the performance of the system to see if objectives have been
met. If the performance remains inadequate, alternate methods of com-
pensation are tried until either objectives are met, or it becomes evident that
they cannot be achieved.

The type of compensation that can be used in a specific application is
usually highly dependent on the components that form the system. The
general principles that guide the compensation process will be described
in this chapter. Most of these ideas will be reviewed and reinforced in later
chapters after representative amplifier topologies and applications have
been introduced.

5.2 SERIES COMPENSATION

One way to change the performance of a feedback system is to alter the
transfer function of either its forward-gain path or its feedback path. This
technique of modifying a series element in a single-loop system is called
series compensation. The changes may involve the d-c gain of an element
or its dynamics or both.

5.2.1 Adjusting the D-C Gain

One conceptually straightforward modification that can be made to the
loop transmission is to vary its d-c or midband value aqfo. This modifica-
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tion has a direct effect on low-frequency desensitivity, since we have seen
that the attenuation to changes in forward-path gain provided by feedback
is equal to 1 + aqfe.

The closed-loop dynamics are also dependent on the magnitude of the
low-frequency loop transmission. The example involving Fig. 4.6 showed
how root-locus methods are used to determine the relationship between
aofy and the damping ratio of a dominant pole pair. A second approach
to the control of closed-loop dynamics by adjusting a,f, for a specific value
of M, was used in the example involving Fig. 4.24.

An assumption common to both of these previous examples was that the
value of af could be selected without altering the singularities included
in the loop transmission. For certain types of feedback systems independ-
ence of the d-c magnitude and the dynamics of the loop transmission is
realistic. The dynamics of servomechanisms, for example, are generally
dominated by mechanical components with bandwidths of less than 100 Hz.
A portion of the d-c loop transmission of a servomechanism is often pro-
vided by an electronic amplifier, and these amplifiers can provide frequency-
independent gain into the high kilohertz or megahertz range. Changing the
amplifier gain changes the value of a.f; but leaves the dynamics associated
with the loop transmission virtually unaltered.

This type of independence is frequently absent in operational amplifiers.
In order to increase gain, stages may have to be added, producing signifi-
cant changes in dynamics. Lowering the gain of an amplifying stage may
also change dynamics because, for example, of a relationship between the
input capacitance and voltage gain of a common-emitter amplifier. A further
practical difficulty arises in that there is generally no predictable way to
change the d-c open-loop gain of available discrete- or integrated-circuit
operational amplifiers from the available terminals.

An alternative approach involves modification of the d-c loop trans-
mission by means of the feedback network connected around the amplifier.
The connection of Fig. 5.1a illustrates one possibility. The block diagram
for this amplifier, assuming negligible loading at either input or output, is
shown in part b of this figure, while the block diagram after reduction to
unity-feedback form is shown in part c. If the shunt resistance R from the
inverting input to ground is an open circuit, the d-c value of the loop
transmission is completely determined by @, and the ideal closed-loop gain
—R:/R,. However, inclusion of R provides an additional degree of free-
dom so that the d-c loop transmission and the ideal gain can be changed
independently.

This technique is illustrated for a unity-gain inverter (R; = R,) and

10¢ -
(s + D035 4+ 1)

a(s) = (5.1)
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Figure 5.1 Inverter. (a) Circuit. (b) Block diagram. (¢) Block diagram reduced to
unity-feedback form.

A Bode plot of this transfer function is shown in Fig. 5.2. If R is an open
circuit, the magnitude of the loop transmission is one at approximately
2.15 X 10° radians per second, since the magnitude of a(s) at this frequency
is equal to the factor of two attenuation provided by the R;-R. network.
The phase margin of the system is 25°, and Fig. 4.26a shows that the closed-
loop damping ratio is 0.22. Since Fig. 4.26 was generated assuming this
type of loop transmission, it yields exact results in this case. If the resistor
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Figure 5.2 Bode plot of 10¢/[(s + 1)(10-%s + 1)].

R is made equal to 0.2R,, the loop-transmission unity-gain frequency is
lowered to 10° radians per second by the factor-of-seven attenuation pro-
vided by the network, and phase margin and damping ratio are increased
to 45° and 0.42, respectively. One penalty paid for this type of attenuation
at the input terminals of the amplifier is that the voltage offset and noise
at the output of the amplifier are increased for a given offset and noise at
the amplifier input terminals (see Problem P5.2).

5.2.2 Creating a Dominant Pole

Elementary considerations show that a single-pole loop transmission
results in a stable system for any amount of negative feedback, and that
the closed-loop bandwidth of such a system increases with increasing aofo.
Similarly, if the loop transmission in the vicinity of the unity-gain frequency
is dominated by one pole, ample phase margin is easily obtained. Because



Series Compensation 169

of the ease of stabilizing approximately single-pole systems, many types of
compensation essentially reduce to making one pole dominate the loop
transmission.

One brute-force method for making one pole dominate the loop trans-
mission of an amplifier is simply to connect a capacitor from a node in the
signal path to ground. If a large enough capacitor is used, the gain of the
amplifier will drop below one at a frequency where other amplifier poles
can be ignored. The obvious disadvantage of this approach to compensation
is that it may drastically reduce the closed-loop bandwidth of the system.

A feedback system designed to hold the value of its output constant
independent of disturbances is called a regulator. Since the output need
not track a rapidly varying input, closed-loop bandwidth is an unimportant
parameter. If a dominant pole is included in the output portion of a regu-
lator, the low-pass characteristics of this pole may actually improve system
performance by attenuating disturbances even in the absence of feedback.

One possible type of voltage regulator is shown in simplified form in
Fig. 5.3. An operational amplifier is used to compare the output voltage
with a fixed reference. The operational amplifier drives a series regulator
stage that consists of a transistor with an emitter resistor. The series regu-
lator isolates the output of the circuit from an unregulated source of
voltage. The load includes a parallel resistor-capacitor combination and a
disturbing current source. The current source is included for purposes of
analysis and will be used to determine the degree to which the circuit rejects
load-current changes. The dominant pole in the system is assumed to occur
because of the load, and it is further assumed that the operational amplifier
and series transistor contribute no dynamics at frequencies where the loop-
transmission magnitude exceeds one.

The block diagram of Fig. 5.3b models the regulator if it is assumed that
the common-base current gain of the transistor is one and that the resistor
R is large compared to the reciprocal of the transistor transconductance.
This diagram verifies the single-pole nature of the system loop transmission.

As mentioned earlier, the objective of the circuitry is to minimize changes
in load voltage that result from changes in the disturbing current and the
unregulated voltage. The disturbance-to-output closed-loop transfer func-
tions that indicate how well the regulator achieves this objective are

n Rras (5.2)

Id RCLS/G() + (1 —+— R/aoRL) ’
and

v 1/

—‘ ra (5.3)

V. RCis/as + (1 + R/a.R;)
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Figure 5.3 Voltage regulator. (a) Circuit. (b) Block diagram.

If sinusoidal disturbances are considered, the magnitude of either dis-
turbance-to-output transfer function is a maximum at d-c, and decreases
with increasing frequency because of the low-pass characteristics of the
load. Increasing C improves performance, since it lowers the frequency
at which the disturbance is attenuated significantly compared to its d-c
value. If it is assumed that arbitrary loads can be connected to the regu-



Series Compensation 171

e =
a,RL RLCL

SN
AN

Decreasing R,

Increasing Cp,

laGw)fGw) | —

a0
RCy

Figure 5.4 Effect of changing load parameters on the Bode plot of a voltage
regulator.

lator (which is the usual situation, if, for example, this circuit is used as a
laboratory power supply), the values of R and Cp must be considered
variable. The minimum value of C;, can be constrained by including a ca-
pacitor with the regulation circuitry. The load-capacitor value increases as
external loads are connected to the regulator because of the decoupling
capacitors usually associated with these loads. Similarly, R, decreases with
increasing load to some minimum value determined by loading limitations.

The compensation provided by the pole at the output of the regulator
maintains stability as R, and C; change, as illustrated in the Bode plot of
Fig. 5.4. (The negative of the loop transmission for this plot is aoRz/
R(R.Crs + 1), determined directly from Fig. 5.3b.) Note that the unity-
gain frequency can be limited by constraining the maximum value of the
ao/RC_, ratio, and thus crossover can be forced before other system ele-
ments affect dynamics. The phase margin of the system remains close to
90° as Ry and C; vary over wide limits.

5.2.3 Lead and Lag Compensation

If the designer is free to modify the dynamics of the loop transmission
as well as its low-frequency magnitude, he has considerably more control
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over the closed-loop performance of the system. The rather simple modi-
fication of making a single pole dominate has already been discussed.

The types of changes that can be made to the dynamics of the loop trans-
mission are constrained, even in purely mathematical systems. It is tempt-
ing to think that systems could be improved, for example, by adding posi-
tive phase shift to the loop transmission without changing its magnitude
characteristics. This modification would clearly improve the phase margin
of a system. Unfortunately, the magnitude and angle characteristics of
physically realizable transfer functions are not independent, and transfer
functions that provide positive phase shift also have a magnitude that
increases with increasing frequency. The magnitude increase may result
in a higher system crossover frequency, and the additional negative phase
shift that results from other elements in the loop may negate hoped-for
advantages. »

The way that series compensation is implemented and the types of com-
pensating transfer functions that can be obtained in practical systems are
even further constrained by the hardware realities of the feedback system
being compensated. The designer of a servomechanism normally has a
wide variety of compensating transfer functions available to him, since the
electrical networks and amplifiers usually used to compensate servomech-
anisms have virtually unlimited bandwidth relative to the mechanical por-
tions of the system. Conversely, we should remember that the choices of
the feedback-amplifier designer are more restricted because the ways that
the transfer function of an amplifier can be changed, particularly near its
unity-gain frequency where transistor bandwidth limitations dominate per-
formance, are often severely constrained.

Two distinct types of transfer functions are normally used for the series
compensation of feedback systems, and these types can either be used sep-
arately or can be combined in one system. A lead transfer function can be
realized with the network shown in Fig. 5.5. The transfer function of this

network is

.

Vs) _ 1 |:otrs | l:l (5.4)
Vs) al7rs+1

where o = (R; + Ry)/R:and 7 = (R; || Ry)C. As the name implies, this
network provides positive or leading phase shift of the output signal rela-
tive to the input signal at all frequencies. Lead-network parameters are
usually selected to locate its singularities near the crossover frequency of
the system being compensated. The positive phase shift of the network
then improves the phase margin of the system. In many cases, the lead net-
work has negligible effect on the magnitude characteristics of the compen-
sated system at or below the crossover frequency, since we shall see that a
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Figure 5.5 Lead network.

lead network provides substantial phase shift before its magnitude increases
significantly.
The lag network shown in Fig. 5.6 has the transfer function

Vis) s +1
Vis) ars—+ 1

(5.5)

where & = (R, + R;)/R: and 7 = R.C. The singularities of this type of
network are usually located well below crossover in order to reduce the
crossover frequency of a system so that the negative phase shift associated
with other elements in the system is reduced at the unity-gain frequency.
This effect is possible because of the attenuation of the lag network at
frequencies above both its singularities.

The maximum magnitude of the phase angle associated with either of
these transfer functions is

e
Pmax sSin La T ljl (5.6)

Vi(s) § R, Vo (s)

Figure 5.6 Lag network.
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and this magnitude occurs at the geometric mean of the frequencies of the
two singularities. The gain of either network at its maximum-phase-shift
frequency is 1/4/a.

The magnitudes and angles of lead transfer functions for « values of
5, 10, and 20, are shown in Bode-plot form in Fig. 5.7. Figure 5.8 shows
corresponding curves for lag transfer functions. The corner frequencies for
the poles of the plotted functions are normalized to one in these figures.

As mentioned earlier, an important feature of the lead transfer function
is that it provides substantial positive phase shift over a range of frequencies
below its zero location without a significant increase in magnitude. The
reason stems from a basic property of real-axis singularities. At frequencies
below the zero location, this singularity dominates the lead transfer func-
tion, so

Vi) 1
Vi) (ars + 1) (5.7

The magnitude and angle of this function are

1 .
= — [V1 + (arw)?] (5.8a)

o

¢ = tan~larw (5.8b)

At a small fraction of the zero location, arw << 1, so
2

M~2 [1 + (33”1} (5.92)
a 2

¢ >~ arw (5.9b)

Since the angle increases linearly with frequency in this region while the
magnitude increases quadratically, the angle change is relatively larger at
a given frequency. The same sort of reasoning applies even if the zero is
located at or slightly below crossover. Figure 5.7 shows that the positive
phase shift of a lead transfer function with a reasonable value of « is ap-
proximately 40° at its zero location, while the magnitude increase is only a
factor of 1.4. Much of this advantage is lost at frequencies beyond the geo-
metric mean of the singularities, since the positive phase shift decreases
beyond this frequency, while the magnitude continues to increase.

We should recognize that an isolated zero can be used in place of a lead
transfer function, and that this type of transfer function actually has phase-
shift characteristics superior to those of the zero-pole pair. However, the
unlimited high-frequency gain implied by an isolated zero is clearly un-
achievable, at least at sufficiently high frequencies. Thus the form of the
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lead transfer function introduced earlier reflects the realities of physical
systems.

The important feature of the lag transfer function illustrated in Fig. 5.8
is that at frequencies well above the zero location, it provides a magnitude
attenuation equal to the ratio of the two singularity locations and negligible
phase shift. It can thus be used to reduce the magnitude of the loop trans-
mission without significantly adding to the negative phase shift of this
transmission at moderate frequencies.

5.2.4 Example

Lead and lag networks were originally developed for use in servomech-
anisms, and provide a powerful means for compensation when their singu-
larities can be located arbitrarily with respect to other system poles and
when independent adjustment of the low-frequency loop-transmission mag-
nitude is possible. Even without this flexibility, which is usually absent with
operational-amplifier circuits, lead or lag compensation can provide effec-
tive control of closed-loop performance in certain configurations. As an
example, consider the noninverting gain-of-ten amplifier connection shown
in Fig. 5.9. It is assumed that the input admittance and output impedance
of the operational amplifier are small. The open-loop transfer function of
the operational amplifier is!

5 X 10°

%) = G+ A0 + (10755 + 1) 10

and it is assumed that the user cannot alter this function. When connected
as shown in Fig. 5.9 the value of fis 0.1, and thus the negative of the loop
transmission is

5 X 104

A = TN0%s + (105 + 1) G-10)

1 While an analytic expression is used for a(s) in this example, the reader should realize
that the open-loop transfer function of an operational amplifier will generally not be
available in this form. Note, however, thai an experimentally determined Bode plot is
completely acceptable for all of the required manipulations, and that this information can
always be determined.

The general characteristics of the assumed open-loop transfer function are typical of
many operational amplifiers, in that this quantity is dominated by a single pole at low
frequencies. At frequencies closer to the unity-gain frequency, additional negative phase
shift results from effects related to transistor limitations. As we shall see in later sections,
these effects constrain the ultimate performance capabilities of the amplifier.
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Figure 5.9 Gain-of-ten amplifier.

The closed-loop gain is

Vs) _
Vis)

_a)

T 1+ a)f(s)

A(s)

10
2 X 10743 4 2.2 X 107%2 4 2 X 1075 + 1

(5.12)

A Bode plot of Eqn. 5.11 (Fig. 5.10) shows that the system crossover
frequency is 2.1 X 10% radians per second, its phase margin is 13°, and the
gain margin is 2.

While the problem statement precludes altering a(s), we can introduce a
lead transfer function into the loop transmission by including a capacitor
across the upper resistor in the feedback network. The topology is shown
in Fig. 5.11a, with a block diagram shown in Fig. 5.115. The negative of
the loop transmission for the system is

5 X 1049RCs + 1)

GO = T 10ms + 10s + 109RCs + 1 O

Several considerations influence the selection of the R-C product that
locates the singularities of the lead network. As mentioned earlier, the ob-
jective of a lead network is to provide positive phase shift in the vicinity
of the crossover frequency, and maximum positive phase shift from the
network results if crossover occurs at the geometric mean of the zero-pole
pair. However, the network singularities and the crossover frequently can-
not be adjusted independently for this system, since if the zero of the lead
network is located at a frequency below about 3 X 10* radians per second,
the crossover frequency increases. An increase in crossover frequency in-
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Figure 5.10 Bode plot for uncompensated grain-of-ten amplifier. af = 5 X 104/
(s + 11045 + 1)(10-3s + 1)).

creases the negative phase shift of the amplifier at this frequency, offsetting
in part the positive phase shift of the network. A related consideration in-
volves the effect of the lead network on the ideal closed-loop gain of the
amplifier since the network is introduced in the feedback path and the ideal
gain is reciprocally related to the feedback transfer function. If the lead-
network zero is located at a low frequency, a low-frequency closed-loop
pole that reduces the closed-loop bandwidth of the system results.

A reasonable compromise in this case is to locate the zero of the lead
network near the unity-gain frequency, in an attempt to obtain positive
phase shift from the network without a significant increase in the crossover
frequency. The choice RC = 4.44 X 10~ seconds locates the zero at 2.5 X
10 radians per second. A Bode plot of Eqn. 5.13 for this value of RC is
shown in Fig. 5.12. The unity-gain frequency is increased slightly to 2.5 X
104 radians per second, while the phase margin is increased to the respect-
able value of 47°. Gain margin is 14.

A lag transfer function can be introduced into the forward path of the
amplifier by shunting a series resistor-capacitor network between its input
terminals as shown in Fig. 5.13a. Note that the same loop transmission
could be obtained by shunting the R-valued resistor with the R,-C network,
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Figure 5.11 Gain-of-ten amplifier with lead network in feedback path. (a) Circuit.
(b) Block diagram.

since both the bottom end of the R-valued resistor and the noninverting
input of the amplifier are connected to incrementally grounded points. If
this later option were used, the R,-C network would introduce the lag
transfer function into the feedback path of the topology. Consequently,
the ideal closed-loop transfer function would include the reciprocal of the
lag function. Since the singularities of lag networks are generally located
at low frequencies, the closed-loop transfer function could be adversely
influenced at frequencies of interest. (See Problem P5.7.)



Series Compensation 181

108 o
I— T T T 0
108 — Magnitude _J
T 103 —90° T
= 3
3 S
S =
% 100 3
3 S
S =
= 7¢
10— —180°
=
0.1 | 1 1 | | —270°
0.1 1 10 100 103 104 108 106

w(rad/sec) —

Figure 5.12 Bode plot for lead-compensated gain-of-ten amplifier. o'f’ =
1044 X 10-3%s + 1)/[(s + D(A0%s + 1)(A0-3s + 1)(4 X 10-% + 1)].

The system block diagram for the topology of Fig. 5.13a is shown in
Fig. 5.13b. In this case, the lag transfer function appears in both the feed-
back path and a forward path outside the loop. The block diagram can
be rearranged as shown in Fig. 5.13¢, and this final diagram shows that
including the R;-C network between amplifier inputs leaves the ideal closed-
loop gain unchanged. The negative of the loop transmission for Fig. 5.13c is

T 1
a’(s)f""(s) = 0.1 (( S+ 1)) a(s) (5.14)
where
a = I—QI——ZOiQ and T = R,C

As mentioned earlier, the singularities of a lag transfer function are gen-
erally located well below the system crossover frequency so that the lag
network does not deteriorate phase margin significantly. A frequently used
rule of thumb suggests locating the zero of the lag network at one-tenth of
the crossover frequency that results following compensation, since this
value yields a maximum negative phase contribution of 5.7° from the net-
work at crossover. We also, rather arbitrarily, decide to choose the lag-net-
work parameters to yield a phase margin of approximately 47°, the same
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Figure 5.13 Gain-of-ten amplifier with lag compensation. (a) Circuit. (5) Block
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value as that of the system compensated with a lead network. The Bode
plot of the system without compensation, Fig. 5.10, aids in selecting lag-
network parameters. This plot indicates an uncompensated phase angle of
—128° and an uncompensated magnitude of 6.2 at a frequency of 6.7 X 103
radians per second. If the value of 6.2 is the chosen high-frequency attenu-
ation « of the lag network, the compensated crossover frequency will be
6.7 X 10° radians per second. The 5° of negative phase shift anticipated
from a properly located lag network combines with the —128° of phase
shift of the system prior to compensation to yield a compensated phase
margin of 47°. The zero of the lag network is located at 6.7 X 10?2 radians
per second, a factor 10 below crossover. These design objectives are met
with R; = 0.173R and R,C = 1.5 X 10—3 seconds. With these values, the
negative of the loop transmission is

5 X 1041.5 X 10-3s + 1)
(s + 1)(10~%s + 1)(10-5s + 1)(9.3 X 10~3%s + 1)

) (s) = (5.15)

This transfer function, plotted in Fig. 5.14, indicates predicted values
for crossover frequency and phase margin. The gain margin is 15.

Two other modifications of the loop transmission result in Bode plots
that are similar to that of the lag-compensated system in the vicinity of the
crossover frequency. One possibility is to lower the value of aqf, by a
factor of 6.2 (see Section 5.2.1). The required reduction can be accomplished
by simply using the shunt-resistor value determined for lag compensation
directly across the input terminals of the operational amplifier. This modi-
fication results in the same crossover frequency as that of the lag-compen-
sated amplifier, and has several degrees more phase margin since it does not
have the slight negative phase shift associated with the lag network at
crossover. Unfortunately, the lowered aqf, results in a lower value for de-
sensitivity compared with that of the lag-compensated amplifier at all fre-
quencies below the zero of the network.

A second possibility is to move the lowest-frequency pole of the loop
transmission back by a factor of 6.2. This modification might be made to
the amplifier itself, or could be accomplished by appropriate selection of
lag-network components. The effect on parameters in the vicinity of cross-
over is essentially identical to that of reducing a,f;. Desensitivity is retained
at d-c with this method, but is lowered at intermediate frequencies compared
to that provided by lag compensation. These two approaches to compen-
sating the amplifier described here are investigated in detail in Problem
P5.8.

The discussion of series compensation up to this point has focused on
the use of the frequency-domain concepts of phase margin, gain margin,
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Figure 5.14 Bode plot for lag compensated gain-of-ten amplifier. o’’’ =
5 X 10%4(1.5 X 10735 + 1)/[(s 4+ 1)(10~4s + 1)(10-5s + 1)(9.3 X 10-3s 4+ 1)].

and crossover frequency to determine compensating-network parameters.
Root-locus methods cannot be used directly since the value of af, is not
varied to effect compensation. However, the root-locus sketches for the
uncompensated, lead-compensated, and lag-compensated systems shown
in Fig. 5.15 do lend a degree of insight into system behavior. (There is
significant distortion in these sketches, since it is not convenient to present
sketches accurately where the singularities are located several decades
apart.)

The root-locus diagram of Fig. 5.15a illustrates the change in closed-loop
pole location as a function of a,f, for the uncompensated system. Adding
the lead network (Fig. 5.15b) shifts the dominant branches to the left and,
thus, improves the damping ratio of this pair of poles for a given value
Of aofo.

The effect of lag compensation is somewhat more subtle. The root-locus
diagram of Fig. 5.15¢ is virtually identical to that of Fig. 5.15a except in
the immediate vicinity of the lag-network singularity pair. However, a gain
calculation using rule 8 (Section 4.3.1) shows that the value of af, required
to reach a given damping ratio for the dominant pair is higher by approxi-
mately a factor of @ when the lag network is included.
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Figure 5.15 Root-locus diagrams illustrating compensation of gain-of-ten ampli-
fier. (a) Uncompensated. (b) Lead compensated. (¢) Lag compensated.
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Root contours can also be used to show the effects of varying a single
parameter of either the lead or the lag network. This design approach is
explored in Problems P5.9 and P5.10.

5.2.5 Evaluation of the Effects of Compensation

There are several ways to demonstrate the improvement in performance
provided by compensation. Since the parameters of the compensating trans-
fer function are usually determined with the aid of loop-transmission Bode
plots, one simple way to evaluate various types of compensation is to com-
pare the desensitivity obtained from them. The considerations used to de-
termine lead- and lag-compensation parameters for an operational ampli-
fier connected to provide a gain of 10 were described in detail in Section
5.2.4. The resulting loop transmissions, repeated here for convenience, are

5 X 1044 X 10-5s + 1)
(s + 1D(10~*s + 1)(10-5s + 1)@ X 10-5s + 1)

a(s)f'(s) = (5.16)

and

4 —3
a//(s) //(s) — 5 X 10 (15 X 10 S+ 1)

(s + 1)(10~*s + 1)(10-5s + 1)(9.3 X 10~%s + 1)

for the lead- and lag-compensated cases, respectively. The phase-margin
obtained by either method is approximately 47°.

It was mentioned that the stability of the uncompensated amplifier
could be improved by either lowering a,fy by a factor of 6.2, resulting in

" nro_ 8.1 X 10°
ST = 10 s £ 1105 s + 1) (>-18)

or by lowering the location of the first pole by the same factor, yielding

a/lll(s)fl/ll(s) — 5 X 104 (5'19)
(6.2 s + D(10~%s + 1)(10-°>s + 1)
Either of these approaches results in a crossover frequency identical to
that of the lag-compensated system and a phase margin of approxi-
mately 52°.

The magnitude portions of the loop transmissions for these four cases are
compared in Fig. 5.16. The relative desensitivities that are achieved at
various frequencies, as well as the relative crossover frequencies, are
evident in this figure.

An alternative way to evaluate various compensation techniques is to
compare the error coefficients that are obtained using them. This approach
is explored in Problem P5.11. As expected, systems with greater desensi-
tivity generally also have smaller-magnitude error coefficients.

(5.17)
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Figure 5.16 Effects of various types of compensation on loop-transmission mag-
nitude.

The discussion of compensation up to now has focused on the ase of
Bode plots, since this is usually the quickest way to find compensating
parameters. However, design objectives are frequently stated in terms of
transient response, and the inexperienced designer often feels an act of
faith is required to accept the principle that systems with properly chosen
values for phase margin, gain margin, and crossover frequency will produce
satisfactory transient responses. The step responses shown in Fig. 5.17 are
offered as an aid to establishing this necessary faith.

Figure 5.17a shows the step response of the gain-of-ten amplifier with-
out compensation. The large peak overshoot and poor damping of the
ringing reflect the low phase margin of the system. The overshoot and
damping for the lead compensated, lag compensated, and reduced aofe
cases (Figs. 5.17b, 5.17¢, and 5.17d, respectively) are significantly improved,
as anticipated in view of the much higher phase margins of these connec-
tions. The step response obtained by lowering the frequency of the first
pole in the loop is not shown, since it is indistinguishable from Fig. 5.174.

Certain features of these step responses are evident from the figures.
The peak overshoot exhibited by the amplifier with reduced a,f; is slightly
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Figure 5.17 Response of gain-of-ten amplifier to an 80-mV step. (a) No compen-
sation. (b) Lead compensated. () Lag compensated. (d) Lowered aufy. (¢) Lead
compensation in forward path. (f) Second-order approximation to (c).
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Figure 5.17—Continued
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less than that of the amplifier with lag compensation, reflecting slightly
higher phase margin. Similarly, the rise time of lag-compensated amplifier
is very slightly faster, again reflecting the influence of relative phase margin
on the performance of these two systems with identical crossover fre-
quencies. The smaller peak overshoot of the lead-compensated system does
not imply greater relative stability for this amplifier, but rather occurs be-
cause of the influence of the lead network in the feedback path on the ideal
closed-loop gain.

Figure 5.17e shows the step response that results if lead compensation
is provided in the forward path rather than in the feedback path. Thus the
loop transmission for this transient response is identical to that of Fig.
5.17b (Eqn. 5.16), but the feedback path for the system illustrated in Fig.
5.17e is frequency independent. While forward-path lead compensation
was prohibited by the problem statement of the earlier examples, Fig.
5.17¢ provides a more realistic indication of relative stability than does
Fig. 5.17b, since Fig. 5.17¢ is obtained from a system with a frequency-
independent ideal gain. The difference between these two systems with
identical loop transmissions arises because of differences in the closed-loop
zero locations (see Section 4.3.4).

The peak overshoot and relative damping of Figs. 5.17¢ and 5.17e are
virtually identical, demonstrating that, at least for this example, equal
values of phase margin result in equal relative stability for the lead- and
lag-compensated systems. The rise time of Fig. 5.17¢ is approximately one-
quarter that of Fig. 5.17¢, and this ratio is virtually identical to the ratio of
the crossover frequencies of the two amplifiers.

The step response of Fig. 5.17f is that of a second-order system with
¢ = 0.45 and w, = 8.5 X 10? radians per second. These values were ob-
tained using Fig. 4.26a to determine a second-order approximating system
to the lag-compensated amplifier. The similarity of Figs. 5.17¢ and 5.17f
is another example of the accuracy that is frequently obtained when com-
plex systems are approximated by first- or second-order ones. The loop
transmission for the lag-compensated system (Eqn. 5.17) includes” four
poles and one zero. However, this quantity has only a single-pole roll off
between 6.7 X 102 radians per second and the crossover frequency, with a
second pole in the vicinity of crossover. It can thus be well approximated
as a system with two widely separated poles, the model from which Fig.
4.26 was developed.

5.2.6 Related Considerations

Several additional comments concerning the relative benefits of different
series compensation methods are in order. The evaluation of performance
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in the previous example seems to imply advantages for lead compensation.
The lead-compensated amplifier appears superior if desensitivity at various
frequencies, error-coefficient magnitude, or speed of transient response is
used as the indicator of performance. Furthermore, if the lead transfer
function is included in the feedback path, the amplifier exhibits better-
damped transient responses than can be obtained from other types of com-
pensation selected to yield equivalent phase margin. The advantages asso-
ciated with lead compensation primarily reflect the higher value for cross-
over frequency and the correspondingly higher closed-loop bandwidth that
is frequently possible with this method. It should be emphasized, however,
that bandwidth in excess of requirements usually deteriorates overall per-
formance. Larger bandwidth increases the noise susceptibility of an ampli-
fier and frequently leads to greater stability problems because of stray in-
ductance or capacitance.

Lead compensation usually aggravates the stability problem if the loop
also includes elements that provide large negative phase shift over a wide
frequency range without a corresponding magnitude attenuation. (While
the constraints of physical realizability preclude elements that provide
positive phase shift without an amplitude increase, the less useful converse
described above occurs with distressing frequency.) For example, consider
a system that combines a frequency-independent gain in a loop with a
r-second time delay such as that provided by a delay line. The negative of
the loop transmission for this system is

a(s)f (s) = ace™" (5.20)

The time delay is an element that has a gain magnitude of one at all fre-
quencies and a negative phase shift that is linearly related to frequency.
-The Nyquist diagram (Fig. 5.18) for this system shows that it is unstable
for ag > 1. The use of lead compensation compounds the problem, since
the positive phase shift of the lead network cannot counteract the unlimited
negative phase shift of the time delay, while the magnitude increase of the
lead function further lowers the maximum low frequency desensitivity
consistent with stable operation.

The correct approach is to use a dominant pole to decrease the magni-
tude of the loop transmission before the phase shift of time delay becomes
excessive. The limiting case of an integrator (pole at the origin) works
well, and this modification results in

a(s)f (s) = ? e (5.21)
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Figure 5.18 Nyquist test for a(s)f(s) = ase~*".

The desensitivity of this function is infinite at d-c. The reader should con-
vince himself that the system is absolutely stable for any positive value of
ay, < w/2r, and that at least 45° of phase margin is obtained with positive
a, < 7I'/4T.

The use of lag compensation introduces a type of error that compromises
its value in some applications. If the step response of a lag-compensated
amplifier is examined in sufficient detail, it is often found to include a long
time-constant, small-amplitude “tail,” which may increase inordinately the
time required to settle to a small fraction of final value. Similarly, while
the error coefficient e, may be quite small, the time required for the ramp
error to reach its steady-state value may seem incompatible with the ampli-
fier crossover frequency.

As an aid to understanding this problem, consider a system with f(s) =
and

_1000(0.1s + 1)
as) = — 6D (5.22)

This transfer function is an idealized representation of a system that com-
bines a single dominant pole with lag compensation to improve desensi-
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tivity. The zero of the lag network is located a factor of 10 below the cross-

over frequency. The closed-loop transfer function is

_ a(s) B 0.1s + 1)
14 a(s)f(s) 10732 + 0.101s + 1

A(s)

3 O.1s + 1)
"~ (0.09s + 1)0.011s + 1)

(5.23)

The response of this system to a unit step is easily evaluated via Laplace
techniques, with the result

vof) = 1 — 1.126e~1/0-01 4 (,]26¢—1/0-09 (5.24)

This step response reaches 1097 of final value in 0.02 second, a reasonable
value in view of the 100 radian per second crossover frequency of the sys-
tem. However, the time required to reach 197 of final value is 0.23 second
because of the final term in Eqn. 5.24. Note that if a(s) is changed to 100/s,
a transfer function with the same unity-gain frequency as Eqn. 5.22 and
less gain magnitude at all frequencies below 10 radians per second, the
time required for the system step response to reach 19 of final value is
approximately 0.05 second.

The root-locus diagram for the system (Fig. 5.19) clarifies the situation.
The system has a closed-loop zero with a corner frequency at 10 radians
per second since the zero shown in the diagram is a forward-path singu-
larity. The feedback forces one closed-loop pole close to this zero. The
resultant closely spaced pole-zero doublet adds a long-time-constant tail

!

jw

Closed—loop .pole

locations for ay = 1000 s plane
X
—-90 0 ——>

Figure 5.19 Root-locus diagram for a(s)f(s) = ai(0.1s 4+ 1)/[s(s + 1)].
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to the otherwise well-behaved system transient response. The reader should
recall that it is precisely this type of doublet that deteriorates the step re-
sponse of a poorly compensated oscilloscope probe. Since linear system
relationships require that the ramp response be the integral of the step
response, the time required for the ramp error to reach final value is simi-
larly delayed.

Similar calculations show that as the lag transfer function is moved
further below crossover, the amplitude of the tail decreases, but its time
constant increases. We conclude that while lag compensation is a powerful
technique for improving desensitivity, it must be used with care when the
time required for the step response to settle to a small fraction of its final
value or the time required for the ramp error to reach final value is con-
strained.

It should be emphasized that a closed-loop pole will generally be located
close to any open-loop zero with a break frequency below the crossover
frequency. Thus the type of tail associated with lag compensation can also
result with, for example, lead compensation that often includes a zero below
crossover. The performance difference results because the zero and the
- closed-loop pole that approaches it to form a doublet are usually located

Table 5.1 Comparison of Series-Compensating Methods

Type Special Considerations Advantages Disadvantages
Reduced aqf; Simplicity. Lowest desensitivity.
Create Lower the frequency Can improve noise Lowers bandwidth.
dominant of the existing immunity of system.
pole dominant pole if Usually the type of

possible. choise for a regulator.

Locate at the output
of a regulator.

Lag Locate well below Better desensitivity May add undesirable
crossover frequency. than either of above. “‘tail” to transient
response.
Lead Locate zero near Greatest desensitivity. Increases sensitivity
crossover frequency. Lowest error coeffi-  to noise.
cients. Cannot be used with
Fastest transient fixed elements that
response. contribute excessive

negative phase shift.
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close to the crossover frequency for lead compensation. Thus the decay
time of the resultant tail, which is determined by the closed-loop pole in
question, does not greatly lengthen the settling time of the system.

It is difficult to develop generalized rules concerning compensation, since
the proper approach is highly dependent on the fixed elements included in
the loop, on the types of inputs anticipated, on the performance criterion
chosen, and on numerous other factors. In spite of this reservation, Table
5.1is an attempt to summarize the most important features of the four types
of series compensation described in this section.

5.3 FEEDBACK COMPENSATION

Series compensation is accomplished by adding a cascaded element to a
single-loop feedback system. Feedback compensation is implemented by
adding a feedback element which creates a two-loop system. One possible
topology is illustrated in Fig. 5.20. The closed-loop transfer function for
this system is

Vo _ _aa/( + arfy)
Vi B 14+ alaZfl/(l + 02f2)

A series-compensated system with a feedback element identical to the
major-loop feedback element of Fig. 5.20 is shown in Fig. 5.21. The two
feedback elements are identical since it is assumed that the same ideal
closed-loop transfer function is required from the two systems. The closed-
loop transfer function for the series-compensated system is

(5.25)

Vo asa,

Vi 1+ aafs

The closed-loop transfer functions of the feedback- and series-compen-
sated systems will be equal if f£; is selected so that

(5.26)

aydsy
L L 5.27a
“ T+ avf)as ©-272)
or
£ = @\az — s (5.27b)

aqdsza,

The above analysis suggests that one way to select appropriate feedback
compensation is first to determine the series compensation that yields ac-
ceptable performance and then convert to equivalent feedback compensa-
tion. In practice, this approach is normally nof used, but rather the series
compensation is determined to exploit potential advantages of this method.
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Figure 5.20 Topology for feedback compensation.

We shall see that if an operational amplifier is designed to accept feedback
compensation, the use of this technique often results in performance su-
perior to that which can be achieved with series compensation. The fre-
quent advantage of feedback compensation is not a consequence of any
error in the mathematics that led to the equivalence of Eqn. 5.27 but in-
stead is a result of practical factors that do not enter into these calcula-
tions. For example, the compensating network required to obtain specified
closed-loop performance is often easier to determine and implement and
may be less sensitive to variations in other amplifier parameters in the case
of a feedback-compensated amplifier. Similarly, problems associated with
nonlinearities and noise are often accentuated by series compensation,
yet may actually be reduced by feedback compensation.

v, ) a5 a, 17

Series compensating
element

fi <

Figure 5.21 Series-compensated system.
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The approach to finding the type of feedback compensation that should
be used in a given application is to consider the negative of the loop trans-
mission for the system of Fig. 5.20. This quantity is

Vb (71
;o= ah o (5.28)

If the inner loop is stable (i.e., if 1 + a.f; has no zeros in the right half
of the s plane), then
Vijo) _ ai(Jw)fi(jw)
V(jw) So(jw)

| ax(jw) fuJo) | > 1 (5.29a)

and
V;,(jw)
Va(j w)

In practice, system parameters are frequently selected so that the mag-
nitude of the transmission of the minor loop is large at frequencies where
the magnitude of the major loop transmission is close to one. The approxi-
mation of Eqn. 5.29a can then be used to determine a value for f; that
insures stability for the system.

A simple example of feedback compensation is provided by the opera-
tional-amplifier model shown in Fig. 5.224. The model is an idealization of a
common amplifier topology that will be investigated in detail in subsequent
sections. The amplifier modeled includes a first stage with wide bandwidth
compared to the rest of the circuit driving into a second stage that has
relatively low input impedance and that dominates the uncompensated dy-
namics of the amplifier. The compensation is provided by a two-port net-
work that is connected around the second stage and that forms a minor
loop. This network is constrained to be passive. A block diagram for the
amplifier is shown in Fig. 5.225. The quantity Y. is the short-circuit transfer
admittance of the compensating network, 7,/V,.2

If no compensation is used, the open-loop transfer function for the ampli-
fier is

=~ a\(jw)fi(jw)ax(jw) | as(Jw) filJw) | < 1 (5.29b)

V(s) _ 10° (5.30)

If a wire is connected from the output of the amplifier back to its input,
creating a major loop with f = 1, the phase margin of the resultant system
is approximately 0.12°.

2 The convention used to define Y. is at variance with normal two-port notation, which
would change the reference direction for 7. This form is used since it results in fewer minus
signs in subsequent equations.
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Figure 5.22 Operational amplifier. (a) Model. (b) Block diagram.

When feedback compensation is included, the block diagram shows that
the amplifier transfer function is
V4 —10%/(10-3 1)?
() _ /(107355 + 1) 5.31)
Vis) 1+ 10°Y./(10-3s + 1)2
One way to improve the phase margin of this amplifier when used in a
feedback connection is to make V. (s)/V(s) dominated by a single pole.
Equation 5.31 shows that
Vo(j —10-3 10°Y (j ‘
(j_w) ~ — when '7——.(”)**' > 1 (5.32)
Vijo) — Yo(jo) (10-%e + 1y?
If a single capacitor C is used for the compensating network, Y, = Cs
and

Vo jw) —10-3
=~ 5.33
Vi(jw) _].OC ( )
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for all frequencies such that
10°Cjw
(107 %jw + 1)?
The exact expression for the amplifier open-loop transfer function with
this compensation is
Vis) ~ —105/(10-% + 1)
V{s) 1+ 10°Cs/(10-3s + 1)

> 1

— 106
© 1062 + (2 X 1073 + 10°C)s + 1
If an 840-pF capacitor is used for C, the transfer function becomes
Vls) —10¢
Vis) (0.84s + 1)(1.19 X 10-5s + 1)

and a phase margin of at least 45° is assured for frequency-independent
feedback with any magnitude less than one applied around the amplifier.
With this value of compensating feedback element,

Vo(jo) _ 119 X 105 10-% _ 10-*

(5.34)

(5.35)

Vi(jw) Je G Y (jo)
at any frequency between 1.19 radians per second and 0.84 X 10 radians
per second. The two bounding frequencies are those at which the magni-
tude of the compensating loop transmission is one. The essential point is
that minor-loop feedback controls the transfer function of the amplifier
over nearly six decades of frequency. We also note that even though a
dominant pole has been created by means of feedback compensation, the
unity-gain frequency of the compensated amplifier (approximately 8 X 10°
radians per second) remains close to the uncompensated value of 10¢
radians per second.

Feedback compensation is a powerful and frequently used compensating
technique for modern operational amplifiers. Several examples of this type
of compensation will be provided after the circuit topologies of representa-
tive amplifiers have been described.

(5.36)

PROBLEMS

P5.1
An operational amplifier has an open-loop transfer function
2 X 10°
(0.1s + 1)(10~%s + 1)?

a(s) =
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Design a connection that uses this amplifier to provide an ideal gain of
—10. Include provision to lower the magnitude of the loop transmission
so that the overshoot in response to a unit step is 10%7. You may use the
curves of Fig. 4.26 as an aid to determining the required attenuation.

P5.2

An operational amplifier is connected as shown in Fig. 5.23a. The value
of a is adjusted to control the stability of the connection. Assume that
noise associated with the amplifier can be modeled as shown in Fig. 5.235.
Evaluate the noise at the amplifier output as a function of «, neglecting
loading at the input and the output of the amplifier. Note that an increase
in the noise at the amplifier output implies a decrease in signal-to-noise
ratio, since the gain from input to output is essentially independent of «.

P5.3

A certain feedback amplifier can be modeled as shown in Fig. 5.24.
You may assume that the operational amplifier included in this diagram
is ideal. Select a value for the capacitor C that results in a system phase
margin of 45°.

VWA = +

——-—OVaBj-
+

V. aR

(a)

(b)

Figure 5.23 Evaluation of noise at the output of an inverting amplifier. (a) Inverter
connection. (b) Method for modeling noise at amplifier input.
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Figure 5.24 Feedback system with dominant pole.

P5.4

A speed-control system combines a high-power operational amplifier in
a loop with a motor and a tachometer as shown in Fig. 5.25. The tach-
ometer provides a voltage proportional to output shaft velocity, and this
voltage is used as the feedback signal to effect speed control.

(a) Draw a block diagram for this system that includes the effects of the
disturbing torque.

(b) Determine compensating component values (R and C) as a function of
J1. so that the system loop transmission is — 100/s.

(c¢) Show that, with this type of loop transmission, the steady-state output
velocity is independent of any constant load torque.

(d) Use an error-coefficient analysis to show that the system is less sensi-
tive to time-varying disturbing torques when larger values of J, are
used. Assume that R and C are changed with J, to maintain the loop
transmission indicated in part b.

P5.5
Show that the network illustrated in Fig. 5.26 can be used to combine

a lag transfer function with a lead transfer function located at a higher

frequency. Determine network parameters that will result in the transfer

function
Vi(s) (0.1s 4 1)(107%s + 1)
Vis) (s + 1)(10-% + 1)

P5.6
The loop transmission of a feedback system can be approximated as

10¢

2

Ls) = -

N
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c R
|
1 Disturbing torque, T,
100 k&2 applied to load
Motor \ Tachometer \; Load
+ J J
+ Shaft velocity Total rotating
v Qg inertia is
i — Jp kg—m?
100 kQ
Voltage from
tachometer = 0.01 volts/rad/sec X £
(a)
—_—
Iy

10

Voltage = 0.1 volts/radsec X £,

Motor torque = 0.1 newton — meter
- per amp of I,

®)
Figure 5.25 Speed-control system. (a) System diagram. () Motor model.

in the vicinity of the unity-gain frequency. Assume that a lead transfer
function (Eqn. 5.4) with a value of & = 10 can be added to the loop trans-
mission. How should the transfer function be located to maximize phase
margin? What values of phase margin and crossover frequency result?

P5.7
Use a block diagram to show that a lag transfer function can be intro-

duced into the loop transmission of the gain-of-ten amplifier (Fig. 5.9) by
shunting the R-valued resistor with an appropriate network.

(a) Choose network parameters so that the system loop transmission is
given by Eqn. 5.15.

(b) Find the closed-loop transfer function and plot the closed-loop step
response for the gain-of-ten amplifier using values found in part a,
assuming that the operational-amplifier characteristics are ideal.

(c) Estimate the closed-loop step response for this connection assuming
that the amplifier open-loop transfer function is as given by Eqn. 5.10.

(d) Compare the performance of the lag-compensated system developed
in this problem with that shown in Fig. 5.13 considering both the sta-
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Cl
.
"
+ -
WA o % o
R
* 1 l

Figure 5.26 Lag-Lead network.

bility and the ideal closed-loop transfer function of the two con-
nections.

P5.8

It was mentioned in Section 5.2.4 that alternative compensation possi-
bilities for the gain-of-ten amplifier include lowering the magnitude of the
loop transmission at all frequencies by a factor of 6.2 and lowering the
location of the lowest-frequency pole in the loop transfer function by a
factor of 6.2 by selecting appropriate lag-network parameters.

(a) Determine topologies and component values to implement both of
these compensation schemes.

(b) Draw loop-transmission Bode plots for these two methods of compensa-
tion.

(c) Compare the relative stability produced by these methods with that
provided by the lag compensation described in Section 5.2.4.

P5.9
The negative of the loop transmission for the lead-compensated gain-of-
ten amplifier described in Section 5.2.4 is

5 % 10%(107s + 1)
(s + 1)(10~%s + 1)(10~5s + l)(rs + 1)

where 7 is determined by the resistor and capacitor values used in the feed-
back network (see Eqn. 5.13). Use root contours to evaluate the stability
of the gain-of-ten amplifier as a function of the parameter 7. Find the value
of 7 that maximizes the damping ratio of the dominant pole pair. Note.
Since it is necessary to factor third- and fourth-order polynomials in order
to complete this problem, the use of machine computation is suggested.
Numerical calculations are also suggested to evaluate the maximum damp-
Ing ratio.

a(s)f(s) =
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P5.10
The negative of the loop transmission for the lag-compensated amplifier
is
5 X 10%rs + 1)
(s + D04 + 1)(10~°%s + 1)(ars + 1)

It was shown in Section 5.2.4 that reasonable stability results for o = 6.2
and a value of r that locates the lag-function zero a factor of 10 below cross-
over. Use root contours to evaluate stability as a function of the zero lo-
cation (1/7) for & = 6.2. The note concerning the advisability of machine
computation mentioned in Problem P5.9 applies to this calculation as well.

P5.11

Determine the first three error coefficients for the four loop transmissions
of the gain-of-ten amplifier described by Eqns. 5.16 through 5.19. Assume
that the lead compensation is obtained in the feedback path (see Section
5.2.4) while all other compensations can be considered to be located in the
forward path.

P5.12

A feedback system includes a factor

(s*/12) — (s/2) + 1
(s*/12) + (s/2) + 1

a(s)f (s) =

in its loop transmission.

Assume that you have complete freedom in the choice of d-c loop-trans-
mission magnitude and the selection of additional singularities in the loop
transmission. Determine the type of compensation that will maximize the
desensitivity of this system.

P5.13

Calculate the settling time (to 1% of final value for a step input) for the
gain-of-ten amplifier with lag compensation (Eqn. 5.15). Contrast this
value with that of a first-order system with an identical crossover frequency.

P5.14
A model for an operational amplifier using minor-loop compensation
is shown in block-diagram form in Fig. 5.27.

(a) Assume that the series compensating element has a transfer function
a/s) = 1. Find values for b and 7 such that a major loop formed by
feeding V, directly back to V; will have a crossover frequency of 103
radians per second, approximately 55° of phase margin, and maximum
desensitivity at frequencies below crossover subject to these constraints.



206 Compensation

+ —1010

V; 3x 10-3 ac(s)
| ——— ¢ PRI

&

bs?
s + 1

Figure 5.27 Operational-amplifier model.

Draw an open-loop Bode plot for the amplifier with these values for
b and 7.

(b) Now assume that b = 0. Can you find a value for a(s) that results in
the same asymptotic open-loop magnitude characteristics as you ob-
tained in part a, subject to the constraint that | a(jw) | < 1 for.all w?

P5.15

This problem includes a laboratory portion that can be performed with
commonly available test equipment and that will give you experience com-
pensating a system with well-defined dynamics. The experimental vehicle
is the circuit shown in Fig. 5.28, which gives quite repeatable operational-
amplifier-like characteristics. The suggested experiments use the configura-
tion at relatively low frequencies, so that the inevitable stray circuit ele-
ments have little effect on the measured performance.

The dynamics of the circuit should first be standardized. Connect it as
an inverting amplifier as shown in Fig. 5.29.

Select the capacitor C connected between pins 1 and 8 of the LM301A
so that the configuration is just on the verge of instability. An estimated
value should be around 5000 pF. Please remember that the amplifier reacts
very poorly (usually by dying) if pins 1 or 5 are shorted to almost any po-
tential.

Note. The assumptions required for linear analysis are severely compro-
mised if the peak-to-peak magnitude of the input signal exceeds approxi-
mately 50 mV. It is also necessary to have the driving source impedance
low in this and other connections. A resistive divider attenuating the
signal-generator output and located close to the amplifier is suggested.

After this standardization, it is claimed that if the loads applied to the
amplifier are much higher than the output impedance of the network in-
volving the 0.15 uF capacitor, etc., we can approximate a(s) as

5 % 10
(s + DA0-3s + 1)10~*s + 1)

a(s) ~
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O

in the following figures.

Figure 5.28 Amplifier with controlled dynamics. Pin numbers are for TO-99 and

minidip packages.

220 k2

a(s) b—0 +

Figure 5.29 Inverting configuration.
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220 k2
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22 k2
—/MWA =
a(s) b———O0+

Vo
Vi -
= o j.-

Figure 5.30 Inverting gain-of-ten amplifier.

for purposes of stability analysis. This transfer function is not unique and,
in general, functions of the form

5 104
a(s) X T

T (rs 4 1107 + 1)(10~%s + 1)

will yield equivalent results in your analysis providing  >> 10-3 seconds.

Supply a convincing argument why the above family of transfer functions
properly represents the operational amplifier that you have just brought to
the verge of oscillation. Note that simply showing the two given expressions
are equivalent is not sufficient. You must show why they can be used to
analyze the standardized circuit.

Use a Bode plot to determine the phase margin of the connection shown
in Fig. 5.30 when the standardized amplifier is used. Predict a value for
M, based on the phase margin, and compare your prediction with mea-
sured results.

You are to compensate the system to improve its phase margin to 60°
by reducing aofy and by using lag and lead compensating techniques. You
may not change the value of C or elements in the network connected to the
output of the LM301A, nor load the network unreasonably to implement
compensation.

Analytically determine the topology and element values you will use for
each of the three forms of compensation. It may not be possible to meet the
phase-margin objective using lead compensation alone; if you find this to
be the case, you may reduce a,f, slightly so that the design goal can be
achieved.

Compensate the amplifier in the laboratory and convince yourself that
the step responses you measure are reasonable for systems with 60° of
phase margin. Also correlate the rise times of the responses with your pre-
dicted values for crossover frequencies.



CHAPTER VI
NONLINEAR SYSTEMS

6.1 INTRODUCTION

The techniques discussed up to this point have all been developed for
the analysis of linear systems. While the computational advantages of the
assumption of linearity are legion, this assumption is often unrealistic,
since virtually all physical systems are nonlinear when examined in suffi-
cient detail. In addition to systems where the nonlinearity represents an
undesired effect, there are many systems that are intentionally designed
for or to exploit nonlinear performance characteristics.

Analytic difficulties arise because most of the methods we have learned
are dependent on the principle of superposition, and nonlinear systems
violate this condition. Time-domain methods such as convolution and fre-
quency-domain methods based on transforms usually cannot be applied
directly to nonlinear systems. Similarly, the blocks in a nonlinear block
diagram cannot be shuffled with impunity. The absolute stability question
may no longer have a binary answer, since nonlinear systems can be stable
for certain classes of inputs and unstable for others.

The difficulty of effectively handling nonlinear differential equations is
evidenced by the fact that the few equations we know how to solve are often
named for the solvers. While considerable present and past research has
been devoted to this area, it is clear that much work remains to be done.
For many nonlinear systems the only methods that yield useful results in-
volve experimental evaluation or machine computation.

This chapter describes two methods that can be used to determine the
response or stability of certain types of nonlinear systems. The methods,
while certainly not suited to the analysis of general nonlinear systems, are
relatively easy to apply to many physical systems. Since they represent
straightforward extensions of previously studied linear techniques, the in-
sight characteristic of linear-system analysis is often retained.

6.2 LINEARIZATION

One direct and powerful method for the analysis of nonlinear systems
involves approximation of the actual system by a linear one. If the approxi-

209
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mating system is correctly chosen, it accurately predicts the behavior of the
actual system over some restricted range of signal levels.

This technique of linearization based on a tangent approximation to a
nonlinear relationship is familiar to electrical engineers, since it is used to
model mary electronic devices. For example, the bipolar transistor is a
highly nonlinear element. In order to develop a linear-region model such
as the hybrid-pi model to predict the circuit behavior of this device, the
relationships between base-to-emitter voltage and collector and base cur-
rent are linearized. Similarly, if the dynamic performance of the transistor
is of interest, linearized capacitances that relate incremental changes in
stored charge to incremental changes in terminal voltages are included in
the model.

6.2.1 The Approximating Function

The tangent approximation is based on the use of a Taylor’s series esti-
mation of the function of interest. In general, it is assumed that the output
variable of an element is a function of N input variables

vo = F(vry, vrs, ..., VIN) (6.1)

The output variable is expressed for small variation vy, v4s, . . . , v;5 about
input-variable operating points V11, Vi, . .., Vi~ by noting that

= Vo + Vo = F(V[l, V[g, c ey V[N)

Vo
+ V4
E aVIJ Vn,Vn,...,Vuv
1 & Vo
+ ~ "1 avr Vikly +'+ 6.2
2! klzl aVIkaVIl Vn, 1};121..,VN ( )

(Recall that the variable and subscript notation used indicates that vo is a
total variable, Vo is its operating-point value, and v, its incremental com-
ponent.)

The expansion of Eqn. 6.2 is valid at any operating point where the
derivatives exist.

Since the various derivatives are assumed bounded, the function can be
adequately approximated by the first-order terms over some restricted
range of inputs. Thus

14
Vo + vo~ F(Vi, Vie, ..., Vin) + Z ¢ Vis (6.3)

(9 V[;, Vi, Vie, ..., Vin
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WV,
Vg2 v,
Vi VizrVin
+
vy +
v 3V, —>
ViiVig Vi \
v
viN—> VN
ViuVigVin

Figure 6.1 Linearized block diagram.

The constant terms in Eqn. 6.3 are substracted out, leaving

N o3V

Vij
=1 aVIji Vi, Vig, ..., Vin

U, (6.4)
Equation 6.4 can be used to develop linear-system equations that relate
incremental rather than total variables and that approximate the incre-
mental behavior of the actual system over some restricted range of opera-
tion. A block diagram of the relationships implied by Eqn. 6.4 is shown in
Fig. 6.1.

6.2.2 Analysis of an Analog Divider

Certain types of signal-processing operations require that the ratio of
two analog variables be determined, and this function can be performed
by a divider. Division is frequently accomplished by applying feedback
around an analog multiplier, and several commercially available multi-
pliers can be converted to dividers by making appropriate jumpered con-
nections to the output amplifier included in these units. A possible divider
connection of this type is shown in Fig. 6.2a.

The multiplier scale factor shown in this figure is commonly used since
it provides a full-scale output of 10 volts for two 10-volt input signals. It



Figure 6.2 Analog divider. (a) Circuit. (b) Linearized block diagram.
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is assumed that the multiplying element itself has no dynamics and thus
the speed of response of the system is determined by the operational
amplifier.

The ideal relationship between input and output variables can easily be
determined using the virtual-ground method. If the current at the inverting
input of the amplifier is small and if the magnitude of the loop transmission
is high enough so that the voltage at this terminal is negligible, the circuit
relationships are

va+vp =20 (6.5)
and

w = ¢ = (6.6)

Solving Eqns. 6.5 and 6.6 for vo in terms of v,4 and vp yields

IOUA

Up

Vo =

6.7)

System dynamics are determined by linearizing the multiplying-element
characteristics. Applying Eqn. 6.3 to the variables of Eqn. 6.6 shows that

VeVe Vv, Vevs

Vb + v~ —= + =7 + 75 (6.3)

The incremental portion of this equation is

VBUC Vci)b
Yy =
10 10

(6.9)

This relationship combined with other circuit constraints (assuming the
operational amplifier has infinite input impedance and zero output im-
pedance) is used to develop the incremental block diagram shown in Fig.
6.2b.
The incremental dependence of V, on V,, assuming that vp is constant,
is
Vs)  —a(s)/2
Vis) 1+ Vga(s)/20

(6.10)

If the operational-amplifier transfer function is approximately single pole
so that

o (6.11)

a(s) = s + 1
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and a, is very large, Eqn. 6.10 reduces to

/

Vls) __ —107Vs (6.12)

Vas) (207/Vgag)s + 1

Several features are evident from this transfer function. First, if Vg is

negative, the system is unstable. Second, the incremental step response of

the system is first order, with a time constant of 20+, Vza, seconds. These

features indicate two of the many ways that nonlinearities can affect the

performance of a system. The stability of the circuit depends on an input-

signal level. Furthermore, if V3 is positive, the transient response of the

circuit becomes faster with increasing V3, since the loop transmission de-
pends on the value of this input.

6.2.3 A Magnetic-Suspension System

An electromechanical system that provides a second example of linear-
ized analysis is illustrated in Fig. 6.3. The purpose of the system is to sus-
pend an iron ball in the field of an electromagnet. Only vertical motion of
the ball is considered.

In order to suspend the ball it is necessary to cancel the downward gravi-
tational force on the ball with an upward force produced by the magnet.
It is clear that stabilization with constant current is impossible, since while
a value of xp for which there is no net force on the ball exists, a small
deviation from this position changes the magnetic force in such a way as
to accelerate the ball further from equilibrium. This effect can be cancelled
by appropriately controlling the magnet current as a function of measured
ball position.

For certain geometries and with appropriate choice of the reference
position for xz, the magnetic force fi exerted on the ball in an upward
direction is

;2
fir = 95‘1 (6.13)
XB
where C is a constant.

Assuming incremental changes x;, and i, about operating-point values

Xg and Iy, respectively,

Cry | 2CLy . 2CIy
fM:FM+fm=X§+X12;lm_X% Xp

+ higher-order terms (6.14)




Linearization 215
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Figure 6.3 Magnetic-suspension system.

The equation of motion of the ball is

Md2xB
dr

= Mg — fu (6.15)

where g is the acceleration of gravity. Equilibrium or operating-point
values are selected so that

Ccr}
X3

Mg = (6.16)
When we combine Eqns. 6.14 and 6.15 and assume operation about the
equilibrium point, the linearized relationship among incremental variables
becomes

M dx, 2CI%4 2CIy

e X3 T T X3

i (6.17)

Equation 6.17 is transformed and rearranged as

52 X(s)
k2

where k? = 2CI%;/ M X5,

— Xu(s) = Xu(s) (:—( + 1)(% - 1) S %—BIm(s) (6.18)
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= Xg/l,
stk + 1)(s/k — 1)

X, (s)

e 1)

a(s)

I.(s)

Figure 6.4 Linearized block diagram for system of Fig. 6.3.

Feedback is applied to the system by making i, a linear function of x,, or
L.(s) = a(s)Xy(s) (6.19)

Equations 6.18 and 6.19 are used to draw the linearized block diagram

shown in Fig. 6.4. [The input I(s) is used as a test input later in the
analysis.]

The loop transmission for this system

X
as) 7

(6.20)
s s

contains a pole in the right-half plane that reflects the fact that the system
is unstable in the absence of feedback. A naive attempt at stabilization for
this type of system involves cancellation of the right-half-plane pole with
a zero of a(s). While such cancellation works when the singularities in
question are in the left-half plane, it is doomed to failure in this case.
Although the pole could seemingly be removed from the loop transmission
by this method,! consider the closed-loop transfer function that relates X,
to a disturbance 7I,,.

L(s) = —

I Component tolerances preclude exact cancellation in any but a mathematical system.
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If a(s) is selected as a’(s)(s/k — 1), this transfer function is

— X/Ix
Xis) _ (/k + Ds/k — D)
1) " |, a0 X/l (6.21)
s/k + 1

Equation 6.21 contains a right-half-plane pole implying exponentially grow-
ing responses for x;, even though this growth is not observed as a change
in i,.

A satisfactory method for compensating the system can be determined
by considering the root-locus diagrams shown in Fig. 6.5. Figure 6.5a is
the diagram for frequency-independent feedback with a(s) = a.. As ay is
increased, the two poles come together and branch out along the imaginary
axis. This diagram shows that it is possible to remove the closed-loop pole
from the right-half plane if a, is appropriately chosen. However, the poles
cannot be moved into the left-half plane, and thus the system exhibits un-
dampened oscillatory responses. The system can be stabilized by including
a lead transfer function in a(s). It is possible to move all closed-loop poles
to the left-half plane for any lead-network parameters coupled with a suf-
ficiently high value of a,. Figure 6.5b illustrates the root trajectories for
one possible choice of lead-network singularities.

6.3 DESCRIBING FUNCTIONS

Describing functions provide a method for the analysis of nonlinear sys-
tems that is closely related to the linear-system techniques involving Bode
or gain-phase plots. It is possible to use this type of analysis to determine
if limit cycles (constant-amplitude periodic oscillations) are possible for a
given system. It is also possible to use describing functions to predict the
response of certain nonlinear systems to purely sinusoidal excitation, al-
though this topic is not covered here.? Unfortunately, since the frequency
response and transient response of nonlinear systems are not directly re-
lated, the determination of transient response is not possible via describing
functions.

6.3.1 The Derivation of the Describing Function
A describing function describes the behavior of a nonlinear element for
purely sinusoidal excitation. Thus the input signal applied to the nonlinear

2G. J. Thaler and M. P. Pastel, Analysis and Design of Nonlinear Feedback Control
Systems, McGraw-Hill, New York, 1962.
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Figure 6.5 Root-locus diagrams for magnetic-suspension system. (a) Uncom-
pensated. (b) With lead compensation.
element to determine its describing function is

vy = Esin wt (6.22)

If the nonlinearity does not rectify the input (produce a d-c output) and
does not introduce subharmonics, the output of the nonlinear element can
be expanded in a Fourier series of the form

vo = AE, w) cos wt + By(E, w) sin wt + Ax(E, w) cos 2wt
+ By(E, w) sin 2wt + --- + (6.23)
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The describing function for the nonlinear element is defined as

VAKE, o) + BIE @) 0 AAE )

Gp(E, w) = £ By(E, )

(6.24)

The describing-function characterization of a nonlinear element parallels
the transfer-function characterization of a linear element. If the transfer
function of a linear element is evaluated for s = jw, the magnitude of re-
sulting function of a complex variable is the ratio of the amplitudes of the
output and input signals when the element is excited with a sinusoid at a fre-
quency . Similarly, the angle of the function is the phase angle between
the output and input signals under sinusoidal steady-state conditions. For
linear elements these quantities must be independent of the amplitude of
excitation.

The describing function indicates the relative amplitude and phase angle
of the fundamental component of the output of a nonlinear element when the
element is excited with a sinusoid. In contrast to the case with linear ele-
ments, these quantities can be dependent on the amplitude as well as the
frequency of the excitation.

Two examples illustrate the derivation of the describing function for
nonlinear elements. Figure 6.6 shows the transfer characteristics of a satu-
rating nonlinearity together with input and output waveforms for sinusoidal
excitation. Since the transfer characteristics for this element are not de-
pendent on the dynamics of the input signal, it is clear that the describing
function must be frequency independent.

If the input amplitude FE is less than Ej,

Vo = KU[ (625)
In this case,

Go =KX 0 E<Ey (6.26)

For E > Ej, the output signal over the interval 0<ws < is

vo = Kur 0L wt<a or T—a<owt <71 (6.27a)
vo = KEy; aflwt<T—a (6.27b)
where
o= M

sin~! —
E
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Slope = K
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Figure 6.6 Relationships for a saturating nonlinearity. (@) Transfer characteristics
for saturating element. (») Input and output waveforms for sinusoidal excitation.

The coefficients 4; and B, are in this case,

™

2 a 2 T—a
A, = —/ KFE sin wt cos wt dwt + —/ KE) cos wt dwt
0 ™ a
2 [~ .
+ —f KFE sin wt cos wt dwt = 0 (6.28)
mJ r—a
2 a . 2 —a .
B, = - KE sin? ot dwt + - KEy sin wt dwt
m™Jo T Ja

2 T
+ - / KE sin? wt dwt
™ Jr—a

2KE[ . Ey Ey | (Ex\?
- =48 - =M =M — (= 6.29
. [sm E+E\/1 (E)J ( )
Using Eqn. 6.24, we obtain
Gp(E) = K £ (° E < Ey (6.30a)

2K _
Go(E) = — (sin—lR + RA/T— R”) X 0° E > Ey (6.30b)
™
where R = Ey/E.
The transfer characteristics of an element with hysteresis, such as a
Schmitt trigger or a relay, are shown in Fig. 6.7a. The memory associated
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Figure 6.6—Continued

with this type of element produces a phase shift between the fundamental
component of the output and the input sinusoid applied to it as shown in
Fig. 6.7b. It is necessary for the peak amplitude of the input signal to ex-
ceed Ey in order to have the output signal other than a constant.

Several features of the output signal permit writing the describing func-
tion for this element. The relevant relationships include the following.
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Figure 6.7 Relationships for an element with hysteresis. (@) Transfer characteristics.
(b) Input and output waveforms for sinusoidal excitation.
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(a) While there is phase shift between the input signal and the funda-
mental component of the output, neither the amount of this phase shift
nor the amplitude of the output signal are dependent on the excitation
frequency.

(b) The amplitude of the fundamental component of a square wave
with a peak amplitude Ey is 4Ey/.

(c) The relative phase shift between the input signal and the fundamental
component of the output is sin~! (Ey/E), with the output lagging the
input.

Table 6.1 Describing Functions

Nonlinearity Describing Function
Input = v; = E sin of (All are frequency independent.)
T G])(E)=K4 0° ESEM
Yo 2K/ . - .
Slope = K Gp(E) = =— (sm—lR + R\1 — R2> X. 0°,
| T
!

-
1 &= E > Ey

where R = EIE

E

Yo

E p———

4Ey
GE) = T2 x o0
P o(E) E X
—En
GoE)=0X% 0° E<Ey
! 2/ -
" G(E) = Kl:] - —(sm‘1 R+ R\V1 — R2>:|4 0°,
Slope = K T
by
Ey v —>= E > Ey

Ey
R=—
where E
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Table 6.1 —Continued

Nonlinearity Describing Function
Input = v; = Esin ot (All are frequency independent.)
‘I) GD(E) = 0 4— 00 E S EM

Exl——
4Ey
A GD(E)=T£\/1—R240° E > Ey

Ey
here R = —
where E

fe E must exceed Ej or a d-c term results.
e 4Ey -
> Gp(E) = E X —sin~' R
E
~En where R = —

Combining these relationships shows that
Ey

AE
W—bf’ X —sin = E > Ex (6.31)

Gp(E) undefined otherwise

Gp(E) =

Table 6.1 lists the describing functions for several common nonlineari-
ties. Since the transfer characteristics shown are all independent of the
frequency of the input signal, the corresponding describing functions are
dependent only on input-signal amplitude. While this restriction is not
necessary to use describing-function techniques, the complexity associated
with describing-function analysis of systems that include frequency-de-
pendent nonlinearities often limits its usefulness.

The linearity of the Fourier series can be exploited to determine the de-
scribing function of certain nonlinearities from the known describing func-
tions of other elements. Consider, for example, the soft-saturation charac-
teristics shown in Fig. 6.8a. The input-output characteristics for this ele-
ment can be duplicated by combining two tabulated elements as shown in
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Figure 6.8 Soft saturation as a combination of two nonlinearities. (a) Transfer
characteristics. (b) Decomposition into two nonlinearities.
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Fig. 6.8b. Since the fundamental component of the output of the system of
Fig. 6.8b is the sum of the fundamental components from the two non-
linearities

Gp(E) = K, X 0° E< Ey (6.32a)
Gp(E) = [2—K1<sin‘1R + RAT— 1?)
m

2K. S

+ Ky, — 2 <sin—1R + RA1— R“)} X 0°
™

2(K, — K3)

™

= I:IQ + (sin‘lR + R+/1-— Rz):' X 0° (6.32b)

for E > Ey, where R = sin™' (Ey/E).

6.3.2 Stability Analysis with the Aid of Describing Functions

Describing functions are most frequently used to determine if limit
cycles (stable-amplitude periodic oscillations) are possible for a given sys-
tem, and to determine the amplitudes of various signals when these oscil-
lations are present.

Describing-function analysis is simplified if the system can be arranged
in a form similar to that shown in Fig. 6.9. The inverting block is included
to represent the inversion conventionally indicated at the summing point
in a negative-feedback system. Since the intent of the analysis is to examine
the possibility of steady-state oscillations, system input and output points
are irrevelant. The important feature of the topology shown in Fig. 6.9 is

aw)

Linear element

Gp (E, w)

Nonlinear element

Figure 6.9 System arranged for describing-function analysis.



Describing Functions 227

that a single nonlinear element appears in a loop with a single linear ele-
ment. The linear element shown can of course represent the reduction of a
complex interconnection of linear elements in the original system to a single
transfer function. The techniques described in Sections 2.4.2 and 2.4.3 are
often useful for these reductions.

The system shown in Fig. 6.10 illustrates a type of manipulation that
simplifies the use of describing functions in certain cases. A limiter con-
sisting of back-to-back Zener diodes is included in a circuit that also con-
tains an amplifier and a resistor-capacitor network. The Zener limiter is
assumed to have the piecewise-linear characteristics shown in Fig. 6.10b.

The describing function for the nonlinear network that includes R,, R,
C, and the limiter could be calculated by assuming a sinusoidal signal for
vs and finding the amplitude and relative phase angle of the fundamental
component of v,. The resulting describing function would be frequency

Amplifier with zero input

R, conductance and output
AAA _ resistance
. + v +
l,,, o4 b6 _ o o8
Vo (5) —

Cl |
Ry Zener l
limiter L

(a)

_Vz

VZ Vp—>

(b)

Figure 6.10 Nonlinear system. (a) Circuit. (b) Zener-limiter characteristics.
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Figure 6.11 Modeling system of Fig. 6.10 as a single loop. (a) Block-diagram
representation of nonlinear network. (b) Block diagram representation of complete
system. (c¢) Reduced to form of Fig. 6.9.
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Figure 6.11—Continued

dependent. A more satisfactory representation results if the value of the
Zener current iy is determined as a function of the voltage applied to the
network.

v
iA=k5;—ﬁ— %”ti (6.33)
The Zener limiter forces the additional constraints
va=+Vz x>0 (6.34a)
va = —Vg iy <0 (6.34b)

Equations 6.33 and 6.34 imply that the block diagram shown in Fig.
6.11a can be used to relate the variables in the nonlinear network. The
pleasing feature of this representation is that the remaining nonlinearity
can be characterized by a frequency-independent describing function.
Figure 6.11b illustrates the block diagram that results when the network
is combined with the amplifier. The two linear paths in this diagram are
combined in Fig. 6.11¢, which is the form suggested for analysis.

Once a system has been reduced to the form shown in Fig. 6.9, it can be
analyzed by means of describing functions. The describing-function ap-
proximation states that oscillations may be possible if particular values of
FE, and w, exist such that

a(jw1)Gp(Ey, w1) = —1 (6.35a)
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or
—1
a(jwy) GoEr, o) (6.35b)

The satisfaction of Eqn. 6.35 does not guarantee that the system in
question will oscillate. It is possible that a system satisfying Eqn. 6.35 will
be stable for a range of signal levels and must be triggered into oscillation
by, for example, exceeding a particular signal level at the input to the non-
linear element. A second possibility is that the equality of Eqn. 6.35 does
not describe a stable-amplitude oscillation. In this case, if it is assumed that
the system is oscillating with parameter values given in Eqn. 6.35, a small
amplitude perturbation is divergent and leads to either an increasing or a
decreasing amplitude. As we shall see, the method can be used to resolve
these questions. The describing-function analysis also predicts that if stable-
amplitude oscillations exist, the frequency of the oscillations will be w,
and the amplitude of the fundamental component of the signal applied to
the nonlinearity will be E;.

The above discussion shows how closely the describing-function stability
analysis of nonlinear systems parallels the Nyquist or Bode-plot analysis
of linear systems. In particular, oscillations are predicted for linear systems
at frequencies where the loop transmission is 4 1, while describing-function
analysis indicates possible oscillations for amplitude-frequency combina-
tions that produce the nonlinear-system equivalent of unity loop trans-
mission.

The basic approximation of describing-function analysis is now evident.
It is assumed that under conditions of steady-state oscillation, the input to
the nonlinear element consists of a single-frequency sinusoid. While this
assumption is certainly not exactly satisfied because the nonlinear element
generates harmonics that propagate around the loop, it is often a useful
approximation for two reasons. First, many nonlinearities generate har-
monics with amplitudes that are small compared to the fundamental.
Second, since many linear elements in feedback systems are low-pass in
nature, the harmonics in the signal returned to the nonlinear element are
often attenuated to a greater degree than the fundamental by the linear
elements. The second reason indicates a better approximation for higher-
order low-pass systems.

The existence of the relationship indicated in Eqn. 6.35 is often deter-
mined graphically. The transfer function of the linear element is plotted in
gain-phase form. The function —1/Gp(E, w) is also plotted on the same
graph. If Gy, is frequency independent, —1/Gp(E) is a single curve with E
a parameter along the curve. The necessary condition for oscillation is
satisfied if an intersection of the two curves exists. The frequency can be
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determined from the a(jw) curve, while amplitude of the fundamental com-
ponent of the signal into the nonlinearity is determined from the — 1/Gp(E)
curve. If the nonlinearity is frequency dependent, a family of curves

—1/Gp(E, w1), —1/Gp(E, wy), ..., is plotted. The oscillation condition
is satisfied if the —1/Gp(E, w,) curve intersects the a(jw) curve at the point
a(_jwi).

The satisfaction of Eqn. 6.35 is a necessary though not sufficient condi-
tion for a limit cycle to exist. It is also necessary to insure that the oscilla-
tion predicted by the intersection is stable in amplitude. In order to test
for amplitude stability, it is assumed that the amplitude F increases slightly,
and the point corresponding to the perturbed value of E is found on the
—1/Gp(E, w) curve. If this point lies to the left of the a(jw) curve, the geom-
etry implies that the system poles? lie in the left-half plane for an increased
value of E, tending to restore the amplitude to its original value. Alterna-
tively, if the perturbed point lies to the right of the a(jw) curve, a growing-
amplitude oscillation results from the perturbation and a limit cycle with
parameters predicted by the intersection is not possible. These relationships
can be verified by applying the Nyquist stability test to the loop transmis-
sion, which includes the linear transfer function and the describing function
of interest.

It should be noted that the stability of arbitrarily complex nonlinear sys-
tems that combine a multiplicity of nonlinear elements in a loop with linear
elements can, at least in theory, be determined using describing functions.
For example, numerous Nyquist plots corresponding to the nonlinear loop
transmissions for a variety of signal amplitudes might be constructed to
determine if the possibility for instability exists. Unfortunately, the effort
required to complete this type of analysis is generally prohibitive.

6.3.3 Examples

Since describing-function analysis predicts the existence of stable-ampli-
tude limit cycles, it is particularly useful for the investigation of oscillators,
and for this reason the two examples in this section involve oscillator cir-
cuits.

The discussion of Section 4.2.2 showed that it is possible to produce
sinusoidal oscillations by applying negative feedback around a phase-shift
network with three identically located real-axis poles. If the magnitude of
the low-frequency loop transmission is exactly 8, the system closed-loop

3 The concept of a pole is strictly valid only for a linear system. Once we apply the
describing-function approximation (which is a particular kind of linearization about an
operating point defined by a signal amplitude), we take the same liberty with the definition
of a pole as we do with systems that have been linearized by other methods.
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Figure 6.12 Phase-shift oscillator with limiting.

poles are on the imaginary axis and, thus, resultant oscillations are stable
in amplitude. It is possible to control the magnitude of the loop transmission
precisely by means of an auxiliary feedback loop that measures the ampli-
tude of the oscillation and adjusts loop transmission to regulate this ampli-
tude. This approach to amplitude control is discussed in Section 12.1.4.

An alternative and simpler approach that is often used is illustrated in
Fig. 6.12. The loop transmission of the system for small signal levels is
made large enough (in this case 10) to insure growing-amplitude oscillations
if signal levels are such that the limiter remains linear. As the peak amplitude
of the signal v, increases beyond one, the limiter reduces the magnitude of the
loop transmission (in a describing-function sense) so as to stabilize the
amplitude of the oscillations.

The describing function for the limiter in Fig. 6.12 is (see Table 6.1)

GE)y=1x%x0 E<]1 (6.36a)

= 2 (g L l\/ _L) o

G,D(E) = <sm B + £ 1 I X 0 E>1 (6.36b)
This function decreases monotonically as E increases beyond one. Thus
the quantity —1/Gp(E) increases monotonically for E greater than one
and has an angle of —180°. The general behavior of —1/Gp(E) and the
transfer function of the linear portion of the oscillator circuit are sketched

on the gain-phase plane of Fig. 6.13.
The intersection shown is seen to represent a stable-amplitude oscilla-
tion when the test proposed in the last section is used. An increase in E
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Figure 6.13 Describing-function analysis of the phase-shift oscillator.

from the value at the intersection moves the —1/Gp(E) point to the left
of the a(jw) curve. The physical significance of the rule is as follows. As-
sume the system is oscillating with the value of E necessary to make
Gp(E) a(j /3) = — 1. An incremental increase in the value of E decreases
the magnitude of Gp(E) and thus decreases the loop transmission below
the value necessary to maintain a constant-amplitude oscillation. The
amplitude decreases until F is restored to its original value. Similarly, an
incremental decrease in E leads to a growing-amplitude oscillation until E
reaches its equilibrium value.

The magnitude of E under steady-state conditions can be determined
directly from Eqn. 6.36. The magnitude of a(jw) at the frequency where its
phase shift if —180°, (w = 4/3), is 1.25. Thus oscillations occur with
Gp(E) = 0.8. Solving Eqn. 6.36 for the required value of E by trial and
error results in £ ~ 1.45, and this value corresponds to the amplitude of
the fundamental component of v,.

The validity of the describing-function assumption concerning the purity
of the signal at the input of the nonlinear element is easily demonstrated
for this example. If a sinusoid is applied to the limiter, only odd harmonics
are present in its output signal, and the amplitudes of higher harmonics
decrease monotonically. The usual Fourier-series calculations show that
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the ratio of the magnitude of the third harmonic to that of the fundamental
at the output of the limiter is 0.14 for a 1.45-volt peak-amplitude sinusoid
as the limiter input. The linear elements attenuate the third harmonic of
a v/ 3 radian-per-second sinusoid by a factor of 18 greater than the funda-
mental. Thus the ratio of third harmonic to fundamental is approximately
0.008 at the input to the nonlinear element. The amplitudes of higher
harmonics are insignificant since their magnitudes at the limiter output are
smaller and since they are attenuated to a greater extent by the linear ele-
ment. As a matter of practical interest, the attenuation provided by the
phase-shift network to harmonics is the reason that good design practice
dictates the use of the signal out of the phase-shift network rather than that
from the limiter as the oscillator output signal.

Figure 6.14a shows another oscillator configuration that is used as a
second example of describing-function analysis. This circuit, which com-
bines a Schmitt trigger and an integrator, is a simplified representation of
that used in several commercially available function generators. It can be
shown by direct evaluation that the signal at the input to the nonlinear
element is a two-volt peak-to-peak triangle wave with a four-second period
and that the signal at the output of the nonlinear element is a two-volt
peak-to-peak square wave at the same frequency. Zero crossings of these
two signals are displaced by one second as shown in Fig. 6.14b. The ratio
of the third harmonic to the fundamental at the input to the nonlinear ele-
ment is 1/9, a considerably higher value than in the previous example.

Table 6.1 shows that the describing function for this nonlinearity is

4 1
Go(E) = % —sin' o E21 (6.37)

The quantity — 1/Gp(E) and the transfer function for the linear element are
plotted in gain-phase form in Fig. 6.15. The intersection occurs for a value
of E that results in the maximum phase lag of 90° from the nonlinear ele-
ment. The parameters predicted for the stable-amplitude limit cycle im-
plied by this intersection are a peak-to-peak amplitude for v, of two volts
and a period of oscillation of approximately five seconds. The correspond-
ence between these parameters and those of the exact solution is excellent
considering the actual nature of the signals involved.

6.3.4 Conditional Stability

The system shown in block-diagram form in Fig. 6.16 combines a satu-
rating nonlinearity with linear elements. The negative of the loop trans-
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Figure 6.14 Function generator. (¢) Configuration. (b) Waveforms.

mission for this system, assuming that the amplitude of the signal at v, is
less than 10~2 volts so that the nonlinearity provides a gain of 103, is deter-
mined by breaking the loop at the inverting block, yielding

5 X 10%0.02s + 1)?

—L(s) = 10%(s) = (s + 1)%(10-3s + 1)

(6.38)
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Figure 6.15 Describing-function analysis of the function generator.

A Nyquist diagram for this function is shown in Fig. 6.17. The plot re-
veals a phase margin of 40° combined with a gain margin of 10, implying
moderately well-damped performance. The plot also shows that if the mag-
nitude of the low-frequency loop transmission is /owered by a factor of
between 8 and 6 X 104, the system becomes unstable. Systems having the
property that a decrease in the magnitude of the low-frequency loop trans-
mission from its design-center value converts them from stable to unstable
performance are called conditionally stable systems.

The nonlinearity can produce the decrease in gain that results in insta-
bility. The system shown in Fig. 6.16 is stable for sufficiently small values
of the signal v,. If the amplitude of v, becomes large enough, possibly be-
cause of an externally applied input (not shown in the diagram) or because
of the transient that may accompany the turn-on, the system may start to
oscillate because the describing-function gain decreases.

The common characteristic of conditionally stable systems is a phase
curve that drops below — 180° over some range of frequencies and then
recovers so that positive phase margin exists at crossover. These phase
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Figure 6.16 Conditionally stable system.

characteristics can result when the amplitude falls off more rapidly than
1/w? over a range of frequencies below crossover. The high-order rolloff
is used in some systems since it combines large loop transmissions at
moderate frequencies with a limited crossover frequency. For example, the
transfer function

5 x 10°

(2.5 X 10%s + 1)(10-%s + 1)?

—L'(s) = (6.39)

has the same low-frequency gain and unity-gain frequency as does Eqn. 6.38.
However, the desensitivity associated with Eqn. 6.38 exceeds that of 6.39 at
frequencies between 4 X 104 radians per second and 50 radians per second
because of the high-order rolloff associated with Eqn. 6.38. The gain
advantage reaches a maximum of approximately 10° at one radian per
second. This higher gain results in significantly greater desensitivity for
the loop transmission of Eqn. 6.38 over a wide range of frequencies.

Quantitative information about the performance of the system shown in
Fig. 6.16 can be obtained using describing-function analysis. The describing-
function for the nonlinearity for £ > 107°is

2 % 105 -5 10~ [ 1071
Go(E) = -2 (sin“ — + \/ - ) % 0° (6.40)
™

E E?

where E is the amplitude of the (assumed sinusoidal) signal »,. The quan-
tities —1/Gp(E) and a(jw) are plotted in gain-phase form in Fig. 6.18, and
two intersections are evident. The intersection at w ~ 50 radians per sec-
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Figure 6.17 Nyquist diagram of conditionally stable system.

ond, E ~ 10~* volt does not represent a stable limit cycle. If the system is
assumed to be oscillating with these parameters, an incremental decrease
in the amplitude of the signal v, leads to a further decrease in amplitude
and the system returns to stable operation. This result follows from the
rule mentioned in Section 6.3.2. In this case, a decrease in E causes the
—1/Gp(E) curve to lie to the left of the a(jw) curve, and thus the system
poles move from the imaginary axis to the left-half plane as a consequence
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Figure 6.18 Describing function analysis of conditionally stable system.

of the perturbation. The same conclusion is reached if we consider the
Nyquist plot for the system when the amplitude of v4 is 10~ volt. The
gain attenuation of the limiter, then shifts the curve of Fig. 6.17 downward
so that the point corresponding to w = 50 radians per second intersects
the —1 point. An incremental decrease in E moves the curve upward
slightly, and the resulting Nyquist diagram is that of a stable system.
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Similar reasoning shows that a small increase in amplitude at the lower
intersection leads to further increases in amplitude. Following this type of
perturbation, the system eventually achieves the stable-amplitude limit cycle
implied by the upper intersection with w ~ 1.8 radians per second and
E ~ 0.73 volt. (The reader should convince himself that the upper inter-
section satisfies the conditions for a stable-amplitude limit cycle.)

It should be noted that the concept of conditionally stable behavior aids
in understanding the large-signal performance of systems for which the
phase shift approaches but does not exceed — 180° well below crossover,
and then recovers to a more reasonable value at crossover. While these
systems can exhibit excellent performance for signal levels that constrain
operation to the linear region, performance generally deteriorates dra-
matically when some element in the loop saturates. For example, the
recovery of this type of system following a large-amplitude step may
include a number of large-signal overshoots, even if the small-signal step
response of the system is approximately first order.

Although a detailed analysis of such behavior is beyond the scope of
this book, examples of the large-signal performance of systems that
approach conditional stability are included in Chapter 13.

6.3.5 Nonlinear Compensation

As we might suspect, the techniques for compensating nonlinear systems
using either linear or nonlinear compensating networks are not particu-
larly well understood. The method of choice is frequently critically depend-
ent on exact details of the linear and nonlinear elements included in the
loop. In some cases, describing-function analysis is useful for indicating
compensation approaches, since systems with greater separation between
the a(jw) and —1/Gp(E) curves are generally relatively more stable. This
section outlines one specific method for the compensation of nonlinear
systems.

As mentioned earlier, fast-rolloff loop transmissions are used because
of the large magnitudes they can yield at intermediate frequencies. Unfor-
tunately, if the phase shift of this type of loop transmission falls below
—180° at a frequency where its magnitude exceeds one, conditional sta-
bility can result. Nonlinear compensation can be used to eliminate the pos-
sibility of oscillations in certain systems with this type of loop transmission.

As one example, consider a system with a linear-region loop transmission

200
M9 = G o + 1y ©4D
This loop transmission has a monotonically decreasing phase shift as a
function of increasing frequency, and exhibits a phase margin of approxi-
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mately 65°. Consequently, unconditional stability is assured even when
some element in the loop saturates.

In an attempt to improve the desensitivity of the system, series compen-
sation consisting of gain and two lag transfer functions might be added to
the loop transmission of Eqn. 6.41, leading to the modified loop trans-
mission

o [ 200 J[z.s X 103(0.02s + 1)2
© = |G F Do + 1y (s + 1y
This loop transmission is of course the one used to illustrate the possibility
of conditional stability (Eqn. 6.38).
Consider the effect of implementing one or both of the lag transfer func-
tions with a network of the type shown in Fig. 6.19. If the magnitude of
voltage v¢ is less than ¥, the diodes do not conduct and the transfer function

of the network is

} (6.42)

Vos) R.Cs 4+ 1
Vis) (Ri+ Ry)Cs + 1
Element values can be selected to yield the lag parameters included in
Eqn. 6.42.

The bias voltage Vjp is chosen so that when the signal applied to the
network is that which exists when the loop oscillates, the diodes clip the
capacitor voltage during most of the cycle. Under these conditions, the
gain of the nonlinear network (in a describing-function sense) is

(6.43)

Vo Rg
—~— 6.44
vr R, + R, ( )
R1
M

il

+Vg

vy

7VB

Figure 6.19 Nonlinear compensating network.
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Note that if both lag transfer functions are realized this way, the loop
transmission can be made to automatically convert from that given by
Eqn. 6.42 to that of Eqn. 6.41 under conditions of impending instability.
This type of compensation can eliminate the possibility of conditionally
stable performance in certain systems. The signal levels that cause satura-
tion also remove the lag functions, and thus the possibility of instability
can be eliminated.

PROBLEMS

Pé6.1

One of the difficulties involved in analyzing nonlinear systems is that
the order of nonlinear elements in a block diagram is important. Demon-
strate this relationship by comparing the transfer characteristics that result
when the two nonlinear elements shown in Fig. 6.20 are used in the order

Yo
1
-1 1
| |
I I vy —>
-1 -1
(a)
Yo
Slope = +1
1
1 vy —>
Slope = +1
(b)

Figure 6.20 Nonlinear elements. (@) Limiter. (b) Deadzone.
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. Vg 10
v = sin 8 9
E E s(0.1 s + 1) 0
Resolver pair Power amplifier
and motor

Figure 6.21 Positional servomechanism.

ab with the transfer characteristics that result when the order is changed
to ba.

P6.2 :

Resolvers are essentially variable transformers that can be used as
mechanical-angle transducers. When two of these devices are used in a
servomechanism, the voltage obtained from the pair is a sinusoidal function
of the difference between the input and output angles of the system. A
model for a servomechanism using resolvers is shown in Fig. 6.21.

(a) The voltage applied to the amplifier-motor combination is zero for
6o — 6r = nm, where n is any integer. Use linearized analysis to deter-
mine which of these equilibrium points are stable.

(b) The system is driven at a constant input velocity of 7 radians per sec-
ond. What is the steady-state error between the output and input for
this excitation?

AN~ _'\ . -
a(s) 0 79

: 1

vy R? =

Multiplier connected as
squarer

Ya
’B” 10

l+ O+

[ i

Figure 6.22 Square-rooting circuit.
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(c) The input rate is charged from 7 to 7.1 radians per second in zero time.
Find the corresponding output-angle transient.

Pé6.3
An analog divider was described in Section 6.2.2. Assume that the trans-
fer function of the operational amplifier shown in Fig. 6.2 is

N 3 X 10°
© (s + 1)(1075s + 1)

Is the divider stable over the range of inputs — 10 < 4 < 4+10,0 < v <
+10?

A square-rooting circuit using a technique similar to that of the divider
is shown in Fig. 6.22. What is the ideal input-output relationship for this
circuit? Determine the range of input voltages for which the square-rooter
is stable, assuming a(s) is as given above.

P6.4

Figure 6.23 defines variables that can be used to describe the motion of
an inverted pendulum. Determine a transfer function that relates the angle
6 to the position xp, which is valid for small values of 6. Hint. You may find
that a relatively easy way to obtain the required transfer function is to use
the two simultaneous equations (or the corresponding block diagram)
which relate x¢ to 8 and @ to xp and xg.

Assume that you are able to drive xr as a function of 6. Find a transfer
function, X «(s)/6(s), such that the inverted pendulum is stabilized.

P6.5

A diode-capacitor network is shown in Fig. 6.24. Plot the output voltage
that results for a sinewave input signal with a peak value of E. You may
assume that the diodes have an ideal threshold of 0.5 volt (i.e., no conduc-
tion until a forward-bias voltage of 0.5 volt is reached, any forward cur-
rent possible without increasing the diode voltage above 0.5 volt). Evalu-
ate the magnitude and angle of Gp(1) for this network. (You may, of course,

a(s)

Xr Point mass

Reference ~«—— 1 meter massless rod

— |~
Xp 1

Figure 6.23 Inverted pendulum.
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o+

e l

Y1

AN
=

Figure 6.24 Diode-capacitor network.

work out Gp(E) in general if you wish, but it is a relatively involved
expression.)

P6.6
Determine the describing function for an element with the transfer char-
acteristics shown in Fig. 6.25.

P6.7

Analyze the loop shown in Fig. 6.26. In particular, find the frequency of
oscillation and estimate the levels of the signals v, and vs. Also calculate
the ratio of third harmonic to first harmonic at the input to the nonlinear
element.

P6.8
Can the system shown in Fig. 6.27 produce a stable amplitude limit

cycle? Explain.
IIO A: K
+Ey

vI———>

Slope = K

Figure 6.25 Nonlinear transfer relationship.
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}

L]

+ fr—

i ‘s -10
v, —> EF 0.5+ 10015+ 1)

Figure 6.26 Nonlinear oscillator.

P6.9

Find a transfer function that, when combined with a limiter, can pro-
duce stable-amplitude limit cycles at two different frequencies. Design an
operational-amplifier network that realizes your transfer function.

P6.10
The transfer characteristics for a three-state, relay-type controller are
illustrated in Fig. 6.28.

(a) Show that the describing function for this element is

2 1 _ 1
GD(E)=——\/2+2\/1—EA_tanl 1
" e(re1-5)
E2
f Slope = +2
Up
1——
A . | ¢: )
- I e 1
14+
Slope = +2

Figure 6.27 Nonlinear system.
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Y
|

Figure 6.28 Controller transfer characteristics.

(b) The controller is combined in a negative-feedback loop with linear
elements with a transfer function

a(s) o
S) =
(s + DO.1s + 1)
What is the range of values of a, for stable operation?

(c) For a, that is twice the critical value, find the amplitude of the funda-
mental component of the signal applied to the controller.

b1
> 1 +Ey
v A +
A - Ey . B
_EM Vp—>
I 1
—EN >
R L

Figure 6.29 R-L-C oscillator.
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Pé6.11

One possible configuration for a sinusoidal oscillator combines a Schmitt
trigger with an R-L-C circuit as shown in Fig. 6.29. Find the relationship
between Ey, Ey, and the damping ratio of the network that insures that
oscillations can be maintained. (You may assume negligible loading at the
input and output of the Schmitt trigger.)

Pé6.12

Three loop-transmission values, given by Eqns. 6.38, 6.39, and 6.41 were
considered as part of the discussion of conditionally stable systems. As-
sume that three negative-feedback systems are constructed with f(s) = 1
and loop transmissions given by the expressions referred to above. Com-
pare performance by calculating the first three error coefficients for each of
the three systems.



CHAPTER VII
DIRECT-COUPLED AMPLIFIERS

7.1 INTRODUCTION

Operational amplifiers incorporate circuit configurations that may be
relatively unfamiliar to the circuit designer with a background in other
areas. An understanding of these special techniques is necessary for the
most effective use of operational amplifiers.

One. of the more challenging problems arises in the design of the input
stage of an operational amplifier. One important consideration is that this
stage provides gain to zero frequency. Thus the usual biasing techniques
which incorporate capacitors that reduce low-frequency gain cannot be
used. Circuits that provide useful gain at zero frequency are called direct-
coupled or direct-current (d-c) amplifiers. The design of the direct-coupled
input stage! of an operational amplifier is further complicated by the fact
that it should have low input current.

Direct-coupled amplifiers are also useful other than as the input stage
of an operational amplifier. Applications include processing certain sighals
of biological or geological origin that may contain significant components
at a fraction of a hertz. While bandpass amplifiers can theoretically be
used for such signals, the various capacitors required may become prohibi-
tively large or expensive. Furthermore, the recovery time associated with
large capacitors following overload or turn on is intolerable in some appli-
cations. In other cases, signals of interest contain frequencies of cycles per
week, and response to zero frequency is mandatory in these situations.
Alternatively, the designer may be interested in realizing a high-frequency
amplifier, where minimization of capacitance to ground at certain critical
nodes is of primary concern. If a large coupling capacitor is used, its stray
capacitance to ground can deteriorate high-frequency performance.

The design of d-c amplifiers poses new problems because of the drift
associated with such amplifiers. Drift is a phenomena whereby the output

11t is obviously necessary that all stages of an operational amplifier be direct coupled
if the complete circuit is to provide useful gain at zero frequency. Emphasis here is given
to the input stage because it represents the most challenging design problem.

249
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of an amplifier changes not because of a change in the input voltage applied
to the amplifier but rather in response to changes in circuit elements. In
direct-coupled circuits, it is not possible to distinguish between an output
that is'a result of an applied input signal and one that occurs in response to
drift. For this reason, drift limits the minimum input signal that can be
detected.

A new circuit technique is required for the design of an amplifier that
provides sufficiently low drift to be useful in d-c applications. In this chapter
we shall concentrate on one circuit, the differential amplifier, which is
used almost exclusively for d-c amplification. This circuit is particularly
valuable when realized with bipolar transistors, since their highly pre-
dictable characteristics are readily exploited to yield low-drift performance.2

The discussion in this chapter focuses on the techniques used to reduce
the drift and input current of a d-c amplifier, and thus the techniques de-
scribed are useful in a range of applications. Toward the end of expanding
the applicability of the techniques described in this chapter, certain aspects
are covered in greater detail than is necessary for a basic understanding
of operational amplifiers. Thus, as is the case with the material on feed-
back systems, operational amplifiers are used as a vehicle for illustrating
technology valuable in a variety of electronic circuit and system design
problems. The specific ways that these design techniques are incorporated
into operational amplifiers are reserved for discussion in subsequent sections.

7.2 DRIFT REFERRED TO THE INPUT

The most useful measure of the drift of an amplifier is a quantity called
drift referred to the input, and unless specifically stated otherwise, this
quantity is the one implied when the term drift is used. Drift referred to
the input is defined with reference to Fig. 7.1. This figure shows an amplifier
with an assumed desired output voltage of zero for zero input voltage. The
amplifier is initially balanced by making v; = 0, and adjusting some ampli-
fier parameter (shown diagrammatically in Fig. 7.1 as a variable resistor)
until vo = 0. An external quantity, such as temperature, supply voltage,
or time, is then changed and, if the amplifier is sensitive to this quantity,
its output voltage changes. An input voltage is then applied to the ampli-
fier, and v; is adjusted until v again equals zero. The drift referred to the

2 A humorous comment on the difficulty of achieving acceptable d-c amplifier perform-
ance before modern bipolar transistors were developed is provided in L. B. Argumbau
and R. B. Adler, Vacuum-Tube Circuits and Transistors, Wiley, New York, 1956. Chapter
11, section 15 of this book is titled “Direct-Voltage Amplifiers—Why to Avoid Building
Them.”
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L

+
input v, % Yo Output

Zero adjust

Figure 7.1 System used to define drift referred to the input.

input of the amplifier is equal to the value of v; necessary to zero the output.
The resultant magnitude is often normalized and specified, for example,
as volts per degree Centigrade, volts per volt (of supply voltage), or volts
per week. The minimum-detectable-signal aspect of this definition is self-
evident.

In many situations we are concerned not only with the variability of the
circuit as some external influencing factor is changed, but also with un-
certainties that arise from the manufacturing process. In these cases, rather
than initially balancing the circuit, the voltage that must be applied to its
input to make its output zero may be specified as the offser referred to the
input. The specifications related to drift and offset are at times combined
by listing the maximum input offset that will result from manufacturing
variations and over a range of operating conditions.

There is a tendency to use an alternative (incorrect) definition of drift,
which involves dividing the drift measured at the output of the amplifier
by the amplifier gain. The difficulty in this approach arises since the gain
is frequently dependent on the drift-stimulating variable.

While alternative measurements of drift or offset may be equivalent in
special cases, and are often used in the laboratory to simplify a measure-
ment procedure, it is necessary to insure equivalence of other methods for
each circuit. We shall normally use the original definitions for our calcu-
lations.

Figure 7.2 shows a very simple amplifier, which will be used to illustrate
drift calculations and to determine how the base-to-emitter voltage of a
bipolar transistor changes with temperature. It is assumed that the drift of
the circuit with respect to temperature is required, and that the initial
temperature is 300° K. It is further assumed that for the transistor used,
ic = lmAatvgg = 0.6 Vand T = 300° K. With v; = 0, these parameters
show that it is necessary to adjust the potentiometer to its midposition to
make vo = 0. The temperature is then changed to 301° K, and it is observed
the v is negative. (The amount is unimportant for our purposes.) In order
to return vo to zero (required by our definition of drift), it is necessary to
return the transistor collector current to its original value. The change in
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o +10 V

5kQ§

YBE
Figure 7.2 Circuit illustrating drift calculation.

vsg required to restore collector current is identically equal to the required
change in v7 and is therefore, by definition, the drift referred to the input
of the amplifier. This discussion shows that drift for this circuit can be evalu-
ated by determining how vgr must vary with temperature to maintain con-
stant collector current.

Drift for the circuit shown in Fig. 7.2 can be determined from the rela-
tionship between transistor terminal variables and temperature. If ohmic
drops are negligible and the collector current is large compared to the satu-
ration current /g?

ic = Ise®se/*T = AT3eVel kT @aVpp/kT = AT3ealopg—Vyo)l kT @.1)

where 4 is a constant dependent on transistor type and geometry, g is the
charge on an electron, k is Boltzmann’s constant, T is the temperature,
and V,, is the width of the energy gap extrapolated to absolute zero divided
by the electron charge (V,, = 1.205 volts for silicon).* It is possible to
verify the exponential dependence of collector current on base-to-emitter
voltage experimentally over approximately nine decades of operating cur-
rent for many modern transistors.

$ P. E. Gray et al., Physical Electronics and Models of Transistors, Wiley, New York, 1964.

# There is disagreement among authors concerning the exponent of 7 in Eqn. 7.1, with
somewhat lower values used in some developments. As we shall see, the quantity has rela-
tively little effect on the final result. (The exponent appears only as a multiplying factor in
the final term of Eqn. 7.5 and as a coefficient in Eqn. 7.8). Furthermore, two similar tran-
sistors should have closely matched values for this exponent, and the degree of match
between a pair is the most important quantity in anticipated applications.
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Solving Eqn. 7.1 for vpg yields

kT ic
VB = ? In _A—TE -+ Vgg (72)

The partial derivative of vpr with respect to temperature at constant ic
is the desired relationship, and
k ic 3k

=-ln—— — 7.
ic=const ¢ nAT3 q (.3)

dvBE
T

However, from Eqn. 7.2

k ic  vpg — Vo
& In ;5:3 = —‘T—* (7.4)

Substituting Eqn. 7.4 into Eqn. 7.3 yields
Z}BE - Vgo 3k

= - — 7.5
ic = const T q (7.3)

dvpe |

oT

The quantity vgr — V,o/T is —2 mV/°C at T = 300° K for the typical

vgg value of 0.6 volt. The term 3k/g = 0.26 mV/°C; therefore to a good
degree of approximation

dvpE . vse — Vo
dT |ic = const T

(7.6)

The approximation of Eqn. 7.6 links the two rule-of-thumb values of 0.6 V
and —2 mV/°C for the magnitude and temperature dependence, respec-
tively, of the forward voltage of a silicon junction.

It is valuable to note two relationships that are exploited in the design
of transistor d-c amplifiers. First, with no approximations beyond those
implied by Eqn. 7.1, it is possible to determine the required transistor base-
to-emitter voltage variation for constant collector current knowing only
the voltage, the temperature, and the material used to fabricate the tran-
sistor. Furthermore, if two silicon (or two germanium) transistors have
identical base-to-emitter voltages at one temperature and at certain (not
necessarily identical) operating currents, the temperature coefficients of
the base-to-emitter voltages must be equal. Second, the base-to-emitter
temperature coefficient at any one operating current is very nearly inde-
pendent of temperature as shown by the following development. The vari-
ation of temperature coefficient with temperature is found by differentiating
Eqn. 7.5 with respect to temperature, yielding

i JdvBE _ —(vge — Vo) + T(aUBE/aT)
dT | oT |Jic = const T2

a.mn
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Substituting from Eqn. 7.5 for the dvgg/dT term in Eqn. 7.7, we obtain

a3 61)35'
ar( 7 ) = —3k/qT (7.8)

Evaluating Eqn. 7.8 at 300° K shows that the magnitude of the change in
base-to-emitter voltage temperature coefficient with temperature is less
than 1 uV/°C/°C.5

It is now possible to determine the drift referred to the input of our origi-
nal amplifier. In order to return v, in Fig. 7.2 to zero at the elevated tem-
perature, it is necessary to decrease i¢ to its original value of 1 mA, and
this decrease requires a —2.26 mV change in vy (Eqn. 7.5). The drift re-
ferred to the input of our amplifier is by definition —2.26 mV/°C, and
Eqn. 7.8 insures that this drift is essentially constant over a wide range of
temperatures.

7.3 THE DIFFERENTIAL AMPLIFIER

The highly predictable temperature coefficient of the base-to-emitter
voltage of a bipolar transistor offers the possibility that some type of com-
pensation can be used to produce low-drift amplifiers. It is evident that the
use of one transistor junction to compensate for voltage variations of a
second similar junction should provide excellent results since both devices
vary in a similar way. This section describes a connection that exploits the
characteristics of a pair of bipolar transistors to provide low drift combined
with several other useful features.

7.3.1 Topology

Consider the connection shown in Fig. 7.3. Here transistor Q. is con-
nected as a common-base amplifier, while transistor Q; is connected as an
emitter follower. Assume that initially v;; = 0, that the two transistors are
at the same temperature and that they are matched in the sense that they
have identical saturation currents. In this case the voltages at the emitters
of the two transistors will be equal, or v, = v;2. The connection shown as
a dotted line can then be completed with no change in any voltage level.
If the magnitude of the voltage V, is much larger than anticipated varia-
tions in base-to-emitter voltage, the current through parallel resistor com-
bination is virtually temperature independent. The matched transistor char-
acteristics insure that this constant current divides equally between the

5 An interesting alternative development of this relationship is given in ‘“An Exact
Expression for the Thermal Variation of the Emitter Base Voltage of Bi-Polar Transistors,”
R. J. Widlar, National Semiconductor Corp., Technical Paper TP-1, March, 1967.
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Figure 7.3 Circuit illustrating development of the differential amplifier.

two transistors. If we also assume that the common-base current gain of
transistor Q. is one, changes in temperature result in negligible changes in
the collector current of this device. Thus the drift referred to the input of
this connection can be close to zero. In addition to providing temperature
compensation, the current gain and input resistance of transistor @, in-
creases the input-resistance of the circuit by a factor of 28 above that seen
at the emitter of Q..

The circuit that results when the dotted connection in Fig. 7.3 is com-
pleted is shown in Fig. 7.4. The inherent symmetry of the differential ampli-
fier has been emphasized by including a collector-load resistor for Q, and
permitting input signals to be applied to either base. A second output sig-
nal is indicated between the collectors of the two transistors in Fig. 7.4,
so that both differential (between collector) or single-ended (either collector
to ground) outputs are available.

7.3.2 Gain

The output of the circuit of Fig. 7.4 for any particular input voltage can
be calculated by the usual methods. However, an alternative and useful
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Figure 7.4 The differential amplifier.

analytic technique is available® that simplifies the calculations and gives
greater insight into the operation of the circuit. The gain of the circuit is
calculated for two particular types of inputs, a differential input with vy, =
— 12, and a common-mode input with v;; = vp,.

Figure 7.5 shows a schematic where the transistors have been replaced
by appropriate, identical circuit models. Consider initially a pure differ-
ential input, of sufficiently small size so that the linear-region model re-
mains valid. It is easily shown that in this case the voltage v, does not change
and that the common emitter connection may therefore be considered an
incrementally grounded point. The incremental model for either half cir-
cuit reduces to that shown in Fig. 7.6. The incremental gain to the single-
ended output, v., is simply that of a common-emitter amplifier:

Vo2 _ —&nRyrs

= omur 7.9
Vig | Vi1 = — Vs Yo+ 1 (7.9)

¢ An essentially identical analysis is given for vacuum-tube differential amplifiers in
T. S. Gray, Applied Electronics, 2nd Ed., Wiley, New York, 1954, pages 504-509.
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Figure 7.5 Incremental model for a differential amplifier.

o—q

The differential output component of v,; for the left-hand half circuit is
identical in magnitude but opposite in sign to that of the right-hand half

circuit; therefore, v,, = —3 v,;. The incremental gain to a differential out-
put is then
Vo 2¢.Rrr,
Yot _ Emltily (7.10)
Vi |vi1 = —vis  Fat Fa

It is conventional to consider gains calculated for a differential input
signal applied between two bases of the amplifier, rather than by assuming
a signal applied to one base and its negative applied to the other. If the

signal between the bases is e; = 2 v;; = —2 v, the gains become
Vo2 ngLr‘;r
— = 7.11
ea 2.+ 1) a.1h
and
o - mR ™
Vor _ T &miilx (7.12)
€q Fo+ rx

For a pure common-mode input the voltage (v;; = v;,), symmetry in-
sures that voltage v, (Fig. 7.5) remains zero and that v, = v;. Therefore,
it is possible to “fold” the circuit about its vertical midline and parallel
corresponding components. The resulting incremental model is shown in
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Figure 7.7 Circuit model for common-mode inputs.

Fig. 7.7. The gain to a single-ended output is identical to that of a common-
emitter amplifier with emitter degeneration:

Vo — gnRurs (7.13)

v (o = v 2[re/2 + r2/2 + (B + DRg]

The common-mode input to differential-output gain is zero since v, does
not change in response to a common-mode input signal.
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While the gain of the differential amplifier has been calculated only for
two specific types of input signals, any input can be decomposed into a
sum of differential and common-mode signals. The output to each indi-
vidual component can be calculated and, because of linearity, the output
is the sum of the responses to the two individual inputs. For example,
assume inputs e, and e, are applied to the left- and right-hand inputs of
the circuit, respectively. The decomposition yields a common-mode com-
ponent e..., = (e, + e»)/2, and a differential component (applied between
inputs) e, = e, — e,. The physical implication is clear. It is assumed that
any combination of input voltage levels is actually the sum of two signals:
a common-mode signal (the two bases are incremented by equal amounts)
equal to the average level, and a differential signal (the two bases are in-
cremented by equal-magnitude, opposite-polarity signals) equal to the
voltage applied between inputs.

7.3.3 Common-Mode Rejection Ratio

The evolution of the name differential amplifier is evident when we realize
that circuit element values are typically such that the gain to a differential
signal is significantly higher than that to a common-mode signal. The ratio
of differential gain to common-mode gain is called the common-mode rejec-
tion ratio (CMRR), and many applications require high CMRR. For example,
an electrocardiogram is a recording of the signal that results as the heart
contracts, and is useful for the diagnosis of certain types of heart disease.
The desired signal, detected by means of two electrodes attached to the
body, has an amplitude of approximately 1 mV. In addition to the desired
signal, a noise component at the power-line frequency with an amplitude
of as much as 0.1 volt may be present as a common-mode signal on both
electrodes. An amplifier with sufficiently high CMRR can be used to separate
the desired signal from the interfering noise.

The analysis of Section 7.3.2 indicates that the common-mode rejection
ratio of a differential amplifier with the output taken between collectors
should be infinite. (As we shall see, this result is a consequence of the
idealized model used.) The cMRrRRr for a single-ended-output differential
amplifier is obtained by dividing Eqn. 7.11 by Eqn. 7.13 yielding the
magnitude

re/2+ ra/2+ B+ DRy

= 7.1
CMRR - (7.14)

Typically, (8 + )Rz >> r» > r., so that
B+ DRy

T

CMRR ~ gnRE (7.15)
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Figure 7.8 Circuit illustrating effect of unequal ry’s.

Since the quiescent current through Ry (Fig. 7.4) is equal to twice the
emitter current of either transistor, the CMRR can be related to Vg, the
quiescent voltage across Rg, by

q Ve

= —— — Rp ~ 20V, 7.
CMRR KT 2R, 0Vz (7.16)

Equation 7.16 shows that one way to achieve high common-mode rejection
ratios for single-ended-output differential amplifiers is to use a large bias
voltage. An attractive alternative (which allows more moderate supply
voltage) is the use of a current source (realized with a transistor with emit-
ter degeneration) in place of Rg. This approach has the further advantage
that the quiescent current level is independent of the common-mode input
signal, and for these reasons most high-performance d-c amplifiers include
an emitter-circuit current source.

If the simplified transistor model used up to now were strictly valid, the
CMRR for an amplifier with an emitter-circuit current source would be in-
finite regardless of whether a single-ended or a differential output is used,
since the incremental resistance of the current source (which replaces Ry
in Eqn. 7.15) is infinite. Analysis based on a more complete model shows
that it is not possible to achieve infinite CMRR with a single-ended output,
but that CMRR can be made arbitrarily high for a differential-output ampli-
fier by matching all transistor parameters sufficiently closely. It is useful to
illustrate the degradation that results from imperfect matching by example.
Figure 7.8 shows a linear-region equivalent circuit for a differential ampli-
fier. A collector-to-base resistance has been included in the transistor
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model.” The physical reason for the presence of this element in the model
is described in Section 8.3.1. The magnitude of this resistance is r, for one
transistor, while that of the second device differs by a fraction A. All other
circuit parameters are identically matched. It is assumed that 7, is negligibly
small compared to r,.% It is further assumed that the circuit has been con-
structed with an ideal emitter-circuit current source. Since 7, > R;, the
gain for a differential input is

Vo

— = gnR 7.17
(viz — ;1) EmL ( )

Vi1 = — U2

The gain for a common-mode input is

Vo | AR“RL

= 7.18
Vi1 |V = V2 (Re 4+ r)l(1 + A)r, + Ry] ( )
Again invoking the inequality r, > Ry leads to
o AR
v | L (1.19)

Vi1 [ Vin = Vg (4 )
The resultant CMRR is obtained by dividing Eqn. 7.17 by Eqn. 7.19, yielding

CMRR = gﬂ(lALA)Q (7.20)

A similar approach can be used to calculate common-mode errors that
arise from other sources such as unequal transistor collector-to-emitter
resistance or unequal values of 7. It can be shown that since each of these
effects is small, there is little interaction among them, and it is valid to
compute each error separately.

As a matter of practical interest, it is possible to obtain well enough
matched transistors to obtain low-frequency values for CMRR on the order
of 104 to 10° with a simple differential-amplifier connection.

7 We shall also see that an additional resistor between collector and emitter is necessary
to complete the model. This second resistor is omitted from the present discussion since
the simplified model illustrates the point adequately.

8 This assumption is frequently valid in the analysis of d-c amplifiers because the tran-
sistors are usually operated at low currents to decrease input current and to minimize offsets
from differential self-heating. The resistance r, grows approximately inversely with collector
current, while the value of r; is bounded, with a usual maximum value of 100 to 200 €.
A typical value for r, for transistors such as the 2N5963 is 2.5 MQ at an operating current
of 10 uA.


http:ARmRL(7.18

262 Direct-Coupled Amplifiers

7.3.4 Drift Attributable to Bipolar Transistors

The reason for the almost exclusive use of the differential amplifier for
d-c amplifier circuits is because of the inherent drift cancellation afforded
by symmetrical components. The purpose of this section is to indicate how
the circuit should be balanced for minimum drift.

If a differential amplifier such as that shown in Fig. 7.4 is constructed
with symmetrical components, the differential output voltage v, is zero
for vr1 = vrp. While resistors are available with virtually perfectly matched
characteristics, selection of well-matched transistors is a significant problem.

It has been assumed up to this point that the transistors used in a dif-
ferential amplifier are matched in the sense that they have equal saturation
currents. One measure of the degree of match is to specify the ratio of the
saturation currents for a pair of transistors. This ratio is exactly the same
as the ratio of the collector currents of the two transistors when operated
at equal base-to-emitter voltages, since at a base-to-emitter voltage Vpp
(assuming operation at currents large compared to I), the collector current
of one transistor is

Icy = Ig1e9Vse/ kT (7.21)
while that of the second transistor is
Ico = 5007V e/ kT (7.22)

Alternatively, the degree of match can be indicated by specifying the dif-
ference AV between the base-to-emitter voltages of the two transistors
when both are operated at some collector current /.. This specification
implies that at some base-to-emitter voltage Vg

ICI = ISlquBE/kT = IC = Icz = IszeQ(VBE"'AV)/kT (723)

This measure of match is easily related to the degree of match between
saturation currents, since Eqn. 7.23 shows that

Is

[ = e (7.24)
S2

Equation 7.24 also shows that the base-to-emitter voltage mismatch, AV,
is independent of the operating current level selected for the test.

If the circuit of Fig. 7.4 is used as a d-c amplifier, the quantity AV for
the transistor pair is exactly the offset referred to the input of the amplifier,
since this differential voltage must be applied to the input to equalize col-
lector currents and thus make vo, zero. For this reason, semiconductor
manufacturers normally specify the degree of match between two transistors
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in terms of their base-to-emitter voltage differential at equal currents rather
than as the ratio of saturation currents.

Several options are available to the designer to obtain well-matched pairs
for use in differential amplifiers. Matched transistors are available from
many manufacturers at a cost of from 2 to 10 times that of the two indi-
vidual devices. These transistors are frequently mounted in a single can so
that the differential temperature of the two chips is minimized. The best
specified match available in a particular series of devices is typically a
3-mV base-to-emitter voltage differential when the devices operate at equal
collector currents.

An alternative involves user matching of the transistors. This possibility
is attractive for several reasons. There are economic advantages, particu-
larly if large numbers of matched pairs are required, since relatively modest
equipment suffices and since the effort required is not prohibitive. Better
matches for a greater number of parameters are possible than with pur-
chased matched pairs. However, lack of money, patience, and environ-
mental control (remember the typical temperature coefficient of —2mV/°C)
generally limits achievable base-to-emitter voltage matches to the order of
0.5 mV. It is also necessary to provide some sort of thermal coupling to
keep the matched devices at equal temperatures during operation.

A third possibility is the use of a monolithic integrated-circuit differen-
tial pair. Through proper control of processing, all transistor parameters
are simultaneously matched, and differential base-to-emitter voltages on
the order of 1 mV are possible with present technology. Excellent thermal
equality is obtained because of the proximity of the two devices. This
approach is used as an integral part of all monolithic operational amplifiers.
There are also a number of single and multiple monolithic matched pairs
available for use in discrete designs. Several more sophisticated monolithic
designs are available® that include temperature sensing and heating ele-
ments on the chip to keep its temperature relatively constant. The effects of
ambient temperature variations are largely eliminated by this technique.

Regardless of the matching procedure used, some type of trimming is
required to reduce the offset of the amplifier to zero at one temperature.
One popular technique is to include a potentiometer in the emitter circuit
as shown in Fig. 7.9. The two bases are shorted together and the pot is
adjusted until the two collector currents are equal so that vo = 0. This
adjustment is possible for R > 2AV/I, where AV is the base-to-emitter
voltage differential of the pair at equal collector currents. (The use of too

9 Examples include the Fairchild Semiconductor pA726 and pA727.
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Figure 7.9 Balancing with emitter-circuit potentiometer.

large a potentiometer is undesirable since it lowers the transconductance!®
of the pair, and we shall see that this quantity becomes important when the
effect of other circuit components on drift is considered.) While this balance
method is frequently used, it is fundamentally in error if minimization of
drift with temperature is the design objective. The approach equalizes col-
lector currents and thus insures that one transistor operates at a quiescent
base-to-emitter voltage of vpg;, while the other operates at a voltage of
vpp1 + AV. The required difference in base-to-emitter voltages is obtained
by adjusting the pot so that the voltages across its two segments differ by
AV. Since the voltages across the pot segments are the same whenever the
input voltage is adjusted to make v, zero (assuming the common-base cur-
rent gain of the transistors is one, the current through each pot segmen

must be 1/2 when vy = 0), the drift referred to the input with respect to

10 The transconductance of a differential pair is defined as the ratio of the incremental
change in either collector current to the incremental differential input voltage. Assuming
that both transistors have large values for 8 and negligible base resistance, the trans-
conductance for the configuration shown in Fig. 7.9 is

ic1 ‘ ‘[ icz ,] 1
|~
20 1/gm + 1/gn2 + R
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temperature for this design is identically equal to the differential change in
the transistor base-to-emitter voltages with temperature. From Eqn. 7.5,

( ) <7)BE1 - Vgg 3k)
— (v - =" - =
aT ~ %! Be ic1 = I¢s = const T q
— V4 3k —
_ (vﬂm g0 ) _ VBE1 UBE?2 (1.25)
T q T
Since the difference vgg, — vpgs is AV,
AV
Eﬁ’(vBEl — UBE2) = T (7.26)

For example, a 3-mV mismatch at room temperature leads to a drift of
10 uV/°C.

An alternative is to operate the transistors with equal base-to-emitter
voltages. This condition requires that the quiescent collector-current ratio
be equal to the ratio of the transistor saturation currents, or

Iﬁl - @ = @uAVIkT (7.27)

IC2 IS2
where, as defined above, AV is the difference between the base-to-emitter
voltages of the two devices when they are operated at equal collector cur-
rents. In this case, a 3-mV value for AV requires a 1277 difference in col-
lector currents to equalize base-to-emitter voltages. A possible circuit con-
figuration is shown in Fig. 7.10. The two bases are shorted together, which
forces equal base-to-emitter voltages and zero differential input voltage.
The potentiometer is then adjusted to make vo = 0. The results of earlier
analysis indicate that the temperature drift attributable to the transistors
should be zero following this adjustment. While very low values are attain-
able by this method, there are other detailed effects, neglected in our sim-
plified analysis, which lead to nonzero drift. It is possible to adjust the rela-
tive base-to-emitter voltages to compensate for these effects.!' In practice,
even the simplified balancing technique can result in drifts of a fraction of
a microvolt per degree Centigrade.

It is stressed that this balancing technique should not be considered a
substitute for careful matching of the devices, but rather as a final trim
following matching. If a large base-to-emitter voltage mismatch is compen-
sated for by this method, there is a large differential power dissipation with
associated differential heating, base currents will differ by a large amount,

11 A, H. Hoffait and R. D. Thornton, “Limitations of Transistor DC Amplifiers,”
Proceedings Institute of Electrical and Electronic Engineers, February, 1964.



266 Direct-Coupled Amplifiers

y\*f\'* %Jrvc
R
Ry Ry
—0 Yy Oyl
l i01 'Czl
Q, Q;
+ +
n 12

Figure 7.10 Method for balancing with equal base-to-emitter voltages.

and the transconductance of the pair will be significantly lower than if
well-matched devices are used. For example, compensation for a 60-mV
mismatch requires collector currents with a 10 to 1 ratio and lowers trans-
conductance by a factor of five compared with a well-matched pair operated
at the same total emitter current. Operation with severely unbalanced col-
lector currents also mismatches all current-dependent transistor parameters.

7.3.5 Other Drift Considerations

It is interesting to note that the excellent compensation afforded by even
the simplified balancing technique described above emphasizes the drift
contribution of other components in circuit. Consider the circuit shown in
Fig. 7.11. (For simplicity it is assumed that inputs are applied to only one
side of the circuit.) Assume that the transistors are perfectly matched so
that when the collector resistors are equal vo = 0 for vy = 0. A drift re-
sults if the relative collector-resistor values change as a result of differen-
tial changes with temperature or aging. The drift attributable to a collector-
resistor fractional unbalance A can be calculated as follows. With vy = 0,
icy = ice ™~ I/2. As v; is increased, ic1 = 1/2 + (gn/2)v: and icy = I/2 —
(gn/2)v:, Where g, is the transconductance of either transistor. (It is as-
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Figure 7.11 Circuit with unequal load resistors.

sumed that r, >> r, for the transistors.) In order to return vo to zero, it is
necessary to have

I gn _(f_&»
(2 +5 v,)R,, = <2 5 vl> (1 + AR, (7.28)
or
Al
gmvi = 'E' (7.29)

(A term containing the small cross product g,.v; AR, has been dropped.)
Since each device is operating at a quiescent current level 1/2, g, =
ql/2kT ~ 20I at room temperature. Thus the input voltage required to re-
turn the output voltage to zero (by definition the drift referred to the input)
is A/40. The significance of this sensitivity is appreciated when one-considers
that two ordinary equal-value carbon-composition resistors can have tem-
perature coefficients that differ by as much as one part per thousand per
degree Centigrade. Use of such resistors would result in an amplifier drift
of 25 uV/°C! It is clear that the quality of the resistors used is an important
factor when a 1 uV/°C amplifier is designed.
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Figure 7.12 Equivalent circuit for finding drift as a function of Icso.

A similar conclusion is reached when the effects of collector-to-base
leakage current Icpo'? are considered. An equivalent circuit that can be
used to predict the drift from I¢so is shown in Fig. 7.12. Since the magni-
tude of I¢po is likely to be significantly different for two otherwise well-
matched transistors, only one leakage current generator is shown in Fig.
7.12. Its value can be made the difference between the leakages if one com-
ponent is not negligible. Proceeding as before, the value of v; required to
reduce the output to zero is given by solving

gmvi —gmvi
= — I 7.30
5 ) + Icso ( )
for v;, yielding
I
v = 2292 (7.31)
gm

The transconductance of either input transistor g, can be related to the
bias level for the differential pair (each member operates at I/2) as g =
201. Therefore, the offset expressed in volts is Icgo/201. Typical values are
again evoked to illustrate the problem. The FT107A (an attractive choice for
the input stage of a d-c amplifier since its specifications include a typical 8 of

12 The assumptions often used to simplify device physics to the contrary, this quantity is
not related to the saturation current in the transistor equation. The magnitude of Is is
dominated by effects within the body of the semiconductor, while the dominant component
of Icpo, at least at room temperature, results from surface effects. Temperature coefficients
are significantly different. While Is doubles every 6°C, Icso near room temperature typically
doubles every 10° C.
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1100 at 10 wA of collector current!) has a specified maximum leakage current
that increases from essentially zero at 25° C to 1 gA at 125° C. The result-
ant average drift over the 100° C temperature range for the device operat-
ing at a collector current level of 10 pA (I = 20 pA) is therefore bounded
by 25 uV/°C. Fortunately the typical value for I¢cpo is 29 of the maxi-
mum specified value, but additional screening procedures are required to
insure this lower level is met by any particular device.

It is worth emphasizing the importance of proper thermal design for
low-drift d-c amplifiers. A temperature differential of 0.001° C results in an
offset of 2 uV for a differential pair that is perfectly matched when the tem-
peratures of the transistors are identical. Several factors influence the tem-
perature differential of a pair. Good thermal contact between the members
of the pair is mandatory. This required contact can be achieved by locating
the two chips close together on a thermally conductive plate, or via mono-
lithic integrated-circuit construction.

It is also necessary to minimize heating effects that disturb the pair.
Self-heating as a consequence of the power dissipated in the pair is particu-
larly important. Differential self-heating is reduced by operating the two
members of the pair at matched, low collector currents and at low collector
voltage. The location of other heat sources that can establish thermal
gradients across the pair must also be considered. These sources are easily
isolated in discrete-component designs, but impose severe constraints on
component placement in integrated circuits.

Another aspect of the thermal problem involves the way in which the
differential-amplifier transistors are connected to the input signal or to
other circuit components. A thermocouple with an approximately 20 xV/°C
coefficient is formed when kovar, an alloy frequently used for transistor
leads, is connected to copper. Thus thermal gradients across the circuit,
which result in different temperatures for series-connected thermocouple
junctions in the signal path, can contribute significant offset voltage.

7.4 INPUT CURRENT

The discussion of input-circuit errors up to this point has focused on
voltage drift referred to the input. Additional input offset signals arise from
input current if the signal source resistance is high. In many d-c amplifiers
constructed using bipolar transistors, offsets from input current dominate.
One alternative is the use of junction-gate or metal-oxide-semiconductor
(mos) field-effect transistors that exhibit substantially lower input currents.
Unfortunately, the voltage drift of junction-gate field-effect transistors is
about one order of magnitude worse than that of bipolar devices. Mos de-
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vices, with threshold voltages dependent on trapped surface charge, are
even more unstable. The techniques used to stabilize the operation of these
devices are significantly different than those used with bipolar transistors
and are not discussed here.!?

In contrast to the base-to-emitter voltage, which varies in a highly pre-
dictable fashion with temperature, the temperature dependence of base
current is a complex function of transistor structure. Furthermore, match-
ing most parameters of two transistors, including 8 at one temperature,
does not insure equal current gain at some different temperature. As a
matter of practical interest, the fractional change in current gain with tem-
perature, (1/8)(38/dT), is typically 0.5 to 197 per degree Centigrade, with
somewhat higher values measured at low collector currents and low
temperatures.

While these unpredictable variations in 8 make input-current compen-
sation schemes less precise than voltage-drift compensation, several useful
methods are available for lowering input current.

7.4.1 Operation at Low Current

In spite of manufacturers’ reluctance to admit it, there are many types of
transistors that exhibit useful current gains at low collector currents. It is
not unusual to find units with a value for 8 in excess of 10 at I = 10—11 A,
and devices with current gains of 100 at I = 10~° A are easily selected
from several families. Clearly, operation at reduced collector current is
one approach to low input current. A disadvantage of this technique is
that collector-to-base leakage current may dominate input current, particu-
larly at high temperatures, or may contribute to excessive voltage drift
(see Section 7.3.5). However, I¢po can be eliminated by operating a tran-
sistor at zero collector-to-base voltage, and there are several circuit
techniques that keep this voltage low yet permit operation over a wide
range of input voltages.

A more fundamental problem is the low fr (current gain-bandwidth prod-
uct) of devices operating at low collector currents. Below some current
level the base-to-emitter capacitance C,is dominated by a space-charge-
layer capacitance, and this quantity is independent of current. Since
collector-to-base capacitance C, is independent of operating current and
g is directly proportional to current,

Em

= O (7.32)

Jr

is directly proportional to current at low operating currents. A typical
value for fr at a collector current of 1 nA is 1 kHz.

181, Orchard and T. Hallen, “Fet Amplifier Design Precautions,” EDN, August, 1968.
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Figure 7.13 Method to eliminate effects of input current.

7.4.2 Cancellation Techniques

While the variation of input current with temperature is not as predictable
as that of the base-to-emitter voltage, several compensation techniques take
advantage of matching this quantity. Figure 7.13 shows one possibility.
Here it is assumed that the source impedances associated with the two
input signals are resistive and fixed. If

iBlRA = iB2RB (7'33)

the drop across each source resistor is equal and the net effect is simply to

apply a common-mode input signal to the amplifier.!¢ Similarly, if
dipy dips

Ry —=Rp— 7.34

v r (7.34)

the effects of temperature-dependent input currents are eliminated. Both

Eqns. 7.33 and 7.34 are satisfied if the resistors are selected to equalize

voltage drops at one temperature and if the fractional change in 8 with

temperature is equal for both devices. The technique of equalizing the re-

14Tt is assumed in this discussion that the input currents are independent of differential
input voltage. This is not true for large signals, but in many applications the signals applied
to a differential amplifier are sufficiently small to make base-current variations with signal
level negligible. A technique to compensate for varying input current with signal levels
is indicated in Section 7.4.3.
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sistances connected to the two inputs (effectively assuming equal input
currents) is frequently used in operational-amplifier connections.

In some applications, it is important to reduce the magnitude of one or
both base currents of an amplifier, not simply insure that the two input cur-
rents to a differential amplifier are equal. Clearly one very simple approach
is to provide the amplifier bias currents via resistors connected to an appro-
priate-polarity supply voltage. Unfortunately, the bias current supplied by
this method is temperature independent, and thus the variation in amplifier
input current with temperature is not decreased. Figure 7.14 shows one
way to provide a degree of cancellation. If the 8’s of corresponding NPN
and PNP transistors are equal, the current seen at either input is zero when
the collector currents of the two NPN’s are equal. The use of current sources
in the emitters of the PNP’s provides a compensating current that is inde-
pendent of common-mode level.

Another technique is to use the temperature-dependent forward-voltage
characteristics of a diode to generate a temperature-dependent compen-
sating current, as shown in Fig. 7.15. The amplifier itself is shown diagram-
matically in this figure, and only one input, close to ground potential, is
indicated. Resistor R, establishes a bias current through the diode. It is as-
sumed that this current is constant since it is selected to be much larger than
is and that V¢ is much greater than ¥, and vr. The temperature dependence
of vp, dvF/3T, is identical to that of a transistor (Eqn. 7.5) and is approxi-

vt V,

N~

Ol W] 1O

NI~

Figure 7.14 Input-current cancellation with transistors.
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Figure 7.15 Use of a diode for input-current compensation.

mately constant with temperature.' The compensating current i, is equal
to vp/ Ry, and has a fractional change with temperature equal to

1 alA 1 dvg 1 aU_p

is 0T  vpdT  (vr 4 Vi) oT (7.35)
The two degrees of freedom represented by the selection of V4 and R,
can be used to cancel at one temperature both the input current and its
first derivative with respect to temperature.

There are several variations on this basic topology that effectively boot-
strap the reference voltage for the compensating diode from a node refer-
enced to the common-mode input level such as the emitter connection of
differential pair. The compensating current provided can be made rela-
tively independent of common-mode level in this way, thus allowimg the
technique to be used with input voltages at arbitrary levels with respect to
ground.

7.4.3 Compensation for Infinite Input Resistance

The compensation methods introduced up to this point have been in-
tended to compensate for temperature variations of the input-transistor
bias current. It has been assumed that the input signals are small enough

15 Carrier recombination in a diode can multiply the 34 /g term in Eqgn. 7.5 by a factor
between one and (wo. This modification does not significantly alter the basic dependence.
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Figure 7.16 Circuit that can yield infinite differential input resistance.

so that the input-current component attributable to the input resistance of
the amplifier is negligible. While this inequality is generally satisfied in
applications (such as operational amplifiers) where the input circuit is fol-
lowed by additional stages of voltage amplification, many differential-
amplifier stages operate with appreciable differential signals applied to their
input.

Figure 7.16 shows a connection that can be adjusted to provide infinite
input resistance to differential signals. Consider a differential input signal,
Ui = —Ur2. A positive vy, increases the current flowing into the base of Q,
and causes a positive change in vg.. By proper choice of parameters it is
possible to supply the required base current through the right-hand R; so
that the change in iy, is zero'®. The necessary value for R; is computed with
the aid of the incremental model of Fig. 7.17. (The usual approximations

16 This technique, which involves positive feedback, is not without its hazards. The
topology of the circuit is essentially identical to that of a flip-flop, and if the circuit is
overcompensated and driven from high impedance sources, bistable operation is possible.
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Figure 7.17 Increment model for circuit of Fig. 7.16.

have been included in developing the model.) Normally R, >> Ry so that
the loading by R, can be neglected. With this assumption, the incremental
input current i;; that results for a pure differential input is

I [gnRs — 1
in = v li; - (g—;l—” (7.36)

If the voltage gain of the circuit is large so that g, R, >> 1, the differential
input resistance is infinite for
gmrﬂrRL

R,

The common-mode input resistance is lowered by the compensating re-
sistors, since Fig. 7.17 shows that

=1 or R1 = ﬁRL (737)

Yia = R, (7.38)
Lin | Vi1 = U2

High common-mode input resistance can be restored by including pPNP

transistors in this compensating circuit as shown in Fig. 7.18. In addition

to supplying the compensating current from a high-resistance source, se-

lection of the bias voltage gives an additional degree of freedom in con-

trolling the quiescent level of the compensating current.

7.4.4 Use of a Darlington Input

One obvious way to lower input current is to use transistors with higher
current gains. As mentioned earlier, transistors with current gains in ex-



276 Direct-Coupled Amplifiers

0 +V,

K B |

12 n

Figure 7.18 Use of common-base transistors to increase common-mode input
resistance.

cess of 1000 are available, and this value should increase as processing
techniques improve. It is also possible to use two transistors in the Darling-
ton connection shown in Fig. 7.19. It is easy to show that at low frequencies
this connection approximates a single transistor between terminals B, C,
and E with current gain given by

B = 52(31 + 1) + B1 == BB (7-39)

and a transconductance

gn = — I¢ (7.40)

Current gains in excess of 10° are possible with available devices.

Figure 7.20 shows a differential amplifier with Darlington-connected in-
put transistors. While a connection of this type yields low values for input
current, the voltage drift for this configuration usually exceeds that of the
conventional differential amplifier. The problem stems from differential
changes in the base currents of transistors Q; and Q.. (Remember that cur-
rent gain varies in a relatively unpredictable way with temperature.) Since
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Figure 7.19 Darlington-connected transistors.

the resistance seen at the emitters of transistors Q; and Q, is relatively
high, current changes produce significant changes in voltages v4 and vs.
A differential change in v4 and vp results in drift equal in value to this
change.

In order to compute drift referred to the input from this effect, it is
necessary to determine how vy must vary with i4 and ip to keep vo = 0.

—o+ V),

Figure 7.20 Differential amplifier with Darlington transistors.
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Assume the operating point values for the two emitter currents are I,
and Ip. The incremental changes in these two currents that arise from
changes in the current gains of transistors Q; and Q. are related to I, and I
by

A

= —1 2B (7.41a)
81

iy = —1Ip 88, (7.41b)
Bs

where AB/B is recognized as the fractional change in current gain for a
transistor.

The incremental output resistance of an emitter follower is approxi-
mately equal to the reciprocal of its transconductance. Thus the incre-
mental differential change between v, and v caused by changes in i, and
ip, which is identically equal to the change in v; required to keep vo equal
to zero is

ia iy IsAB, 14AB,
Vg — Vp = — — — = —— — ——

= 7.42
gms3 gma gmiBe gmib1 ( )

Since the transconductances are proportional to operating-point cur-
rents, Eqn. 7.42 reduces to

I5AB: 14484 _k_T<Aﬁ2 ABy

= @a/kDB: @ /kT)E - q \B: —51—> (7.43)

Note that the drift component attributable to this effect is dependent only
on the differential changes in the fractional current gains of the inner tran-
sistors. A typical value for the fractional change in current gain with tem-
perature is 0.6 7] per degree Centigrade. If transistors @, and Q. have this
value matched to within 109],'7 the resultant drift is 15 xV/°C.

Another potential difficulty with the use of the Darlington input connec-
tions is that its fractional change in input current with temperature is
approximately a factor of two greater than that of an individual transistor
because two devices are cascaded in the Darlington connection. Thus the
low bias current of the Darlington configuration does not result in cor-
respondingly low changes in bias current with temperature.

It is possible to trade input current for drift by increasing the emitter
currents of Q; and @, above the base currents of Q; and Q,, for example

Vg — Up

17 This degree of match is realistic for discrete transistors selected for matched base-to-
emitter voltages and current gains. Better results are normally achieved with monolithic
matched transistors where the manufacuring process for the two devices is highly uni-
form.
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by placing resistors from base to emitter of Q; and Q.. Changes in base
current have less effect since the output resistances of Qs and Q, are lower as
a consequence of increased bias current. This technique is frequently used
in the design of amplifiers with Darlington input transistors.

7.5 DRIFT CONTRIBUTIONS FROM THE SECOND STAGE

Thus far the discussion has focused on single-stage direct-coupled ampli-
fiers. No consideration has been given to situations that require a second
stage either to provide greater voltage gain or to isolate a low-resistance
load. The use of a second stage is mandatory in the design of operational
amplifiers and thus must be investigated.

There is a popular misconception that the dominant source of voltage
drift for a d-c amplifier is always associated with its input stage. The argu-
ment supporting this view is that drift arising in the second stage is divided
by the gain of the first stage when referred to the input of the amplifier, and
is negligible if the first-stage gain is high. This assumption is not always
justified because of the extraordinarily low values of drift that can be
achieved with a properly balanced first stage. Balancing techniques similar
to those used for the input stage are not effective for the second stage, since
its drift contribution is often attributable to variations in input current
rather than in base-to-emitter voltage.

7.5.1 Single-Ended Second Stage

Figure 7.21 shows a differential first stage (with two matched transistors
collectively labeled Q,) driving a common-emitter PNP second stage. Two
perturbation sources are shown, which will be used later to calculate drift.
In addition to providing gain, the second stage shifts level so that the out-
put voltage can swing both positive and negative with respect to ground.
If the base resistance of all transistors is negligibly small, the voltage gain
of this amplifier is

Yo _ —8miR11B:2R1s (7.44)

Vg 2(rz2 + R11)

Drift referred to the input for this two-stage amplifier is calculated as
before by determining how v; must vary to keep vo equal to zero. Note
that in order to maintain a fixed output voltage, it is necessary for ic, to
remain constant. There are a number of sources of drift for this amplifier.
In this development only changes in i, and vgg. that arise as the param-
eters of Q, vary are considered. These changes can be modeled by the per-
turbation generators shown in Fig. 7.21. If the changes are small compared
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Figure 7.21 Two-stage d-c amplifier.

to operating-point values, linear analysis methods can be used to deter-
mine the drift referred to the input of the amplifier.
The results of this analysis show
—2 AvEgz 2 AiBZ

= — 7.45
icz = const gmlRLl gm1 ( )

Ur

The gain portion of the first term on the right of Eqn. 7.45 can be ex-
pressed in terms of V, the quiescent voltage across Ry;. Similarly, the sec-
ond term can be expressed in terms of Iz, I¢c., the current gain of Q,,
and its fractional change. These substitutions yield

—'2kT Avggg + 4kTIc2 Aﬁz
v = .
I’icz = const qv ql\B3

—Avgps | I¢s ARy
20V 105,55

(7.46)

at room temperature.
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Typical values are used to illustrate magnitudes of these drift compo-
nents with temperature. The voltage V is constrained by available supply
voltages, and a value of 5 volts is assumed. The typical Avgp value of
—2mV/°C is used. A current gain of 300 coupled with a temperature co-
efficient of 0.6 per degree Centigrade is assumed for @,. Because the
quiescent current level normally increases from the first stage to the second,
a ratio of 5 is used for I¢,/Ig:. Substituting these values into Eqn. 7.46
shows that the drift attributable to changes in vgg, is approximately 20
uV/°C, while the component arising from ip, changes is 10 uV/°C. These
values contrast dramatically with the drift that can be obtained from a
properly designed first stage, and indicate the dominant effect that the
second stage can have on drift performance.

The drift calculations of this section apply even if current gain only is
required from the second stage. It is easy to show that the calculated values
of drift are the same if an emitter follower is used in place of the grounded-
emitter stage.

The final term in Eqn. 7.46 indicates the importance of changes in second-
stage input current on drift performance. This term indicates that the drift
performance deteriorates as the ratio of the quiescent operating current of
the second stage to that of the first stage is increased. This result is one ex-
ample of how certain design considerations (in particular, the desire to
increase quiescent currents from the first to subsequent stages) must be
compromised to achieve low drift performance.

7.5.2 Differential Second Stage

It is evident from the typical values calculated in the last section that
unless care is taken in the design of the second stage of a d-c amplifier,
this stage can easily dominate the drift performance of the circuit. One
approach to the design of low-drift multistage d-c amplifiers is to use a
differential second stage so that reflected drift is determined by differential
rather than absolute changes in second-stage parameters.

Figure 7.22 shows a two-stage differential amplifier. Individual members
of the first- and second-stage pairs are assumed matched. It is -further
assumed that a single-ended output is desired, so one collector of the second-
stage pair is grounded.

Normally a resistor is used in place of the current source Ig,. Since only
differential input signals can be applied to the second stage, and therefore
the common-emitter point of the second stage is incrementally grounded,
the impedance connected to this point is irrelevant. However, the calcula-
tions are somewhat more convenient if a current source is included.

It is interesting to note that the voltage gain of this amplifier is identical
to that of Fig. 7.21. Since the common-emitter connection of the second
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Figure 7.22 Amplifier with two differential stages.

stage is incrementally grounded for any possible input signal, no gain in-
crease results from the left-hand member of the pNP pair.

Input drift attributable to second-stage differential base-to-emitter volt-
age changes is generally negligible if any degree of match exists. The drift
referred to the input of the second stage is equal to the ratio Avggs/T per
degree Centigrade (see Section 7.3.4). This value (typically on the order of
10 to 100 £V /°C) is divided by the unloaded differential voltage gain of the
first stage (twice the single-ended value calculated in the preceding section)
when reflected to the input.

The drift attributable to differential fractional changes in second-stage
current gain is (assuming initially matched values for second-stage current
gains)

u

kTI -
. _ E2 (Aﬁu AﬁzB) (1.47)
lic, = const  Buglg:

B2
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where the 4 and B subscripts indicate the two members of the second-stage
pair. (The factor of four compared with the calculation of the last section
occurs since each second-stage transistor is operating at Iz./2 and since
the differential connection requires that only half the differential current
change be offset at either side.) The quantity (AB.a — AB25)/B: is typically
0.1% per degree Centigrade for well-matched discrete components, and is
often lower for integrated-circuit pairs. It is interesting to note that this
component of drift dominates many amplifier designs, particularly if the
current gains and the temperature coefficients of the second stage are not
well matched, or if the operating current level of the second stage is high
relative to that of the first stage.

The use of a Darlington second stage with its lower input current offers
some improvement, since the higher voltage drift of the Darlington is
tolerable in this stage. Another possibility is to adjust the relative collector
currents of the second stage so that the differential change in second-stage
base current with temperature is zero. Unfortunately, this adjustment is
difficult to make.

7.6 CONCLUSIONS

The successful design of low-drift direct-coupled amplifiers depends on
exploiting the unique tracking properties of the differential amplifier, and
the application of a number of drift reducing tricks that have evolved. In
view of the many possible pitfalls, it is reassuring to realize that the drift
of several commercially available integrated-circuit operational amplifiers
is on the order of 3 uV per degree Centigrade or lower, and that at least
one discrete-component design achieves a drift of 0.5 uV per degree Centi-
grade.

The purpose of the simple but somewhat tedious derivations and ex-
amples of this section has not been to permit exact evaluation of the drift
of a circuit, but rather to emphasize that “little things mean a lot,” and to
indicate the dominant drift sources of a particular design so that they may
be reduced.

PROBLEMS

P7.1

Figure 7.23 shows several amplifying connections that consist of ideal
amplifiers and passive components. Offset sources are shown as batteries.
Calculate the offset referred to the input (the input voltage required to
make vy = 0), the output offset (the output voltage with v; = 0), and the
gain (v,/v;) for each connection.



Figure 7.23 Amoplifier Connections.
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10 k2

(d)

— E

Figure 7.23—Continued

(e)

P7.2

Consider an operational amplifier with a particular value of offset Eo
referred to its input. Compare the offset referred to the input of amplifier
connections that combine this amplifier with passive components to pro-
vide inverting or noninverting gains with a magnitude of A.

P7.3

Figure 7.24 shows a circuit that can provide a temperature-independent
output voltage. Assume that the transistor has very high 8 and that i = 0.
The diode variables are related as

ip = AJT? ea(rp—0.78)/kT
while the transistor relationship is

iC —_ AtT3 eq( vgE—1.200)/ kT
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Figure 7.24 Voltage reference.

(a) For what ratio of 4, to A, does dvo/dT = 0?
(b) What is v, with the condition of part a satisfied?
(c) What is the output resistance of this connection?

P7.4
The current-voltage relationship for a family of diodes can be approxi-
mated as
iD = K e1(vp—1.2)/kT
where K is a (temperature-independent) constant that may vary from diode
to diode.

A

J ]
[ ] |

Figure 7.25 Nonlinear circuit.
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(a) Four of these diodes with identical values for K are connected as shown
in Fig. 7.25. Find v as a function if i, and iz. You may assume that
the currents through all resistors R are much smaller than i4 or iz and
that both operational amplifiers are ideal.

(b) Determine an expression for

@2\ ) for these diodes.

8T |ip = const

(c) Assume that, because of incredibly poor control of the process used to
make these diodes, it is possible to find two diodes which, at T =
300° K and 1 mA of forward current, have forward voltages of 0.3 V
and 0.9 V, respectively. These diodes are connected as shown in Fig.
7.26, and the pot is adjusted so that dvo/3T = 0. What is vo with this
pot setting?

1 mAl

Figure 7.26 Voltage reference.
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P7.5
The current-voltage relationship for a particular diode is

ip = AT?2-5ee(vp—1.205)/kT

The value of the constant A4 is such that at 300° K and vp = 0.6V, ip =
1 mA.

. Ovp
(a) Determine ——
aT

ip = const

(b) Seven identical diodes are connected as shown in Fig. 7.27. By appro-
priate choice of i, it is possible to make v, temperature independent
over a limited range of temperature. Determine the required value of
vo so that

dvo

oT =0 at T = 300° K

ip = const

Approximate the value of I necessary to obtain the required value
of vo.

(c) Calculate the second derivative of v, with respect to temperature. Use
this value to estimate the temperature range over which v, remains
within one part in 10% of its 300° K value.

(d) Repeat part b assuming that the magnitude of the right-hand current
source is increased to 10 mA.

The type of voltage reference that results from this topology is called a
band-gap reference. The underlying principle is used as a voltage reference
in several available integrated circuits.

5 v, o
¥ ¥
’BT Cb <> Tl mA
Vi AVA
= T & <L
= ¥

Figure 7.27 Band-gap standard.
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P7.6

A differential amplifier is built with the topology shown in Fig. 7.11,
with the exception that signals may also be applied to the base of the right-
hand transistor. The value of the current source is 20 pA, and the incre-
mental output resistance of this element is 10 MQ. (The reasons for finite
output resistance from current sources are discussed in Section 8.3.5.) Cal-
culate the common-mode rejection ratio of this amplifier as a function the
fractional unbalance in collector load resistors, A, assuming all transistor
parameters are perfectly matched.

P7.7

An operational amplifier is built using a bipolar-transistor differential
input stage. It is found that when the inverting input of the amplifier is
grounded, the output voltage of the amplifier is zero at 25° C when a posi-
tive voltage of magnitude AV is applied to the noninverting input of the
amplifier. You may assume that this offset and any temperature-dependent
drift of the operational amplifier are caused only by a mismatch between
the quantities Is of the input-transistor pair, and that transistor variables
are related by Eqn. 7.1.

The operational amplifier is intended for use in an inverting-amplifier
connection, and therefore it is possible to reduce the effective offset at the
inverting input to zero at 25° C by applying a voltage AV to the noninverting
input. Three techniques for obtaining this bias voltage are indicated in Fig.
7.28. Comment on the effectiveness of these three balancing methods in
reducing the temperature drift of the amplifier. Assume that the diode
forward-voltage variation with temperature is given by

dvp _ (= Vo) 3k

oT |ip = const T q
in parts b and c.

P7.8

A differential amplifier is constructed and balanced as shown in Fig.
7.10. Following balancing, it is found that transistor Q; is operating at a
quiescent collector current of 1.1 mA, while Q, operates at a collector cur-
rent of 0.9 mA. The transistors used are discrete devices mounted in reason-
ably close thermal proximity, and have a differential thermal resistance of
20° C per watt (i.e., if one member of the pair operates at a power level AP
watts above that of the other, its temperature is 20 X AP degrees Centi-
grade higher). Estimate the offset referred to the input that results for a
one-volt change in power-supply voltage.



+
A {constant)

(a)

(constant and large
Iz compared to current
through the pot)

(b)

T
X3

k1
—kK}——o+ 1275

(constant and large compared

Iy 1o current through the pot)

)

Figure 7.28 Methods to reduce offset at inverting terminal to zero. (Potentiom-
eter set to make voltage at noninverting input AV at 300° K in all cases.)
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P7.9

A differential amplifier that can provide low input capacitance, and, by
proper control of bias voltage ¥, high common-mode rejection ratio, is
shown in Fig. 7.29. Assume that Q; and Q are perfectly matched. Further
assume that 83 = B; = 100 at 25° C. The output voltage is then zero for
vy = 0. Assume that the fractional change in g; is 0.5 %] per degree Centi-
grade, while that of B, is 1% per degree Centigrade. Calculate the offset
referred to the input for a 1° C temperature change.

P7.10

An operational amplifier is found to have a bias-current requirement at
its noninverting input that is 1097 higher than that at its inverting input at
all temperatures of interest. The amplifier is connected as shown in Fig.
7.30. Select the value of R that minimizes the effect of input current on
circuit performance.

P7.11

The current at the inverting input of a certain operational amplifier is
found to be equal to 10-3A/7? where T is the temperature in degrees
Kelvin. The amplifier is to be used in an inverting connection; conse-

O+ Vc
R, Ry
+— 0y
¥ 0=z
2, 2,
\ T O+ Vg, Vg < V¢
Q, Q,
.
UI =

Figure 7.29 Cascoded differential amplifier.
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Figure 7.30 Summing amplifier.

quently the technique illustrated in Fig, 7.15 can be employed for input-
current compensation. Parameters are selected so that the diode operates
at a very nearly constant 1 mA, and its forward voltage at 300° K is 600
mV at this current. The diode current-voltage characteristics are of the
general form

in = AT3e1VDo=V)/kT

Select resistor R, and bias source ¥, in Fig. 7.15 so that the input current
and its derivative with respect to temperature are cancelled at 300° K.
What is the maximum compensated input current over the temperature
range of 250 to 350° K using this form of compensation? Contrast this
range with the corresponding quantity obtained with no compensation
and by cancelling the input current at 300° K with a fixed bias current.

P7.12

The use of Darlington-connected input-stage transistors is discussed in
Section 7.4.4. An alternative high-gain connection is the complementary
Darlington connection shown in Fig. 7.31a. A differential amplifier em-
ploying this connection is shown in Fig. 7.315. Determine the voltage drift
of this connection as a function of relative current-gain changes of the
0:-Q: pair by an argument similar to that used for Fig. 7.20.

P7.13

A regulated power supply is constructed as shown in Fig. 7.32. This sup-
ply uses feedback around a very simple d-c amplifier in an attempt to make
Vo = VR.

(a) Determine the output voltage for circuit vaiues as shown.
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(b) How much does the output voltage change for a small fractional change
in the current gain of Q»?

(c) Suggest a circuit modification that will reduce the dependence of vo
on the fractional change in S,.

Collector

Base

(a) O Emitter

O+ VC
%RL %RL

(b)

Figure 7.31 Differential amplifier using complementary Darlington-connected in-
put transistors. (a) Base, collector, and emitter refer to terminals of the compound
transistor. (b)) Connection.
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Figure 7.32 Power supply.
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CHAPTER VIII

OPERATIONAL-AMPLIFIER
DESIGN TECHNIQUES

8.1 INTRODUCTION

This chapter introduces some of the circuit corfigurations that are
used for the design of high-performance operational amplifiers. This brief
exposure cannot make operational-amplifier designers of us all, since con-
siderable experience coupled with a sprinkling of witchcraft seems essential
to the design process. Fortunately, there is little need to become highly
proficient in this area, since a continuously updated assortment of excellent
designs is available commercially. However, the optimum performance can
only be obtained from these circuits when their capabilities and limitations
are appreciated. Furthermore, this is an area where good design practice
has evolved to a remarkable degree, and the techniques used for opera-
tional-amplifier design are often valuable in other applications.

The input stage of an operational amplifier usually consists of a bipolar-
transistor differential amplifier that provides the differential input connec-
tion and the low drift essential in many applications. The design of this
type of amplifier was investigated in detail in Chapter 7. The input stage is
normally followed by one or more intermediate stages that combine with
it to provide the voltage gain of the amplifier. Some type of buffer amplifier
that isolates the final voltage-gain stage from loads and provides low output
impedance completes the design. Configurations that are used for the inter-
mediate and output stages are described in this chapter.

The interplay between a number of conflicting design considerations
leads to a complete circuit that reflects a number of engineering compro-
mises. For example, one simple way to provide the high voltage gain char-
acteristic of operational amplifiers is to use several voltage-gain stages.
However, we shall see that the use of multiple gain stages complicates the
problem of insuring stability in a variety of feedback connections. Similarly,
the dynamics of an amplifier are normally improved by operation at higher
quiescent current levels, since the frequency response of transistors increases
with increasing bias current until quite high levels are reached. However,
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operation at higher current levels deteriorates d-c performance character-
istics. Some of the guidelines used to resolve these and other design conflicts
are outlined in this chapter and illustrated by the example circuit described
in Chapter 9.

8.2 AMPLIFIER TOPOLOGIES

Requirements usually constrain the input and output stages of an opera-
tional amplifier to be a differential amplifier and some type of buffer
(normally an emitter-follower connection), respectively.

It is in the intermediate stage or stages that design flexibility is evident,
and the difference in performance between a good and a poor circuit often
reflects the differences in intermediate-stage design. The primary perform-
ance objective is that this portion of the circuit provide high voltage gain
coupled with a transfer function that permits stable, wide-band behavior
in a variety of feedback connections. Furthermore, the flexibility of easily
and predictably modifying the amplifier open-loop transfer function in
order to optimize it for a particular feedback connection is desirable for a
general-purpose design.

8.2.1 A Design with Three Voltage-Gain Stages

One much-too-frequently used design is shown in simplified form in Fig.
8.1. The path labeled feedforward is one technique used to stabilize the
amplifier, and is not essential to the initial description of operation. The
~ basic circuit uses a differential input since this connection is mandatory for
low drift and high common-mode rejection ratio. Two common-emitter
stages (transistors Qs and Q,) are used to provide the high voltage gain
characteristic of operational amplifiers. Some sort of buffer amplifier
(shown diagrammatically as the unity-gain amplifier in the output portion)
is used to provide the required output characteristics.

Casual inspection indicates some merit for the design of Fig. 8.1. Low
drift is possible and d-c gains in excess of 10° can be achieved. The difficulty
is evident only when the dynamics of the amplifier are examined. The trans-
fer function V(s)/[Vi(s) — Vi(s)] determines stability in feedback connec-
tions. With typical element values, this transfer function has three or four
poles located within a two-to-three decade range of frequency. It is not
possible to achieve large loop-transmission magnitude and simultaneously
to maintain stability with this type of transfer function. The designer of
this type of amplifier should be discouraged when he compares his circuit
with that of a phase-shift oscillator, where negative feedback is applied
around three or more closely spaced poles.
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Figure 8.1 One approach to operational-amplifier design.

The problem can be illustrated by computing the transfer function for
the amplifier shown in Fig. 8.1 with component values listed in Table 8.1.
The reasons for selecting these component values are as follows. Fifteen-
volt supplies are used since this value has become the standard for many
solid-state operational amplifiers. The quiescent operating current of the
first stage is low to reduce input bias current.

Relatively modest increases in quiescent currents from stage-to-stage are
used to minimize loading effects. At these levels, circuit impedances are
such that little change in the transfer function results if . is assumed equal
to zero. However, 7, has been retained for completeness. Junction capaci-
tances are dominated by space-charge layer effects at low operating cur-
rents, so equal values for all transistor capacitances have been assumed.
Clearly any equal change in all capacitances simply frequency scales the
transfer function. The resistors in the base circuits of Q; and Q, are assumed
large to maximize d-c gain. In practice, current sources can be used to main-
tain high incremental resistance and to establish bias currents. Resistor R;
is chosen to yield a quiescent output voltage equal to zero.
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Table 8.1. Parameter Values for Example Using Amplifier of Fig. 8.1

Supply voltages:
+15V

Bias currents:
Iy = Ige = 10 A
1(73 = 50 [JA
Ics = 250 uA

Transconductances® implied by bias currents:
Emi = Em2 = 4 X 10-¢ mho
gms = 2 X 10~ mho
&gns = 1072 mho

Other transistor parameters:

g = 100 (all transistors)
ro = re2 = 250 ko

Fr3 = 50 k@

r.e = 10 kQ

r, = 100 @ (all transistors)

C, = C, = 10 pF (all transistors)

Reisistors:
R, and R, large compared to r.; and r,4, respectively.
R; = 60 k@
(Satisfying the inequalities normally requires that current sources be used rather
than resistors in practical designs.)

Buffer amplifier assumed to have infinite input impedance.

@ Recall that for any bipolar transistor operating at current levels where ohmic
drops are unimportant, the transconductance is related to quiescent collector
current by g. = q|lc| /kT ~ 40 V-1|I;| at room temperature.

A computer-generated transfer function V,(jw)/[V:(jw) — Vii(jw)]for this
amplifier is shown in Bode-plot form in Fig. 8.2.! Two important features
of this transfer function are easily related to circuit parameters. The low-
frequency gain can be determined by inspection. Invoking the usual assump-

! The gains of the amplifier for signals applied to its two inputs are not identical at high
frequencies because a fraction of the signal applied to the base of Qi is coupled directly
to the base of Q; via the collector-to-base capacitance of Q. This effect, which is insignifi-
cant until frequencies approaching the f7’s of the transistors used in the circuit, has been
ignored in calculating the amplifier transfer function so that a true differential gain expres-
sion results.
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Figure 8.2 Transfer function for amplifier of Fig. 8.1.

tions, the incremental changes in first-stage collector current is related to an
incremental change in differential input voltage as

Vig — Vi1
= —\————F—— 8.1
o (l/gml + 1/gm2) @1

Since R, is large compared to the input resistance of Qs, all of this incre-
mental current flows into the base of Qs. This base current is amplified by
a factor of 8, and resulting incremental current flows into the base of Q..
The incremental output voltage becomes

v, = —iaBsBuRs (8-2)

combining Eqns. 8.1 and 8.2 shows that the low-frequency voltage gain is
Vo R

B3B1R; 8.3)

Vig — Vi1 B (l/gml + 1/gm2)

Substituting parameter values from Table 8.1 into this equation shows
that the incremental d-c gain is 1.2 X 10°.
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The lowest frequency pole plotted in Fig. 8.1 has a break frequency of
1.36 X 10* radians per second. This pole results from feedback through
the collector-to-base capacitance of Q, (sometimes called Miller effect), as
shown by the following development. An incremental model that can be
used to evaluate the transimpedance of the final common-emitter stage is
shown in Fig. 8.3. This transimpedance is a multiplicative term in the com-
plete amplifier transfer function.

Node equations for this circuit are

_Ic3 = [gr4 + (Cwl + C1r4)s] Va - Cp4SVo

0 = (gmi — Cu)sV, + (Gs + Cus)V, (8.4)
Solving for the transimpedance shows that
Vis) BRA{—(Cua/gmo)s + 1] )

I(s)  7rsRsCusCras? + real[(@ms + gr)Rs + 1]Cu + Crals + 1

The denominator of Eqn. 8.5 is normally dominated by the term that in-
cludes the factor g,..R:C,4, reflecting the importance of feedback through
C... Substituting values from Table 8.1 into Eqn. 8.5 and factoring the de-
nominator polynominal results in

Vs) 6 X 105(—10% + 1)
Is(s)  (10=% 4+ 1)(6.08 X 10~5s + 1)

This development shows that the output stage would have a dominant pole
with a 1.64 X 10! radians-per-second break frequency in its transfer func-
tion if the other components in the circuit did not alter the location of this
pole. This value agrees with the location of the dominant pole for the com-
plete amplifier within approximately 2097.

(8.6)

Cus l\
. I
11 +1
+
Va C) lgm4 ‘{1

Ical C,MI "na

Figure 8.3 Model used to determine dynamics of final common-emitter stage of
three-stage amplifier.
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The algebra involved in getting this result can be circumvented by recog-
nizing that a one-pole? (or Miller-effect) approximation to the input ca-
pacitance of transistor Q, predicts a value

Cr = Crs + Cu(l + gmsRs) 8.7

The break frequency estimated at this node is

= 1.66 X 10* rad/sec (8.8)

Wy —
£ ST

While the d-c gain and the dominant pole location for this configuration
are easily estimated, the location of other transfer-function singularities
are related to amplifier parameters in a more complex way.

The essential feature to be gained from the Bode plot of Fig. 8.2 is that
this transfer function is far from ideal for use in many feedback connec-
tions. The amplifier is hopelessly unstable if it is operated with its non-
inverting input connected to an incremental ground and a wire connecting
its output to its inverting input, creating a loop with a as shown in the
Bode plot and f = 1. In fact, if frequency-independent feedback is applied
around the amplifier, it is necessary to reduce the magnitude of the loop
transmission by a factor of 50 below the gain of the amplifier itself to make
it stable in an absolute sense, and by a factor of 2000 to obtain 45° of phase
margin. The required attenuation could be obtained by means of resistively
shunting the input of the amplifier or through the use of a lag network
(see Section 5.2.4). Either of these approaches severely compromises de-
sensitivity and noise performance in many applications because of the
large attenuation necessary for stability. Better results can normally be
obtained by modifying the dynamics of the amplifier itself.

8.2.2 Compensating Three-Stage Amplifiers

At least two methods are often used to improve the dynamics of an
amplifier similar to that described in the previous section. One of these
approaches recognizes that the poles in the amplifier can be modeled as
occurring because of R-C circuits located at various amplifier nodes. This
type of association was made in the previous section for the dominant ampli-
fier pole. The transfer function for a gain stage includes a multiplicative
term of the general form R,./(R.C.s + 1), where R, and C, are the effective
resistance and capacitance at a particular node (see Fig. 8.4). If a com-

2 P. E. Gray and C. L. Searle, Electronic Principles: Physics, Models, and Circuits, Wiley,
New York, 1969, pp. 497-503.
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Figure 8.4 Compensation by adding a shunt impedance.

pensating series R-C network to ground consisting of a resistor R, < R,
and a capacitor C, > C, is added, the transfer function becomes

Vi(s) R(R.C.s + 1)
I(s)  (R.C.s + 1)(R.Cs + 1)

The single pole has been replaced by two poles and a zero. (Note that
asymptotic behavior at high and low frequencies, which is controlled by
R. and C,, has not been changed.) Component values are chosen so that
one pole occurs at a much lower frequency than the original pole and the
other at a frequency above the unity-gain frequency of the complete ampli-
fier, as illustrated in Fig. 8.5. The positive phase shift of the zero often can
improve the phase margin of the amplifier. This type of compensation can
be viewed as one of combining the uncompensated transfer function with
appropriately located lag and lead transfer functions. While the singulari-
ties must be related so that the compensated and uncompensated transfer
functions are identical at very low and very high frequencies, the second
pole can always be moved to arbitrarily high frequencies by locating the
first pole at a sufficiently low frequency.

An alternative way to view this type of compensation is shown in the
s-plane diagrams of Fig. 8.6. It is assumed that the three-stage amplifier
has three poles at frequencies of interest. The lowest-frequency pole of the
triad is replaced by two poles and a zero by means of a shunt R-C network.
One possible way to choose singularity locations is to use the zero to
cancel the second pole in the original transfer function and to locate the
high-frequency pole that results from compensation above the highest-
frequency original pole. The net effect of this type of compensation is to
increase the separation of the poles so that greater desensitivity can be
achieved for a given relative stability.

Several variations of the basic compensation scheme exist. It is possible
to realize similar kinds of transfer functions by connecting a series R-C
network from collector to base of a transistor rather than from its base to

(8.9)
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Figure 8.5 Effect of adding a shunt impedance on the transfer function of one stage.

an incrementally-grounded point. The same kind of compensation can be
used at more than one node, and this multiple compensation is frequently
required in more complex amplifiers.

While this general type of compensation is effective and has been suc-
cessfully applied to a number of amplifier designs, it is less than ideal for
several reasons. One of the more important considerations is that the deter-
mination of element values that result in a given transfer function requires
rather involved calculations. This difficulty tends to discourage the user
from finding the optimum compensating-element values for use in other
than standard applications. This type of compensation also requires large
capacitors (typically 1000 pF to 0.1 xF) when the network is shunted from
base to an incremental ground. The energy storage of a large capacitor can
delay recovery following an amplifier overload that charges the capacitor
to the wrong voltage level.
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Figure 8.6 s-plane plots illustrating effect of shunt impedance on three-stage

amplifier transfer function.

An alternative type of compensation that may be used alone or in con-
junction with a shunt impedance is to “feed forward” around one or more

amplifier stages as shown in Fig. 8.1. Here a

unity-voltage-gain buffer

amplifier (not essential but included in some designs to prevent loading at

the inverting input terminal) couples the input

signal to the base of Q,

through capacitor C;. Since the first stages are bypassed at high frequency,
the high-frequency dynamics of the operational amplifier should be essen-
tially those of the output stage. The hope is that the output stage has only
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one pole at frequencies of interest, and therefore will be stable with any
amount of frequency-independent feedback.

Feedforward is not without its disadvantages. The frequency response of
a feedforward amplifier is significantly lower for signals applied to the non-
inverting input than for signals applied to its inverting input. Thus the
amplifier has severely reduced bandwidth when used in noninverting con-
nections. There are also problems that stem from the type of transfer func-
tions that result from feedforward compensation. There is usually a second-
or third-order rolloff at low frequencies, with the transfer function recov-
ering to first order in the vicinity of the unity-gain frequency. Since this
transfer function resembles those obtained with lag compensation, the
settling time may be relatively long because of the small amplitude “tails”
that can result with lag compensation (see Section 5.2.6). It is also possible
to have these amplifiers become conditionally stable in certain connections
(Section 6.3.4). This topic is investigated in Problem P8.3.

Before leaving the subject of three-stage amplifiers, the liberty that has
been taken in the definition of a stage is worth noting. The stages are never
as simple as those shown in Fig. 8.1. The essential feature that characterizes
a voltage-gain stage is that it generally introduces one pole at moderate
frequencies. The 709 (Fig. 8.7) is an example of an early integrated-circuit
amplifier that is a three-stage design. While we do not intend to investigate
the operation of this circuit in detail (several modern and more useful
amplifiers are described in Chapter 10), the basic signal-flow path illustrates
the three-stage nature of this design. Transistors @, and Q. form a differ-
ential amplifier. The main second-stage amplification occurs through the
Q4+-Qs Darlington-connected pair. Transistors Q; and Q; complete a dif-
ferential second stage with the Q.-Qs pair and are included primarily to
reduce amplifier drift. Transistors Qs and Q, are used for level shifting,
with common-emitter stage Q. the final stage of voltage gain. Emitter
followers Q;; and Q4 function as a buffer amplifier. There is some minor-
loop feedback applied around the output stage to linearize its performance
and to modify its dynamics via R;s.

Compensation is implemented by connecting a series R-C network from
the output to the input of the second stage. It is also necessary to use ca-
pacitive feedback from the amplifier output to the base of Q. (essentially
around the output stage) to obtain acceptable stability in most applications.

8.2.3 A Two-Stage Design

While a number of operational-amplifier designs with three (or even
more) voltage amplifying stages exist, it is hard to escape the conclusion
that one is fighting nature when he tries to stabilize an amplifier with three
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Figure 8.7 The 709 integrated-circuit operational amplifier.

or more closely spaced poles. The key to successful operational-amplifier
design is to realize that the only really effective way to eliminate poles in
an amplifier transfer function is to reduce the number of voltage-gain pro-
ducing stages. Stages that provide current gain only, such as emitter fol-
lowers, generally have poles located at high enough frequencies to be ig-
nored.

An amplifier with two voltage-gain stages results if one of the common-
emitter stages of Fig. 8.1 is eliminated, as shown in Fig. 8.8.3 Again, tran-
sistors @, and Q, function as a differential amplifier. However, in contrast
to the previous amplifier, note that the base of transistor Q; is the inverting
input of the complete amplifier, while the first-stage output is the collector

3The great value and versatility of this basic amplifier and its many variations were
first pointed out to me by Dr. F. W. Sarles, Jr.
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Figure 8.8 Basic two-stage amplifier.

of transistor Q.. This emitter-coupled connection assures low input ca-
pacitance (approximately C,; + C.;/2) at the base of Q, since this device
is operating as an emitter follower. Low input capacitance is an advantage
in many applications since feedback is normally applied from the output
of the amplifier to its inverting input terminal. The input capacitance at the
inverting input can introduce an additional moderate-frequency pole in the
loop transmission of the amplifier-feedback network combination with at-
tendant stability problems. Thus low input capacitance increases the range
of feedback impedances that can be used without deteriorating the loop
transmission.

The transfer function for this amplifier calculated using the parameter
values in Table 8.2 is*

Vis) 6 X 10°
Vis) — Va(s) (3 X 10~ + 1)(1.1 X 10-3s + 1)

with all other singularities above 5 X 10% sec™'. The corresponding Bode
plot (Fig. 8.9) shows that a phase margin of 75° results even when the out-

(8.10)

4 As in the case of the three-stage amplifier, the slight input-stage unbalance that occurs
at high frequencies because of signals fed directly to the base of Q3 via the collector-to-base
capacitance of Q. has been ignored in the analysis that leads to this transfer function. The
error introduced by this simplification is insignificant at frequencies below the unity-gain
frequency of the amplifier. Furthermore, the transfer function of interest in most feedback
applications where the feedback signal is applied to the base of Q; does not include the
feed-forward term associated with C,..
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Figure 8.9 Transfer function of two-stage amplifier.

put of the amplifier is fed directly back to its inverting input. This type of
transfer function, obtained without including any additional compensation
components, contrasts sharply with the uncompensated three-stage-ampli-
fier transfer function of the previous section.

It is informative to see why the transfer function of this amplifier is
dominated by a single pole and why the second pole is separated from the
dominant pole by a factor of approximately 30,000. This separation, which
permits excellent desensitivity in feedback applications while maintaining
good relative stability, is a major advantage attributable to the two-stage
design. The dominant pole is primarily a result of energy storage in the
collector-to-base capacitance of transistor Q;. A Cr approximation to the
input capacitance of this transistor is (see the discussion associated with
Eqn. 8.7)

CT = C,r3 + C,,3(l + gm3R2 = 6.02 X 10— F (811)
The corresponding time constant
783 = Crr.s = 3.01 X 10~ sec (8.12)

agrees with the dominant time constant in Eqn. 8.10. The essential point
is that the feedback through C,;, which is actually a form of minor loop
compensation (see Section 5.3), controls the transfer function of the com-
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Table 8.2 Parameter Values for Example Using Amplifier of Fig. 8.8

Supply voltages:
+15V

Bias currents:
ICl = ICZ = 10 /JA
Ics = 50 A

Transconductances implied by bias currents:
8m1 = 8m2 = 4 X 104 th
gmz = 2 X 103 mho

Other transistor parameters:
B 100 (all transistors)
a1 = Feo = 250 kQ
r.s = 50 kQ
rs 100 © (all transistors)
C, = C. = 10 pF (all transistors)

i

i

I

Resistors:

R1 > I3
Rz = 300 kQ

Buffer amplifier assumed to have infinite input impedance.

plete amplifier at frequencies between approximately 3.3 X 10% and 108
radians per second. As we shall see, the minor-loop feedback mechanism
that dominates amplifier performance in this case can be used to advantage
for compensation of more complex amplifiers that share the topology of
this circuit.

Most modern high-performance operational amplifiers represent rela-
tively straightforward extensions of the circuit shown in Fig. 8.8, and this
popularity is a direct consequence of the excellent dynamics associated with
the topology. An important modification included in most designs is the
use of a more complex second stage than the simple common-emitter
amplifier shown in Fig. 8.8 in order to achieve higher d-c open-loop gain.
Other options exist in the way the output buffer circuit is realized and the
drift-reducing modifications that may be incorporated into the first and

second stages.

8.3 HIGH-GAIN STAGES

As mentioned in the previous section, a high-gain second stage is usually
used to provide the basic amplifier with the voltage gain normally required
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from an operational amplifier. As we shall see, high current gain or high
power gain alone is insufficient. It is necessary to have stages with high
voltage gain, high transresistance (ratio of incremental output voltage to
incremental input current), or both included in an operational-amplifier
circuit. Note that there is no restriction on the number of transistors used
in the stage. The implication in our definition of stage is that its dynamics
are similar to that of a single common-emitter amplifier, that is, it intro-
duces only one pole at frequencies that are low compared to the fr of the
devices used.

Use of the usual hybrid-pi model for the analysis of the simple common-
emitter amplifier of Fig. 8.10 shows that the low-frequency incremental
voltage is v,/v; = —gn.R. and the incremental transistance is v,/i; =
—BR . The magnitude of either of these quantities can be increased (seem-
ingly without limit) by increasing R.. In order to obtain high gains with-
out high supply voltages [the voltage gain of the circuit of Fig. 8.10 is
(@/kT) (V¢ — Vo)=~40(V¢ — Vo)), a current source can be used as the col-
lector load. We realize that this technique will not result in infinite voltage
gain and transresistance in an actual circuit because the simplified hybrid-pi
model does not accurately predict the behavior of circuits with voltage gains
in excess of several hundred. In order to proceed it is necessary to develop
a more complete hybrid-pi model.

8.3.1 A Detailed Low-Frequency Hybrid-Pi Model®

The simplified hybrid-pi model predicts that both the base current and
the collector current of a transistor are independent of changes in collector-
to-base voltage. Actually, both currents are voltage-level dependent be-
cause of an effect called base-width modulation, as illustrated by the fol-
lowing argument. Consider an NPN transistor operating at moderate cur-
rent levels with fixed base-to-emitter voltage Vg and collector-to-base
voltage V¢p. The approximate charge distribution in the base region for
this transistor is shown by the solid line in Fig. 8.11. In this figure, n, is
the minority-carrier concentration in the base region; N,, is the equilib-
rium concentration of electrons in the base region; and x is the distance
into the base region with x = 0 at the base edge of the emitter-base space-
charge layer. The charge distribution drops linearly from its value »n,(0) at
x = 0 to essentially zero (if the collector-to-base junction is reverse biased
by at least several hundred millivolts) at the edge of the collector space-
charge layer. However, the width of the collector space-charge layer is

5 This material is covered in greater detail in P. E. Gray et al., Physical Electronics and
Circuit Models for Transistors, Wiley, New York, 1964, Chapter 8, and C. L. Searle et al.,
Elementary Circuit Properties of Transistors, Wiley, New York, 1964, Chapter 4.
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Figure 8.10 Common-emitter amplifier.

monotonically increasing function of collector-to-base voltage. Thus, if the
collector-to-base voltage is reduced, the collector space-charge layer be-
comes narrower. This narrowing increases the effective width of the base
region from its original value of W to a new value W + AW. The resultant
new charge distribution is shown by the dotted line in Fig. 8.11.

Two changes in terminal variables result from this change in base width.
First, the collector current (proportional to the slope of the distribution)
becomes smaller. Second, the base current increases, since the total rate at
which charge recombines in the base region is directly proportional to the
total charge in this region. The magnitudes of these changes are calculated
as follows.

n
P n, (0} = Npo(quBE/kT)

x —>
Figure 8.11 Effect of collector-to-base voltage on base-charge distribution (NPN
transistor).
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The collector current of an NPN transistor is related to transistor and
physical constants by

gN,,AD,
=——e¢

I W

aVs/kT (8.13)

where

N,, is the equilibrium concentration of electrons in the base region.
A s the cross-sectional area of the base.
D, is the diffusion constant for electrons in the base region.

The assumptions necessary to derive this relationship include operation
under conditions of low-level injection but at current levels large compared
to leakage currents, and that the ohmic drops in the base region are neg-
ligible. The assumption of negligible ohmic voltage drop in the base region
results in no loss of generality, since a base resistance can be added to the
model which evolves from Eqn. 8.13.

Under conditions of constant base-to-emitter voltage and temperature,
Eqn. 8.13 reduces to

Ie =~ (8.14)

where the constant K includes all other terms from Eqn. 8.14. Differenti-
ating yields
dic K
aw — W
Differential changes in W are related to incremental changes in collector-
to-base voltage as

(8.15)

aw
v
dVes

Incremental changes in collector current can thus be expressed in terms of
incremental changes in collector-to-base voltage as

AW = o (8.16)

. K adw
le= =0 WVon Veb 8.17)
Solving Eqn. 8.14 for K and substituting into Eqn. 8.17 yields
' I dw
e = — TS U 8.18
: WdVes (8.18)

The transconductance of a transistor is related to quiescent collector
current as
qlc
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Solving Eqn. 8.19 for I¢ and substituting this result into Eqn. 8.18 shows

that
i —[— ———kT dW] v 3.20
c = qW dVCB gm cb ( . )

The bracketed quantity in Eqn. 8.20 is called the base-width modulation
factor and is denoted by the symbol 4. Introducing this notation and adding
the familiar relationship between incremental components of collector cur-
rent and base-to-emitter voltage to Eqn. 8.20 yields

ic = ZmUbe + N8mVchb (8.21)

The quantity 5 is typically 10—2 to 10—, indicating that the collector current
is much more strongly dependent on base-to-emitter voltage than on
collector-to-base voltage. This is, of course, the reason we are able to ignore
the effect of collector-to-base voltage variations except in high-gain situ-
ations.

The change in base current as a function of collector-to-base voltage
can be calculated with the aid of Fig. 8.11. If reverse injection from the
base into the emitter region is assumed small, the base current is directly
proportional to the area of the triangle, since the total number of minority
carriers that recombine per unit time and thus contribute to base current
is proportional to the total number of these carriers in the base region. The
geometry of Fig. 8.11 shows that the magnitude of the fractional change in
the area of the triangle is equal to the magnitude of the fractional change
in slope of the distribution for small changes in W. Furthermore, an in-
crease in W decreases collector current and increases base current. Equating
fractional changes yields

ib ic NgmVcb
Dol Bl 8.22
Iy Ic Ic ( )

Rearranging Eqn. 8.22 and recognizing that I/Iz = 8 yields for the incre-
mental dependence of base current on collector-to-base voltage at constant
base-to-emitter voltage

B = — "g’;”°b (8.23)

Adding the incremental relationship between base current and base-to-
emitter voltage to Eqn. 8.23 results in

ib = E Upe — —73“ Veb (8‘24)
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Figure 8.12 Intrinsic hybrid-pi model that includes base-width modulation effects.

It is necessary to augment the familiar hybrid-pi transistor model to in-
clude the effects of base-width modulation when the model is used for the
analysis of high-gain circuits. While there are several model modifications
that would accurately represent base-width-modulation phenomena, con-
vention dictates that the model be augmented by the addition of a collector-
to-emitter resistor , and a collector-to-base resistor 7, as shown in Fig.
8.12. The objective is to choose the four elements of the model so that the
terminal relationships dictated by Eqns. 8.21 and 8.24 are obtained. Note
that, since four degrees of freedom are required to match arbitrary two-
port relationships, it may be necessary to have the dependent current-gen-
erator scale factor in Fig. 8.12 differ from g,,, and this possibility is indi-
cated by calling this scale factor g/,.

The terminal relationships developed from the analysis of the effects of
base-width modulation are repeated here for convenience:

ic = gmvbe + ngmvcb (821)
Iy = %ﬂ Voe — %ﬂ Vep (8.249)

The equations relating the same variables for the model of Fig. 8.12 are®
Ie = gulve + &ulecb T+ &Vse + veb)
= (gn T &Ivsc + (8 + g)Ves (8.25)
Iy = Zxlbe — Guleb (8.26)
Equationing coefficients in these two sets of equations yields
&n 1+ & = &n (8.27)

¢ Recall that corresponding r’s and g’s are reciprocally related. Thus, for example,
8o = 1/r,.
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8ot & = 18m (8.28)
8m

. = 8.29

g 8 (8.29)
ngm

L = 2 8.30

g 8 (8.30)

These equations are readily solved to determine model element values:

1
gm = &n [1 - (1 - E)] (8.31)

Fe=— = — (8.32)
8 8m

¥, = L = ——-1— (8.33)

‘g ngall — (1/8)] '

r, = 1_f (8.34)
8u ngm

Since for any well-designed transistor 7| < 1 (typical values are 103 to
10-%) and 8 > 1, the approximations

qlic|
I~ g = 8.35
g g T (8.35)
and
1
Fo o —— (8.36)
ngm

usually replace Eqns. 8.31 and 8.33, respectively.

It is instructive to examine the relative magnitudes of the model param-
eters for a transistor under typical conditions of operation. Assume that a
transistor with 8 = 200 and » = 4 X 10~*is operated at I = 1 mA at
room temperature. Then g, = 40 mmho, g, = 200 umho or r, = 5 K,
g, = 16 umho or r, = 62.5 kQ and g, = 0.08 ymho or r, = 12.5 MQ.
Note that all conductances in the intrinsic model are proportional to gn
and therefore to quiescent collector current.

8.3.2 Common-Emitter Stage with Current-Source Load

In spite of the internal loading of r, and r,, high voltage gain is possible
with a current-source load for a common-emitter stage, and this connection
is used in many operational-amplifier designs. Figure 8.13a shows a sche-
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(a)

)

Figure 8.13 Current-source-loaded common-emitter stage. (¢) Schematic. (b) In-
cremental equivalent circuit (r, negligibly small).

matic for such a stage and Fig. 8.13b is the corresponding low-frequency
equivalent circuit. It is assumed that the incremental resistance of the cur-
rent source is infinite. (The problems associated with realizing a high-re-
sistance current source will be described in Section 8.3.5.) It is also assumed
that the base resistance of the transistor can be neglected. This assumption
is best justified by considering a complete amplifier where the resistances at
various nodes are known. In most anticipated applications r, will either
be small enough so that it can be neglected even for voltage-source drives
at the base of the transistor in question, or the value of r, will be masked
by a large driving resistance connected in series with it.
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The equivalent circuit of Fig. 8.13b is easily analyzed by solving the
output-node equation:
gnli + 8olo + gu(vo — i) = 0 (8.37)
Since g, < g, (see Eqns. 8.34 and 8.36) and g, < gm,
?u — g (8.38)

With the equivalence of Eqn. 8.36, r, = 1/5g., the voltage-gain of the
circuit becomes simply — 1/%. As mentioned earlier typical values for 5 are
10-3 to 104, and therefore a voltage-gain magnitude of 10° to 10* is

possible.
The incremental input current can be calculated as follows.
i = (g« + gu)vi — Vo (8.39)
Substituting from Eqn. 8.38 yields
Ii = (gr + 8u + gmrogu): (8.40)
Recognizing that
gml'o8p = 8= (8.41)
simplifies Eqn. 8.40 to
i = Qg + gu)vi =~ 2g.v; (8.42)

This relationship indicates that the use of a current-source load halves the
input resistance of a common-emitter amplifier compared to the value when
loaded with a moderate-value resistor, since the currents flowing through
. and r, are equal in this high-gain connection.

Combining Eqns. 8.42 and 8.38 shows that the transresistance is

Vo Fxgmlo Bro T
—= - — = = 8.43
i; 2 2 2 (8.43)

The dominant pole for this amplifier, at least for realistic values of driving-
source resistance, occurs at the input. Because of the high voltage gain, the
input capacitance includes a component several thousand times larger than
C,, and this effective input capacitance is the primary energy-storage ele-

ment.

8.3.3 Emitter-Follower Common-Emitter Cascade

The current-source-loaded common-emitter stage analyzed in the pre-
ceding section can be driven with an emitter follower to increase trans-
resistance. Figure 8.14 illustrates this connection. Analysis is simplified by
applying the results of the last section. Since the input resistance of the
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' ’

Figure 8.14 Emitter-follower common-emitter cascade.

common-emitter amplifier is r./2 (Eqn. 8.42), the transfer ratios v,/v; and
va/i; can be calculated by replacing the input circuit of Q. with a resistor
equal to r.o/2. These results are combined with Eqns. 8.38 and 8.42 to de-
termine gain and transresistance. Furthermore, it is not necessary to con-
sider elements r, and 7, in the model for transistor Q; since the voltage
gain of this device is low. An incremental equivalent circuit that relates v,
to v; is shown in Fig. 8.15.

|
]
I ~
M)
N}
Y o i)
| +

Figure 8.15 Equivalent circuit used to determine »,/v; for circuit of Fig. 8.14.
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The voltage-transfer ratio is

Ve 1

— =1~ 8.44

Vq 1 4 722/2Fr1 + Gmilas/2 ( )
For the circuit of Fig. 8.14 the quiescent collector current of Q. is 1,

while that of Q, is approximately I/B.. Therefore,

62 ﬁng
Frg = — = 8.45
r= e 4l (8.45)
and
B1  BiB:kT
Tr1 = P _ql = Birre (8.46)

Equation 8.46 shows that for reasonable values of 81, the term 7.2/2rx,
in Eqn. 8.44 can be dropped.

Introducing this simplification and noting that g,: = Bagm1, so that
rre = 1/gm1 reduces Eqn. 8.44 to

e _ 8.47
; - 3 ( . )
Therefore
Vo 1
= - = 8.48
o 32 (8.48)
Since v, = % v;, the input resistance is
V; 3
7 = 5T (8.49)
Combining Eqns. 8.48 and 8.49 shows that the transresistance is
.- (8.50
i 2, 20)

This equation can be compared with Eqn. 8.43 by noting that r,; =
BlﬁZ/gm2~ Thus
Vo B182 _ B1ru2

. - = - —— 8.51
I 2gmans 2 ( )

Transistor @, simply improves the transresistance of the circuit by a factor
of 61.

The dominant pole for this circuit is associated with the input of Q,,
since the incremental resistance to ground at this point remains high even
with the emitter follower included.
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8.3.4 Current-Source-Loaded Cascode

The gain limitations of the common-emitter amplifier stem from an in-
ternal negative-feedback mechanism related to transistor operation. As
the collector-to-base voltage changes, the effective width of the base region
also changes and resulting variations in collector- and base-terminal cur-
rent oppose the original change. This effect is similar to that of the collector-
to-base capacitance C, that supplies charge to both the collector and base
terminals in such a direction as to oppose rapid variations in collector
voltage. The cascode connection, which is useful because it minimizes feed-
back through C, at high frequencies, can also be used to minimize the
effects of base-width modulation on circuit performance.

A connection that combines a cascode amplifier with a current-source
load is shown in Fig. 8.16. This circuit can be analyzed by brute-force
techniques, or a little thought can be traded for a page of calculations. We
have already shown that the voltage gain of a current-source-loaded com-
mon-emitter amplifier is —1 /7.

+
<
S o\
N
i
I

Figure 8.16 Cascode amplifier with current-source load.
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Therefore the transfer ratio v,/v, in Fig. 8.16 is

el 1 (8.52)
Vo Ne N2
We have also shown that the input resistance for the common-emitter
amplifier is r,/2. Observe that since the incremental collector current of
0. cannot change in the connection of Fig. 8.16, the incremental ratio
v,/i, must be the same as the input resistance of the common-emitter
amplifier, or
Va Fr2
D) (8.53)
The voltage gain of Q, can be calculated by simply assuming it is loaded
with a resistor equal r,.5/2. Accordingly,

Vg Fr2

— = —gm 8.54

v; Emt 2 ( )
providing this gain is small enough so that r,; and r,; are negligible. Equa-
tion 8.54 can be simplified by noting that 7, = B3/gms, and that g, =
g2 since both devices are operating at virtually identical quiescent cur-
rents. With this relationship the voltage gain of the current-source-loaded

cascode becomes

L__ B (8.55)

Since the input resistance of Q; is 7,1, the transresistance for the circuit is

Yo Barm _ Bafr _ Babr  Biree

(8.56)

i; 2772 2"72gm1 2n2gm2 2

Comparing the cascode with the two previous circuits, we see that it
provides the same transresistance as the circuit including the emitter fol-
lower and has significantly higher voltage gain than either of the other
circuits. It is of practical interest to note that transistors are available that
can provide voltage gains in excess of 10° in this connection.

The dominant pole occurs at the collector of Q, because the incremental
resistance at this node is extremely high. The use of the cascode reduces the
capacitance seen at the base of Q; so that even with a high source resistance,
the time constant at this node is typically between 100 and 10,000 times
shorter than the collector-circuit time constant.

8.3.5 Related Considerations

The circuits described in the last three sections offer at least one further
advantage that is useful for the design of operational amplifiers. The cur-
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rent source included in all of these circuits insures that the transistors op-
erate at quiescent current levels that are essentially independent of output
voltage. Large output-voltage swings are therefore possible without alter-
ing any current-dependent transistor parameters.

Care may be required in the design of a current source with sufficiently
high output resistance to prevent significant loading of the high-gain stages.
Figure 8.17a shows a transistor connected as a current source. The output
resistance for this connection determined from the incremental circuit
model is

=7,

I:l + gm(rr”RE)

:' (8.57)
8o

[1 + (g + go)(rrHRE)] ~,
g ’
The output resistance varies from

Vo

—~r, for R =0 (8.58)
lo
to
Vo mlr ¥
S %g.,— =7 for  Re>r (8.59)

This analysis indicates that it is not possible to build a current source of
this type with an output resistance in excess of r,/2.

Since r, is current dependent and since the current source operates at a
current level equal to that of its driving transistor in the high-gain circuits,
r, and r, for a current-source transistor will be comparable to those of the
driving transistor. The analysis of Section 8.3.2 can be extended to show
that the output resistance of the common-emitter stage is r, when driven
from a voltage source and is r,/2 when driven from a high impedance
source. Thus use of a common-emitter current source (Ry = 0 in Fig.
8.17) can reduce the gain of this stage by as much as a factor of two.
Since the output resistance of the emitter-follower common-emitter cas-
code is 2r,/3 when driven from a voltage source, the susceptibility of this
stage to loading is comparable to that of the common-emitter stage.

The output resistance of the cascode is 7./2, so even the highest output
resistance that can be achieved with a bipolar-transistor current source
will halve the unloaded gain of this stage. A further practical difficulty is
that approaching a current-source resistance of r./2 requires Rg > r,
(Eqn. 8.57). If we assume the base-to-emitter voltage of the transistor is
small compared to V in Fig. 8.17a,

Y _ gV "y 40Vr,
T Iz kKTg. B
In order to satisfy the inequality Rg >> r,, it is necessary to have ¥V >> 8/40.

Rz (8.60)
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Figure 8.17 Current source. (a) Schematic. (b) Equivalent circuit.

The use of low B transistors is not the answer, since such transistors also
have low r,. One way to avoid the requirement for high supply voltage is
to use the connection of Fig. 8.18. Cascoding serves the same function as
it does in the amplifier, and provides an output resistance of approximately
r./2 with a total supply voltage of several volts.

The analysis presented above shows that the output resistance of a bi-
polar-transistor current source is bounded by #,/2, and that this maximum
value occurs only when the base of the transistor is connected to a low re-
sistance level relative to the emitter-circuit resistance. Field-effect transistors
(FET’s) can be used in the interesting connection shown in Fig. 8.19a to
increase the output resistance of a current source. A model that can be
used for the linear-region analysis of the FET is shown in Fig. 8.195. An
incremental equivalent circuit of the cascoded source, assuming that the
finite output resistance of the current source Rs = v,/i, completely de-
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. >
,Ol 0> 0

Rg
- V2
Figure 8.18 Cascoded current source.

scribes this element, is shown in Fig. 8.19¢. This equivalent circuit shows
that the relationship between v, and 7, is

.0 .OR s
v = ioRs + — o+ 2

8.61
Yos Yos ( )
or that
[ 1 s
%= — 4+ Rs <1 + yi) (8.62)
173 Yos Yos

Since the quantity y;./y.s can be several hundred or more for certain FET’s,
this connection greatly increases the incremental resistance of the current
source itself. For example, by using a bipolar-transistor current source
cascoded with a FET, incremental resistances in excess of 10'? Q@ can be
obtained at a quiescent current of 10 pA. It is theoretically possible to fur-
ther increase current-source output resistance by using multiple cascoding
with FET’s, although stray conductance limits the ultimate value in actual
circuits.

Another problem that occurs in the design of high-gain stages is that
the output of the stage must be isolated with a very high-input-resistance
buffer to prevent loading that can cause a severe reduction in the voltage gain
of the stage. One approach is to use a FET as a source follower, since the
input resistance of this connection is essentially infinite. The use of a FET
as a buffer or to cascode a current source is frequently the best technique
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Figure 8.19 Current source cascoded with a field-effect transistor. (a) Circuit.
(b) Linear model for field-effect transistor. (¢) Incremental equivalent circuit.
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in discrete-component designs. However, it is presently difficult to fabri-
cate high-quality bipolar and field-effect transistors simultaneously in mono-
lithic integrated-circuit designs; thus alternatives are necessary for these
circuits.

If a bipolar-transistor emitter follower (Fig. 8.20) is used, care must be
taken to insure sufficiently high input resistance. The incremental input
resistance for this circuit with no additional loading is

= 2l + BCIRo)] (8.63)

b3

In order to approach the maximum input resistance of r,/2 (particularly
important if the buffer is to be used with the cascode amplifier), it is neces-
sary to have Rg > r,. This inequality normally cannot be satisfied with
reasonable supply voltages, so a current source is frequently used in place
of Rp. A further advantage of the current source is that the drive current
that can be supplied to any following stage becomes independent of voltage
level.

One design constraint for an emitter follower intended for use with the
current-source-loaded cascode amplifier is that the quiescent operating cur-
rent of this stage should not be large compared with that of the cascode or
else the gain of the stage will be determined primarily by r, of the emitter
follower.

Figure 8.20 Emitter follower.
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8.4 OUTPUT AMPLIFIERS

Factors that influence the design of the differential amplifier normally
used as the input stage of an operational amplifier were investigated in
Chapter 7, and the design of stages that provide high voltage gain was
covered in earlier sections of this chapter. Modern operational amplifiers
that combine a differential-amplifier input stage (often current-source
loaded) with a current-source-loaded second stage require a final amplifier
to supply output current and to provide additional isolation for the pre-
ceding high-gain stage. The dividing line between the devices used primarily
to supply output current and those used to isolate the high-resistance node
of the high-gain stage is often hazy. The emphasis in this section is on the
power-handling aspect of the output amplifier. The guidelines of the pre-
vious section are used when isolation is the major objective.

Some type of emitter-follower circuit is almost always used as the out-
put stage of an operational amplifier, since this configuration combines
the necessary current gain with dynamics that can usually be ignored until
frequencies above the unity-gain frequency of the complete amplifier are
reached.

The simplest emitter-follower connection is shown in Fig. 8.21, and this
circuit is powered from the = 15-volt supplies that have become relatively
standard for operational amplifiers. While this circuit can provide the neces-
sary output current and isolation, it requires high quiescent power relative
to the maximum power it can supply to the load. If the circuit is designed
so that the output voltage can swing to at least — 10 volts (a typical value

T +15V

vr

Load
= Rg R,

d-15v -

—o s
i

Figure 8.21 Emitter follower with resistive biasing.
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for operation from 15-volt supplies), it is necessary to make Ry equal to
half the minimum expected load resistance, since at the most negative out-
put voltage the transistor will be cut off and the load current must be sup-
plied via Rg. If, for example, R, = 500 Q, Rr must be less than or equal to
250 Q to insure that a — 10-volt output level can be obtained. The power
delivered to the load is 200 mW at vo = =+ 10 volts, while the total power
required from the supplies under quiescent conditions (vo = 0) is 1.8 watts,
or power nine times as large as the maximum output power for negative
output voltage. This low ratio of peak output power to quiescent power is
intolerable in many applications. A second and related problem is that the
input resistance to the stage will be only SR./3 when Rg is selected to
guarantee a — 10-volt output.

The situation improves significantly if the blasmg resistor is replaced by
a current source as shown in Fig. 8.22. A —10-volt output is obtained with
I = 10 volts/R;. If we use the earlier value of 500 Q@ for R;, a 200-mW
peak output for negative output voltage results with 600 mW of quiescent
power consumption. The input resistance to the circuit is similarly increased
by a factor of three.

Further improvement results if a complementary emitter follower (Fig.
8.23) is used. Neither transistor in this connection is forward biased with
vr = vo = 0, and thus the quiescent power consumption of the circuit is
zero. The NpN supplies output current for positive output voltages, while
the PNP supplies the current for negative output voltages. In either case only
one transistor conducts, so that the load current only is required from the
loaded power supply.

+15V

—15V = =

Figure 8.22 Emitter follower with current-source biasing.
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Figure 8.23 Complementary emitter follower.

As might be expected, the complementary emitter follower has its own
design problems; the most difficult of these involve establishing appropriate
quiescent levels. If the circuit is constructed as shown in Fig. 8.23, it ex-
hibits crossover distortion since it is necessary to forward bias either tran-
sistor base-to-emitter junction by approximately 0.6 volt to initiate con-
duction. Consequently, there is a 1.2-volt range of input voltage for which
the output remains essentially zero. The idealized transfer characteristics
as well as representative input and output waveforms for this circuit are
shown in Fig. 8.24. We might initially feel that, since this circuit is intended
for use as the output stage of an operational amplifier, the effect of this
nonlinearity would be reduced to insignificant levels by the gain that pre-
cedes it in most feedback applications. In fact, the example presented in
Section 2.3.2 showed that feedback virtually eliminated the distortion from
this type of dead zone in one system. Unfortunately, the moderation of the
nonlinearity depends on the gain of the linear elements in the loop, and is
often insufficient at higher frequencies where this gain is reduced. As a
result, while an output stage as simple as the one shown in Fig. 8.23 is at
times successfully used in high-power low-frequency applications, it must
normally be linearized to yield acceptable performance in moderate- to
high-frequency situations.

The required linearization is accomplished by forward biasing the base-
to-emitter junctions of the transistors so that both are conducting at low
levels with zero input signal. One conceptually possible biasing scheme is
shown in Fig. 8.25. If each of the two batteries is selected to just turn on its
respective transistor, the input and output voltages of circuit will be identi-
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Figure 8.24 Input-output relationships for the complementary emitter follower.
(a) Transfer characteristics. (b)) Waveforms.

cal. Ignoring the practical difficulties involved in realizing the floating volt-
age sources (which can be resolved), two types of difficulties are probable:
the biasing voltages will either be too small or too large. These problems
occur because of the exponential and highly temperature-dependent rela-
tionship between collector current and base-to-emitter voltage. If too small
bias voltages are used, a fraction of the crossover distortion remains, while
if the bias voltages are too large, the circuit can conduct substantial quies-
cent current through the two transistors, and there is the probability of
thermal runaway.

Thermal runaway is a potentially destructive process that is most easily
understood by considering a transistor biased with a fixed base-to-emitter
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-V

Figure 8.25 One approach to biasing the complementary emitter follower.

voltage so that it conducts some collector current. The power dissipation
that results heats the transistor, and since the device is operating at fixed
base-to-emitter voltage, the resultant temperature increase leads to a larger
collector current, which results in higher power dissipation, etc. If the gain
around this thermal positive-feedback loop exceeds one, the collector cur-
rent increases until the transistor dies. (See Problem P8.13.)

In order to avoid these difficulties, forward-biased junctions are normally
used to provide the bias voltages. If these biasing junctions are matched to
the output-transistor base-to-emitter junctions and located in close thermal
proximity to them, excellent control of bias current results. This approach
is particularly attractive for monolithic integrated-circuit designs because
of the ease of obtaining matched, isothermal devices with this construction
technique. Further insurance against thermal runaway is often obtained by
including resistors in series with the emitters of the output transistors.
Voltage drops across these resistors reduce base-to-emitter voltage and thus
tend to stabilize bias currents as these currents increase. The value of these
resistors represents a compromise between the increased operating-point
stability that results from higher-value resistors and the lower output re-
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sistance associated with smaller resistors. A compromise value of approxi-
mately 25 Q is frequently used for designs with peak output current in the
20-mA range.

One interesting bias-circuit variation for a complementary emitter-fol-
lower connection is used in the 741 integrated-circuit operational amplifier.
This circuit is shown in simplified form along with quiescent current levels
in Fig. 8.26. The circled components function as a diode and a half (or more
precisely a diode and three-fifths) to establish a conservative bias-voltage
value. Because the base current of the transistor is small compared to the
currents through the two resistors, this negative-feedback connection forces
the voltages across the resistors to be proportional to their relative values.

While forward-biasing techniques make the use of complementary con-
nections practical, minor nonlinearities usually remain. For this reason,
operational amplifiers intended for use at very high frequencies occasionally
use a current-source-biased emitter follower (Fig. 8.22) in order to achieve
improved linearity.

It is often necessary to incorporate current limiting in the design of an
output stage intended for general-purpose applications. While it would be
ideal if the current limit protected the amplifier for shorts from the output
to ground or either supply voltage, this requirement often severely compro-
mises maximum output current. Consequently, the current limit is at times
designed for protection from output-to-ground shorts only.

O + [/S
_____ l0.75 mA
/// \\\
// ™
\,
+0— ,/
/ \ \
; \
/ 45kQ l 80 uA \
|
I’ small :
1.6 Vgp l to | $—————0 Output
\ !
!
VPR o5ke l 80 uA /

Voltage-gain
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Figure 8.26 Bias circuit used in 741 amplifier.
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Figure 8.27 Resistively biased complementary emitter follower.

Figure 8.27 shows a discrete-component output stage that illustrates
some of the concepts introduced above. Assume that the input and output
voltage levels are both zero, and that no current is drawn from the output.
Under these conditions, approximately 3 mA flows through diodes D; and
D, and the two 4.7-kQ resistors. If diodes D, and D, are matched to the
base-to-emitter junctions of Q, and (., respectively, the quiescent bias
current of the transistor pair is slightly more than 1 mA. (The details of
this type of calculation are given in Section 10.3.1.) The 22-Q resistors
effectively protect against thermal runaway. Assume, for example, that the
temperatures of the transistor junctions each rise 50° C above their respec-
tive diodes. As a result of this temperature differential, the voltage across
each 22-Q resistor increases by at most 100 mV, and thus the quiescent-
current increase is limited to less than 5 mA.

Base drive for the transistors is supplied from the 4.7-kQ resistors rather
than directly from the input-signal source. The current limit occurs when
this required drive current is eliminated in the following way. Assume that
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Figure 8.28 Current-source biased complementary emitter follower.

the input voltage is positive and that transistor Q; is supplying an output
current of approximately 25 mA. Under these conditions diode D; is on
the verge of conduction, since with approximately the same voltages across
D, and the base-to-emitter junction of Q,, the voltages across the top 22-Q
resistor (22 € X 25 mA = 550 mV) and D; are nearly equal. If the input-
signal source is limited to low current output, diode D; clamps the input
voltage level, preventing further increases in base drive. Because the limiting
current level is proportional to the forward voltage of a diode, the limiting
level decreases with increasing ambient temperature. This dependence is
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advantageous, since the power-handling capacity of the output transistors
also decreases with increasing temperature.

This relatively simple circuit is often an adequate output stage. One
deficiency is that the input resistance of the circuit is dominated by the
parallel combination of the biasing resistors. Since the output current is
limited to approximately 25 mA, minimum load resistors on the order of
400 Q are anticipated. The current gain of the output pair insures that the
input loading attributable to this value of load resistor is insignificant com-
pared to that of the biasing resistors. Increasing the value of the biasing
resistors can result in insufficient base drive at maximum output voltages.

The circuit shown in Fig. 8.28 can be used when maximum input re-
sistance to the buffer amplifier is required. Diodes D; and D, function as
they did in the previous circuit. However they are biased with 1-mA cur-
rent sources formed by transistors Qs and Q, rather than by resistors. The
high incremental resistance of these current sources minimizes loading at
the amplifier input. Since the current sources supply base drive for the
output transistors, turning these current sources off limits output current.
The limiting occurs as follows for a positive input voltage. When the out-
put current is approximately 30 mA, the voltage at the cathode end of
diode D; equals the voltage at the base of Q;. Further increases in output
current lower the upper current-source magnitude, thereby reducing drive.

PROBLEMS

P8.1

Consider an operational amplifier built with » identical stages, and an
open-loop transfer function

a,
a(s) = ———
) (s + )»

This amplifier is used in a noninverting unity-gain connection. Determine
the maximum stable value of g, for » = 3 and n = 4. What is the limiting
stable value for @, as n — «?

P8.2

Figure 8.29 illustrates a model for a multiple-stage operational amplifier.
The output impedance of the input section of the amplifier is very high,
and the transfer admittance is

L) 0.67 X 102
Y =59 = 105 4 1107 + 1)

The quiescent collector current of the transistor is 100 pA. Transistor
parameters include 8 = 100, C, = 5 pF, and C, = 10 pF. You may as-
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Figure 8.29 Multiple-stage operational amplifier.

sume that a one-pole approximation adequately characterizes the com-
mon-emitter stage, and that the input impedance of the buffer amplifier is
very high. Ignore base-width-modulation effects.

(a) Find the transfer function V,(s)/V(s) for this amplifier. What is the
magnitude of this transfer function at the frequency where it has a
phase shift of —180°?

(b) Determine a compensating impedance that can be placed between base
and emitter of the transistor so that the second pole of the compensated
transfer function occurs near its unity-gain frequency. What is the
open-loop transfer function with your compensation?

(¢c) Find a compensating impedance that can be placed between collector
and base of the transistor to yield a transfer function similar to that
obtained in part b.

P8.3
A model for an operational amplifier incorporating feedforward com-
pensation is shown in Fig. 8.30. Approximate the open-loop transfer func-

104 +7\ —10° v
0

(10755 + 1)2 - (10785 + 1) (10 % + 1)2

+

Figure 8.30 Block diagram for feedforward amplifier.
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tion ¥V (s)/ Vi(s) for this amplifier. (Note that you should be able to estimate
the transfer function of interest fairly accurately without having to factor
any polynomials.) What is the amplifier phase shift at its unity-gain fre-
quency? Draw a Bode plot of the transfer function. Comment on possible
difficulties with this amplifier.

P8.4

Do you expect the base-width modulation factor 5 of a bipolar transistor
to be more strongly dependent on quiescent collector current or quiescent
collector-to-emitter voltage? Explain.

P8.5

Figure 8.31 shows the characteristics of a certain NPN transistor as dis-
played on a curve tracer when the base current is 10 pA. Find values for
&m, I'r, To, and 7, for this device valid at I = 1 mA, V¢g = 10 volts. Esti-
mate 5 for this transistor.

P8.6

Assume that the transistor connection shown in Fig. 8.14 is modified to
include a bias current source that increases the value of the emitter current
of Q.. Express the voltage gain and transresistance of the resulting circuit
in terms of the value of the bias source and other circuit parameters.

P8.7

A current-source-loaded Darlington connection is shown in Fig. 8.32.
Find the low-frequency voltage gain and transresistance of this circuit,
assuming that both transistors have identical values for 8 and ».

Ic
Io=1.1mA
Io=1mA
I =0.9mA
l
|
| | |
| | |
! | |
I | |
| | |
| | |
| 1 |
Y 5 10 15 Vog (volts) —=

Figure 8.31 Transistor I-V characteristics.
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Figure 8.32 Current-source-loaded Darlington amplifier.

P8.8

Determine the low-frequency gain v,/v; and transresistance v,/i; for the
current-source-loaded differential amplifier shown in Fig. 8.33. Assume
both transistors are identical and characterized by 8 and 7.

P8.9

A bipolar transistor is used in a current-source connection with its
emitter connected to ground. Compare the output resistances that result
when the base of the transistor is biased with a high or a low resistance
source. Show that the same values result for the output resistance of a
common-emitter amplifier loaded with an ideal current source as a func-
tion of the driving-source resistance.

P8.10

A transistor is available with 8 = 200 and n = 5 X 10— This device is
used as the common-emitter portion of a current-source-loaded cascode
connection operating at a quiescent current of 10 pA. The second cascode
transistor can either be a bipolar device with parameters as given above or a
FET with y;, = 10~* mho and y,, = 10~% mho. (See Fig. 8.19b for an incre-
mental FET model.) Compare the voltage gain that results with these two
options.

P8.11

Consider the amplifier shown in Fig. 8.34. The biasing is such that when
all devices are in their linear operating regions, the quiescent operating
current is 10 pA. Find the voltage gain of this connection assuming all
four bipolar transistors have identical parameter values as do both FET’s.
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Figure 8.33 Current-source-loaded differential amplifier.

Use the values given in Problem P8.10. Estimate the break frequency of the
dominant pole in the amplifier transfer function assuming that both FET’s
have drain-to-gate capacitances of 2 pF and that these capacitances domi-
nate the frequency response.

P8.12

Determine the input resistance of the emitter-follower connection shown
in Fig. 8.35 as a function of transistor parameters and quiescent operating
levels. You may assume both transistors are identical.

P8.13

Thermal runaway is a potentially destructive process that can result
when a transistor operates at fixed base-to-emitter and collector-to-emitter
voltage because of the following sequence of events. The device heats up asa
consequence of power dissipated in it. This heating leads to a higher col-
lector current, a correspondingly higher power dissipation, and conse-
quently a further increase in temperature. The objective of this problem is to
determine the conditions under which unbounded thermal runaway results.

The transistor in question is biased with a fixed collector-to-emitter
voltage of 10 volts, and fixed base-to-emitter voltage that yields a quiescent
collector current Ic. You may assume the transistor has a large value for 8,
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Figure 8.34 High-gain amplifier.

and that transistor base-to-emitter voltage, collector current, and tempera-
ture are related by Eqn. 7.1. The constant A in this equation is such that the
transistor collector current is 10 mA at 0° C chip temperature with a base-
to-emitter voltage of 650 mV.

The device is operating at an ambient temperature of 0° C. Measure-
ments indicate that chip temperature is linearly related to power dissipa-
tion. The transfer function relating these two quantities is

Tj(s)_1< 1 N 1 )
Pi(s) 103 + 1 100s + 1
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+V,

Figure 8.35 Emitter follower.

where T is the junction temperature in degrees Centigrade and P, is the
device power dissipated in watts.

Form a linearized block diagram that allows you to investigate the possi-
bility of thermal runaway. Determine the quiescent value of /¢ that results
in transistor destruction. Now modify your block diagram to show how
the inclusion of a transistor emitter resistor increases the safe region of
operation of the connection.

P8.14

A certain operational amplifier can supply an output current of &= 5 mA
over an output voltage range of =412 volts. Design a unity-voltage-gain
stage that can be added to the output of the operational amplifier to in-
crease the output capability of the combination to at least 100 mA
over a =10-volt range. Available power-supply voltages are =15 volts.
Assume that complementary transistors with a minimum 8 of 50 and a power
dissipation capability of 2.5 watts are available. A reasonable selection of
low power devices is also available. Your design should include current
limiting to protect it for shorts from the output of the stage to ground.
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CHAPTER IX
AN ILLUSTRATIVE DESIGN

9.1 CIRCUIT DESCRIPTION

The purpose of this section is to illustrate by example one way that the
basic two-stage amplifier can be expanded into a complete, useful opera-
tional amplifier. Later sections of this chapter analyze the circuit to deter-
mine its performance, show how it can be compensated in order to tailor
its open-loop transfer function for use in specific applications, and indicate
how design alternatives might affect performance.

No attempt is made to justify this particular implementation of the two-
stage amplifier other than to point out that the circuit was designed at
least in part for its educational value. An appreciation of the salient fea-
tures of this particular circuit leads directly to improved understanding of
other operational amplifiers, including a number of integrated-circuit de-
signs, which have evolved from the basic topology. The modifications in-
corporated into the basic design are certainly not the only possible ones,
nor are they all likely to be required in any given application. The circuit
does illustrate how a designer might resolve some of the tradeoffs available
to him, and also provides a background for much of the material in later
sections.

9.1.1 Overview

The complete circuit and important quiescent levels are shown in Fig.
9.1. The circuit represents a modification of the basic amplifier that com-
bines a differential amplifier incorporating several of the drift minimizing
techniques described in Chapter 7 with a high-gain stage consisting of a
current-source-loaded cascode amplifier. A unity-voltage-gain buffer ampli-
fier isolates the high-resistance node at the output of the cascode amplifier
and provides high current output drive capability. The amplifier is designed
to provide a =+ 10-volt maximum output signal and operate from standard
=+ 15-volt supplies. The supply voltages are both bypassed with a parallel
combination of an electrolytic and a ceramic capacitor, since this combina-
tion is effective over a wide frequency range.
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Figure 9.1 Discrete-component operational amplifier. Note. *Indicates 1%
metal-film resistor.

This circuit shares a characteristic with a number of other moderately
involved designs, which is often disturbing to novice circuit designers since
there is some difficulty in determining which transistors are actually in the
signal path. It is important to resolve this uncertainty prior to any detailed
discussion of the circuit. Referring to Fig. 9.1, we see that transistors Q,
and @, are the differential-amplifier input stage. As we shall see, the second-
stage topology constrains the emitter connection of the Q.,-Qs pair to
be incrementally grounded. Thus Qs and Qs form a cascode amplifier. This
current-source-loaded cascode provides the largest fraction of the amplifier
gain, with analysis to be presented indicating a voltage gain of 180,000 in
this portion of the circuit.

The high-resistance node at the output of the cascode amplifier is iso-
lated with source-follower-connected FET Qg. The source follower drives
transistors Qo and Q;;, which are connected as a complementary emitter
follower.

The amplifier can be compensated by connecting an appropriate net-
work between the indicated terminals, thereby forming a minor loop that
includes the high-gain stage. Details of this process are given in Section
9.2.3.

The above discussion shows that the signal path includes only transistors
O, Qs Os, O, Os, O10, and Q. The remaining transistors are used either
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as current sources (Qs, Oz, and Q,), or to reduce voltage drift referred to
the input by forming a differential second stage at d-c (@), or to limit out-
put current (@12 and Q1s).

9.1.2 Detailed Considerations

Once the topology of the circuit is selected, a decision concerning approxi-
mate bias-current levels is a necessary first step in the detailed design
process. Low current levels give improved d-c performance since input
currents and input-stage self-heating are reduced. However, the frequency
response of the amplifier is reduced by operation at low currents. (See
Section 9.3.3 for a description of power-speed tradeofs.)

A compromise collector current level of 10 yA, which can provide ex-
cellent d-c performance combined with closed-loop frequency response of
several MHz, was selected for the first-stage transistors. Transistor Qs is a
current source that provides the total 20-pA quiescent current of the first
stage and insures high common-mode rejection ratio. This current source
shares a common bias network with two other current sources. The bias
network includes a diode that provides approximate temperature compen-
sation for the current sources, and also includes capacitive bypassing to the
negative supply. Bypassing to the negative supply rather than to ground is
preferable in this case since it insures that the current-source output is
independent of high-speed transients on the negative supply line.

The differential input stage is a matched pair of 2N5963 transistors. The
devices are selected to have base-to-emitter voltages matched to within
3 mV at equal collector currents and, furthermore, to have current gains
matched to within 1097 at the operating current level. They are mounted in
close thermal proximity to reduce temperature differentials. Wrapping wire
around the pair or mounting them in an aluminum block drilled to accept
the transistors improves the thermal bond. The 2N5963 is selected because
it is inexpensive and provides a typical current gain of 1100 at a collector
current of 10 pA. The resultant bias current required at either input is ap-
proximately 10 nA without any form of current compensation. Compen-
sating techniques such as these described in Section 7.4.2 can be used to
lower this bias current to less than 1 nA over a 50° C temperature range.

Transistors Qs and Qs are the cascode-amplifier transistors. An additional
PNP transistor, Q,, is used to improve d-c performance by forming a differ-
ential amplifier with transistor Q5. While this transistor lowers drift, it does
not affect the operation of the Q;-Qs pair in any way as shown by the fol-
lowing discussion. It is evident that at low frequencies the common-emitter
point of pair Q,-Q; is incrementally grounded since only differential signals
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can be applied to this pair by the input stage. The capacitor! included across
the 33-kQ emitter-circuit resistor guarantees that the emitter of Q; also re-
mains incrementally grounded at high frequencies. Since transistor Q, is
included only to improve d-c performance and is not required for gain at
any frequency, its base circuit can be bypassed at moderate and high fre-
quencies. Bypassing insures that Q, operates as a common-collector stage
at these frequencies. It was mentioned in the last chapter that operation in
this mode is advantageous since it minimizes the input capacitance seen at
the base of Q; (the inverting input of the complete amplifier), and thus
allows a wider range of feedback networks to be used without significant
high-frequency loading.

The amplifier is balanced by changing relative collector load resistor
values in the first stage. Since the input-stage transistors are matched for a
maximum base-to-emitter voltage differential of 3 mV at equal collector
currents, the ratio of the collector currents will be at most e3»V(a/4T) ~
1.12 at equal base-to-emitter voltages. The 50-kQ potentiometer that allows
a maximum collector-resistor ratio of 1.17:1 is therefore adequate for bal-
ancing even if some mismatch of second-stage base currents exists. The
diode included in the Q:-Q, collector circuit provides a degree of com-
pensation for the base-to-emitter voltage changes of transistors Q,-Q; with
temperature in order to stabilize their quiescent current.

The 2N4250 transistors used in the second stage are one of the highest-
gain PNP types available, with a typical current gain in excess of 300 at 50
rA of collector current. This gain permits a five-to-one increase in quiescent
operating level between the first and second stages (valuable since this in-
crease improves the bandwidth of the second-stage devices) without seri-
ously compromising drift performance. It also contributes to high overall
amplifier gain. While it is not necessary to use the same transistor type for
both members of a cascode amplifier pair, the 2N4250 is also used in the
common-base section of the cascode (Qs) since it has high r,, a necessary
condition for high voltage gain. The 2N3707 used as the current-source
load for the cascode is also selected in part because of high r,.

All critical resistors associated with the first two stages are precision
metal film types. These are preferred since their low temperature coeffi-
cients reduce voltage drift and because of their low noise characteristics.

A field-effect transistor is used to isolate the high-impedance node at the
cascode output. The virtually infinite input resistance of the FET improves

1 As a matter of practical interest, eliminating this capacitor has only a minor effect on
the overall performance of the amplifier, but complicates the analysis. This is an example
of a component included primarily for educational purposes.
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voltage gain. Component economy is also achieved, since an additional
stage of current gain would probably be required for isolation if bipolar
transistors were used. A current source is used for FET bias so that the bias
current is independent of output-voltage level. The quiescent level of this
stage is chosen to meet maximum drive requirements for the following
stage.

A complementary emitter-follower pair (Q1o-Q11) is used to provide large
positive or negative output currents with minimum quiescent power dissi-
pation. Metal-can rather than epoxy-cased transistors are used in this stage
for increased power-handling capability. The two diodes included in the
base circuit of the emitter-follower pair reduce crossover distortion, while
the 22-Q resistors eliminate the possibility of thermal runaway that accom-
panies this connection.

Transistors Q;: and Q,; combine with the 22-Q resistors to limit the out-
put current of the amplifier to approximately 30 mA. This limiter circuit,
which is similar in operation to the diode limiter described in connection
with Fig. 8.27, is used since it is identical in form to one frequently used in
integrated-circuit designs. Consider the limiting process when the amplifier
output voltage is negative. If the sink current exceeds 25 to 30 mA, tran-
sistor Q13 conducts, since its base-to-emitter voltage approximates 600 mV.
This conduction reduces base drive for Q;,. The current that must be con-
ducted by Qi3 in order to eliminate base drive to Q;; is at most 2 mA,
the output level of current source Q,.

When the amplifier output voltage is positive, transistor Q,» conducts
to limit output current. This situation is potentially hazardous, since it is
conceivable that the driving transistor (Qs) could be destroyed if no mech-
anism limited its drain current. However, the geometry of the TIS58 is
such that its drain current is the order of 5 mA when the gate-to-source
voltage of this device reaches the forward-conduction value. Thus, while
transistor Q,» may conduct approximately 3 mA in positive output
current limit, destruction of Qs is not possible. Note also that since the
maximum collector current of Qs is limited to modest values by the 33-kQ
emitter-circuit resistor associated with Q,-Qs, the maximum current from
Qs cannot injure any devices.

No attempt is made to control internal amplifier voltages, such as the
emitter potential of Qs, during current overload. The charge stored on the
3.3-uF capacitor delays recovery from overload, but since current limit is
not anticipated during normal operation (overload protection is included
primarily to protect us from our own errors during system breadboarding),
this delay is unimportant.
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9.2 ANALYSIS

In order to demonstrate the performance features of the amplifier intro-
duced in the previous section, it is necessary to approximate analytically
some of its more important characteristics. While the exact details of the
analysis are specific to this amplifier, several significant features, particu-
larly those concerning dynamics and compensation, are common to all
two-stage operational amplifiers. Thus the conclusions we shall reach ex-
tend beyond this particular circuit.

We should realize that certain aspects of the following analysis are likely
to be in error by a factor of two or more, since the uncertainty of some of
the parameter values associated with the transistors limits accuracy. Another
type of difficulty is encountered in the analysis of the dynamics of the ampli-
fier, since a number of poles are predicted in the vicinity of the f; of the
transistors used in the amplifier. Such results are always suspect because
transistor-model deficiencies prevent accurate analysis in this frequency
range. Fortunately, these inaccuracies are of little concern since our ob-
jective is not so much precise prediction of the performance of this particu-
lar amplifier as it is an understanding of the important features of this gen-
eral type of amplifier.

9.2.1 Low-Frequency Gain

One important characteristic of an operational amplifier is its d-c open-
loop gain. Calculation of the gain of this amplifier is necessary because
accurate measurement of the signal levels that would permit experimental
gain determination is precluded by noise and drift.

By far the largest fraction of the low-frequency gain of the amplifier
occurs in the cascode stage for this particular implementation of the basic
topology. The analysis of the complete amplifier is facilitated by initially
developing a low-frequency equivalent circuit for the cascode amplifier.
The analysis of Section 8.3.4 showed that the voltage gain of an unloaded
cascode amplifier is

_ EG_ _ gmﬁrnﬁ
26 2
while its input resistance is r,;. (Subscripts differentiating between the two
transistors in the cascode connection refer to Fig. 9.1.) While the output
resistance of the cascode connection was not specifically calculated, a re-
sult from Section 8.3.5 can be used to determine this quantity. Equation
8.59 gives r,/2 as the output resistance of a common-base current source
with a large incremental emitter-circuit resistance. The output resistance of
the cascode must be identical since its output consists of a common-base




Analysis 349

connection with a large emitter-circuit resistance. These results show that
the low-frequency performance of the cascode portion of the amplifier can
be modeled by the equivalent circuit of Fig. 9.2.

The d-c gain of the circuit shown in Fig. 9.1 is determined using the
parameter values shown in Table 9.1 for the transistors. The calculation is
performed assuming that the noninverting input of the amplifier is incre-
mentally grounded. This assumption yields the same value for d-c gain that
would be obtained considering a true differential input voltage. Incre-
mentally grounding the noninverting input does eliminate an insignificant
high-frequency term in the transfer function that results from signals fed
through the collector-to-base capacitance of @, (see Section 8.2.3).

m®)
Input (base * , Output (collector
of 05) Frs S Vpes lgms Dbes e of 0¢)

1 |

Figure 9.2 Equivalent circuit for cascode amplifier at low frequencies.

Table 9.1 Transistor Parameters for Circuit of Fig. 9.1

Ic C, C.
or or or
Transistor I Zm 8 re r. o Cya Cys
Number Type (xA) (mmho) ko) Mo Mo @EF (OPF
Q1, Q- 2N5963 10 0.4 1100 2750 * * 6 10
Qs 2N3707 20 * * * * * 8 10
0., 05, Qs 2N4250 50 2 350 175 500 1.4 10 15
Q- 2N3707 50 2 200 100 500 2.5 8 10
Qs TIS58 2mA * — — — — *
Qs 2N3707 2mA  * * * * * * *
O 2N2219 * * 200 % * * * *
O