

LINEAR INTEGRATED CIRCUITS

1	Master Index and Cross-Reference Guide
2	Reliability Enhancement Programs
3	Selector Guide
4	Memory/Microprocessor Support
5	Drivers/Receivers
6	Communication Interface (Telephony)
7	Voltage Comparators
8	Data Conversion
9	Voltage References
10	Linear IC Selector Guides
11	Package Information
12	Application Notes and Engineering Bulletins

Prepared by Technical Information Center

This Linear interface Data Book contains technical information on a portion of Motorola Linear's product offering. Detailed information on other Linear products is contained in a separate Linear Data Book. For your convenience, this book contains the following:

- Cross-Reference
- Selector Guides (by Product Category)
- Data Sheets
- Package Information
- Abstracts Covering Application Notes and Engineering Bulletins

Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its present patent rights nor the rights of others.

n an anger Alb 1995 - Anne Anne Anne

(1) Some and the second of the construction of the construction of the second secon

and the second second

and the second

and the second second second

, en si breta galenno gezo la se ner año pou o y jezo o comención e recatelor. A

MDTL, MECL, MECL 10,000, MHTL, MRTL, mW MRTL, and MTTL are trademarks of Motorola Inc.

Ar Adamski Roman (david ved 1970) – Konis Roman (david ved 1970) Roman (david ved 1970) – Konis Roman (david 1970) – Konis

A.C. Start Sec.

CONTENTS

•

Page

CHAPTER 1 – MASTER INDEX AND CROSS REFERENCE GUIDE	1-1
Master Index	1-2
Cross-Reference Guide	
CHAPTER 2 - RELIABILITY ENHANCEMENT PROGRAMS	2-1
The "Better" Program	2-2
Standard HI-REL Programs	2-3
MIL-M-38510 JAN-Qualified Product	
JEDEC Processed Product	2-5
Screening Procedures	2-6
CHAPTER 3 – SELECTOR GUIDE	
Bus Interface	3-2
Memory Interface	
Computer and Terminal Interface	3-15
Peripheral Interface	
Numeric Display Interface	3-18
Precision Circuits — Data Conversion	
Voltage References	3-20
Voltage Comparators	3-21
Communication Interface (Telephony)	
CHAPTER 4 – MEMORY/MICROPROCESSOR SUPPORT	4-1
Device Listing	
Data Sheets (See Page 4-2 for page numbers.)	
CHAPTER 5 – DRIVERS/RECEIVERS	5-1
Device Listing	5-2
Data Sheets (See Page 5-2 for page numbers.)	
CHAPTER 6 — COMMUNICATION INTERFACE (Telephony)	6-1
Device Listing	6-2
Data Sheets (See Page 6-2 for page numbers.)	
CHAPTER 7 – VOLTAGE COMPARATORS	7-1
Device Listing	7-2
Data Sheets (See Page 7-2 for page numbers.)	-
CHAPTER 8 — DATA CONVERSION	8-1
Device Listing	
Data Sheets (See Page 8-2 for page numbers.)	• -
CHAPTER 9 — VOLTAGE REFERENCES	9-1
Device Listing	
Data Sheets (See Page 9-2 for page numbers.)	• -
CHAPTER 10 – LINEAR IC SELECTOR GUIDES	10-1
Operational Amplifiers	10-2
Voltage Regulators	10-6
Circuits for Consumer Applications	10-10
Special-Purpose Circuits	
High-Frequency Amplifiers	10-16
CHAPTER 11 – PACKAGE INFORMATION	
CHAPTER 12 – APPLICATION NOTES AND ENGINEERING BULLETINS	

Master Index and Cross-Reference Guide

This index includes *all* devices in Motorola Linear's product line. Devices with *Linear* in the page number column are fully characterized in the separate **Linear Data Book**; however, selection characteristics are given in Chapter 10 of this volume for your convenience.

Device Number

Function

AM26LS31	Quad RS-422 Line with Three-State Output 5-3
CA3054	Dual Differential Amplifier Linear
CA3059	Zero Voltage Switch
CA3079	Zero Voltage Switch
CA3139	TV Tuning Circuit Linear
DS8641	Quad Unified Bus Transceiver
HA1199	AM Radio Subsystem Linear
LF155	Monolithic JFET Operational Amplifier Linear
LF155A	Monolithic JFET Operational Amplifier Linear
LF156	Monolithic JFET Operational Amplifier Linear
LF156A	Monolithic JFET Operational Amplifier Linear
LF157	Monolithic JFET Operational Amplifier Linear
LF157A	Monolithic JFET Operational Amplifier Linear
LF255	Monolithic JFET Operational Amplifier Linear
LF256	Monolithic JFET Operational Amplifier Linear
LF257	Monolithic JFET Operational Amplifier Linear
LF355	Monolithic JFET Operational Amplifier Linear
LF355A	Monolithic JFET Operational Amplifier Linear
LF355B	Monolithic JFET Operational Amplifier Linear
LF356	Monolithic JFET Operational Amplifier Linear
LF356A	Monolithic JFET Operational Amplifier Linear
LF356B	Monolithic JFET Operational Amplifier Linear
LF357	Monolithic JFET Operational Amplifier Linear
LF357A	Monolithic JFET Operational Amplifier Linear
LF357B	Monolithic JFET Operational Amplifier Linear
LM101A	General Purpose Adjustable Operational Amplifier Linear
LM104	Adjustable Negative Voltage Regulator Linear
LM105	Adjustable Regulator Voltage Regulator Linear
LM107	General-Purpose Operational Amplifier Linear
LM108	Precision Operational Amplifier Linear
LM108A	Precision Operational Amplifier Linear
LM109	Positive Voltage Regulator Linear
LM111	Voltage Comparator
LM117	Positive Voltage Regulator Linear
LM117L	Positive Voltage Regulator Linear
LM124	Quad Operational Amplifier Linear
	Quad Comparator (Single Supply)
LM139 LM139A	Quad Comparator (Single Supply)
LM140	Series of Positive Voltage Regulators Linear
	Dual Operational Amplifier Linear
LM158 LM201A	General-Purpose Operational AmplifierLinear
LM204	Adjustable Negative Voltage Regulator Linear Adjustable Positive Voltage Regulator Linear
LM205	General-Purpose Operational Amplifier Linear
LM207	
LM209	Positive Voltage Regulator Linear Voltage Comparator
LM211	
LM217	Adjustable Voltage Regulator Linear Adjustable Voltage Regulator Linear
	Adjustable voltage negulator
LM224	Quad Operational Amplifier Linear
LM239	Quad Comparator (Single Supply)
LM239A	Quad Comparator (Singe Supply)
LM258	Dual Operational Amplifier
LM301A	General-Purpose Operational Amplifier Linear
LM304	Adjustable Negative Voltage Regulator Linear
LM305	Adjustable Positive Voltage Regulator Linear

Device Number

Function

Page

LM307	General-Purpose Operational Amplifier Linear
LM308	Precision Operational Amplifier Linear
LM308A	Precision Operational Amplifier Linear
LM309	Positive Voltage Regulator Linear
LM311	Voltage Comparator
LM317	Adjustable Positive Voltage Regulator Linear
LM317L	Adjustable Positive Voltage Regulator Linear
LM324	Quad Operational Amplifier Linear
LM339	Quad Comparator (Single Supply)
LM339A	Quad Comparator (Single Supply)
LM340	Series of Positive Voltage Regulators Linear
LM358	Dual Operational Amplifier Linear
LM2901	Quad Comparator
LM2902	Quad Operational Amplifier Linear
LM2904	Dual Operational Amplifier
	Dual Line Driver
MC8T13	
MC8T14	Triple Line Receiver with Hysteresis
M C8 T23	Dual Line Driver 5-9
MC8T24	Triple Line Receiver with Hysteresis 5-12
MCBT26A	Quad Three-State Bus Transceiver 4-99
MC8T28	Non-Inverting Bus Transceiver 4-118
MC8T95	Hex Three-State Buffer/Inverter 4-113
MC8T96	Hex Three-State Buffer/Inverter 4-113
MC8T97	Hex Three-State Buffer/Inverter 4-113
MC8T98	Hex Three-State Buffer/Inverter 4-113
MC26S10	Quad Open-Collector Bus Transceiver
MC26S11	Quad Open-Collector Bus Transceiver
MC75S110	Dual Line Driver
MC1302	7-Stage Divider Linear
MC1306	1/2-Watt Audio Amplifier Linear
MC1309	FM Stereo Demodulator Linear
MC1310	FM Stereo Demodulator Linear
MC1323	Triple Doubly Balanced Chroma Demodulator Linear
MC1324	Dual Doubly Balanced Chroma Demodulator Linear
MC1327	Dual Doubly Balanced Chroma Demodulator
MC1330A	Low-Level Video Detector Linear
MC1349	IF Amplifier Linear
MC1350	IF Amplifier Linear
MC1350 MC1351	TV Sound Circuit Linear
MC1351	TV Video IF Amplifier Linear
MC1352 MC1355	Limiting FM IF Amplifier Linear
	IF Amplifier and Quadrature Detector Linear
MC1357	TV Sound IF Amplifier Linear
MC1358	Automatic Frequency Control Linear
MC1364	Color TV Video Modulator Linear
MC1372	
MC1373	TV Video Modulator Linear
MC1391	TV Horizontal Processor Linear
MC1393A	TV Vertical Processor Linear
MC1394	TV Horizontal Processor Linear
MC1398	TV Color Processing Circuit Linear
MC1399	TV Color Processing Circuit Linear
MC1400	Precision Voltage Reference
MC1400A	Precision Voltage Reference
MC1403	Precision Low-Voltage Reference
MC1403A	Precision Low-Voltage Reference
MC1404	Precision Low-Drift Voltage Reference
MC1404A	Precision Low-Drift Voltage Reference
MC1405	Analog-to-Digital Converter Subsystem
MC1406	6-Bit Multiplying Digital-to-Analog Converter
MC1408	8-Bit Multiplying Digital-to-Analog Converter
MC1411	Peripheral Driver Array 5-25
MC1412	Peripheral Driver Array

Device

Function

Device		
Number	Function	Page
MC1413	Peripheral Driver Array	
MC1414	Dual Differential Comparator	
MC1416	Peripheral Driver Array	
MC1420	Differential Output Operational Amplifier	
MC1422	Timing Circuit with Adjustable Threshold	
MC1430	Operational Amplifier	
MC1431	Operational Amplifier	
MC1433	Operational Amplifier	
MC1435	Dual Operational Amplifier	
MC1436	High-Voltage Operational Amplifier	
MC1436C	High-Voltage Operational Amplifier	
MC1437	Dual Operational Amplifier	
MC1438	Power Booster	
MC1439	High-Slew-Rate Operational Amplifier	
MC1444	AC-Coupled 4-Channel Sense Amplifier	4-3
MC1445	Wideband Amplifier	Linear
MC1454	1-Watt Power Amplifier	Linear
MC1455	Timing Circuit	
MC1456	High-Performance Operational Amplifier	Linear
MC1456C	High-Performance Operational Amplifier	
MC1458	Dual Operational Amplifier	Linear
MC1458C	Dual Operational Amplifier	Linear
MC1458N	Low-Noise Dual Operational Amplifier	Linear
MC1458S	High-Slew-Rate Dual Operational Amplifier	Linear
MC1463	Adjustable Negative Voltage Regulator	
MC1466	Voltage and Current Regulator	
MC1468	Dual ± 15-Volt Tracking Regulator	
MC1469	Adjustable Positive Voltage Regulator	Linear
MC1472	Dual Peripheral Positive NAND Driver	
MC1488	Quad MDTL Line Driver	5-32
MC1489	Quad MDTL Line Receiver	5-38
MC1489A	Quad MDTL Line Receiver	5-38
MC1494	Four-Quadrant Multiplier	
MC1495	Four-Quadrant Multiplier	Linear
MC1496	Balanced Modulator-Demodulator	Linear
MC1500	Precision Voltage Reference	
MC1500A	Precision Voltage Reference	9-3
MC1503	Precision Low-Voltage Reference	9-4
MC1503A	Precision Low-Voltage Reference	9-4
MC1504	Precision Low-Drift Voltage Reference	9-8
MC1504A	Precision Low-Drift Voltage Reference	
MC1505	Analog-to-Digital Converter Subsystem	8-3
MC1506	6-Bit Multiplying Digital-to-Analog Converter	
MC1508	8-Bit Multiplying Digital-to-Analog Converter	
MC1514	Dual Differential Comparator	
MC1520	Differential Output Operational Amplifier	
MC1530	Operational Amplifier	Linear
MC1531	Operational Amplifier	Linear
MC1533	Operational Amplifier	Linear
MC1535	Dual Operational Amplifier	
MC1536	High-Voltage Operational Amplifier	
MC1537	Dual Operational Amplifier	Linear
MC1538	Power Booster	
MC1539	High-Slew-Rate Operational Amplifier	
MC1544	AC-Coupled 4-Channel Sense Amplifier	4-3
MC1545	Wideband Amplifier	Linear
MC1550	RF-IF Amplifier	Linear
MC1552	Video Amplifier	Linear
MC1553	Video Amplifier	Linear
MC1554	1-Watt Power Amplifier	
MC1555	Timing Circuit	Linear
MC1556	High-Performance Operational Amplifier	Linear

Device Number

Function

Page

NC1558B Dual Operational Amplifier Linear NC1558N High-Slaw-Rate Dual Operational Amplifier Linear NC1568 Adjustable Negative Voltage Regulator Linear NC1568 Vatage and Current Regulator Linear NC1568 Vatage and Current Regulator Linear NC1568 Adjustable Positive Voltage Regulator Linear NC1569 Adjustable Positive Voltage Regulator Linear NC1594 Four-Quadrant Multipiler Linear NC1595 Balanced Modulator-Demodulator Linear NC1703A General-Purpose Operational Amplifier Linear NC1703D General-Purpose Operational Amplifier Linear NC1710 Differential Comparator 7-13 NC1711 Dual Differential Comparator 7-23 NC1712 Wideband DC Amplifier Linear NC1712 Wideband DC Amplifier Linear NC1712 Dual Differential Comparator 7-23 NC1712 Wideband DC Amplifier Linear NC1712 Wideband DC Amplifier Linear NC1712 Adjustable Positive on Negative Voltage Regulato		
MC1558S Low-Noise Dual Operational Amplifier Linear MC1558S High-Slew-Rate Dual Operational Amplifier Linear MC1568 Dual ±15-Volt Tracking Regulator Linear MC1568 Dual ±15-Volt Tracking Regulator Linear MC1569 Wideband Amplifier with AGC Linear MC1590 Wideband Amplifier with AGC Linear MC1595 Four-Quadrant Multiplier Linear MC1596 Balanced Modulator-Demodulator Linear MC1708 General-Purpose Operational Amplifier Linear MC1710C Differential Comparator 7-19 MC1711C Dual Differential Comparator 7-23 MC1712C Wideband DC Amplifier Linear MC1723C Adjustable Positive or Negative Voltage Regulator Linear MC1723C Adjustable Positive or Negative Voltage Regulator Linear MC1723C Adjustable Positive or Negative Voltage Regulator Linear MC1723C	MC1558	Dual Operational Amplifier Linear
MC1558S High-Slew-Rete Duel Operational Amplifier Lineer MC1566 Voltage and Current Regulator Lineer MC1566 Voltage and Current Regulator Lineer MC1568 Adjustable Positive Voltage Regulator Lineer MC1569 Adjustable Positive Voltage Regulator Lineer MC1596 Mideband Amplifier with AGC Lineer MC1596 Balanced Modulator-Demodulator Lineer MC1798 Beanced Modulator-Demodulator Lineer MC1799A General-Purpose Operational Amplifier Lineer MC1710 Differential Comparator 7-19 MC17111 Dual Differential Comparator 7-23 MC17122 Adjustable Positive or Negative Voltage Regulator Lineer MC1723 Adjustable Positive or Negative Voltage Regulator Lineer MC17123 Adjustable Positive or Negative Voltage Regulator Lineer MC1723 Adjustable Positive or Negative Voltage Regulator Lineer MC1723 Adjustable Positive or Negative Voltage Regulator Lineer MC1723 Adjustable Positive or Negative Voltage Regulator Lineer MC17123 Adjusta		Low-Noise Dual Operational Amplifier
MC1563 Adjustable Negative Voltage Regulator Lineer MC1566 Dual ±15-Volt Tracking Regulator Lineer MC1566 Dual ±15-Volt Tracking Regulator Lineer MC1569 Wideband Amplifier with AGC Lineer MC1590 Wideband Amplifier with AGC Lineer MC1596 Four-Quadrant Multiplier Lineer MC1596 Balanced Modulator-Demodulator Lineer MC1709 General-Purpose Operational Amplifier Lineer MC1709 General-Purpose Operational Amplifier Lineer MC1710 Differential Comparator 7-13 MC1711 Dual Differential Comparator 7-23 MC1712 Wideband DC Amplifier Lineer MC1723 Adjustable Positive or Negative Voltage Regulator Lineer MC1724 Adjustable Positive or Negative Voltage Regulator Lineer MC1723 Differential Video Amplifier Lineer MC1724 Adjustable Positive or Negative	MC1558S	High-Slew-Rate Dual Operational Amplifier Linear
MC1566 Voitage and Current Regulator Lineer MC1568 Adjustable Positive Voltage Regulator Lineer MC1596 Adjustable Positive Voltage Regulator Lineer MC1596 Four-Quadrant Multiplier Lineer MC1596 Balanced Modulator-Demodulator Lineer MC1596 Balanced Modulator-Demodulator Lineer MC1708 General-Purpose Operational Amplifier Lineer MC1700 General-Purpose Operational Amplifier Lineer MC17100 Differential Comparator 7-13 MC17110 Duil Differential Comparator 7-23 MC17112 Wideband DC Amplifier Lineer MC17120 Differential Comparator 7-23 MC17112 Wideband DC Amplifier Lineer MC17122 Wideband DC Amplifier Lineer MC17123 Differential Video Amplifier Lineer MC1712 Wideband DC Amplifier Lineer MC17233 Differential Nideo Amplifier Lineer MC1733 Differential Nideo Amplifier Lineer MC17413 General-Purpose Operational Amplifier Lineer	MC1563	Adjustable Negative Voltage Regulator Linear
MC1568 Dual ±15-Volt Tracking Regulator Linear MC1569 Adjustable Positive Voltage Regulator Linear MC1589 Four-Quadrant Multiplier Linear MC1589 Four-Quadrant Multiplier Linear MC1589 Balanced Modulator-Demodulator Linear MC1709 General-Purpose Operational Amplifier Linear MC1709 General-Purpose Operational Amplifier Linear MC1709 General-Purpose Operational Amplifier Linear MC1710 Differential Comparator 7.23 MC1711 Dual Differential Comparator 7.23 MC1712 Wideband DC Amplifier Linear MC1712 Wideband DC Amplifier Linear MC1712 Wideband DC Amplifier Linear MC1712 Mideband DC Amplifier Linear MC1723 Adjustable Positive or Negative Voitage Regulator Linear MC1733 Differential Video Amplifier Linear MC1741 General-Purpose Operational Amplifier Linear MC1741 General-Purpose Operational Amplifier Linear MC1741 General-Purpose Operational Amp	MC1566	Voltage and Current Regulator Linear
MC1569 Adjustable Positive Voltage Regulator Linear MC1590 Wideband Amplifier with AGC Linear MC1595 Four-Quadrant Multiplier Linear MC1596 Balanced Modulator-Demodulator Linear MC1709 General-Purpose Operational Amplifier Linear MC1709A General-Purpose Operational Amplifier Linear MC17010 Differential Comparator 7.19 MC17110 Dual Differential Comparator 7.23 MC17110 Dual Differential Comparator 7.23 MC17122 Wideband DC Amplifier Linear MC17323 Adjustable Positive or Negative Voltage Regulator Linear MC17334 Differential Video Amplifier Linear MC1733 Differential Video Amplifier Linear MC1734 General-Purpose Operational Amplifier Linear MC1733 Differential Video Amplifier Linear MC1741 General-Purpose Operational Amplifier Linear MC1741 General-Purpose Operational Amplifier Linear MC1741 General-Purpose Operational Amplifier Linear MC1741 <	MC1568	Dual ±15-Volt Tracking Regulator Linear
MC15954 Four-Quadrant Multiplier Linear MC15956 Balanced Modulator-Demodulator Linear MC1705A General-Purpose Operational Amplifier Linear MC17050A General-Purpose Operational Amplifier Linear MC17050A General-Purpose Operational Amplifier Linear MC1710C Differential Comparator 7.19 MC17110C Differential Comparator 7.23 MC17110C Dual Differential Comparator 7.23 MC17112 Videband DC Amplifier Linear MC17232 Adjustable Positive or Negative Voltage Regulator Linear MC17333 Differential Video Amplifier Linear MC17411 General-Purpose Operational Amplifier Linear MC17412 General-Purpose Operational Amplifier Linear MC17413 Differential Video Amplifier Linear MC17414 General-Purpose Operational Amplifier Linear MC17414 Ceneral-Purpose Operational Amplifier Linear MC17415 High-Siew-Rate Operational Amplifier Linear MC17414 Ceneral-Purpose Operational Amplifier Linear	MC1569	Adjustable Positive Voltage Regulator Linear
MC1595 Four-Quadrant Multiplier Linear MC1596 Balanced Modulator Demodulator Linear MC1709 General-Purpose Operational Amplifier Linear MC1709A General-Purpose Operational Amplifier Linear MC1709C General-Purpose Operational Amplifier Linear MC1710 Differential Comparator 7-19 MC1711 Dual Differential Comparator 7-23 MC17112 Wideband DC Amplifier Linear MC1723 Adjustable Positive or Negative Voltage Regulator Linear MC1733 Differential Video Amplifier Linear MC1741C General-Purpose Operational Amplifier Linear MC1741 General-Purpose Operational Amplifier Linear MC1741C Linear MC1741C Linear	MC1590	Wideband Amplifier with AGC Linear
MC1709 Balanced Modulator-Demodulator Linear MC1709A General-Purpose Operational Amplifier Linear MC1709C General-Purpose Operational Amplifier Linear MC1710D Differential Comparator 7.19 MC1711C Dual Differential Comparator 7.23 MC1711D Dual Differential Comparator 7.23 MC1711C Dual Differential Comparator 7.23 MC1712C Wideband DC Amplifier Linear MC1723C Adjustable Positive or Negative Voltage Regulator Linear MC1733C Differential Video Amplifier Linear MC1731C Beneral-Purpose Operational Amplifier Linear MC1732 Adjustable Positive or Negative Voltage Regulator Linear MC1731 Differential Video Amplifier Linear MC1741 General-Purpose Operational Amplifier Linear MC1741 General-Purpose Operational Amplifier Linear MC1741N Low-Noise Operational Amplifier Linear MC1741N Low-Noise Operational Amplifier Linear MC1741N Low-Noise Operational Amplifier Linear <t< td=""><td>MC1594</td><td>Four-Quadrant Multiplier Linear</td></t<>	MC1594	Four-Quadrant Multiplier Linear
MC1709A General-Purpose Operational Amplifier Linear MC1709A General-Purpose Operational Amplifier Linear MC1710D Differential Comparator 7-19 MC1711D Duil Differential Comparator 7-23 MC1711D Dual Differential Comparator 7-23 MC1711C Dual Differential Comparator 7-23 MC17112 Wideband DC Amplifier Linear MC1723 Adjustable Positive or Negative Voltage Regulator Linear MC1733C Differential Video Amplifier Linear MC1733C Differential Video Amplifier Linear MC1741C General-Purpose Operational Amplifier Linear MC1741C General-Purpose Operational Amplifier Linear MC1741C General-Purpose Operational Amplifier Linear MC1741N Low Noise Operational Amplifier Linear MC1741C Linear Linear MC1741C General-Purpose Operational Amplifier Linear MC1741N Low Noise Operational Amplifier Linear MC1741C Linear Linear MC1741C Derational Amplifier	MC1595	
MC1709A General-Purpose Operational Amplifier Linear MC17010 Differential Comparator 7.19 MC171010 Differential Comparator 7.19 MC171010 Differential Comparator 7.23 MC171110 Dual Differential Comparator 7.23 MC17112 Wideband DC Amplifier Linear MC1723C Adjustable Positive or Negative Voltage Regulator Linear MC1733C Differential Video Amplifier Linear MC1733C Differential Video Amplifier Linear MC17411 General-Purpose Operational Amplifier Linear MC17411 General-Purpose Operational Amplifier Linear MC174111 General-Purpose Operational Amplifier Linear MC1741110 Low-Noise Operational Amplifier Linear MC17412 <td>MC1596</td> <td></td>	MC1596	
MC1709C General-Purpose Operational Amplifier Linear MC1710 Differential Comparator 7-19 MC1711 Dual Differential Comparator 7-23 MC1711 Dual Differential Comparator 7-23 MC1712 Wideband DC Amplifier Linear MC1712 Wideband DC Amplifier Linear MC1712 Wideband DC Amplifier Linear MC1733 Differential Video Amplifier Linear MC1734 General-Purpose Operational Amplifier Linear MC1731 Differential Video Amplifier Linear MC1741C General-Purpose Operational Amplifier Linear MC1741N Low-Noise Operational Amplifier Linear MC1741N Low-Noise Operational Amplifier Linear MC1741SC High-Siew-Rate Operational Amplifier Linear MC1741SC High-Siew-Rate Operational Amplifier Linear MC1741C Deverational Amplifier Linear MC1741SC High-Siew-Rate Operational Amplifier Linear MC1741C Dual MC1741 Operational Amplifier Linear MC1742 Dual MC1741 Operational Amplifi		General-Purpose Operational Amplifier
MC17100 Differential Comparator 7-19 MC1710C Dual Differential Comparator 7-23 MC1711C Dual Differential Comparator 7-23 MC1711C Dual Differential Comparator 7-23 MC1712C Wideband DC Amplifier Linear MC1723C Adjustable Positive or Negative Voltage Regulator Linear MC1733 Differential Video Amplifier Linear MC1734C General-Purpose Operational Amplifier Linear MC1741 General-Purpose Operational Amplifier Linear MC1741N Cow-Noise Operational Amplifier Linear MC1741N Cow-Noise Operational Amplifier Linear MC1741S High-Slew-Rate Operational Amplifier Linear MC1747C Dual MC1741 Operational Amplifier Linear MC1747C Dual MC1741 Operational Amplifier Linear MC1748C General-Purpose Operational Amplifier Linear MC1747C Dual MC1741 Operational Amplifier Linear MC1748C General-Purpose Operational Amplifier Linear MC1747C Dual MC1741 Operational Amplifier Linear MC		General-Purpose Operational Amplifier
MC1710C Differential Comparator 7-13 MC1711 Dual Differential Comparator 7-23 MC1711C Dual Differential Comparator 7-23 MC1712 Wideband DC Amplifier Linear MC1712X Adjustable Positive or Negative Voltage Regulator Linear MC1732A Adjustable Positive or Negative Voltage Regulator Linear MC1733C Differential Video Amplifier Linear MC1734C General-Purpose Operational Amplifier Linear MC1741C General-Purpose Operational Amplifier Linear MC1741N Low-Noise Operational Amplifier Linear MC1741S High-Slew-Rate Operational Amplifier Linear MC1741C Dear-National Amplifier Linear MC1741S High-Slew-Rate Operational Amplifier Linear MC1741S High-Slew-Rate Operational Amplifier Linear MC1742 Dual MC1741 Operational Amplifier Linear MC1743 General-Purpose Operational Amplifier Linear MC1744 General-Purpose Operational Amplifier Linear MC1745 Programmable Operational Amplifier Linear		General-Purpose Operational Amplitier
MC1711 Dual Differential Comparator .7-23 MC1711C Dual Differential Comparator .7-23 MC1712 Wideband DC Amplifier Linear MC1712 Wideband DC Amplifier Linear MC1723 Adjustable Positive or Negative Voltage Regulator Linear MC1733 Differential Video Amplifier Linear MC1734 General-Purpose Operational Amplifier Linear MC1741 General-Purpose Operational Amplifier Linear MC1741N Low-Noise Operational Amplifier Linear MC1741C Dual MC1741 Operational Amplifier Linear MC1741C Dual MC1741 Operational Amplifier Linear MC1747C Dual MC1741 Operational Amplifier Linear MC1747C Dual MC1741 Operational Amplifier Linear MC1748 General-Purpose Operational Amplifier Linear MC1747C Dual MC1741 Operational Amplifier Linear MC1748 <td></td> <td>Differential Comparator</td>		Differential Comparator
MC1711C Dual Differential Comparator		Differential Comparator
MC1712 Wideband DC Amplifier Linear MC1712C Wideband DC Amplifier Linear MC1723 Adjustable Positive or Negative Voltage Regulator Linear MC1733 Differential Video Amplifier Linear MC1733 Differential Video Amplifier Linear MC1741 General-Purpose Operational Amplifier Linear MC1741 General-Purpose Operational Amplifier Linear MC1741N Low-Noise Operational Amplifier Linear MC1741NC Low-Noise Operational Amplifier Linear MC1741NC Low-Noise Operational Amplifier Linear MC1741NC Low-Noise Operational Amplifier Linear MC1741C Dual MC1741 Operational Amplifier Linear MC1742 Dual MC1741 Operational Amplifier Linear MC1743 General-Purpose Operational Amplifier Linear MC1744 General-Purpose Operational Amplifier Linear MC1745 High-Slew-Rate Operational Amplifier Linear MC1746 General-Purpose Operational Amplifier Linear MC1747 Dual MC1741 Coperational Amplifier Linear	· · · ·	Dual Differential Comparator
MC1712C Wideband DC Amplifier Linear MC1723 Adjustable Positive or Negative Voltage Regulator Linear MC1723C Adjustable Positive or Negative Voltage Regulator Linear MC1733 Differential Video Amplifier Linear MC1734C General-Purpose Operational Amplifier Linear MC1741 General-Purpose Operational Amplifier Linear MC1741NC Low-Noise Operational Amplifier Linear MC1741NC Low-Noise Operational Amplifier Linear MC1741S High-Slew-Rate Operational Amplifier Linear MC1741SC High-Slew-Rate Operational Amplifier Linear MC1741C Dual MC1741 Operational Amplifier Linear MC1742 Dual MC1741 Operational Amplifier Linear MC1743 General-Purpose Operational Amplifier Linear MC1744 General-Purpose Operational Amplifier Linear MC1743 General-Purpose Operational Amplifier Linear MC1744 General-Purpose Operational Amplifier Linear MC1745 Program mable Operational Amplifier Linear MC1766 Program mable Operational Amplifier		Dual Differential Comparator
MC1723 Adjustable Positive or Negative Voltage Regulator Linear MC1733 Differential Video Amplifier Linear MC1733C Differential Video Amplifier Linear MC1741 General-Purpose Operational Amplifier Linear MC1741N General-Purpose Operational Amplifier Linear MC1741N Low-Noise Operational Amplifier Linear MC1741N Low-Noise Operational Amplifier Linear MC1741NC Low-Noise Operational Amplifier Linear MC1741NC Low-Noise Operational Amplifier Linear MC1741SC High-Slew-Rate Operational Amplifier Linear MC1741C Dual MC1741 Operational Amplifier Linear MC1742 Dual MC1741 Operational Amplifier Linear MC1743 General-Purpose Operational Amplifier Linear MC1746 General-Purpose Operational Amplifier Linear MC1747 Dual MC1741 Operational Amplifier Linear MC1748 General-Purpose Operational Amplifier Linear MC1746 General-Purpose Operational Amplifier Linear MC1746 Quad Open-Collector Bus Transceiver 5-		
MC1723C Adjustable Positive or Negative Voltage Regulator Linear MC1733 Differential Video Amplifier Linear MC1734C General-Purpose Operational Amplifier Linear MC1741 General-Purpose Operational Amplifier Linear MC1741N Low-Noise Operational Amplifier Linear MC1741NC Low-Noise Operational Amplifier Linear MC1741SC High-Slew-Rate Operational Amplifier Linear MC1741SC High-Slew-Rate Operational Amplifier Linear MC1741SC Dual MC1741 Operational Amplifier Linear MC1747 Dual MC1741 Operational Amplifier Linear MC1748 General-Purpose Operational Amplifier Linear MC1748 General-Purpose Operational Amplifier Linear MC1748 General-Purpose Operational Amplifier Linear MC1776 Programmable Operational Amplifier Linear MC26510 Quad Open-Collector Bus Transceiver 5-16 MC26511 Quad Open-Collector Bus Transceiver 5-16 MC3302 Quad Comparator 4-11 MC3303 Quad Operational Amplifier Linear <td></td> <td>Adjustable Resitive or Negative Voltage Regulator</td>		Adjustable Resitive or Negative Voltage Regulator
MC1733 Differential Video Amplifier Linear MC1731 General-Purpose Operational Amplifier Linear MC1741 General-Purpose Operational Amplifier Linear MC1741 Low-Noise Operational Amplifier Linear MC1741NC Low-Noise Operational Amplifier Linear MC1741NC Low-Noise Operational Amplifier Linear MC1741SC High-Siew-Rate Operational Amplifier Linear MC1741SC High-Siew-Rate Operational Amplifier Linear MC1741SC Dual MC1741 Operational Amplifier Linear MC1742 Dual MC1741 Operational Amplifier Linear MC1743 General-Purpose Operational Amplifier Linear MC1745 Programmable Operational Amplifier Linear MC1776C Programmable Operational Amplifier Linear MC28510 Quad Open-Collector Bus Transceiver 5-16 MC3222 Memory Address Multiplexer and Refresh Address Counter 4-11 MC3301 Quad Operational Amplifier Linear MC3302 Quad Operational Amplifier Linear MC3333 Quad Opencollector Bus Transceiver 4-16		
MC1733C Differential Video Amplifier Linear MC1741 General-Purpose Operational Amplifier Linear MC1741N Low-Noise Operational Amplifier Linear MC1741S High-Slew-Rate Operational Amplifier Linear MC1741C Dual MC1741 Operational Amplifier Linear MC1747C Dual MC1741 Operational Amplifier Linear MC1748C General-Purpose Operational Amplifier Linear MC1748C General-Purpose Operational Amplifier Linear MC1746C Program mable Operational Amplifier Linear MC1776C Program mable Operational Amplifier Linear MC26510 Quad Open-Collector Bus Transceiver 5-16 MC242A Memory Address Multiplexer and Refresh Address Counter 4-11 MC3302 Quad Comparator 7-27 MC3303 Quad Comparator 7-27 MC3304 Quad Comparator 7-27 MC3325 <td< td=""><td></td><td>Augustable i usine of negative of negative of negative integration integration</td></td<>		Augustable i usine of negative of negative of negative integration
MC1741 General-Purpose Operational Amplifier Linear MC1741 C Low-Noise Operational Amplifier Linear MC1741 NC Low-Noise Operational Amplifier Linear MC1741 NC Low-Noise Operational Amplifier Linear MC1741 NC Low-Noise Operational Amplifier Linear MC1741 SC High-Slew-Rate Operational Amplifier Linear MC1747 Dual MC1741 Operational Amplifier Linear MC1747 Dual MC1741 Operational Amplifier Linear MC1748 General-Purpose Operational Amplifier Linear MC1746 General-Purpose Operational Amplifier Linear MC1767 Programmable Operational Amplifier Linear MC1776C Programmable Operational Amplifier Linear MC26S10 Quad Open-Collector Bus Transceiver 5-16 MC322A Memory Address Multiplexer and Refresh Address Counter 4-11 MC3242A Memory Address Multiplexer and Refresh Address Counter 4-21 MC3301 Quad Operational Amplifier Linear MC3322 Quad Comparator 7-27 MC3303 Quad Coperational Amplifier Linear <td></td> <td>Differential Video Amplifier</td>		Differential Video Amplifier
MC1741C General-Purpose Operational Amplifier Linear MC1741N Low-Noise Operational Amplifier Linear MC1741NC Low-Noise Operational Amplifier Linear MC1741NC High-Slew-Rate Operational Amplifier Linear MC1741S High-Slew-Rate Operational Amplifier Linear MC1741C Dual MC1741 Operational Amplifier Linear MC1747C Dual MC1741 Operational Amplifier Linear MC1748C General-Purpose Operational Amplifier Linear MC1776 Program mable Operational Amplifier Linear MC1776C Program mable Operational Amplifier Linear MC26S10 Quad Open-Collector Bus Transceiver 5-16 MC2822A Memory Address Multiplexer and Refresh Address Counter 4-16 MC3242 Quad Operational Amplifier Linear MC3301 Quad Operational Amplifier Linear MC3302 Quad Comparator 7-27 MC3303 Quad Operational Amplifier Linear MC3310 Quad Operator 7-27 MC3303 Quad Operational Amplifier Linear MC3333 Q		General-Purpose Operational Amplifier Linear
MC1741N Low-Noise Operational Amplifier Linear MC1741NC Low-Noise Operational Amplifier Linear MC1741SC High-Slew-Rate Operational Amplifier Linear MC1741SC High-Slew-Rate Operational Amplifier Linear MC1741SC High-Slew-Rate Operational Amplifier Linear MC1741C Dual MC1741 Operational Amplifier Linear MC1748C General-Purpose Operational Amplifier Linear MC1748C General-Purpose Operational Amplifier Linear MC1776C Programmable Operational Amplifier Linear MC1776C Programmable Operational Amplifier Linear MC26S10 Quad Open-Collector Bus Transceiver 5-16 MC3232A Memory Address Multiplexer and Refresh Address Counter 4-11 MC3301 Quad Operational Amplifier Linear MC3302 Quad Comparator 7-27 MC3303 Quad Operational Amplifier Linear MC3304 Quad Deperatoral Amplifier Linear MC3305 Quad Operational Amplifier Linear MC3301 Quad Operational Amplifier Linear MC33		General-Purpose Operational Amplifier Linear
MC1741NC Low-Noise Operational Amplifier Linear MC1741SC High-Slew-Rate Operational Amplifier Linear MC1741SC High-Slew-Rate Operational Amplifier Linear MC1741SC Dual MC1741 Operational Amplifier Linear MC1747C Dual MC1741 Operational Amplifier Linear MC1748 General-Purpose Operational Amplifier Linear MC1748C General-Purpose Operational Amplifier Linear MC176C Programmable Operational Amplifier Linear MC176C Programmable Operational Amplifier Linear MC176C Programmable Operational Amplifier Linear MC26S10 Quad Open-Collector Bus Transceiver 5-16 MC3242A Memory Address Multiplexer and Refresh Address Counter 4-11 MC3301 Quad Operation Amplifier Linear MC3302 Quad Comparator 7-27 MC3303 Quad Differential-Input Operational Amplifier Linear MC3310 Wide-Band Amplifier Linear MC3325 Automotive Voltage Regulator Linear MC33310 Wide-Band Amplifier Linear <t< td=""><td></td><td>Low-Noise Operational Amplifier Linear</td></t<>		Low-Noise Operational Amplifier Linear
MC1741SC High-Slew-Rate Operational Amplifier Linear MC1747 Dual MC1741 Operational Amplifier Linear MC1747C Dual MC1741 C Operational Amplifier Linear MC1748C General-Purpose Operational Amplifier Linear MC1748C General-Purpose Operational Amplifier Linear MC1776C Programmable Operational Amplifier Linear MC1776C Programmable Operational Amplifier Linear MC1776C Programmable Operational Amplifier Linear MC26S10 Quad Open-Collector Bus Transceiver 5-16 MC26S11 Quad Open-Collector Bus Transceiver 4-11 MC3242A Memory Address Multiplexer and Refresh Address Counter 4-16 MC3242A Memory Address Multiplexer and Refresh Address Counter 4-16 MC3301 Quad Operational Amplifier Linear MC3302 Quad Differential-Input Operational Amplifier Linear MC3325 Automotive Voltage Regulator Linear MC3334 Electronic Attenuator Linear MC3344 Programmable Frequency Switch Linear MC3358 Dual Low-Power Operational Amplifier <td>MC1741NC</td> <td>Low-Noise Operational Amplifier Linear</td>	MC1741NC	Low-Noise Operational Amplifier Linear
MC1747 Dual MC1741 Operational Amplifier Linear MC1747C Dual MC1741C Operational Amplifier Linear MC1748 General-Purpose Operational Amplifier Linear MC1748C General-Purpose Operational Amplifier Linear MC1776 Programmable Operational Amplifier Linear MC1776 Programmable Operational Amplifier Linear MC26810 Quad Open-Collector Bus Transceiver 5-16 MC28511 Quad Open-Collector Bus Transceiver 5-16 MC3232A Memory Address Multiplexer and Refresh Address Counter 4-11 MC3245 Quad TL-to-MOS Driver 4-21 MC3301 Quad Operator 4-21 MC3302 Quad Comparator 7-27 MC3303 Quad Differential-Input Operational Amplifier Linear MC3340 Electronic Attenuator Linear MC3344 Programmable Frequency Switch Linear MC3345 Low-Power FM IF Linear MC3346 General-Purpose Transistor Array Linear MC3345 Low-Power FM IF Linear MC3346 General-Purpose Transistor Array	MC1741S	High-Slew-Rate Operational Amplifier Linear
MC1747C Dual MC1741C Operational Amplifier Linear MC1748 General-Purpose Operational Amplifier Linear MC1748C General-Purpose Operational Amplifier Linear MC1776 Program mable Operational Amplifier Linear MC1776C Program mable Operational Amplifier Linear MC1776C Program mable Operational Amplifier Linear MC26510 Quad Open-Collector Bus Transceiver 5-16 MC3232A Memory Address Multiplexer and Refresh Address Counter 4-11 MC3242A Memory Address Multiplexer and Refresh Address Counter 4-16 MC3301 Quad Operational Amplifier Linear MC3302 Quad Comparator 7-27 MC3303 Quad Differential-Input Operational Amplifier Linear MC3325 Automotive Voltage Regulator Linear MC3344 Program mable Frequency Switch Linear MC3357 Low-Power FM IF Linear MC3356 1/4 Watt Audio Amplifier Linear MC3356 Low-Power FM IF Linear MC3357 Low-Power FM IF Linear MC3360 1/4	MC1741SC	
MC1748 General-Purpose Operational Amplifier Linear MC1748C General-Purpose Operational Amplifier Linear MC1776 Programmable Operational Amplifier Linear MC1776C Programmable Operational Amplifier Linear MC26S10 Quad Open-Collector Bus Transceiver 5-16 MC3232A Memory Address Multiplexer and Refresh Address Counter 4-11 MC3245 Quad Operational Amplifier Linear MC3301 Quad Operational Amplifier Linear MC3302 Quad Comparator 7-27 MC3303 Quad Differential-Input Operational Amplifier Linear MC3325 Automotive Voltage Regulator Linear MC3340 Electronic Attenuator Linear MC3344 Programmable Frequency Switch Linear MC3345 Low-Power FM IF Linear MC3357 Low-Power FM IF Linear MC3360 1/4-Watt Audio Amplifier Linear MC3360 1/4-Watt Audio Amplifier Linear MC3380 Emiter-Coupled Astable Multivibrator Linear MC3380 Emitter-Coupled Astable Multivibrator<	MC1747	
MC1748C General-Purpose Operational Amplifier Linear MC1776 Programmable Operational Amplifier Linear MC1776 Programmable Operational Amplifier Linear MC1776 Programmable Operational Amplifier Linear MC26510 Quad Open-Collector Bus Transceiver 5-16 MC26511 Quad Open-Collector Bus Transceiver 5-16 MC3232A Memory Address Multiplexer and Refresh Address Counter 4-11 MC3242A Quad TTL-to-MOS Driver 4-21 MC3301 Quad Operational Amplifier Linear MC3302 Quad Differential-Input Operational Amplifier Linear MC3325 Automotive Voltage Regulator Linear MC3344 Programmable Frequency Switch Linear MC3357 Low-Power FM IF Linear MC3358 Dual Low-Power Operational Amplifier Linear MC3357 Zero Voltage Switch Linear MC3358 Dual Low-Power FM IF Linear MC3380 Emitter-Coupled Astable Multivibrator Linear MC3380 Emitter-Coupled Astable Multivibrator Linear MC3380 <		
MC1776 Programmable Operational Amplifier Linear MC1776C Programmable Operational Amplifier Linear MC26S10 Quad Open-Collector Bus Transceiver 5-16 MC26S11 Quad Open-Collector Bus Transceiver 5-16 MC3232A Memory Address Multiplexer and Refresh Address Counter 4-11 MC3242A Memory Address Multiplexer and Refresh Address Counter 4-21 MC3324D Quad TL-to-MOS Driver 4-21 MC3301 Quad Comparator 7-27 MC3302 Quad Comparator 7-27 MC3303 Quad Differential-Input Operational Amplifier Linear MC3325 Automotive Voltage Regulator Linear MC33340 Electronic Attenuator Linear MC3357 Low-Power FM IF Linear MC3356 Jual Low-Power Operational Amplifier Linear MC3357 Low-Power FM IF Linear MC3360 1/4 Watt Audio Amplifier Linear MC3380 Emitter-Coupled Astable Multivibrator Linear MC3380 Emitter-Coupled Astable Multivibrator Linear MC3383 Two-Modulus Prescaler </td <td></td> <td></td>		
MC1776C Programmable Operational Amplifier Linear MC26S10 Quad Open-Collector Bus Transceiver 5-16 MC26S11 Quad Open-Collector Bus Transceiver 5-16 MC3232A Memory Address Multiplexer and Refresh Address Counter 4-11 MC3242A Memory Address Multiplexer and Refresh Address Counter 4-16 MC3245 Quad TL-to-MOS Driver 4-21 MC3301 Quad Comparator 7-27 MC3302 Quad Differential-Input Operational Amplifier Linear MC3325 Automotive Voltage Regulator Linear MC33340 Electronic Attenuator Linear MC3344 Programmable Frequency Switch Linear MC3357 Low-Power FM IF Linear MC3360 1/4-Watt Audio Amplifier Linear MC3370 Zero Voltage Switch Linear MC3386 General-Purpose Transistor Array Linear MC3370 Zero Voltage Switch Linear MC3386 General-Purpose Transistor Array Linear MC3386 General-Purpose Transistor Array Linear MC3386 General-Purpose Transistor Array<		
MC26S10 Quad Open-Collector Bus Transceiver 5-16 MC26S11 Quad Open-Collector Bus Transceiver 5-16 MC3232A Memory Address Multiplexer and Refresh Address Counter 4-11 MC3242A Memory Address Multiplexer and Refresh Address Counter 4-16 MC3242A Memory Address Multiplexer and Refresh Address Counter 4-21 MC3301 Quad Operational Amplifier Linear MC3302 Quad Comparator 7-27 MC3303 Quad Differential-Input Operational Amplifier Linear MC3325 Automotive Voltage Regulator Linear MC3344 Programmable Frequency Switch Linear MC3344 Programmable Frequency Switch Linear MC3357 Low-Power Operational Amplifier Linear MC3358 Dual Low-Power Operational Amplifier Linear MC3360 1/4-Watt Audio Amplifier Linear MC3380 Emitter-Coupled Astable Multivibrator Linear MC3380 Emitter-Coupled Astable Multivibrator Linear MC3380 General-Purpose Transistor Array Linear MC3380 Emitter-Coupled Astable Multivibrator Lin		
MC26S11 Quad Open-Collector Bus Transceiver 5-16 MC3232A Memory Address Multiplexer and Refresh Address Counter 4-11 MC3242A Memory Address Multiplexer and Refresh Address Counter 4-16 MC3245 Quad TTL-to-MOS Driver 4-21 MC3301 Quad Operational Amplifier Linear MC3302 Quad Comparator 7-27 MC3303 Quad Differential-Input Operational Amplifier Linear MC3310 Wide-Band Amplifier Linear MC3325 Automotive Voltage Regulator Linear MC3340 Electronic Attenuator Linear MC3344 Program mable Frequency Switch Linear MC3357 Low-Power FM IF Linear MC3358 Dual Low-Power Operational Amplifier Linear MC3358 Dual Low-Power Operational Amplifier Linear MC3360 1/4-Watt Audio Amplifier Linear MC3380 Emitter-Coupled Astable Multivibrator Linear MC3381 General-Purpose Transistor Array Linear MC3382 Two-Modulus Prescaler Linear MC3383 General-Purpose Transistor A		
MC3232A Memory Address Multiplexer and Refresh Address Counter 4-11 MC3242A Memory Address Multiplexer and Refresh Address Counter 4-16 MC3245 Quad TTL-to-MOS Driver 4-21 MC3301 Quad Operational Amplifier Linear MC3302 Quad Comparator 7-27 MC3303 Quad Differential-Input Operational Amplifier Linear MC3325 Automotive Voltage Regulator Linear MC33340 Electronic Attenuator Linear MC3346 General-Purpose Transistor Array Linear MC3357 Low-Power FM IF Linear MC3360 1/4-Watt Audio Amplifier Linear MC3360 1/4-Watt Audio Amplifier Linear MC3380 Emitter-Coupled Astable Multivibrator Linear MC3383 General-Purpose Transistor Array Linear MC3380 Emitter-Coupled Astable Multivibrator Linear MC3393 Two-Modulus Prescaler Linear MC3393 Two-Modulus Prescaler Linear MC3393 Two-Modulus Prescaler Linear MC3403 Quad Differential-Input Operational Amplifier </td <td></td> <td></td>		
MC3242A Memory Address Multiplexer and Refresh Address Counter 4-16 MC3245 Quad TTL-to-MOS Driver 4-21 MC3301 Quad Operational Amplifier Linear MC3302 Quad Comparator 7-27 MC3303 Quad Differential-Input Operational Amplifier Linear MC3310 Wide-Band Amplifier Linear MC3325 Automotive Voltage Regulator Linear MC3340 Electronic Attenuator Linear MC3344 Programmable Frequency Switch Linear MC3357 Low-Power FM IF Linear MC3360 1/4-Watt Audio Amplifier Linear MC3360 2ero Voltage Switch Linear MC3380 Emitter-Coupled Astable Multivibrator Linear MC3386 General-Purpose Transistor Array Linear MC3370 Zero Voltage Switch Linear MC3380 Emitter-Coupled Astable Multivibrator Linear MC3393 Two-Modulus Prescaler Linear MC3393 Two-Modulus Prescaler Linear MC3403 Quad Differential-Input Operational Amplifier Linear		
MC3245Quad TTL-to-MOS Driver4-21MC3301Quad Operational AmplifierLinearMC3302Quad Comparator7-27MC3303Quad Differential-Input Operational AmplifierLinearMC3310Wide-Band AmplifierLinearMC3325Automotive Voltage RegulatorLinearMC3340Electronic AttenuatorLinearMC3344Programmable Frequency SwitchLinearMC3357Low-Power FM IFLinearMC3358Dual Low-Power Operational AmplifierLinearMC33501/4-Watt Audio AmplifierLinearMC3380Emitter-Coupled Astable MultivibratorLinearMC3393Two-Modulus PrescalerLinearMC3393Two-Modulus PrescalerLinearMC3401Quad Operational AmplifierLinearMC3403General-Purpose Transistor ArrayLinearMC33601/4-Watt Audio AmplifierLinearMC3380Emitter-Coupled Astable MultivibratorLinearMC3393Two-Modulus PrescalerLinearMC3401Quad Operational AmplifierLinearMC3403Quad Differential-Input Operational AmplifierLinearMC3404Bit Multiplying Digital-to-Analog Converter8-43		Memory Address Multiplexer and Refresh Address Counter
MC3301Quad Operational AmplifierLinearMC3302Quad Comparator7-27MC3303Quad Differential-Input Operational AmplifierLinearMC3310Wide-Band AmplifierLinearMC3325Automotive Voltage RegulatorLinearMC3333Vari-Dwell IgnitionLinearMC3340Electronic AttenuatorLinearMC3344Programmable Frequency SwitchLinearMC3357Low-Power FM IFLinearMC3358Dual Low-Power Operational AmplifierLinearMC33601/4-Watt Audio AmplifierLinearMC3380Emitter-Coupled Astable MultivibratorLinearMC3393Two-Modulus PrescalerLinearMC3393Two-Modulus PrescalerLinearMC3403Quad Operational AmplifierLinearMC3405Dual Operational AmplifierLinearMC34088-Bit Multiplying Digital-to-Analog Converter8-43		Quad TTL-to-MOS Driver 4-21
MC3303Quad Differential-Input Operational AmplifierLinearMC3310Wide-Band AmplifierLinearMC3325Automotive Voltage RegulatorLinearMC3333Vari-Dwell IgnitionLinearMC3340Electronic AttenuatorLinearMC3344Programmable Frequency SwitchLinearMC3345General-Purpose Transistor ArrayLinearMC3357Low-Power FM IFLinearMC33601/4-Watt Audio AmplifierLinearMC3380Emitter-Coupled Astable MultivibratorLinearMC3381General-Purpose Transistor ArrayLinearMC3382Ual Low-Power Operational AmplifierLinearMC3383Two-Modulus PrescalerLinearMC3393Two-Modulus PrescalerLinearMC3403Quad Operational AmplifierLinearMC3404Dual Differential-Input Operational AmplifierLinearMC3405Dual Operational Amplifier plus Dual Voltage ComparatorLinearMC34088-Bit Multiplying Digital-to-Analog Converter8-43	MC3301	Quad Operational Amplifier Linear
MC3310Wide-Band AmplifierLinearMC3325Automotive Voltage RegulatorLinearMC3333Vari-Dwell IgnitionLinearMC3340Electronic AttenuatorLinearMC3341Programmable Frequency SwitchLinearMC3346General-Purpose Transistor ArrayLinearMC3357Low-Power FM IFLinearMC33601/4-Watt Audio AmplifierLinearMC3370Zero Voltage SwitchLinearMC3380Emitter-Coupled Astable MultivibratorLinearMC3393Two-Modulus PrescalerLinearMC3401Quad Operational AmplifierLinearMC3405Dual Operational AmplifierLinearMC3405Dual Operational AmplifierLinearMC34088-Bit Multiplying Digital-to-Analog Converter8-43	MC3302	Quad Comparator
MC3325Automotive Voltage RegulatorLinearMC3333Vari-Dwell IgnitionLinearMC3340Electronic AttenuatorLinearMC3344Programmable Frequency SwitchLinearMC3345General-Purpose Transistor ArrayLinearMC3357Low-Power FM IFLinearMC3358Dual Low-Power Operational AmplifierLinearMC33601/4-Watt Audio AmplifierLinearMC3370Zero Voltage SwitchLinearMC3380Emitter-Coupled Astable MultivibratorLinearMC3393Two-Modulus PrescalerLinearMC3401Quad Operational AmplifierLinearMC3405Dual Operational AmplifierLinearMC3405Dual Operational AmplifierLinearMC34088-Bit Multiplying Digital-to-Analog Converter8-43	MC3303	
MC3333 Vari-Dwell Ignition Linear MC3340 Electronic Attenuator Linear MC3344 Programmable Frequency Switch Linear MC3345 General-Purpose Transistor Array Linear MC3357 Low-Power FM IF Linear MC3358 Dual Low-Power Operational Amplifier Linear MC3360 1/4-Watt Audio Amplifier Linear MC3380 Emitter-Coupled Astable Multivibrator Linear MC3386 General-Purpose Transistor Array Linear MC3386 General-Purpose Transistor Array Linear MC3387 Zero Voltage Switch Linear MC3380 Emitter-Coupled Astable Multivibrator Linear MC3393 Two-Modulus Prescaler Linear MC3401 Quad Operational Amplifier Linear MC3403 Quad Differential-Input Operational Amplifier Linear MC3405 Dual Operational Amplifier plus Dual Voltage Comparator Linear MC3408 8-Bit Multiplying Digital-to-Analog Converter 8-43		
MC3340Electronic AttenuatorLinearMC3344Programmable Frequency SwitchLinearMC3346General-Purpose Transistor ArrayLinearMC3357Low-Power FM IFLinearMC3358Dual Low-Power Operational AmplifierLinearMC33501/4-Watt Audio AmplifierLinearMC3370Zero Voltage SwitchLinearMC3380Emitter-Coupled Astable MultivibratorLinearMC3393Two-Modulus PrescalerLinearMC3401Quad Operational AmplifierLinearMC3405Dual Operational AmplifierLinearMC3405Dual Operational Amplifier plus Dual Voltage ComparatorLinearMC34088-Bit Multiplying Digital-to-Analog Converter8-43		
MC3344Programmable Frequency SwitchLinearMC3346General-Purpose Transistor ArrayLinearMC3357Low-Power FM IFLinearMC3358Dual Low-Power Operational AmplifierLinearMC33601/4-Watt Audio AmplifierLinearMC3370Zero Voltage SwitchLinearMC3380Emitter-Coupled Astable MultivibratorLinearMC3386General-Purpose Transistor ArrayLinearMC3393Two-Modulus PrescalerLinearMC3403Quad Operational AmplifierLinearMC3403Dual Operational AmplifierLinearMC3405Dual Operational Amplifier plus Dual Voltage ComparatorLinearMC34088-Bit Multiplying Digital-to-Analog Converter8-43		Vari-Dwell Ignition Linear
MC3346General-Purpose Transistor ArrayLinearMC3357Low-Power FM IFLinearMC3358Dual Low-Power Operational AmplifierLinearMC33601/4-Watt Audio AmplifierLinearMC3370Zero Voltage SwitchLinearMC3380Emitter-Coupled Astable MultivibratorLinearMC3386General-Purpose Transistor ArrayLinearMC3393Two-Modulus PrescalerLinearMC3401Quad Operational AmplifierLinearMC3403Quad Differential-Input Operational AmplifierLinearMC3405Dual Operational Amplifier plus Dual Voltage ComparatorLinearMC34088-Bit Multiplying Digital-to-Analog Converter8-43		Electronic Attenuator
MC3357Low-Power FM IFLinearMC3358Dual Low-Power Operational AmplifierLinearMC33601/4-Watt Audio AmplifierLinearMC3370Zero Voltage SwitchLinearMC3380Emitter-Coupled Astable MultivibratorLinearMC3386General-Purpose Transistor ArrayLinearMC3393Two-Modulus PrescalerLinearMC3401Quad Operational AmplifierLinearMC3403Dual Operational AmplifierLinearMC3404Bertial-Input Operational AmplifierLinearMC3405Dual Operational Amplifier plus Dual Voltage ComparatorLinearMC34088-Bit Multiplying Digital-to-Analog Converter8-43		Programmable Frequency Switch
MC3358Dual Low-Power Operational AmplifierLinearMC33601/4-Watt Audio AmplifierLinearMC3370Zero Voltage SwitchLinearMC3380Emitter-Coupled Astable MultivibratorLinearMC3386General-Purpose Transistor ArrayLinearMC3393Two-Modulus PrescalerLinearMC3401Quad Operational AmplifierLinearMC3403Dual Operational AmplifierLinearMC3404Bual Operational Amplifier plus Dual Voltage ComparatorLinearMC34088-Bit Multiplying Digital-to-Analog Converter8-43		General-Purpose Transistor Array Linear
MC3360 1/4-Watt Audio Amplifier Linear MC3370 Zero Voltage Switch Linear MC3380 Emitter-Coupled Astable Multivibrator Linear MC3386 General-Purpose Transistor Array Linear MC3393 Two-Modulus Prescaler Linear MC3401 Quad Operational Amplifier Linear MC3403 Quad Differential-Input Operational Amplifier Linear MC3405 Dual Operational Amplifier plus Dual Voltage Comparator Linear MC3408 8-Bit Multiplying Digital-to-Analog Converter 8-43	-	Duel au Paus Aparetional Amplifier
MC3370 Zero Voltage Switch Linear MC3380 Emitter-Coupled Astable Multivibrator Linear MC3386 General-Purpose Transistor Array Linear MC3393 Two-Modulus Prescaler Linear MC3401 Quad Operational Amplifier Linear MC3403 Quad Differential-Input Operational Amplifier Linear MC3405 Dual Operational Amplifier plus Dual Voltage Comparator Linear MC3408 8-Bit Multiplying Digital-to-Analog Converter 8-43		1/4-Watt Audio Amplifier
MC3380 Emitter-Coupled Astable Multivibrator Linear MC3386 General-Purpose Transistor Array Linear MC3393 Two-Modulus Prescaler Linear MC3401 Quad Operational Amplifier Linear MC3403 Quad Differential-Input Operational Amplifier Linear MC3405 Dual Operational Amplifier plus Dual Voltage Comparator Linear MC3408 8-Bit Multiplying Digital-to-Analog Converter 8-43		Zero Voltage Switch Linear
MC3386General-Purpose Transistor ArrayLinearMC3393Two-Modulus PrescalerLinearMC3401Quad Operational AmplifierLinearMC3403Quad Differential-Input Operational AmplifierLinearMC3405Dual Operational Amplifier plus Dual Voltage ComparatorLinearMC34088-Bit Multiplying Digital-to-Analog Converter8-43		Emitter-Coupled Astable Multivibrator Linear
MC3393Two-Modulus PrescalerLinearMC3401Quad Operational AmplifierLinearMC3403Quad Differential-Input Operational AmplifierLinearMC3405Dual Operational Amplifier plus Dual Voltage ComparatorLinearMC34088-Bit Multiplying Digital-to-Analog Converter8-43		
MC3403 Quad Differential-Input Operational Amplifier Linear MC3405 Dual Operational Amplifier plus Dual Voltage Comparator Linear MC3408 8-Bit Multiplying Digital-to-Analog Converter 8-43	MC3393	
MC3405Dual Operational Amplifier plus Dual Voltage ComparatorLinearMC34088-Bit Multiplying Digital-to-Analog Converter8-43	MC3401	Quad Operational Amplifier Linear
MC3408 8-Bit Multiplying Digital-to-Analog Converter		
		Dual Operational Amplifier plus Dual Voltage Comparator Linear
MC3410 10-Bit D-to-A Converter		
	MC3410	10-Bit D-to-A Converter

Device

Number

Page

MC3410C	10-Bit D-to-A Converter
MC3412	High-Speed 12-Bit D/A Converter
MC3416	Crosspoint Switch
MC3417	Continuousiy-Variable-Slope Delta Modulator/Demodulator
MC3418	Continuously-Variable-Slope Delta Modulator/Demodulator
MC3419	Subscriber Loop Interface Circuit
MC3420	Switchmode Regulator Control Circuit Linear
MC3423	Overvoltage Sensing Circuit Linear
MC3430	High-Speed Quad Comparator
MC3431	High-Speed Quad Comparator
MC3432	High-Speed Quad Comparator
MC3433	High-Speed Quad Comparator
MC3437	Hex Unified Bus Receiver
MC3438	Quad Unified Bus Transceiver
MC3440A	Quad Interface Bus Transceiver
MC3441A	Quad Interface Bus Transceiver
MC3443	Quad Interface Bus Transceiver
MC3446A	Quad Interface Bus Transceiver
MC3447	Bidirectional Instrumentation Bus Transceiver
	Quad Three-State Bus Transceiver
MC3448A	
MC3449	Triple Bidirectional Bus Switch
MC3450	Quad Line Receiver
MC3452	Quad Line Receiver 5-68
MC3453	Quad Line Driver
MC3456	Dual Timing Circuit Linear
MC3458	Dual Low-Power Operational Amplifier Linear
MC3459	Quad NMOS Memory Driver
MC3461	Dual NMOS Memory Sense Amplifier 4-28
MC3467	Triple Preamplifier 4-34
MC3468	Magnetic Read Amplifier 4-39
MC3470	Floppy Disk Read Amplifier System 4-59
MC3476	Programmable Operational Amplifier Linear
MC3480	Memory Controller Circuit 4-73
MC3481	Quad Single-Ended Line Driver
MC3482A	Octal Three-State Buffer/Inverter 4-109
MC3482B	Octal Three-State Buffer/Inverter 4-109
MC3485	Quad Single-Ended Line Driver
MC3486	Quad RS-422/423 Line Receiver
MC3487	Quad RS-422 Line Driver with Three-State Outputs
MC3488A	Dual RS-423/232C Driver
MC3488B	Dual RS-423/232C Driver 5-87
MC3490	7-Digit Gas Discharge Display Driver
MC3491	8-Segment Visual Display Driver
MC3492	8-Segment Visual Display Driver
MC3494	7-Digit Gas Discharge Display Driver
MC3503	Quad Differential-Input Operational Amplifier Linear
MC3505	Dual Operational Amplifier plus Dual Voltage Comparator Linear
MC3510	10-Bit D-to-A Converter
MC3517	Continuously-Variable-Slope Delta Modulator/Demodulator
MC3518	Continuously-Variable-Slope Delta Modulator/Demodulator
MC3519	Subscriber Loop Interface Circuit
MC3520	Switchmode Regulator Control Circuit Linear
MC3523	Overvoltage Sensing Circuit Linear
MC3523 MC3556	Dual Timing Circuit Linear
MC3558	Dual Low-Power Operational Amplifier Linear
MC4558	Dual High-Frequency Operational Amplifier Linear
MC4558AC	Dual High-Frequency Operational Amplifier Linear
MC4558AC	Dual High-Frequency Operational Amplifier Linear
	Dual High-Frequency Operational Amplitier
MC4558N MC4558NC	Dual High-Frequency Operational Amplifier Linear
	Quad MC1741 Operational Amplifier Linear
MC4741	Quad MC1741 Operational Amplifier Linear
MC4741C	

Function

Device Number

Function

Page

1

M C6875	M6800 Clock Generator/ Driver 4-88
M C6880A	Quad Three-State Bus Transceiver
M C6881	Triple Bidirectional Bus Switch
M C6882A	Octal Three-State Buffer/Latch
M C6882 B	Octal Three-State Buffer/Latch
M C6885	Hex Three-State Buffer/Inverter
M C6886	Hex Three-State Buffer/Inverter
M C6887	Hex Three-State Buffer/Inverter 4-113
M C6888	Hex Three-State Buffer/Inverter
M C6889	Noninverting Bus Transceiver 4-118
M C6890	8-Bit Bus-Compatible MPU D/A Converter
MC75S110	Dual Line Driver
M C7805	Positive Voltage Regulator (1.5 A) Linear
M C7805A	Positive Voltage Regulator (1.5 A) Linear
MC7805AC	Positive Voltage Regulator (1.5 A) Linear
M C7805 C	Positive Voltage Regulator (1.5 A) Linear
M C7806	Positive Voltage Regulator (1.5 A) Linear
M C7806A	Positive Voltage Regulator (1.5 A) Linear
MC7806AC	Positive Voltage Regulator (1.5 A) Linear
M C7806 C	Positive Voltage Regulator (1.5 A) Linear
M C7808	Positive Voltage Regulator (1.5 A) Linear
M C7808A	Positive Voltage Regulator (1.5 A) Linear
M C7808A C	Positive Voltage Regulator (1.5 A) Linear
M C7808 C	Positive Voltage Regulator (1.5 A) Linear
MC7812	Positive Voltage Regulator (1.5 A) Linear
MC7812A	Positive Voltage Regulator (1.5 A) Linear
MC7812AC	Positive Voltage Regulator (1.5 A) Linear
MC7812C	Positive Voltage Regulator (1.5 A) Linear
M C7815	Positive Voltage Regulator (1.5 A) Linear
MC7815A	Positive Voltage Regulator (1.5 A) Linear
MC7815AC	Positive Voltage Regulator (1.5 A) Linear Positive Voltage Regulator (1.5 A) Linear
M C7815 C	Positive Voltage Regulator (1.5 A) Linear
MC7818	Positive Voltage Regulator (1.5 A) Linear
M C7818A M C7818A C	Positive Voltage Regulator (1.5 A) Linear
MC7818AC	Positive Voltage Regulator (1.5 A) Linear
MC7824	Positive Voltage Regulator (1.5 A) Linear
M C7824	Positive Voltage Regulator (1.5 A) Linear
MC7824AC	Positive Voltage Regulator (1.5 A) Linear
MC7824C	Positive Voltage Regulator (1.5 A) Linear
MC78L02AC	Positive Voltage Regulator (100 mA) Linear
MC78L05AC	Positive Voltage Regulator (100 mA) Linear
M C78L05 C	Positive Voltage Regulator (100 mA) Linear
M C78L08A C	Positive Voltage Regulator (100 mA) Linear
M C78L08 C	Positive Voltage Regulator (100 mA) Linear
MC78L12AC	Positive Voltage Regulator (100 mA) Linear
MC78L12C	Positive Voltage Regulator (100 mA) Linear
MC78L15AC	Positive Voltage Regulator (100 mA) Linear
MC78L15C	Positive Voltage Regulator (100 mA) Linear
MC78L18AC	Positive Voltage Regulator (100 mA) Linear
MC78L18C	Positive Voltage Regulator (100 mA) Linear
MC78L24AC	Positive Voltage Regulator (100 mA) Linear
MC78L24C	Positive Voltage Regulator (100 mA) Linear Positive Voltage Regulator (500 mA) Linear
M C78M05 C M C78M06 C	Positive Voltage Regulator (500 mA) Linear Positive Voltage Regulator (500 mA) Linear
	Positive Voltage Regulator (500 mA) Linear
M C78M08 C M C78M12 C	Positive Voltage Regulator (500 mA) Linear Positive Voltage Regulator (500 mA) Linear
M C78M12C	Positive Voltage Regulator (500 mA) Linear
MC78M18C	Positive Voltage Regulator (500 mA) Linear
M C78M20 C	Positive Voltage Regulator (500 mA) Linear
M C78M24 C	Positive Voltage Regulator (500 mA) Linear
M C7902 C	Negative Voltage Regulator (1.5 A) Linear

Device Number

Number	
M C7905 C	Negative Voltage Regulator (1.5 A) Linear
M C7905.2 C	Negative Voltage Regulator (1.5 A) Linear
M C7906 C	Negative Voltage Regulator (1.5 A) Linear
M C7908 C	Negative Voltage Regulator (1.5 A) Linear
MC7912C	Negative Voltage Regulator (1.5 A) Linear
MC7915C	Negative Voltage Regulator (1.5 A) Linear
MC7918C	Negative Voltage Regulator (1.5 A) Linear
M C7924 C	Negative Voltage Regulator (1.5 A) Linear
M C79L03A C	Negative Voltage Regulator (100 mA) Linear
MC79L03C	Negative Voltage Regulator (100 mA) Linear
MC79L05AC	Negative Voltage Regulator (100 mA) Linear
M C79L05 C	Negative Voltage Regulator (100 mA) Linear
MC79L12AC	Negative Voltage Regulator (100 mA) Linear
MC79L12C	Negative Voltage Regulator (100 mA) Linear
MC79L15AC	Negative Voltage Regulator (100 mA) Linear
M C79L15 C	Negative Voltage Regulator (100 mA) Linear
MC79L18AC	Negative Voltage Regulator (100 mA) Linear
MC79L18C	Negative Voltage Regulator (100 mA) Linear
MC79L24AC	Negative Voltage Regulator (100 mA) Linear
M C79L24 C	Negative Voltage Regulator (100 mA) Linear
MC8T13	Dual Line Driver
MC8T14	Triple Line Receiver
MC8T23	Dual Line Driver 5-9
M CB T24	Triple Line Receiver 5-12
MC8T26A	Quad Bus Transceiver/MPU Bus Extender 4-99
M C8 T28	Noninverting Bus Transceiver 4-118
M C8 T95	Hex Three-State Buffer/Inverter 4-113
M C8 T96	Hex Three-State Buffer/Inverter 4-113
M C8 T97	Hex Three-State Buffer/Inverter 4-113
M C8 T98	Hex Three-State Buffer/Inverter
MC10317L	7-Bit High-Speed A/D Converter
MC10318L	High-Speed 8-Bit D/A Converter
MC10318L9	High-Speed 8-Bit D/A Converter
M C34001	Single TRIMFET Operational Amplifier
M C34002	Dual TRIMFET Operational Amplifier
M C34004	Quad TRIMFET Operational Amplifier Linear Dual Precision TRIMFET Operational Amplifier Linear
M C34022 M C35001	Single TRIMFET Operational Amplifier
M C35002	Dual TRIMFET Operational Amplifier Linear
M C35002	Quad TRIMFET Operational Amplifier
M C35022	Dual Precision TRIMFET Operational Amplifier Linear
M C55325	Dual Memory Driver
M C75107	Dual Line Receiver
M C75108	Dual Line Receiver
MC75S110	Dual Line Driver
MC75125	7-Channel Line Receiver
M C75127	7- Channel Line Receiver
M C75128	8- Channel Line Receiver
M C75129	8- Channel Line Receiver
M C75140P1	Dual Line Receiver
M C75325	Dual Memory Driver
M C75365	Quad MOS Clock Driver
M C75368	Dual MECL-to-MOS Driver 4-132
M C75450	Dual Peripheral Driver, Positive AND 5-126
M C75451	Dual Peripheral Driver, Positive AND
M C75452	Dual Peripheral Driver, Positive NAND 5-131
M C75453	Dual Peripheral Driver, Positive OR 5-131
M C75454	Dual Peripheral Driver, Positive NOR 5-131
MC75461	High-Voltage Peripheral Driver 5-135
M C75462	High-Voltage Peripheral Driver 5-135
M C75463	High-Voltage Peripheral Driver 5-135
M C75464	High-Voltage Peripheral Driver 5-135

Page

Function

,

Device Number	Function	Page
M C75491	Quad Light-Emitting Diode (LED) Driver	5-140
M C75492	Hex Light-Emitting Diode (LED) Driver	5-140
MCCF3326	Flip-Chip Automotive Voltage Regulator	Linear
MCCF3333	Vari-Dwell Ignition Circuit	
MM H0026	Dual MOS Clock Driver	4-137
MM H0026 C	Dual MOS Clock Driver	
NE565	Phase-Locked Loop	Linear
N E592	Video Amplifier	Linear
SE592	Video Amplifier	Linear
SN75431	Dual Peripheral Driver	5-146
SN75432	Dual Peripheral Driver	5-146
SN75451 BP	Dual Peripheral Driver	5-147
SN75452BP	Dual Peripheral Driver	5-147
SN75453BP	Dual Peripheral Driver	5-147
SN75454BP	Dual Peripheral Driver	5-147
T CA4500A	FM Stereo Demodulator	Linear
TDA1190P	TV Sound System	Linear
TDA1190Z	TV Sound System	Linear
TDA2002	Audio Power Amplifier	Linear
TDA2002A	Audio Power Amplifier	

`

MOTOROLA - LINEAR INTEGRATED CIRCUITS CROSS REFERENCE

... provides a complete interchangeability list linking over 3000 devices offered by most major Linear Integrated Circuits manufacturers to the nearest equivalent Motorola device. The "Motorola Direct Replacement" column lists devices with identical pin connections and package and the same or better electrical characteristics and temperature range. The "Motorola Functional Equivalent" column provides a device which performs the same function but with possible differences in package configurations, pin connections, temperature range or electrical specifications.

709BE -AD559S

PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REPLACEMENT	PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REPLACEMENT	PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REPLACEMENT
709BE	MC1709G		9627DM		MC1489AL	75450BDC		MC75450L
7098H	MC1709F		9636AT	MC3488AP		75450BPC		MC75450P
709CE	MC1709CG		9637T		MC3486P	75451APC	MC75451U	
709CH	MC1709CF		9638T		MC3487P	75451ATC	MC75451P	
709CJ	MC1709CP2		9640J	MC3443P		75451BRC		MC75451U
710BE	MC1710G		9640D		MC3443P	75451BTC	SN75451BP	
710CE	MC1710CG		9640DC		MC3440AP	75452ARC	MC75452U	
711BE	MC1711G		9640NC	MC3440AP		75452ATC	MC75452P	
711BN	MC1711L		9665DC	MC1411L		75452BRC		MC75452U
711CE	MC1711CG		9665PC	MC1411P		75452BTC	SN75452BP	
711CJ	MC1711CP		9666DC	MC1412L		75453ARC	MC75453U	
723BE	MC 1723G		9666PC	MC1412P		75453ATC	MC75453P	
723CE	MC1723CG		\$667DC	MC1413L		75453BRC		MC75453U
723CJ	MC1723CL		9667PC	MC1413P		75453BTC	SN75453BP	
741BE	MC1741G		9668DC	MC1416L		75454ARC	MC75454U	
741BH	MC1741F		9668PC	MC1416P		75454ATC	MC75454P	
7418N	MC1741L		55107ADM	MC55107L		75454BRC		MC75454U
741CE	MC1741CG		55107BDM		MC55107L	75454BTC	SN75454BP	
747BE		MC1747G	55108ADM	MC55108L		75460DC		MC75450L
7478N		MC1747L	55108BDM		MC55108L	75460PC		MC75450P
747CE		MC1747CG	55110DM		MC75S110L	75461RC	MC75461U	
748BE		MC1748G	55121DM		MC8T13L	75461TC	MC75461P	
748CE		MC1748CG	55122DM		MC8T14L	75462RC	MC75462U	
809BE		MC1776G	55207DM		MC55107L	75462TC	MC75462P	
809CE		MC1776CG	55208DM		MC55108L	75463RC	MC75463U	
823AE		MC1723G	55325DM	MC55325L	110001002	75463TC	MC75463P	
1458CE	MC1458CG		55325FM	MC55325L		75464RC	MC75464U	
3232	110140000	MC3232AL	75107ADC	MC75107L		75464TC	MC75464P	
3245	MC3245L	MOVEDENE	75107APC	MC75107P		75491DC	MU13404F	MC75491P
6605J	MODENDE	MC3443P	75107BDC	MOTOTOT	MC75107L	75491DC	MC75491P	MC/ 348 IP
6605L		MC3443P	75107BPC		MC75107P	75491ADC	MU/J451P	MC75491P
8216		MC8T26AL	75108ADC	MC75108L	MOISIUIP	75491ADC		MC75491P
8226		MC8T28L	75108APC	MC75108P		75491APC		MC75491P
9614DC		MC75S110L	75108BDC	MICTUUT	MC75108L	75492DC	MC75492P	MC/3492P
9614DC		MC75S110L	75108BPC		MC75108P		MC/5492P	
9614DM		MC75108L	75100BPC	MC75S110L	MG75106P	75492ADC 75492APC		MC75492P
9615DM		MC55108L	75110PC	MC75S110L		AD301AL		MC75492P
9615FM		MC55108L	75121DC	MC/33110P				LM301AH
96 16CDC		MC33108L MC1488L	75121DC	MC8T13P		AD505J AD505K		MC1776CG
9616EDC		MC1488L	75121PC	MC8T13P MC8T14L				MC1776CG
9616EDC		MC1488L	75122DC			AD505S		MC1776G
9617DC			75122PC	MC8T14P		AD509J		LM301AH
		MC1489AL		MC8T23L		AD509K		LM301AH
9620DC		MC75S110L	75123PC	MC8T23P		AD509S		LM 101AH
9620DM		MC75S110L	75124DC	MC8T24L		AD518J		LM301AH
9621DC		MC75108L	75124PC	MC8T24P		AD518K		LM301AH
9621DM		MC55108L	75207DC		MC75107L	AD518S		LM101AH
9622DC		MC75140P1	75207PC		MC75107P	AD530		MC1595L
9622DM		MC75140P1	75208DC		MC75108L	AD531		MC 1595L
9624DC		MMH0026CL	75208PC		MC75108P	AD532J		MC1595G
9624DM		MMH0026CL	75325DC	MC75325L		AD559JD	MC1408L8	
9625DC		MMH0026CL	75325PC	MC75325P		AD559K	MC1408L8	
9625DM		MMH0026CL	75450ADC	MC75450L		AD559KD	MC1408L8	
9627CDC		MC1489AL	75450APC	MC75450P		AD559S	MC1508L8	

AD559SD -CA3054

	MOTOROLA	MOTOROLA		TOROLA	MOTOROLA		MOTOROLA	MOTOROLA
	DIRECT	SIMILAR		DIRECT	SIMILAR		DIRECT	SIMILAR
	EPLACEMENT	REPLACEMENT			REPLACEMENT	PART NO.		REPLACEMENT
AD559SD	MC1508L8		AMU587741393			CA1458T	MC1458G	MC1558U
AD580J		MC1403U	AMU587747312			CA 1558S	MC1558G	MC 13300
AD580K	·	MC1403P1	AMU587747393				MC 1357P	
AD580M		MC1403AP1	AMU5B7748312			CA2111AE	MC1357PQ	
AD560S		MC1503U	AMU5B7748393				MC135/PU	MC 1550G
AD580T		MC1503AU	AMU5R7723312			CA3000		
AD741CJ	.'	MC1741CG	AMU5R7723393		+	CA3001		MC1550G
AD741J		MC1741G	AMU6A7723312			CA3002		MC 1550G
AD741K		MC1741G	AMU6A7723393			CA3004		MC1550G
AD741L		MC1741G	AMU6A773331			CA3005		MC1550G
AD741S		MC1741SG	AMU6A7733393			CA3006		MC1550G
AD7520D		MC3410L	AMU6A7741312			CA3007		MC1550G
AD7520F		MC3410L	AMU6A7741393			CA3008		MC1709F
AD7520N		MC3410L	AMU6A7748312		MC1748G	CA3008A		MC1709F
AM26\$10DC	MC26S10L		AMU6A7748393		MC1748CP1	CA3010		MC1709G
AM26S10PC	MC26S10P		AMU6W774731		•	CA3010A		MC1709G
AM26S11DC	MC26S11L		AMU6W774739			CA3011		MC1590G
AM26S11PC	MC26S11P		CA101AT	LM101AH		CA3012		MC1590G
AM725A31T		MC1556G	CA101T	LM101AH		CA3013		MC1357P
AM 166039F		LM301AH	CA107T	LM107H		CA3014		MC1357P
AM 166039T		LM301AH	CA108AS	LM 108AJ-8		CA3015		MC1709G
AMLM 101	LM101AH		CA108AT	LM 108AH		CA3015A		MC1709G
AMLM 101A	LM101AH		CA108S	LM 108J-8		CA3016		MC1709F
AMLM101AD		LM101AH	CA108T	LM 108H		CA3016A		MC1709F
AMLM 101AF		LM 101AH	CA 139AG	LM139AJ		CA3020		MC1554G
AMLM101D		LM101AH	CA139G	LM 139J		CA3020A		MC1454G
AMLM101F		LM101AH	CA201AT	LM201AH		CA3021		MC1590G
AMLM105	LM 105H		CA201T		LM201AH	CA3022		MC1590G
AMLM 105F		LM105H	CA207T	LM207H		CA3023		MC1590G
AMLM 105H	LM105H	2	CA208AT	LM208AH		CA3026		CA3054
AMLM 107	LM107H		CA208S	LM208J-8		CA3028A		MC 1550G
AMLM107D	Liniteriti	LM107H	CA20BT	LM208H		CA3028AF		MC1550G
AMLM 107F		LM107H	CA239AE	LM239AN		CA3028AS		MC1550G
AMLM107	LM111J	Laniorii	CA239AG	LM239AJ		CA3028B		MC 1550G
AMLM111H	LM111H		CA239E	LM239N		CA3028BF		MC 1550G
AMLM201	LM201AH		CA239G	LM239J		CA3028BS		MC 1550G
	LM201AH		CA301AT	LM301AH		CA3029		MC1709P2
AMLM201A	LMZUTAH	1 1/201411	CA307T	LM307H		CA3029A		MC1709P2
AMLM201AD		LM201AN	CA308AS	LM308N		CA3030		MC1709P2
AMLM201AF		LM201AH	CA308AT	LM308AH		CA3030A		MC1709P2
AMLM201D		LM201AN		LM308H		CA3030A		MC1712G
AMLM201F		LM201AH	CA308S			CA3031		MC1712CG
AMLM205	LM205H		CA339AE	LM339AN		CA3032		MC1533L
AMLM205F		LM205H	CA339AG	LM339AJ				
AMLM205H	LM205H		CA339E	LM339N		CA3033A		MC1533L
AMLM207	LM207H		CA339G	LM339J		CA3035		MC1352P
AMLM207D		LM207H	CA723CE	MC1723CP		CA3035V1		MC1352P
AMLM207F		LM207H	CA741CS	MC1741CP1		CA3037		MC1709L
AMLM211D	LM211J		CA741CT	MC1741CG		CA3037A		MC1709L
AMLM211H	LM211H		CA741S	MC1741U		CA3038		MC1709L
AMLM301	LM301AH		CA741T	MC1741G		CA3038A		MC1709L
AMLM301A	LM301AH		CA747CE	MC1747CL		CA3040		MC1510G
AMLM301AD		LM301AJ	CA747CF	MC1747CL		CA3041		MC1351P
AMLM301D		LM301AJ	CA747CT	MC1747CG		CA3042		MC 1357P
AMLM305	LM305H		CA747E	MC1747L		CA3043		MC 1357P
AMLM305A		LM305H	CA747F	MC1747L		CA3044		MC1364P
AMLM305F		LM305H	CA747T	MC1747G		CA3044V1		MC1364P
AMLM305H	LM305H		CA748CS	MC1748CP1		CA3045		MC3346P
AMLM311D	LM311J-8		CA748CT	MC1748CG		CA3045F		MC3346P
AMLM311H	LM311H		CA74BS	MC1748U		CA3046	MC3346P	
AMU3F773331		MC1733L	CA748T	MC1748G		CA3047		MC 1433L
AMU3F773339		MC1733CL	CA758E		MC1310P	CA3047A		MC1433L
AMU3F774831	2	MC1748G	CA1310E	MC1310P		CA3048		MC3301P
AMU317741312	2 MC1741F		CA 1352E	MC1352P		CA3052		MC3301P
AMU317741393			CA1391E	MC1391P		CA3053		MC 1550G
AMU58773331			CA1394E	MC1394P		CA3053F		MC1550G
AMU58773339			CA1398E	MC1398P		CA3053S		MC 1550G
AMU5B774131			CA1458S	MC1458CP1	.*	CA3054	CA3054	

CA3056 - DS8897N

PART NO.		MOTOROLA SIMILAR REPLACEMENT	PART NO.		MOTOROLA SIMILAR		MOTOROLA DIRECT	MOTOROLA SIMILAR
CA3056	MC1741CG	KEPLAGEMENT	DM7897J	REPLACEMENT	REPLACEMENT MC3494P			REPLACEMENT
CA3056A	MC1741CG		DM7897N				MC75107L	۰.
CA3058	MC 174 PG	C 4 2050			MC3494P	DS75107N	MC75107P	
	CA3059	CA3059	DM8820AN		MC75140P1	DS75108J	MC75108L	
CA3059	CA3039		DM8820J		MC75140P1	DS75108N	MC75108P	
CA3064		MC1364P	DM8820N		MC75140P1	D\$75110J	MC75S110L	
CA3064E	MC1364P		DM8822J		MC1489AL	D\$75110N	MC75S110P	
CA3065	MC1358P		DM8822N		MC1489AP	DS75121J	MC8T 13L	
CA3066		MC 1399P	DM8837N	MC3437P		DS75121N	MC8T13P	
CA3067		MC1323P	DM8838N	MC3438P		DS75122J	MC8T14L	
CA3068		MC1352P	DM8861N		MC75491P	D\$75122N	MC8T14P	
CA3070		MC 1399P	DM8863N		MC75492P	DS75123J	MC8T23L	
CA3071		MC1399P	DM8887J		MC3490P	DS75123N	MC8T23P	
CA3072		MC1323P	DM8889J		MC3491P	DS75124J	MC8T24L	
CA3076		MC1590G	DM8897J		MC3494P	D\$75124N	MC8T24P	
CA3078AS		MC1776G	DM75491N	MC75491P		DS75207J		MC75107L
CA3078AT		MC1776G	DM75492N	MC75492P		DS75207N		MC75107P
CA3078S		MC1776CG	DS0026CG	110134321	MMH0026CG	DS75208J		
CA3078T		MC1776CG	DS0026CH	MMH0026CG				MC75108L
CA3079						DS75208N		MC75108P
		CA3059	DS0026CJ	MMH0026CL		DS75325J	MC75325L	
CA3085		MC1723G	DS0026CN	DS0026CP1		D\$75325N	MC75325P	
CA3085A		MC1723G	DS0026G		MMH0026G	DS75450J	MC75450L	
CA3085AF		MC1723L	DS0026H	DS0026G		DS75450N	MC75450P	
CA3085AS		MC1723G	DS0026J	DS0026L		DS75451H		MC75451U
CA3085B		MC1723G	DS0056CG		MMH0026CG	DS75451N	SN754518P	
CA3085BF		MC1723L	DS0056CH		MMH0026CG	DS75452H		MC75452U
CA3085BS		MC1723G	DS0056CJ		MMH0026CL	DS75452N	SN75452BP	
CA3085F		MC1723L	DS0056CN		MMH0026CP1	DS75453H		MC75453U
CA3085S		MC1723G	DS0056G		MMH0026G	DS75453N	SN75453BP	
CA3086	MC3386P		DS0056H		MMH0026G	DS75454H	01110100001	MC75454U
CA3086F		MC3346P	DS0056J		MMH0026L	DS75454N	SN75454BP	
CA3090AQ		MC1310P	DS1488J	MC 1488L	WANT WELL	DS75461H	0111040401	MC75461U
CA3091D		MC1594L	DS1488N	MC1488P		DS75461N	MC75461P	MC734010
CA3091D CA3120E			DS 1489AJ				MC/ 340 IP	11075 (001)
		MC 1344P	DS 1489AJ	MC1489AL		DS75462H		MC75462U
CA3125E		MC1323P		MC1489AP		DS75462N	MC75462P	
CA3134E		TDA 1 190Z	DS1489J	MC1489L		DS75463H		MC75463U
CA3134EM		TDA 1 190Z	DS 1489N	MC1489P		DS75463N	MC75463P	
CA3134QM		TDA 1190Z	DS3486J	MC3486L		DS75464H		MC75464U
CA3136A		MC3346P	DS3486N	MC3486P		DS75464N	MC75464P	
CA3137E		MC1323P	DS3487J	MC3487L		DS75491J		MC75491P
CA3139	CA3139		D\$3487N	MC3487P		DS75491N	MC75491P	•
CA3146		MC3346P	DS3612H		MC1472U	DS75492J		MC75492P
CA3401E	MC3401P		DS3612N		MC1472P1	DS75492N	MC75492P	
CA6078AS		MC1776G	DS3632H		MC1472U	DS7837J		MC3437L
CA6078AT		MC1776G	DS3632J		MC 1472U	DS7837W		MC3437L
CA6741S		MC1776G	DS3632N		MC1472P1	DS7838J		MC3438L
CA6741T		MC1776G	DS3644J		MC3245L	DS7838W		MC3438L
CA3302E	MC3302P	MOTITOD	DS3644N		MC3245P	DS7887J		
CASSUZE CMP-01CJ	MCJJUZP	NOVERO	DS3650J	MC3450L	MUJZ4JP			MC3490P
CMP-01CJ		MC1556G			•	DS7889J		MC3491P
•		MC1556P	DS3650N	MC3450P		D\$7897J		MC3494P
D555CJ		MC1555G	D\$3651J	MC3430L		DS8833J		MC8T28L
D3232	MC3232AP		DS3651N	MC3430P		DS8833N		MC8T28P
D3242	MC3242AP		DS3652J	MC3452L		DS8834J		MC8T26AL
D3245	MC3245P		DS3652N	MC3452P		DS8834N		MC8T26AP
D8216		MC8T26AL	DS3653J	MC3432L		DS8835J		MC8T26AL
D8226		MC8T26L	DS3653N	MC3432P		DS8835N		MC8T26AP
DAC-01		MC1506L	DS3674J	MC3460L		DS8837J	MC3437L	
DAC-08		MC1408L8	D\$3674N	MC3460P		DS8837N	MC3437P	
DAC-IC10BC	MC3410L		DS55107J	MC55107L		DS8838J	MC3438L	
DM7820AD		MC75140P1	DS55107W		MC75107L	DS8838N	MC3438P	
DM7820J		MC75140P1	DS55108J	MC55108L		DS8839J		MC8T28L
DM7822J		MC1489AL	DS55108W		MC55108L	DS8839N		MC8T28P
DM7837J		MC3437L	DS55110J		MC75S110L	D\$8887J	•	MC3490P
DM7838J		MC3438L	DS55121J		MC8T13L	DS8887N		MC3490P
DM7838J			DS551213 DS55121W					
		MC3490P			MC8T13L	DS8889J		MC3491P
DM7887N		MC3490P	DS55122J		MC8T14L	DS8889N		MC3491P
DM7889J		MC3491P	DS55122W	MOLECOOL	MC8T14L	DS8897J		MC3494P
DM7889N		MC3491P	DS55325J	MC55325L		DS8897N		MC3494P

1-12

HA1199 -LM117H

	MOTOROLA	MOTOROLA		MOTOROLA DIRECT	MOTOROLA SIMILAR			MOTOROLA SIMILAR REPLACEMENT
PART NO.		REPLACEMENT	PART NO.	LF156J	REPLACEMENT	PART NO.	LF357H	REPLACEMENT
HA1199	HA1199		LF156JG	LF 156H		LF357N	LF357N	
ICB8000C		LM111J	LF156L	LF157AH		LF357P	LF357N	
ICB8001C		LM111J	LF157AH			LH0001ACH		MC1776CG
(CB8741C		MC1741CG	LF157AJG	LF157AJ LF157AH		LH0001AH		MC1776G
ICH8500ATV		MC1776CG	LF157AL	LF157H		L HOOD LACE		MC1776CG
ICH8500TV		MC1776CG	LF157H	LF157J		LH0001AD		MC1776G
ICL101ALND		LM101AH	LF157JG	LF1575		LH0001ACF		MC1776CG
ICL101ALNF		LMIOTAH	LF157L LF252D	Lr Iarn	LF255J	LH0001AF		MC1776G
ICL101ALNT		LM101AH	LF255H	LF255H	LI 2000	LH0002CH		MC1538R
ICL301ALNP		LM301AH	LF255JG	LF255J		LH0002H		MC1538R
ICL301ALNT		LM301AH	LF255L	LF255H		LH0004CH		MC1436G
ICL741CLNP		MC1741CP1	LF255P	LF255J		LH0004H		MC1536G
ICL741CLNT		MC1741CP1	LF256H	LF256H		LH0042CH		MC1776G
ICL741LNDP		MC1741L MC1741L	LF256JG	LF256J		LH101F		MC1741F
ICL741LNFB			LF256L	LF256H		LH101H		MC1741G
ICL741LNTY		MC1741L LM111J	LF256P	LF256J		LH201F		MC1741F
ICL8001CTZ		LM111J	LF257H	LF257H		LH201H		MC1741G
ICL8001MTZ		MC1709CG	LF257JG	LF257J		LH740ACH		LF355H
ICL8007CTA		MC1709CG	LF257L	LF257H		LH740AH		LF 155H
ICL8007MTA			LF257P	LF257J		LH2101AD		MC1537L
ICL8008CPA		LM301AN LM301AN	LF347N	MC34004P		LH2101AF		MC1537L
ICL8008CTY		MC1594G	LF347AN	MC34004AP		LH2201AD		MC1537L
ICL8013A		MC 1594G MC 1594G	LF347BN	MC340048P		LH2201AF		MC1537L
ICL8013B		MC1594G MC1594G	LF351H	MC34001G		LH2301AD		MC1437L
ICL8013C		LM301AN	LF351AH	MC34001AG		LH2301AF		MC 1437L
ICL8017CTW		LM301AN	LF351BH	MC34001BG		LM100F		LM 105H
ICL6017MTV ICL8021C	N	MC1776G	LF351N	MC34001P		LM 100H		LM105H
		MC1776G	LF351AN	MC34001AP		LM101AD		LM101AH
ICL8021M ICL8022C		MC1776G	LF351BN	MC34001BP		LM101AF		LM101AH
ICL8022C		MC1776G	LF352D	1100100101	LF355J	LM 101AH	LM101AH	
ICL8022M		MC1776G	LF353H	MC34002G	2.0000	LM 101AJ		LM101AJ
ICL8043CDE		MC1776G	LF353AH	MC34002AG		LM101AJ-14	1	LM101AJ
ICL8043CPE		MC1776G	LF3538H	MC34002BG		LM101AJG	LM101AJ	
ICL8048CDE		MC1776G	LF353N	MC34002P		LM101AL	LM101AH	
ICL8048DPE		MC1776G	LF353AN	MC34002AP	I	LM101D		LM101AJ
H510111E	•	MC1545G	LF353BN	MC340028P		LM101F		LM101AH
IH5101ME		MC1545G	LF355AH	LF355AH		LM101H	LM101AH	
ITT641		MC1385P	LF355AJG	LF355AJ		LM101J-14		LM101AJ
ITT652	MC1411P		LF355AL	LF355AH		LM104F		LM 104H
111654	MC1412P		LF355AP	LF355AN		LM104H	LM 104H	
1TT656	MC1413P		LF355BH	LF3558H		LM104J		LM104H
ITT 1330	MC1330P		LF355BJ	LF355BJ		LM104L	LM104H	
ITT 1352	MC1352P		LF355BN	LF355BN		LM105F		LM105H
1773064	MC1364P		LF355H	LF355H		LM 105H	LM 105H	
ITT3065	MC1358P		LF355JG	LF355J		LM105JG		LM 105H
ITT3066		MC1399P	LF355L	LF355H		LM105L	LM 105H	
ITT3701		TDA1190Z	LF355N	LF355N		LM 106H		MC1710G
ITT3707		MC1399P	LF355P	LF355N		LM107F		LM107H
ITT3710		MC1391P	LF356AH	LF356AH		LM107H	LM 107H	
ITT3714		MC1394P	LF356AL	LF356AH		LM107L	LM107H	
L144AP		LM324N	LF356AJG	LF356AJ		LM108AD	LM 108AJ	
L201	MC1411P		LF356AP	LF356AN		LM 108AF	LM108AF	
L202	MC1412P		LF356BH	LF356BH		LM 108AH	LM 108AH	
L203	MC1413P		LF356BJ	LF356BJ		LM108AJ	LM108J-8	
LD111CJ	MC1405L		LF356BN	LF356BN		LM108D	LM108J	
LF 152D		LF155J	LF356H	LF356H		LM108F	LM108F	
LF155AH	LF155AH		LF356JG	LF356J		LM 108H	LM108H	
LF155AJG	LF 155AJ		LF356L	LF356H		LM109H	LM 109H	
LF155AL	LF155AH		LF356N	LF356N		LM109K	LM109K	
LF155H	LF155H		LF356P	LF356N		LM109LA	LM109K	
LF155JG	LF155J		LF357AH	LF357AH		LM111D	LM111J LM111H	
LF155L	LF155H		LF357BH	LF357BH		LM111H		MC1556L
LF156AH	LF156AH		LF357BJ	LF357BJ LF357BN		LM1120		MC 1556L
LF156AJG	LF156AJ		LF357BN LF357H	LF357H		LM112P		MC 1556G
LF156AL	LF156AH		LF357JG	LF357J		LM117H	LM117H	morecod
LF156H	LF156H		F1.03190	LI 9919		£		

	MOTOROLA	MOTOROLA		MOTOROLA	MOTOROLA		MOTOROLA	MOTOROLA
PART NO.	DIRECT REPLACEMENT	SIMILAR	0407 NO	DIRECT	SIMILAR	0	DIRECT	SIMILAR
LM117K	LM117K	HEPLAGEMENT	PART NO.	REPLACEMENT	REPLACEMENT LM201AH	PART NO. LM239D	REPLACEMENT LM239J	REPLACEMENT
LM118D		MC1741SL	LM201AH	LM201AH		LM239J	LM239J	
LM118F		MC1741SL	LM201AJ		LM201AJ	LM240LAH-	5. 0	MC78L05ACG
LM118H		MC1741SG	LM201AJG	LM201AJ		LM240LAH-0		MC78L06CG
LM120H-5.0	LM 120H-5.0		LM201AL	LM201AH		LM240LAH-		MC78L08ACG
LM120H-5.2	1 14 10011 6 0	MC7905.2CK	LM201AN	12/001441	LM201AN	LM240LAH-	-	MC78L12ACG
LM120H-6.0 LM120H-8.0	LM 120H-6.0 LM 120H-8.0		LM201AP	LM201AN	LM201AJ	LM240LAH-1 LM240LAH-1		MC78L15ACG MC78L18ACG
LM120H-0.0	LM 120H-12		LM201D		LM201AJ	LM240LAH-2		MC78L24ACG
LM120H-15	LM120H-15		LM201F		LM201AH	LM240LAZ-5		MC78L05ACP
LM120H-18	LM120H-18		LM201H	LM201AH	-	LM240LAZ-6		MC78L06ACP
LM120H-24	LM120H-24		LM201J	LM201AJ	,	LM240LAZ-8	.0	MC78L08ACP
LM120K-5.0	LM120K-5.0		LM201J-14		LM201AJ	LM240LAZ-1		MC78L12ACP
LM120K-5.2		MC7905.2CK	LM204H	LM204H		LM240LAZ-1		MC78L15ACP
LM120K-6.0	LM120K-6.0		LM204F		LM204H	LM240LAZ-1	-	MC78L 18ACP
LM120K-8.0	LM120K-8.0		LM205F LM205H	LM205H	LM205H	LM240LAZ-2	4	MC78L24ACP
LM120K-12 LM120K-15	LM 120K-12 LM 120K-15		LM205H	LM20071	MC1710CG	LM243H LM245K		MC1536G MC7905CK
LM120K-15	LM 120K-15		LM2007F		LM207H	LM245K	LM248J	WC1903CK
LM120K-24	LM120K-18		LM207H	LM207H	LWEVIII	LM248J	LM248J	
LM122F	CHILDREE	MC1555G	LM208AD	LM208AJ		LM249D	CINE 100	MC4741L
LM122H		MC1555G	LM208AF	LM208AF		LM249J		MC4741L
LM124AD		LM124J	LM208AH	LM208AH		LM258AH		LM258H
LM124AF		LM124J	LM208AJ	LM208AJ-8		LM258H	LM258H	
LM 124AJ		LM 124J	LM208D		LM208J-8	LM2901N	LM2901N	
LM124D	LM124J		LM208F	LM208F		LM300F		LM305H
LM 124F		LM124J	LM208H	LM208H		LM271H		MC 1590G
LM124J	LM 124J	10.5000	LM209K	LM209K		LM300H		LM305H
LM125H LM126H		MC 1568G MC 1568G	LM209H	LM209H LM211J		LM301AD LM301AF		LM301AJ LM301AH
LM128H		MC1568G	LM211H	LM211H		LM301AF	LM301AH	LMOUIAN
LM 139AD	LM 139AJ		LM212D	FACT 1111	MC 1556L	LM301AJ	LM301AJ	
LM139AJ	LM 139AJ		LM212F		MC1556L	LM301AJG	LM301AJ	
LM139D	LM 139J		LM212H		MC1456G	LM301AL	LM301AH	
LM 139J	LM139J		LM217H	LM217H		LM301AN	LM301AN	
LM140K-5.0	LM140K-5.0		LM217K	LM217K		LM301AP	LM301AN	
LM140K-6.0	LM140K-6.0		LM218D		MC1741SL	LM302H	LM310H	
LM140K-8.0	LM 140K-8.0		LM218F		MC1741SL	LM304F		LM304H
LM140K-12	LM 140K-12	7	LM218H LM220H-5.0		MC1741SG	LM304H	LM304H	
LM140K-15 LM140K-18	LM 140K-15 LM 140K-18		LM220H-5.2		MC7905CK MC7905,2CK	LM304J LM304L	LM304H	LM304H
LM140K-24	LM140K-24		LM220H-6.0		MC7906CK	LM304N	64130411	LM304H
LM140LAH-5.		MC78L05ACG	LM220H-8.0		MC7908CK	LM305AH		LM305H
LM 140LAH-6.		MC78L06ACG	LM220H-12		MC7912CK	LM305AJG		LM305H
LM 140LAH-8.	Ó	MC78L08ACG	LM220H-15		MC7915CK	LM305AL		LM305H
LM 140LAH-12	2	MC78L12ACG	LM220H-18		MC7918CK	LM305AP		LM305H
LM 140LAH-15		MC78L15ACG	LM220H-24		MC7924CK	LM305F		LM305H
LM140LAH-18		MC78L18ACG	LM220K-5.0		MC7905CK	LM305H	LM305H	
LM140LAH-24		MC78L24ACG	LM220K-5.2		MC7905.2CK	LM305JG	I MOOELL	LM305H
LM143D LM143F		MC 1536G MC 1536G	LM220K-6.0		MC7906CK MC7908CK	LM305L LM305P	LM305H	LM305H
LM 143F		MC 1536G	LM220K-0.0		MC7912CK	LM305P		MC1710CG
LM 145K		MC7905CK	LM220K-15		MC7915CK	LM307F		LM307H
LM148D	LM148J		LM220K-18		MC7918CK	LM307H	LM307H	
LM148J	LM148J		LM220K-24		MC7924CK	LM307L	LM307H	
LM148F		MC4741L	LM222H		MC1555G	LM307N	LM307N	
LM149D		MC4741L	LM224AD		LM224J	LM307P	LM307N	
LM 149F		MC4741L	LM224AF		LM224J	LM308AD	LM308AJ	
LM 158AH		LM 158H	LM224AJ	1 1 1 2 2 4 1	LM224J	LM308AF	1 1/200 414	LM308AJ
LM 158H LM 158JG	LM158H LM158J		LM224D	LM224J	LM224L	LM308AH LM308AH-1	LM308AH	LM308AH
LM1585G	LM 1565		LM224J	LM224J	LMCC4L	LM308AH-2		LM308AH
LM 158L	Cm 13011	MC3450L	LM225H	L	MC1568G	LM308AJ	LM308AJ-8	Emovemi
LM 171H		MC1590G	LM226H		MC1568G	LM308D	LM308J	
LM200F		LM205H	LM228H		MC 1568G	LM308H	LM308H	
LM200H		LM205H	LM239AD	LM239AJ		LM308N	LM308N	
LM201AD		LM201AJ	LM239AJ	LM239AJ		LM309H	LM309H	
							•	

LM117K -LM309H

LM309K -LM741J-14

PART NO.	MOTOROLA DIRECT	MOTOROLA SIMILAR REPLACEMENT	PART NO.	MOTOROLA DIRECT SEPLACEMENT	MOTOROLA SIMILAR REPLACEMENT	PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REPLACEMENT
LM309K	LM309K	HEF CAVEMENT	LM340K-6.0	LM340K-6.0		LM363N		MC3450P
LM309KC	LM309K		LM340K-8.0	LM340K-8.0	,	LM371H		MC 1590G
LM309LA	LM309K		LM340K-12	LM340K-12		LM376JG		LM305H
LM311D	LM311J		LM340K-15	LM340K-15		LM376L	LM305H	
LM311H	LM311H		LM340K-18	LM340K-18		LM376N		LM305H
LM311N	LM311N		LM340K-24	LM340K-24		LM376P		LM305H
LM311N-14	LM311J		LM340KC-5.0			LM386N		MC 1306P
LM312D	LWSTIS	MC1456L	LM340KC-6.0			LM555CH	MC 1455G	
LM312D		MC1456L	LM340KC-8.0			LM555CN	MC1455P1	
		MC1456G	LM340KC-12	MC7812CK		LM555H	MC 1555G	
LM312H		MC 14300	LM340KC-15	MC7812CK		LM556CD	MC3456L	
LM317H	LM317H					LM556CJ	MC3456L	
LM317K	LM317K		LM340KC-18	MC7818CK		LM556CN	MC3456P	
LM317P	LM317T		LM340KC-24	MC7824CK	M070L05400	LM556D	MC3556L	
LM317T	LM317T		LM340LAH-5	1	MC78L05ACG			
LM318D		MC1741SCL	LM340LAH-6.		MC78L06ACG	LM556J	MC3556L	NECCEN
LM3 18F		MC1741SCL	LM340LAH-8.		MC78L08ACG	LM565CH		NE565N
LM3 18H		MC1741SCG	LM340LAH-12		MC78L12ACG	LM565CN	NE565N	
LM318N		MC1741SCP1	LM340LAH-15	5	MC78L15ACG	LM565H		NE565N
LM320H-5.0	LM320H-5.0		LM340LAH-18	3	MC78L18ACG	LM703LN		MC 1350P
LM320H-5.2		MC7905.2CK	LM340LAH-24	4	MC78L24ACG	LM709AH	MC 1709AG	
LM320H-6.0	LM320H-6.0		LM340LAZ-5.	0	MC78L05ACP	LM709AJ	MC1709AL	
LM320H-8.0			LM340LAZ-6.	0	MC78L06ACP	LM709CH	MC 1709CG	
LM320H-12	LM320H-12		LM340LAZ-8.	0	MC78L08ACP	LM709CJ	MC 1709CL	
LM320H-15	LM320H-15		LM340LAZ-12	2	MC78L 12ACP	LM709CN	MC1709CP2	2
LM320H-18	LM320H-18		LM340LAZ-15		MC78L15ACP	LM709CN-8	MC1709CP1	
LM320H-24	LM320H-24		LM340LAZ-18		MC78L18ACP	LM709H	MC1709G	
LM320K-5.0			LM340LAZ-24		MC78L24ACP	LM709J	MC1709L	
			LM340T-5.0	MC7805CT		LM710CH	MC 17 10CG	
LM320K-6.0			LM340T-6.0	MC7806CT		LM710CN	MC 1710CP	
LM320K-8.0			LM340T-8.0	MC7808CT		LM710H	MC 17 10G	
LM320K-12	LM320K-12		LM340T-12	MC7803CT		LM711CH	MC1711CG	
LM320K-15	LM320K-15		LM340T-15	MC7812CT		LM711CN	MC1711CP	
LM320K-18	LM320K-18		LM340T-18			LM711H	MC1711G	
LM320K-24	LM320K-24			MC7818CT		LM723CD	LM723CJ	
LM320MP-5.		MC7905CT	LM340T-24	MC7824CT		LM723CD	LM723CH	
LM320MP-5		MC7905.2CT	LM341P-5.0	MC78M05CT				
LM320MP-6		MC7906CT	LM341P-6.0	MC78M06CT		LM723CJ	LM723CJ	
LM320MP-8.		MC7908CT	LM341P-8.0	MC78M08CT		LM723CN	LM723CN	
LM320MP-12		MC7912CT	LM341P-12	MC78M12CT		LM723D	LM723J	
LM320MP-1	5	MC7915CT	LM341P-15	MC78M15CT		LM723H	LM723H	
LM320MP-1	8	MC7918CT	LM341P-18	MC78M18CT		LM723J	LM723J	
LM320MP-24	4	MC7924CT	LM341P-24	MC78M24CT		LM733CD	MC1733CL	
LM320T-5.0	LM320T-5.0		LM342P-5.0	MC78M05CT		LM733CH	MC1733CG	
LM320T-5.2		MC7905.2CT	LM342P-6.0	MC78M06CT		LM733CJ	MC1733CL	
LM320T-6.0	LM320T-6.0		LM342P-8.0	MC78M08CT		LM733CN	MC1733CP	
LM320T-8.0	LM320T-8.0		LM342P-12	MC78M 12CT		LM733D	MC 1733L	
LM320T-12	LM320T-12		LM342P-15	MC78M15CT		LM733H	MC1733G	
LM320T-15	LM320T-15		LM342P-18	MC78M18CT		LM733J	MC1733L	
LM320T-18	LM320T-18		LM342P-24	MC78M24CT		LM741AD		MC1741L
LM320T-24	LM320T-24		LM343D		MC 1436G	LM741AF		MC 174 1F
LM322H		MC1455G	LM343H		MC1436G	LM741AH		MC 1741G
LM322N		MC1455P1	LM345K		MC7905CK	LM741AJ-1	4	MC1741L
LM324AJ		LM324J	LM348D	LM348J		LM741CD	LM1741CJ	
LM324AJ		LM3240	LM348J	LM348J		LM741CF	LM741CF	
	LM324J	LWJZ4H	LM348N	· LM348N		LM741CH	LM741CH	
LM324J		MC3403P	LM349D	2004014	MC4741CL	LM741CJ	LM741CJ	
LM324N	LM324N		LM349D		MC4741CL	LM741CJ-1		4
LM325AN		MC1468L	LM3495		MC4741CL	LM741CN	LM741CN	
LM325H		MC1468G			LM358H	LM741CN-		4
LM325N		MC1468L	LM358AH		LM356N	LM741CN-	LM741J-14	•
LM326H		MC1468G	LM358AN	MOLOLI	LWOODN		Lini 7 13-14	MC1741CL
LM326N		MC1468L	LMC58H	LM358H		LM741ED		MC 1741CC
LM328AN		MC1468L	LMC58JG	LM358J		LM741EH		
LM328H		MC1468G	LM358L	LM358H		LM741EJ		MC1741CU
LM328N		MC1468L	LM358N	LM358N		LM741EJ-1	4	MC1741CL
LM339AD	LM339AJ		LM358P	LM358N		LM741EN		MC1741CP1
	1 8 8000 4 61		LM363AJ		MC3450L	LM741F	LM741F	
LM339AN	LM339AN							
LM339AN LM339N LM340K-5.0	LM339N		LM363AN LM363J		MC3450P MC3450L	LM741H	LM741H LM741J-14	

							2	
	MOTOROLA	MOTOROLA SIMILAR		MOTOROLA DIRECT	MOTOROLA		MOTOROLA	MOTOROLA SIMILAR
PART NO.	REPLACEMENT	REPLACEMENT		REPLACEMENT		PART NO.	REPLACEMENT	REPLACEMENT
LM746N	1474701	MC1323P	LM3071N LM3075N	M01075D	MC1399P	LM75108AJ	MC75108L	
LM747CD LM747CF	LM747CJ		LM3086N	MC1375P MC3386P		LM75108AN	MC75108P	
	LM747CF		LM30001	MC33D0P	MC1200D	LM75110J	MC75S110L MC75S110P	
LM747CH	LM747CH		LM3126		MC1399P	LM75110N		
LM747CJ	LM747CJ				MC3346P	LM75121J	MC8T13L	
LM747CN	LM747CN		LM3146A	14000040	MC3346P	LM75121N	MC8T13P	
LM747D	LM747J		LM3301N	MC3301P		LM75122J	MC8T14L	
LM747F	LM747F		LM3302J	MC3302L		LM75122N	MC8T14P	
LM747H	LM747H		LM3302N	MC3302P		LM75123J	MC8T23L	
LM747J	LM747J		LM3401N	MC3401P		LM75123N	MC8T23P	
LM748CH	MC1748CG		LM3900N		MC3401P	LM75124J	MC8T24L	
LM748CJ	MC1748CU		LM3905N		MC1455P1	LM75124N	MC8T24P	
LM748CN	MC1748CP1		LM4250CH		MC1776CG	LM75207L		MC75107L
LM748H	MC1748G		LM4250CN		MC1776CP1	LM75207N		MC75107P
LM748J	MC1748U		LM4250H		MC1776G	LM75208J		MC75108L
LM 1310N	MC 1310P		LM5525J	MC5525L		LM75208N		MC75108P
LM 1351N	MC1351P		LM5528J	MC5528L		LM75324J		MC75325L
LM 1391N	MC1391P		LM5529J	MC5529L	. '	LM75324N		MC75325P
LM 1394N	MC1394P		LM5534J	MC5534L		LM75325J	MC75325P	
LM 14 14J	MC1414L		LM5535J	MC5535L	· · ·	LM75325N	MC75325L	
LM 14 14N	MC1414P		LM5538J	MC5538L		LM75450N	MC75450P	
LM1458H	MC1458G		LM5529J	MC5539L		LM75451N	MC75451P	
LM 1458J	MC1458U		LM7524J	MC7524L		LM75452N	MC75452P	
LM 1458N	MC1458P1		LM7524N	MC7524P		LM75453N	MC75453P	
LM1458N-14	MC1458P2		LM7525J	MC7525L		LM75454N	MC75454P	
LM 1488J	MC 1488L		LM7805KC	MC7805CK		MC 1310A	MC1310P	
LM1488N	MC1488P		LM7806KC	MC7806CK		MC1408B	MC1408P8	
LM 1489AJ	MC1489AL		LM7808KC	MC7808CK		MC1408F	MC1408L8	
LM1489AN	MC1489AP		LM7812KC	MC7812CK		MC 1458JG	MC 1458U	
LM 1489J	MC1489L		LM7815KC	MC7815CK		MC1458L	MC 1458G	
LM 1489N	MC 1489P		LM7818KC	MC7818CK		MC1458P	MC 1458P 1	
LM 1496H	MC1496G		LM7824KC	MC7824CK		MC 1558JG	MC1558U	
LM 1496J	MC1496L		LM78L05ACH			MC 1558L	MC 1558G	
LM 1496N	MC1496P		LM78L05ACZ			MH0026H		MMH0026CG
LM 1514J	MC1514L		LM78L05CH	MC78L05CG		MH0026CH	MMH0026CG	
LM 1558H	MC1558G	.*	LM78L05CZ	MC78L05CP		MH0026CN	MMH0026CP	
LM1558J	MC 15580		LM78L08ACH			MH0026G	MMHOUZOUP	MMH0026CG
LM 1596H			LM78L08ACZ			MH0026CG		MMH0026CG
LM 1596H	MC1596G MC1596L		LM78L08CH	MC78L08CG		MH0026CG		MMH0026CG
	WC 1990L	MC1210D	LM78L08CZ	MC78L08CP				
LM1800AN		MC1310P	LM78L0002			MH0026CF MIC709-1	MC1700C	MMH0026C1
LM1800N		MC1310P					MC1709G	
LM 1805		MC1385P	LM78L12ACZ			MIC709-5	MC1709CG	
LM 1808N		TDA1190Z	LM78L12CH	MC78L12CG		MIC710-1C	MC1710G	
LM1828N	11040500	MC1323P	LM78L12CZ	MC78L12CP		MIC710-5C	MC1710CG	
LM1841N	MC1356P		LM76L15ACH			MIC711-1C	MC1711G	
LM 1845N		MC1344P	LM78L15ACZ			MIC711-5C	MC1711CG	
LM 1848N		MC1323P	LM78L15CH	MC78L15CG		MIC712-1B	MC1712F	
LM1850N		MC3426L	LM78L15CZ	MC78L15CP		MIC7 12-1C	MC1712G	
LM1900D		MC3301L	LM78L18ACH			MIC7 12-1D	MC 17 12L	
LM2111N	MC1357P		LM78L18ACZ			MIC7 12-5B	MC1712CF	
LM2113N		MC1357P	LM78L18CH	MC78L18CG		MIC712-5C	MC1712CG	
LM2900J		MC3301L	LM78L18CZ	MC78L18CP		MIC712-5D	MC1712CL	
LM2900N		MC3301P	LM78L24ACH			MIC723-1	MC1723G	
LM2902J	LM2902J		LM78L24ACZ			MIC723-5	MC1723CG	
LM2902N	LM2902N		LM78L24CH	MC78L24CG		MIC741-1C	MC1741G	•
LM2904N	LM2904N		LM78L24C2	MC78L24CP		MIC741-1D	MC1741L	
LM2905N		MC1455P1	LM55107AJ	MC55107L		MIC741-5C	MC1741CG	
LM3011H		MC1550G	LM55108AJ	MC55108L		MIC741-5D	MC1741CL	
LM3026		CA3054	LM55109J		MC75S110L	ML101AF		LM101AH
LM3045		MC3346P	LM55110J		MC75S110L	ML101AM		LM101AH
LM3046N	MC3346P		LM55121J		MC8T13L	ML101AT	LM101AH	
LM3054	CA3054		LM55122J		MC8T14L	ML101F		LM101AH
LM3064N	MC1364P		LM55123J		MC8T23L	ML101M		LM101AH
LM3065N	MC 1358P		LM55124J		MC8T24L	ML101T	LM101AH	
LM3066N		MC 1399P	LM55325N	MC55325L		ML107F		LM107H
LM3067N		MC1323P	LM75107AJ	MC75107L		ML107M		LM107H
LM3070N		MC 1399P	LM75107AN	MC75107P		ML107T	LM 107H	

LM746N -- ML107T

.

ML108AF --- OP-08B

	MOTOROLA DIRECT	MOTOROLA SIMILAR	PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR	PART NO.	MOTOROLA DIRECT	MOTOROLA SIMILAR REPLACEMENT
PART NO. ML108AF	REPLACEMENT	MC1556G	ML741AT	REPLACEMENT	MC1556G	N5747F	MC1747CL	THE ENGLISH
ML 108AM	LM108AJ	MO 13300	ML741CP	MC1741CP2	1101000	N5748A		MC1747CG
ML 108AM	LM108AH		ML741CS	MC1741CP1		N5748T	MC 1748CG	
ML108M	LM 108J		ML741CT	MC1741CG		N8T13B	MC8T13P	
	LM 106J		ML741F	MC1741CG		N8T 13P	MC8T13L	
ML108T			ML741M	MC 1741L		N8T 14B	MC8T14P	
ML111M	LM111J			MC1741G		N8T14E	MC8T14L	
ML111S		LM111J	ML741T			N8T 15A	MC0114L	MC 1488L
ML111T	LM111H		ML747CP	MC1747CL				MC 1488L
ML118F		MC1741SG	ML747CT	MC1747CG		N&T15F		
ML118M		MC1741SG	ML747F	MC1747F		N8T16A	LLCCTCCD	MC1489L
ML118T		MC1741SG	ML747M	MC1747L		N8T23B	MC8T23P	
ML201AF		LM201AH	ML747T	MC1747G		N8T23E	MC8T23L	
ML201AM		LM201AH	ML748CP		LM301AN	N8T24B	MC8T24P	
ML201AT	LM201AH		ML748CS	LM301AN		N8T24E	MC8T24L	
ML201F		LM201AH	ML748CT	MC1748CG		N8T26AB	MC8T26AP	
ML201M		LM201AH	ML748F		MC1748G	N8T26AE	MC8T26AL	
ML201T	LM201AH		ML748M		MC 1748G	N8T268	MC8T26AP	
ML207F		LM207H	ML748T	MC1748G		N8T28B	MC8T28P	
ML207M		LM207H	ML1436T	MC 1436G		N8T37A	MC3437P	
ML207T	LM207H		ML1437P	MC 1437P		N8T38A	MC3438P	
ML208AF	21120111	MC1556G	ML1458P	MC 1458P2	1 A.	N8T95B	MC8T95P	
	LM208AJ	1010300	ML1458S	MC 1458P 1		N8T95F	MC8T95L	
ML208AM			ML 14585 ML 1458T	MC 1458G		N8T96B	MC8T96P	
ML208AT	LM208AH		ML 1488M	MC1488L		N8T96F	MC8T96L	
ML208M	LM208J					N8T97B	MC8T97P	
ML208T	LM208H		ML1489AM	MC1489AL	•			
ML211M	LM211J		ML1489M	MC 1489L	τ,	N8T97F	MC8T97L	
ML211S	LM211N		ML 1536T	MC 1536G		N8T98B	MC8T98P	
ML211T	LM211H		ML1537M	MC1537L		N8T98F	MC8T98L	
ML218F		MC1741SG	ML1558M	MC1558L		NE501A		MC1733CL
ML218M		MC1741SG	ML1558T	MC1558G		NE501K		MC1733CG
ML218T		MC1741SG	ML3046P	MC3346P		NE515A		MC 1420G
ML301AP		LM301AN	ML4250T		MC1776G	NE5 15G		MC 1520F
ML301AS	LM301AN		ML4250CS		MC1776CG	NE515K		MC1420G
ML301AT	LM301AH		ML4250CT		MC1776CG	NE516A		MC1420G
ML301P		LM301AN	ML4251T		MC1776G	NE516G		MC 1520F
ML301S	LM301AN		ML4251CS		MC1776CG	NE516K		MC1420G
ML301T	LM301AN		ML4251CT		MC1776CG	NE531G		MC1439G
ML307P		LM307H	ML6503M		MC1537L	NE531T		MC1439G
ML307P	LM307N	LINGOTT	ML7503M		MC1437L	NE531V		MC1439P
	LM307H		N5065A	MC 1358P		NE533G		MC1776CG
ML307T			N5070B	WO 1000F	MC1399P	NE533T		MC1776CG
ML308AM	LM308AJ	•						MC1776CG
ML308AT	LM308AH		N5071A		MC1399P	NE533V		
ML308M	LM308J		N5072A		MC 1323P	NE537G		MC1456G
ML308T	LM308H		N5556T	MC 1456G		NE537T		MC 1456G
ML311M	LM311J		N5556V	MC1456P1		NE540L		MC1554G
ML311P	LM311J		N5558F	MC1458L		NE550A		MC1723CP
ML311S	LM311N		N5558T	MC1458G		NE550L	-	MC1723CG
ML311T	LM311H		N5558V	MC1458P1		NE555JG	MC1455U	
ML318M		MC1741SCP1	N5595A	MC 1495L		NE555L	MC 1455G	
ML318T		MC1741SCG	N5595F	MC 1495L		NE555P	MC1455P1	
ML709AF	MC1709AF		N5596A	MC 1496L		NE555T	MC1455G	
ML709AM	MC1709AL		N5596K	MC1496G		NE555V	MC1455P1	
ML709AT	MC1709AG		N5709A	MC1709CP2		NE556A	MC3456P	
ML709CP	MC1709CP2		N5709G	MC1709CF		NE5561	MC3456L	
ML709CF	MC1709CG		N5709T	MC1709CG		NE565A	NE565N	
			N5709V	MC1709CP1		NE565K		NE565N
ML709F ML709M	MC1709F MC1709L		N5710A	MC1710CP		NE592A	NE592A	
			N5710T	MC1710CG		NE592K	NE592K	
ML709T	MC1709G	M0170001	N5711A	MC1711CP		OP-01C		MC 1536
ML723CF	110-7000	MC1723CL				OP-01G		MC 1536
ML723CM	MC1723CL		N5711K	MC1711CG	NO 170200			
ML723CP	MC1723CL		N5723A		MC1723CP	OP-01H		MC 1536
ML723CT	MC1723CG		N5723T	MC1723CG		OP-01J		MC 1536G
ML723F		MC1723L	N5733K	MC1733CG		OP-01L		MC 1536G
ML723M	MC 1723L		N5741A	MC1741CP2		OP-01P		MC1536P
ML723T	MC1723G		N5741T	MC1741CG		OP-08		MC1776
		MC1556G	N5741V	MC1741CP1		OP-08A		MC 1776
ML741AF		MO 1330G	1	1101141011		OP-08B		MC1776

	MOTOROLA	MOTOROLA		MOTOROLA	MOTOROLA		MOTOROLA	MOTOROLA
	DIRECT	SIMILAR		DIRECT	SIMILAR		DIRECT	SIMILAR
PART NO. OP-08C	REPLACEMENT	MC1776	PART NO. 1 RC75110DP	MC75S110P	REPLACEMENT	PART NO. SE533G	REPLACEMENT	REPLACEMENT MC1776G
OP-08E		MC1776	RC75325DD	MC75325L		SE533T		MC1776G
PA239A	,	MC1303P	REF-01CJ		C1404U10	SE537G		MC1556G
RC702T	MC1712CG		REF-01DJ		C1404U10	SE537T		MC1556G
RC709D	MC1709CL		REF-01J		C1504AU10	SE550L		MC1723G
RC709DN	MC1709CP1		REF-01HJ		C1404AU10	SE555JG	MC 1555U	
RC709DP	MC1709CP2		REF-02CJ		C1404U5	SE555L	MC1555G	
RC709T	MC1709CG		REF-02DJ		C1404U5	SE555T	MC1555G	
RC710DC	MC1710CL		REF-02HJ		C1404AU5	SE556A	MC3556L	
RC7 t0DP	MC1710CP		REF-02J		C1504AU5	SE565A		MLM565CP
RC710T	MC1710CG		RM702Q	MC1712F		SE565K		MLM565CP
RC711DC	MC1711CL		RM702T	MC1721G		SE592A	SE592L	
RC711DP	MC1711CP		RM709D	MC1709L		SE592K	SE592G	
RC711T	MC1711CG		RM709Q	MC1709F		SG100T		MC1723G
RC723D RC723T	MC1723CL	•	RM709T RM710D	MC1709G MC1710L		SG101AD	1 8440 1 414	LM101AH
RC733D	MC 1723CG MC 1733CL		RM710D	MC 17 10L		SG 101AT SG 101J	LM101AH	LM101AH
RC733T	MC1733CG		RM711DC	MC1711L		SG1015	LM101AH	LMIUIAN
RC741D	MC1741CL		RM711T	MC1711G		SG104T	LM 104H	
RC741DN	MC1741CP1		RM723D	MC1723L		SG 105N	LINITOHI	LM 105H
RC741DP	MC1741CP2		RM723T	MC1723G		SG 105T	LM 105H	CWHOOT
RC741Q	MC1741CF		RM733D	MC1733L		SG107J	2	LM107H
RC741T	MC1741CG	۰.	RM733T	MC1733G		SG107T	LM107H	
RC747D	MC1747CL	•	RM741D	MC1741L		SG108AJ	LM108AJ	
RC747T	MC1747CG		RM741DP	MC1741P		SG108AT	LM 108AH	
RC748T	MC1748CG		RM741Q	MC1741F		SG108J	LM 108J	
RC1414DC	MC1414L		RM741T	MC1741G		SG 108T	LM108H	
RC 14 14DP	MC1414P		RM747D	MC1747L		SG 109K	LM 109K	
RC1488DC	MC1486L		RM747T	MC1747G		SG 109T	LM 109H	
RC1489ADC	MC1489AL		RM748T	MC1748G		SG111D	LM111J	
RC1489DC	MC1489L		RM1514DC	MC1514L		SG111T	LM111H	
RC8T13DD	MC8T13L		RM1537D	MC1537L	MOREORI	SG118J		MC1741SL
RC1437D	MC1437L		RM4136D RM4136J		MC3503L	SG118T	111100/ 05	MC1741SG
RC 1437DP RC 1458DN	MC1437P MC1458P1		RM4195T		MC3503L MC 1566G	SG120K-05 SG120K-5.2	LM120K-05	MC7905.2CK
RC1458T	MC 1458G		RM4195TK		MC 1568R	SG 120K-5.2	LM 120K-12	MC/ 503.20K
RC1556T	MC1456CG		RM4558D	MC4558U	MO 1000H	SG 120K-15	LM 120K-15	
RC1558T	MC1558G		RM4558JG	MC4558U		SG120T-05	LM 120T-05	
RC3302DB	MC3302P		RM455BL	MC4558G		SG120T-5.2	2	MC7905.2CK
RC4131DP		MC1471SCP1	RM4558T	MC4558G		SG120T-12	LM120T-12	
RC4131T		MC1741SG	RM55107AD	MC55107L		SG 120T-15	LM120T-15	
RC4136D		MC3403L	RM55325DD	MC55325L		SG124J	LM124J	
RC4136DP		MC3403P	RV3301DB	MC3301P		SG140K-05	LM140K-5.0	
RC4136J		MC3403L	S8T13E		MC8T13L	SG140K-06	LM 140K-6.0	
RC4136N		MC3403P	S8T14E		MC8T14L	SG 140K-08	LM140K-8.0	
RC4195T		MC1468G	S5556T	MC1556G		SG140K-12	LM140K-12	
RC4195TK		MC1468R	S5558E	MC1558L		SG140K-15	LM140K-15	
RC4444R	MC3416L		S5558T	MC1558G		SG140K-18	LM 140K-18	
RC4558DN	MC4558CP1		S5596F	MC 1596L MC 1596G		SG140K-24	LM 140K-24	1017000
RC4558JG	MC4558CU		S5596K S5709G	MC 1590G MC 1709F		SG200T SG201AD		MC1723G LM201AH
RC4558L RC4558P	MC4558CG MC4558CP1		S5709G	MC 1709F		SG201AD	LM201AN	LMZUIAH
RC4558F	MC4558CG		S5710T	MC1710G		SG201AM	LMZVIAN	LM201AN
RC8T13MP	MC8T13P		S5711K	MC1711G		SG201AT	LM201AH	FUITA IVII
RC8T14DD	MC8T14L		S5723T	MC1723G		SG201J		LM201AH
RC8T14MP	MC8T14P		S5733K	MC1733G		SG20 1M	LM201AN	
RC8T23DD	MC8T23L		S5741T	MC1741G		SG201N		LM201AN
RC8T23MP	MC8T23P		SE501K		MC1733G	SG201T	LM201AH	
RC8T24DD	MC8T24L		SE515G	1	MC1520F	SG204T	LM204H	
RC8T24MP	MC8T24P		SE515K		MC1520G	SG205N		LM205H
RC75107AD	MC75107L		SE516A		MC1520G	SG205T	LM205H	
RC75107ADP			SE516G		MC1520F	SG207J		LM207H
RC75108AD	MC75108L		SE516K		MC1520G	SG207M		LM207H
RC75108ADP	MC75108P	MC750110	SE528E SE528R		MC 1544L MC 1544L	SG207N SG207T	LM207H	LM207H
RC75109D RC75109DP		MC75S110L MC75S110P	SE520H		MC 1544L MC 1539G	SG2071	LM208AJ	
RC75119DP	MC75S110L	MOTOGILUP	SE531T		MC1539G	SG208AM	LM208AJ-8	
10131100	MOTOGTICE		320011				Carlo Conto-O	

SG20BAT -SG3501AT

PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR	PART NO.	MOTOROLA DIRECT	MOTOROLA SIMILAR REPLACEMENT	PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REPLACEMENT
SG208AT	LM208AH	ACPLACEMENT	SG710CN	MC1710CP	AEPLAGEMENT	SG1456T	MC1456G	nur undemunt
SG208J	LM208J		SG710CT	MC1710CG		SG 1458M	MC1458P1	
SG208M	LM208J-8		SG710D	MC1710L		SG 1458T	MC1458G	
SG208T	LM208H		SG710N	MC1710CP		SG1468J	MC1468L	
SG209K	LM209K		SG7 10T	MC1710G		SG1468N	MC1468L	
SG209T	LM209H	1	SG711CD	MC1711CL		SG1468T	MC1468G	
SG211D	LM211J		SG711CN	MC1711CP		SG 1495D	MC1495L	
SG211M	LM211N		SG711CT	MC1711CG		SG1495N	MC1495L	
SG211T	LM211H		SG711D	MC1711L		SG 1496D	MC 1496L	
SG2 18J		MC1741SL	SG711N	MC1711CP		SG1496N		MC1496L
SG218M		MC1741SL	SG711T	MC1711G		SG1496T	MC1496G	
SG218T		MC1741SG	SG723CD	MC1723CL		SG1501AD		MC1568L
SG224J	LM224J		SG723CN	MC1723CP		SG1501AT		MC1568G
SG224N	LM224N		SG723CT	MC1723CG		SG1501D	MC1568L	
SG300N		MC1723CP	SG723D	MC1723L		SG1501T	MC1568G	MC 15001
SG300T		MC1723CG	SG723T	MC1723G		SG1502D		MC 1568L
SG301AD		LM301AH	SG733CD	MC1733CL		SG1502N	140460011	MC1568L
SG301AM	LM301AN		SG733CN		MC1733CP	SG1503	MC1503U	MC2500
SG301AN		LM301AN	SG733CT	MC1733CG		SG1524J SG1536T	MC1536G	MC3520L
SG301AT	LM301AH		SG733D	MC1733L	110 17001	SG15361 SG1556T	MC1536G MC1556G	
SG304T	LM304H	1 1420511	SG733N	MC 17000	MC1733L	SG15561	MC1558G	
SG305AT		LM305H	SG733T	MC1733G		SG1595D	MC1595L	
SG305N		LM305H	SG741CD	MC1741CL		SG 15950	MC 1596L	
SG305T	LM305H	1 10071	SG741CF	MC1741CF MC1741CP1		SG 1596T	MC 1596G	
SG307J	1 4400751	LM307N	SG741CM			SG1660D	MO 13300	LM301AH
SG307M SG307N	LM307N	1 149071	SG741CN	MC1741CP2 MC1741CG		SG1660J		LM308J
SG307N SG307T	LM307H	LM307N	SG7410	MC1741CG		SG 1660M		LM308N
SG308AJ	LM308AJ		SG741F	MC1741F		SG1660T		LM308H
SG308AM	LM308AN		SG7417	MC1741G		SG1760D		LM307H
SG308AT	LM308AH	,	SG741SCM	MC 174 1SCP	1	SG1760F		LM307H
SG308J	LM308J		SG741SCT	MC1741SCG		SG1760J		LM308J
SG308M	LM308N		SG741ST	MC1741SG		SG 1760M		LM&08N
SG308T	LM308H		SG747CJ	MC1747CL		SG 1760T		LM308H
SG309K	LM309K		SG747CN	MC1747CP2		SG2118AJ		LM208AJ
SG309T	LM309H		SG747CT	MC1747CG		SG2118AM		LM208AJ-8
SG311D	LM311J		SG747J	MC1747L		SG2118AT		LM208AH
SG311M	LM311N		SG747T	MC 1747G		SG2118J		LM208J
SG311T	LM311H		SG748CD		MC1748CP1	SG2118M		LM208J-8
SG318J		MC1741SCL	SG748CM		MC1748CP1	SG2118T		LM208H
SG318M		MC1741CP1	SG748CN		MC1748CP1	SG2250T		MC1776G
SG318T		MC1741CG	SG748CT	MC1748CG		SG2401N		MC1433G
SG320K-05	LM320K-5.0		SG748D		MC1748G	SG2402N		MC1494L
SG320K-5.2	2	MC7905.2CK	SG748T	MC1748G		SG2402T		MC1494L
SG320K-12	LM320K-12		SG777CJ		LM308AJ	SG2501AD		MC1468L
SG320K-15		1. A.	SG777CM		LM308AN	SG2501AT		MC1468G
SG320T-05			SG777CN		LM308AN	SG2501D	MC1468L	
SG320T-5.2		MC7905.2CT	SG777CT		L M308AH	SG2501N	MC 1468L MC 1468G	
SG320T-12			SG777J		LIA 108AJ	SG2501T	MC 1400G	MC 1468L
SG320T-15			SG777T		LM10BAH	SG2502D SG2502N		MC 1468L
SG324J	LM324J		SG1118AJ		LM108AJ	SG2502T		MC1468G
SG324N	LM324N		SG1118AT		LM108AH	SG25021	MC1403AU	14000
SG340K-05			SG1118J		LM108J LM108H	SG2503	MOHODAU	MC3520L
SG340K-06			SG1118T SG1217		MC1741G	SG3118AJ		MLM308AL
SG340K-08			SG1217J		MC1741SL	SG3118AM		MLM308AP1
SG340K-12 SG340K-15			SG1217T		MC17415G	SG3118AT		MLM308AG
SG340K-18			SG1250T		MC1776G	SG3118J		MLM308L
SG340K-16			SG1401N		MC1533G	SG3118M		MLM308P1
SG555CM	MC1455P1		SG1401T		MC1533G	SG3118T		MLM308G
SG555CM	MC1455G		SG1402N		MC1594L	SG3250T		MC1776G
SG5555T	MC1555G		SG1402T		MC 1594L	SG3401N		MC1433G
SG556CJ	MC3456L		SG1436CT	MC1436CG		SG3401T		MC1433G
			SG1436M	MC1436U		SG3402N		MC1494L
	MU3430P							
SG556CN	MC3456P MC3556L		SG 1436T	MC1436G		SG3402T		MC1494L
	MC3456P MC3556L MC3556L			MC1436G MC1456CG	- 1	SG3402T SG3501AD SG3501AT	MC1468L MC1468G	MC1494L

		MOTODOLA			10700014			
	MOTOROLA DIRECT	MOTOROLA SIMILAR		MOTOROLA DIRECT	MOTOROLA SIMILAR		MOTOROLA DIRECT	MOTOROLA SIMILAR
PART NO.	REPLACEMENT	REPLACEMENT		REPLACEMENT	REPLACEMENT	PART NO.	REPLACEMENT	REPLACEMENT
SG3501D	MC1468L		SN52709AFA			SN72702L	MC1712CG	
SG3501N	MC1468L		SN52709AJ	MC1709AL		SN72709J	MC1709CL	
SG3501T	MC1468G		SN52709AL	MC1709AG		SN72709L	MC1709CG	
SG3502D		MC1468L	SN52709FA	MC1709F		SN72709N	MC1709CP2	
SG3502G		MC1468G	SN52709J	MC1709L		SN72709P	MC1709CP1	
SG3502N SG3503	A4C 140011	MC1468L	SN52709L	MC1709G		SN72710J	MC 17 10CL	
SG3503 SG3524J	MC1403U	MC3420L	SN52710FA SN52710J	MC1710F MC1710L		SN72710L SN72710N	MC1710CG MC1710CP	
SG4250CM		MC1776CP1	SN52710J	MC 17 10C		SN72711J	MC1710CP MC1711CL	
SG4250CM		MC 1776CG	SN52711FA	MC1711F		SN72711	MC1711CC MC1711CG	
SG4250T		MC1776G	SN52711J	MC1711L		SN72711N	MC1711CP	
SG4501D	MC1468L	Mic (1700	SN52711L	MC1711G		SN72720J	MOTITIO	MC 17 10CL
SG4501N	MC1468L		SN52723FA	MC1723F		SN72720L		MC1710CG
SG4501T	MC1468G		SN52723J	MC1723L		SN72720N		MC1710CP
SG7805CK	MC7805CK		SN52723L	MC1723G		SN72723J	MC1723CL	
SG7805K		MC7805CK	SN52733J	MC1733L		SN72723L	MC1723CG	
SG7806CK	MC7806CK		SN52733L	MC1733G		SN72733J	MC1733CL	
SG7806K		MC7806CK	SN52741FA	MC1741F		SN72733L	MC1733CG	
SG7808CK	MC7808CK		SN52741J	MC1741L		SN72741FA	MC1741CF	
SG7808K		MC7808CK	SN52741L	MC1741G		SN72741J	MC1741CL	
SG7812CK	MC7812CK		SN52747FA	MC1747F		SN74741L	MC1741CG	
SG7812K		MC7812CK	SN52747J	MC1747L		SN72741N	MC1741CP2	
SG7815CK	MC7815CK		SN52747L	MC1747G		SN72741P	MC1741CP1	
SG7815K		MC7815CK	SN52748L	MC1748G		SN72747FA	MC1747CF	
SG7818CK	MC7818CK		SN52770L		MC1556G	SN72747J	MC1747CL	
SG7818K		MC7818CK	SN52771L		MC 1556G	SN72747L	MC 1747CG	
SG7824CK	MC7824CK	•	SN52810FA		MC1710F	SN72747N	MC1747CP2	
SG7824K		MC7824CK	SN52810J		MC1710L	SN72748L	MC1748CG	
SH0013HC		MMH0026CG	SN52810L		MC1710G	SN72748P	MC1748CP1	
SH0013HM		MMH0026G	SN52811FA		MC1711F	SN72770L		MC1456G
SH2001FC		MC75462P	SN52811J		MC1711L	SN72771L		MC1456G
SH2001FM		MC75462P	SN52811L		MC1711G	SN72810J		MC1710CL
SH2001HC		MC75462P	SN55107AJ	MC55107L		SN72810L		MC1710CG
SH2001HM		MC75462P	SN55107BJ		MC55107L	SN72810N		MC1710CP
SH2002FC		MC75462P	SN55108AJ	MC55108L		SN72811J		MC1711CL
SH2002FM		MC75462P	SN55108BJ		MC75108L	SN72811L		MC1711CG
SH2002HC		MC75462P	SN55109J		MC75S110L	SN72811N		MC1711CP
SH2002HM		MC75462P	SN55110J		MC75S110L	SN72905	MC7905CT	
SH2002HC		MC75462P	SN55244J	MC1544L		SN72906	MC7906CT	
SH2200FC		MC75462P	SN55325J	MC55325L		SN72908	MC7908CT	
SH2200FM		MC75462P	SN72301AL	LM301AH		SN72912	MC7912CT	
SH2200HC		MC75462P	SN72301AP	LM301AN		SN72915	MC7915CT	
SH2200HM		MC75462P	SN72304L	LM304H		SN72L022P		LM358N
SH2200PC		MC75462P	SN72305AL		LM305H	SN72L044JA		LM324N
SH8090FM		MC1508L8	SN72305L	LM305H	110/7/001	SN72L044N		LM324N
SN5510FA	MC 1510F		SN72306J		MC1710CL	SN75107AJ	MC75107L	•
SN5510L	MC1510G LM101AH		SN72306L		MC1710CG	SN75107AN SN75107BJ	MC75107P	MC754071
SN52101AL	LM101H		SN72306N SN72307L	LM307H	MC1710CP	SN75107BJ		MC75107L MC75107P
SN52104L	LM 105H		SN72308AL	LM308AH		SN751075N	MC75108L	MGTSTUTP
SN52105L SN52106J	LM 100H	MC 17 10L	SN72308L	LM308H		SN75108AN	MC751082	
SN521065		MC1710G	SN72309L	LM309H		SN75108BJ	WIC73 100P	MC75108L
SN52100L	LM 107H	MCT/ IOG	SN72311L	LM311H		SN75108BN		MC75108P
SN52108AL	LM 108AH		SN72311P	LM311N		SN75121J	MC8T 13L	MOTO TOOP
SN52108L	LM 108H		SN72376L	Entor	LM305H	SN75121N	MC8T 13P	
SN52109L	LM 109H		SN72440J		MC3370P	SN75122J	MC8T14L	
SN52510J	2	MC1710L	SN72440N		MC3370P	SN75122N	MC8T14P	
SN52510L		MC1710G	SN72510J		MC1710CL	SN75123J	MC8T23L	
SN52514J	MC1514L		SN72510L		MC 17 10CG	SN75123N	MC8T23P	
SN52555L	MC1555G		SN72510N		MC1710CP	SN75124J	MC8T24L	
SN52558L	MC 1558G		SN72514J		MC1414L	SN75124N	MC8T24P	
SN52702AFA		MC1712F	SN72514N		MC1414P	SN75125J	MC75125L	
SN52702AJ		MC1712L	SN72555L	MC1455G		SN75125N	MC75125P	
SN52702AL		MC1712G	SN72555P	MC1455P1		SN75126J		MC3481/5L
SN52702FA	MC1712F	•	SN72558L	MC1458G	•	SN75126N		MC3481/5P
SN52702J	MC1712L		SN72558P	MC1458P1		SN75127J	MC75127L	
SN52702L	MC1712G	•	SN72702J	MC1712CL		SN75127N	MC75127P	

	MOTOROLA	MOTOROLA SIMILAR		MOTOROLA DIRECT	MOTOROLA SIMILAR		MOTOROLA DIRECT	MOTOROLA S(MILAR
PART NO.	REPLACEMENT F	REPLACEMENT	PART NO.	REPLACEMENT		PART NO.	REPLACEMENT	REPLACEMENT
SN75128J	MC75128L		SN76130N		MC1303P	TBA520		MC1327P
SN75128N	MC75128P		SN76131N		MC1303P	TBA920		MC1391P
SN75129J	MC75129L		SN76149N		MC1303P	TBA920S		MC1391P
SN75129N	MC75129P		SN76242N SN76243N		MC1399P	TBA940 TBA950		MC1344P
SN75138N	•	MC3443P	SN76243N		MC1399P MC1323P	TBA950 TBA990		MC1344P MC1327P
SN75138J SN75140P	MC75140P1	MC3443P	SN76298N	MC 1398P	MC 1323P	TBA1190Z	TBA 1190Z	MOISZIP
SN75140P SN75150J	MC/SI40PT	MC1488L	SN76514L	MC 1390P	MC1496G	TDA 1190Z	TDA 11902	
SN75150N		MC1488P	SN76514N	MC1496P	WIC 14500	TDA2002	TDA2002	
SN75154J		MC1489L	SN76564N	MC1364P		TL022CJG	IUNEUUE	LM358J
SN75154N		MC1489P	SN76565N	MC1364P		TL022CL		LM358H
SN75188J	MC1488L	MO 1403F	SN76591P	MC1391P		TL022CP		LM358N
SN75188N	MC1488P		SN76594P	MC1394P		TL022MJG		LM158J
SN75189AJ	MC1489AL		SN76600P	MC1350P		TL022ML		LM 158H
SN75189J	MC1489L		SN76642N	MC 1357P		TL044CJ		LM324J
SN75189AN	MC1489AP		SN76644N		MC1352P	TL044CN		LM324N
SN75189N	MC1489P		SN76650N	MC1352P		TL044MJ		LM 124J
SN75207J	11011001	MC75107L	SN76651N	MC 1351P		TL071ACJG		MC34001BU
SN75207N		MC75107P	SN76653N		MC1352P	TL071ACL		MC34001BG
SN75208J		MC75108L	SN76660N		MC1357P	TL071ACP		MC34001BP
SN75208N		MC75108P	SN76665N	MC 1364P		TL07 1BCJG		MC34001AU
SN75261N		MC3245L	SN76666N	MC1358P		TL07 1BCL		MC34001AG
SN75322N		MC3245P	SN76669N	MC1356P		TL071BCP		MC34001AP
SN75362P		MMH0026CP	SN76675N	MC1375P		TL071CJG		MC34001U
SN75365J	MC75365L		SN76678P		MC1355P	TL071CL		MC34001G
SN75365N	MC75365P		SSS101AL		LM101AH	TL071CP		MC34001P
SN75368J	MC75368L		SSS101AJ	LM101AH		TL072ACJG		MC34002BU
SN75368N	MC75368P		SSS 107J	LM107H		TL072ACL		MC34002BG
SN75369P	MMH0026CP1		SSS 107P		LM 107H	TL072ACP		MC34002BP
SN75450AJ	MC75450L		SSS201AJ	LM201AH		TL072BCJG		MC34002AU
SN75450AN	MC75450P		SSS201AL		LM201AH	TL072BCL		MC34002AG
SN75450BN		MC75450P	SSS201AP		LM201AN	TL072BCP		MC34002AP
SN75450N	MC75450P		SSS207J	LM207H		TL072CJG		MC34002U
SN75451AP	MC75451P		SSS207P		LM207H	TL072CL		MC34002G
SN75451P	MC75451P		SSS301AJ	LM301AH		TL072CP		MC34002P
SN75452P	MC75452P		SSS301AL		LM301AH	TL074ACJ		MC34004BL
SN75453P	MC75453P		SSS301AP	LM301AN		TL074ACN		MC34004BP
SN75454P	MC75454P		SSS741BJ		MC1741G	TL074BCJ		MC34004A
SN75460AJ	MC75460L		SSS741BL		MC1741F	TL074BCN		MC34004AP
SN75460AN	MC75460P		SSS741BP	MC1741P2		TL074CJ		MC34004L
SN75461	MC75461		SSS741CJ		MC1741CG	TL074CN		MC34004P MC34001BU
SN75461AP	MC75461P		SSS741CL	1001744000	MC 174 1CF	TL081ACJG		MC34001BG
SN75462	MC75462		SSS741CP	MC1741CP2		TL081ACL		MC34001BP
SN75462AP	MC75462P		SSS741GJ	MC1741SG	MC1741SG	TL081BCJG		MC34001AU
SN75463	MC75463		SSS741GP SSS741J		MC17415G	TL081BCL		MC34001AG
SN75463AP	MC75463P		SSS741J		MC1741F	TL081BCP		MC34001AP
SN75464 SN75464AP	MC75464 MC75464P		SSS741L SSS741P		MC1741P2	TL081CJG		MC34001U
SN75464AP SN75461N	MC75491P		SSS747B2	MC1747F	MAN AND P	TL081CL		MC34001G
SN75466J	MC1411L		SSS747BP		MC1747L	TL081CP		MC34001P
SN75466N	MC1411P		SSS747CK		MC1747CG	TL082ACJG		MC34002BU
SN75467J	MC1412L		SSS747CM		MC1747CF	TL082ACL		MC34002BG
SN75467N	MC1412P		SSS747CP		MC1747CL	TL082ACP		MC34002BP
SN75468J	MC1413L		SSS747GK		MC1747G	TL082BCJG		MC34002AU
SN75468N	MC1413P		SSS747GM	MC1747F		TL082BCL		MC34002AG
SN75475P	MC1472P1		SSS747GP		MC1747L	TL082BCP		MC34002AP
SN75475JG	MC1472U		SSS747L		MC1747F	TL082CJG		MC34002U
SN75491N	MC75491P		SSS747P		MC1747L	TL082CL		MC34002G
SN75492N	MC75492P		SSS1408A-6			TL082CP		MC34002P
SN76000P		MC1306P	SSS1408A-7			TL084ACJ		MC34004BL
SN76104N		MC1310P	SSS1408A-8			TL084ACN		MC34004BP
SN76105N		MC1310P	SSS1458J	MC1458G		TL084BCJ		MC34004AL
SN76111N		MC1310P	SSS1508A-6			TL084BCN		MC34004AP
SN76113N		MC1310P	SSS1558J	MC 1558G	NO 12070	TL084CJ		MC34004L MC34004P
SN76115N	MC1310P		TAA630		MC1327P	TL084CN TL494CJ	TL494CJ	MU04004P
SN76116N		MC1310P	TBA120S		MC1358P MC1352P	TL494CJ	TL494CJ	
SN76117N		MC1310P	104440		MO 1002F	16434014	16424011	

	MOTOROLA	MOTOROLA		MOTOROLA	MOTOROLA		MOTOROLA	MOTOROLA
	DIRECT	SIMILAR		DIRECT	SIMILAR		DIRECT	SIMILAR
PART NO.	REPLACEMENT	REPLACEMENT		REPLACEMENT	REPLACEMENT	PART NO.		REPLACEMENT
TL495CJ	TL495CJ		UL\$2139D		MC 1539G	#A555HC	MC1455G	
TL495CN	TL495CN		ULS2139G		MC1539G	µA555HM	MC 1555G	
TL497CJ		MC3420L	ULS2139H		MC1539L	#A5555TC	MC1455P1	
TL497CN		MC3420P	ULS2139M		MC1439P1	#A556DC	MC3456L	
TL497MJ		MC3520L	UL\$2151D		MC1741G	μA556DM	MC3556L	
UDN5711M	MC1471P1		ULS2151G		MC1741F	#A556PC	MC3456P	
UDN5712M	MC1472P1		ULS2151H ULS2151M		MC1741L	μA702DC μA702DM	MC1712CL	
UDN5713M UDN5714M	MC1473P1		ULS2156D		MC1741CP1 MC1556G	#A702FM	MC1712L MC1712F	
UDN-6144A	MC1474P1	MC3490P	ULS2156G		MC 1556G	#A702FM	MC1712F MC1712CG	
UDN-6164A		MC3490P	ULS2156H		MC 1556G	#A702HM	MC1712CG	
UDN-6184A		MC3490P MC3490P	ULS2156M		MC 1556G	µA702MJ	MC1712G	
UDN-7183A		MC3491P	ULS2157A		MC 1558L	µA702ML	MC1712G	
UDN-7184A		MC3491P	ULS2157H		MC1558L	A709ADM	MC1709AL	
UDN-7186A		MC3491P	ULS2157K		MC 1558G	#A709AFM	MC1709AF	
UHD-490		MC3494P	µA0802DC-1	MC1408L8	1010000	#A709AHM	MC 1709AG	
UHD-491		MC3494P	#A0802DC-2	MC1408L7		µA709AMJ	MC 1709AL	
UKP-490		MC3494P	#A0802DC-3	MC1408L6		µA709AMJG		
UHP-491		MC3494P	µA0802DM-1	MC1508L8		μA709AML	MC1709AG	
UHP-495		MC3490P	#A0802PC-1	MC1408P8		#A709CJ	MC1709CL	
ULN2001A	ULN2001A	11004301	#A0802PC-2	MC 1408P7		µA709CJG	MC1709CU	
ULN2002A	ULN2002A		#A0802PC-3	MC1408P6		#A709CL	MC1709CG	
ULN2003A	ULN2003A		μA101AD		LM101AJ	#A709CN	MC1709CP2	
ULN2004A	ULN2004A		"A 101AF		LM101AJ	#A709CP	MC1709CP1	
ULN2111A	MC 1357P		"A 101AH	LM101AH	2	#A709DC	MC1709CL	
ULN2111N	MC 1357PQ		"A 101D		LM101AJ	µA709DM	MC1709L	
ULN2113A		MC1357P	µA101F		LM101AJ	#A709FM	MC1709F	
ULN2113N		MC1357P	"A101H	LM101AH	2	µA709HC	MC1709CG	
ULN2114A		MC1323P	μA 104HM	LM 104H		µA709HM	MC1709G	
ULN2114K		MC 1323P	µA 105HM	LM105H		#A709MJ	MC1709L	
ULN2114N		MC1323P	μA107H	LM107H		µA709MJG	MC1709U	
ULN2120A		MC1310P	#A 108AD	LM108AJ		µA709ML	MC1709G	
ULN2121A		MC1310P	μA108AF	LM108AF		#A709TC	MC1709CP1	
ULN2122A		MC1310P	4 108AH	LM 108AH		#A709PC	MC1709CP2	
ULN2124A		MC1399P	µA 108D	LM108J		µA7 10DC	MC1710CL	
ULN2125A		MC1344P	µA 108F	LM 108F		µA710DM	MC1710L	
ULN2127A		MC1399P	μA108H	LM108H		#A710HC	MC1710CG	
ULN2128A		MC1310P	μA109KM	LM 109K		μA7 10HM	MC1710G	
ULN2136A	MC 1356P		µA201AD		LM201AJ	"A7 10PC	MC1710CP	
ULN2139D		MC1439G	A201AF ب		LM201AJ	µA711DC	MC1711CL	
ULN2139G		MC1439G	#A201AH	LM201AH		#A711DM	MC1711L	
ULN2139H		MC1439P2	A201D پ		LM201AJ	#A711HC	MC1711CG	
ULN2139M		MC1439P1	µA201F		LM201AJ	µA711HM	MC1711G	
ULN2151D		MC1741CG	μA201H	LM201AH		#A711PC	MC1711CP	
ULN2151G		MC1741CF	μA207H	LM207H		µA715DC		MC1741SCL
ULN2151H		MC1741CP2	μA208AD	LM208AJ		µA715DM		MC 174 1SL
ULN2151M		MC1741CP1	µA208AF	LM208AF		µA715HC		MC1741SCG
ULN2156D		MC1456G	µA208AH	LM208AH		µA715HM		MC1741SG
ULN2 156G		MC1456G	μA208D	LM208J		µA723CJ	MC 1723CL	
ULN2156H		MC1456G	μA208F	LM208F		#A723CL	MC1723CG	
ULN2156M		MC1456G	µA208H	LM208H	•	µA723CN	MC1723CP	
ULN2157A		MC1458P2	µA209KM	LM209K		μA723DC	µA723DC	
ULN2157H		MC1458P2	μA301AD		LM301AJ	µA723DM	MC1723L	
ULN2157K		MC1458G	#A301AH	LM301AH		μA723HC	μA723HC	
ULN2165A	MC 1358P		#A301AT	LM301AN		#A723HM	MC1723G	
ULN2165N	MC 1358PQ		#A304HC	LM304H	1 1 100511	μA723MJ	MC 1723L	
ULN2209A	11012100	MC1356P	#A305HC	11/2051	LM305H	#A723ML	MC 1723G	
ULN2210A	MC1310P		#A305HC	LM305H LM307H		μA723PC	µA723PC	1 44400 411
ULN2224A	MC1324P	MC 12220	µA307H			#A725AHM		LM108AH
ULN2228A		MC1323P	µA307T	LM307N LM308AJ		#A725EHC		LM308AH
ULN2244A		MC1310P	μA308AD μA308AH	LM308AJ		#A725HC		LM308AH
ULN2262A ULN2264A	MC1364P	MC 1399P	µA308AH µA308D	LM308J		μA725HM μA727HC		LM 108AH MC 1420G
ULN2267A	MC 1304P	MC1323P	µA3080	LM3085		μΑ727HC μΑ727HM		MC1520G
ULN2298A	MC 1398P	NO IJESE	µA309KC	LM309K		μΑ730HC		MC 1520G
ULN2741D	nit idaur	MC1741CG	µA311T	LM311N		μA730HM		MC1520G
ULN2747A		MC1747CL	A376TC		LM305H	μA732DC		MC1320G

#A732PC -#A78L05ACLP

PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR	PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REDI ACEMENT	PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REPLACEMENT
#A732PC	AGPLAGEMENT	MC1310P	µA748HC	MC1748CG	NEFLAVEMENT	A1458CTC	MC1458CP1	ther are an and the
#A733CJ	MC1733CL	MO IS IOF	"A748HM	MC1748G		µA1458E	MC1458G	
			µA748MJ	MC1748L		A1458HC	MC1558G	
μA733CL	MC1733CG					µA1458P	MC1458P1	
#A733CN	MC1733CP		µA748MJG	MC1748U			MC1458U	
µA733DC	MC1733CL		μA748ML	MC1748G		#A1458RC		
µA733DM	MC1733L		µA748TC	MC1748CP1		μA1458TC	MC1458P1	
µA733FM	MC 1733F		µA749DC		MC1435L	µA1558E	MC1558G	
µA733HC	MC1733CG		µA749DHC		MC1435G	μA 1558HM	MC1558G	
µA733HM	MC 1733G		μA749DM		MC1535L	µA2136PC	MC1356P	
µA733MJ	MC1733L		#A749HC		MC1435G	#A2240DC		MC1455U
μA733ML	MC1733G		µA753TC		MC1356P	µA2240DM		MC 1555G
µA734DC		LM311J	μA754HC		MC 1355P	µA2240PC		MC1455P1
μA734DM		LM311J	µA754TC		MC1355P	µA3026HM		CA3054
µA734HC		LM311H	µA757DC		MC1350P	µA3045		MC3346P
µA734HM		LM311H	µA757DM		MC1350P	µA3046DC	MC3346P	
#A740HC		LF355H	µA758DC		MC1310P	µA3054DC	CA3054P	
A740HM		LF 155H	µA758PC		MC1310P	µA3064PC	MC1364P	
#A741ADM		MC1741L	#A767DC		MC1310P	#A3065PC	MC1358P	
#A741AFM		MC1741E	#A767PC		MC1310P	µA3086DM	MC3386P	
#A741AHM		MC1741G	"A772		MC1741S	µA3301P	MC3301P	
	140174101	MC1741G	#A775DC	LM339J	1017410	#A3302P	MC3302P	
#A741CJ	MC1741CL			LM339J		μA3303P	MC3303P	
µA741CJG	MC1741CU		#A775DM					
μA741CL	MC1741CG		μA775PC	LM339N	100000	#A3401P	MC3401P	
μA741CN	MC1741CP2		µA776DC		MC1776CG	µA3403D	MC3403L	
μA741CP	MC1741CP1		μA776DM		MC1776G	µA3403P	MC3403P	
μA741DC	μA741DC		µA776HC	MC1776CG		µA4136DC		MC4741CL
μA74 1DM	MC1741L		µA776HM	MC1776G		µA4136DM		MC4741L
µA741EDC		MC1741L	μA776TC	MC1776CP1		µA4136PC		MC4741CP
A741EHCپ		MC1741G	μA777CJ		LM308AJ-8	μA4558HC	MC4558CG	
"A741FC	MC1741CF		µA777CJG		LM308AJ-8	μA4558HM	MC4558G	
μA741FM	MC1741F		#A777CL		LM308AH	µA4558TC	MC4558CP1	
µA741HC	µA741HC		#A777CN		LM308AN	#A7805CKC	MC7805CT	
"A741HM	MC1741G		#A777CP		LM308AN	µA7805KC	MC7805CK	
μΑ741MJ	MC1741L		#A777DC		LM308AJ-8	µA7805KM	MC7805K	
μΑ741MJG	MC1741U		#A777HC		LM308AH	μA7805UC	MC7805CT	
	MC1741G		#A777MJ		LM108AJ-8	#A7806CKC	MC7806CT	
μA741ML			#A777MJG		LM108AJ-8	#A7806KC	MC7806CK	
μA741RC	MC 1741CU				LM108AH	µA7806KM	MC7806K	
μA741RM	MC1741U		#A777ML		LM308AN	μA7806UC	MC7806CT	
μA741PC	MC1741CP2		#A777TC			μA7808CKC	MC7808CT	
μA741TC	μA741TC		μA780DC		MC1399P		MC7808CK	
μA742DC		CA3059	#A780PC		MC1399P	μA7808KC		
μA746DC		MC1323P	μA781DC		MC1399P	μA7808KM	MC7808K	
µA746HC		MC1323P	μA781PC		MC1399P	µA7808UC	MC7808CT	
µA747ADM		MC1747L	μA786DC		MC1327P	#A7812CKC	MC7812CT	
µA747AHM		MC1747G	μA787PC		MC1399P	μA7812KC	MC7812CK	
A747CJ,	MC1741CL		μA791KC		MC1438R	μA7812KM	MC7812K	
A747CL ب	MC1747CG		μA791KM		MC1538R	μA7812UC	MC7812CT	
µA747CN	MC1747CP2		μA791P5		MC 1438R	47815CKC	MC7815CT	
A747DC بر	MC1747CL		µA796HC	MC1496G		µA7815KC	MC7815CK	
µA747DM	MC1747L		µA796HM	MC1596G		μA7815KM	MC7815K	
µA747EDC	MC1747CCBN	4	µA796DC	MC 1496L		μA7815UC	MC7815CT	
μA747EHC	MC1747CICM		A796DM ب	MC1596L		µA7818CKC	MC7818CT	
"A747HC	MC1747CG		µA798HC	MC3458G		µA7818KC	MC7818CK	
µA747HM	MC1747G		µA798HM	MC3558G		µA7818KM	MC7818K	
μA747MJ	MC1747L		µA798RC	MC3458U		µA7818UC	MC7815CT	
μA747ML	MC1747G		µA798RM	MC3558U		#A7824CKC	MC7824CT	
μA747PC	MC1747CP2		#A798TC	MC3458P1		µA7824KC	MC7824CK	
	11101141012	MC1748F	μA799HC		MC1741G	µA7824KM	MC7824K	
μΑ748AFM		MC1748G	μΑ799HM		MC1741G	#A7824UC	MC7824CT	
µA748AHM	MC1740CI	MC 1740G	μA1312PC	MC 13 12P		µA78GHM		LM117K
#A748CJ	MC1748CL			MC 13 12P		A78GKC		LM117K
µA748CJG	MC1748CU		μA1314PC			µA78GKM		LM117K
μA748CL	MC1748CG		#A1315PC	MC1315P				LM317T
μA748CN	MC1748CP2		#A1391PC	MC1391P		#A78GU1C		MC7805CK
μA748CP	MC1748CP1		µA1394PC	MC1394P		#A78H05KC	c	MC78L02ACG
µA748DC	MC1748CL		μA1458CHC			μA78L02ACJ		
µA748DM	MC1748L		μA1458CP	MC1458CP1		#A78L05ACJ		MC78L05ACG
μA748FM	MC1748F		μA1458CRC	C MC1458CU		µA78L05ACL	P MC78L05ACI	F

.

							µA78L05AH0	C — #A8T13PC
	MOTOROLA DIRECT	MOTOROLA SIMILAR		MOTOROLA DIRECT	MOTOROLA SIMILAR		MOTOROLA DIRECT	MOTOROLA SIMILAR
	REPLACEMENT	REPLACEMENT	PART NO.	REPLACEMENT	REPLACEMENT	PART NO.		REPLACEMENT
A78L05AHCپ	MC78L05ACG		μA7902UC	MC7902CT		µA79M24H		MC7924CK
µA78L05AWC	MC78L05ACP		µA7905KC	MC7905CK		μA79M24U0	-	MC7924CT
µA78L05CJG		MC78L05CG	μA7905KM		MC7905CK	#A8T13DC	MC8T13L	
µA78L05CLP	MC78L05CP		#A7905UC	MC7905CT		µA8T13PC		
µA78L05HC	MC78L05CG		μA7906KC	MC7906CK				
µA78L05₩C	MC78L05CP		µA7906KM		MC7906CK			
#A78L06ACJ(MC78L06ACG	μA7906UC	MC7906CT				
µA78L06ACLI	P MC78L06ACP		#A7908KC	MC7908CK				
µA78L06CJG		MC78L06CG	#A7908KM		MC7908CK			
µA78L06CLP	MC78L06CP		#A7908UC	MC7908CT				
µA78L08ACJ0	3	MC78L08ACG	µA7912KC	MC7912CK				
µA78L08ACLI	P MC78L08ACP		#A7912KM		MC7912CK			
µA78L08CJG		MC78L08CG	#A7912UC	MC7912CT				
µA78L08CLP	MC78L08CP		µA7915KC	MC7915CK				
#A78L12ACJ0	3	MC78L12ACG	µA7915KM		MC7915CK			
µA78L12ACLI	P MC78L12ACP		#A7915UC	MC7915CT				
µA78L12AHC	MC78L12ACG		µA7918CKC	MC7918CT				
#A78L12AWC	MC78L12ACP		μA7918KC	MC7918CK				
#A78L12CJG		MC78L12CG	µA7918KM		MC7918CK			
#A78L12CLP	MC78L12CP		μA7918UC	MC7918CT				
#A78L12HC	MC78L12CG		µA7924CKC	MC7924CT				
"A78L12WC	MC78L12CP		µA7924KC	MC7924CK				
"A78L15ACJO	3	MC78L 15ACG	µA7924KM		MC7924CK			
#A78L15ACL	MC78L15ACP		µA7924UC	MC7924CT				
#A78L15AHC	MC78L15ACG		#A79L05AHC	MC79L05ACC	3			
#A78L15AWC			#A79L05AW0					
#A78L15CJG		MC78L15CG	#A79L05HC	MC79L05CG				
#A78L15CLP	MC78L15CP		#A79L05WC	MC79L05CP				
#A78L15HC	MC78L15CG		#A79L12AHC		3			
µA78L15WC	MC78L15CP		#A79L12AW0					
#A78L26AWC			#A79L12HC	MC79L12CG				
"A78MGHC		LM317H	#A79L12WC	MC79L12CP		1		
#A78MGT2C		LM317T	#A79L15AHC		3			
#A78MGU1C		LM317T	#A79L15AW0					
µA78M05CKC	MC78M05CT		#A79L15HC	MC79L 15CG				
µA78M05HC	MC78M05CG		#A79L15WC	MC79L 15CP				
2A78M05HM		MC78M05CG	#A79M05AH		MC7905CK			
#A78M05UC	MC78M05CT		#A79M05AU0		MC7905CT			
µA78M06CKC			"A79M05CK		11101 30001	1		
µA78M06HC	MC78M06CG		#A79M05HM		MC7905CK			
#A78M06HM	11070110000	MC78M06CG	#A79M05UC		MC7905CT			
#A78M06UC	MC78M06CT		#A79M06AH	A.	MC7906CK			
#A78M08CKC			#A79M06AU0		MC7906CT			
μA78M08HC	MC78M08CG		"A79M06CKO		MO1 3000 1			
µA78M08HM	moramouca	MC78M08CG	#A79M06HM		MC7906CK			
µA78M08UC	MC78M08CT	moromooda	#A7SM06UC		MC7906CT			
µA78M12CKC			#A79M08AHI	4	MC7908CK			
µA78M12CKC	MC78M12CG		#A79M08AU0		MC7908CT			
μΑ78M12HC	MC/0M1200	MC78M12CG	#A79M08CK0		1401 3000 1	1		
	MC78M12CT	motom Izod	µA79M08HM	/ morauor	MC7908CK			
#A78M12UC			A79M08UC		MC7908CT			
#A78M15CKC			µA79M080C		MC7900C1 MC7912CK			
#A78M15HC	MC78M15CG	NC79N+5CC	#A79M12AU		MC7912CT	1		
#A78M15HM	MO7014EOT	MC78M15CG			MU/31201			
#A78M15UG	MC78M15CT		μA79M12CK0	- MO191201	MC7912CK			
#A78M18HC	MC78M18CG	MC78M 18CC	μA79M12HM μA79M12UC		MC7912CT			
#A78M18HM	NC70114007	MC78M18CG			MC7915CK			
#A78M18UG	MC78M18CT		μA79M15AH		MC/915CK			

1

#A78M20CKC

#A78M20HC

µA78M20HM µA78M20UG

µA78M24CKC

µA78M24HC

µA78M24HM

µA78M24UC

#A7902KC

µA7902KM

MC78M20CT

MC78M20CG

MC78M20CT

MC78M24CT

MC78M24CG

MC78M24CT

MC7902K

MC78M20CG

MC78M24CG

MC7902K

MC7915CT

MC7915CT

MC7915CK

MC7915CT

MC7918CK

MC7916CT

MC7918CK

MC7918CT

MC7924CK

MC7924CT

µA79M15AUC

#A79M15CKC

#A79M15HM

µA79M15UC

µA79M18AHM

µA79M18AUC

µA79M18HM

µA79M18UC

#A79M24AHM

#A79M24AUC

Reliability Enhancement Programs

LG

The "Better" Program

Motorola's reliability and quality-enhancement program was developed to provide improved levels of quality and reliability for standard commercial products.

THE "BETTER" program is offered on CMOS, Linear, TTL, TTL/LS, DTL, HTL, and NMOS in dual-in-line ceramic and plastic packages.

Motorola standard commercial integrated circuits are manufactured under stringent in-process controls and quality inspections combined with the industry's finest outgoing quality inspections. The "BETTER" program offers three levels of extra processing, each tailored to meet different user needs at nominal costs.

The program is designed to:

- Eliminate incoming electrical inspection
- Eliminate need for independent test labs and associated extra time and costs
- Reduce field failures
- Reduce service calls
- Reduce equipment downtime
- · Reduce board and system rework
- Reduce infant mortality
- Save time and money
- Increase end-customer satisfaction

BETTER PROCESSING --STANDARD PRODUCT PLUS:

100% SCREEN	LEVEL I "S"	LEVEL II "D"	LEVEL (i) "DS"
TEMP CYCLE, 10 CYCLES -25°C to +150°C	×		x
BURN-IN - MIL-STD-883		X	Х
POST BURN-IN ELECTRICAL		X	Х
100°C FUNCTIONAL	X		Х
DC PARAMETRIC AT 25°C*	X	x	X
TIGHTENED QA SAMPLE	X	X	X

'NMOS does Functional and dc 100% at 100°C.

"BETTER" AQL GUARANTEES

	0010171011	AOL			
TEST	CONDITION	LEVEL I	VEL I LEVEL II LEVE		
HIGH TEMPERATURE FUNCTIONAL	TA = 100°C	0.15		0.15	
DC PARAMETRIC	TA = 25°C	0.28	0.28	0.28	
DC PARAMETRIC	TA MIN, TA MAX	0.40	0.40	0.40	
DC PARAMETRIC (LINEAR AND NMOS)	TA MIN, TA MAX	0.65	0.65	0.65	
AC PARAMETRIC	TA = 25°C	0.65	0.65	0.65	
DYNAMIC TEST (LINEAR AND NMOS)	T _A = 25°C	0.65	0.65	0.65	
	MAJOR	0.11	0.11	0.11	
EXTERNAL VISUAL AND MECHANICAL	MINOR	2.50	2.50	2.50	
HERMETICITY	GROSS	0.40	0.40	0.40	
(NOT APPLICABLE TO PLASTIC PACKAGES)	FINE	1.00	1.00	1.00	

HOW TO ORDER

MC14001B

Identification

Standard Package Suffix

PART MARKING

The Standard Motorola part number with the corresponding "BETTER" suffix can be ordered from your local authorized Motorola distributor or Motorola sales offices. "BETTER" pricing will be quoted as an adder to standard commercial product price.

The Motorola Standard HIGH REL Programs

Motorola, a pioneer in the manufacture of *high-reliability* integrated circuits^{*}, now offers you a two-way program for Hi Rel products.

1. A growing line of JAN-QUALIFIED integrated circuits.

2. An extensive program to supply JEDEC PROCESSED devices that approaches the Qualified Reliability goals without the delay and high cost of the actual qualification program.

Motorola stocks many circuits which meet JAN-QUALIFIED specifications, and is actively pursuing an expansion of this qualification listing with product in all IC categories — encompassing Bipolar Digital, Linear and MOS technologies.

Motorola JEDEC PROCESSED products complement JAN-QUALI-FIED products by making available hi-rel versions of nearly all Motorola full-temperature range circuits, while adding the advantage of hi-rel standardization.

The Motorola JEDEC Program offers you these benefits:

- 1. Standardization of environmental and electrical test procedures.
- 2. Less specification writing required.
- 3. Less time required in negotiating specifications.
- 4. Fast delivery.
- 5. Lower costs.

Motorola, in early 1971, was the first company to be qualified as a MIL-M-38510 approved facility by the Defense Electronics Supply Center of DOD.

MIL-M-38510 JAN-Qualified Product

Screening Levels Available: Class B & Class C

How to order MIL-M-38510 **JAN-Qualified Product**

M38510 /XXX

INDICATES A OUALIFIED DEVICE

1 MILITARY DETAIL DESIGNATOR SPECIFICATION NUMBER

DEVICE TYPE WITHIN DETAIL SPECIFICATION

XX

CLASS B. OR C (SEE DEVICE OUTLINE CLASS TABLE)

LEAD FINISH (SEE LEAD

(SEE CASE OUTLINE TABLE)

CASE

Features:

- 1. Manufactured in a governmentapproved facility.
- 2. G.S.I. (Government Source Inspection)

Example of MIL-M-38510 JAN-Qualified markings

ORDER: JM38510/00104BCB MARKING: JM38510/00104BCB

Lead Finish Table
A—Type A or B Per MIL-M-38510 with hot solder dip
B-Type A or B Per MIL-M-38510 with acid tin plate
C-Type A or B Per MIL-M-38510 with gold plate
X—Any of the above, for ordering purposes only.

Case Outline Table				
Sour	ce: MIL-M-	38510D Amendment I		
Letter	Appendix C Designation	Description		
A	F-1	14-lead FP (1/4" x 1/4")		
B	F-3	14-lead FP (3/16" x 1/4")		
C	D-1	14-lead DIP (1/4" x 3/4")		
D	F-2	14-lead FP (1/4" x 3/8")		
E	D-2	16-lead DIP (1/4" x 7/8")		
F	F-5	16-lead FP (1/4" x 3/8")		
G	A-1	8-lead can		
H	F-4	10-lead FP (1/4" x 1/4")		
I	A-2	10-lead can		
J	D-3	24-lead DIP (1/4" x 1-1/4")		
K	F-6	24-lead FP (3/8" x 5/8")		
L	NONE	NONE		
M N Q	A-3 NONE D-4 D-5	12-lead can NONE 8-lead DIP (1/4" x 3/8") 40-lead DIP (9/16" x 2-1/16")		
R	D-8	20-lead DIP (1/4" x 1-1/16")		
S	NONE	NONE		
T	NONE	NONE		
U	NONE	NONE		
V	D-6	18-lead DIP (.300" x 1")		
W	D-7	22-lead DIP (.400" x 1.1")		
X Y Z		with "special" non-standard case re specified in the individual ons.		

JEDEC Processed Product

Screening Levels Available: Class B & Class C

How to order JEDEC **Processed Product**

XXXX/

MOTOROLA DEVICE TYPE (SEE DEVICE (WITHOUT LETTER PREFIX)

CLASS B, OR C (SEE CASE CLASS TABLE)

CASE OUTLINE

LEAD FINISH (SEE LEAD

1 JEDEC DESIGNATOR PER JEDEC OUTLINE TABLE) FINISH TABLE) PUBLICATION NO. 101

JC

Case Outline Table						
Sour	Source: MIL-M-38510D Amendment I					
Letter	Appendix C Designation	Description				
A B C D	F-1 F-3 D-1 F-2	14-lead FP (1/4" x 1/4") 14-lead FP (3/16" x 1/4") 14-lead DIP (1/4" x 3/4") 14-lead FP (1/4" x 3/8")				
EFGH	D-2 F-5 A-1 F-4	16-lead DIP (1/4" x 7/8") 16-lead FP (1/4" x 3/8") 8-lead can 10-lead FP (1/4" x 1/4")				
- 7 K L	A-2 D-3 F-6 NONE	10-lead can 24-lead DIP (1/4" x 1-1/4") 24-lead FP (3/8" x 5/8") NONE				
Z Z ₽ O	A-3 NONE D-4 D-5	12-lead can NONE 8-lead DIP (1/4" x 3/8") 40-lead DIP (9/16" x 2-1/16")				
R S T U	D-8 NONE NONE NONE	20-lead DIP (1/4" x 1-1/16") NONE NONE NONE				
v W	D-6 D-7	18-lead DIP (.300" x 1") 22-lead DIP (.400" x 1.1")				
X Y Z	Flat packages i	ckages not listed above not listed above gurations not listed above.				

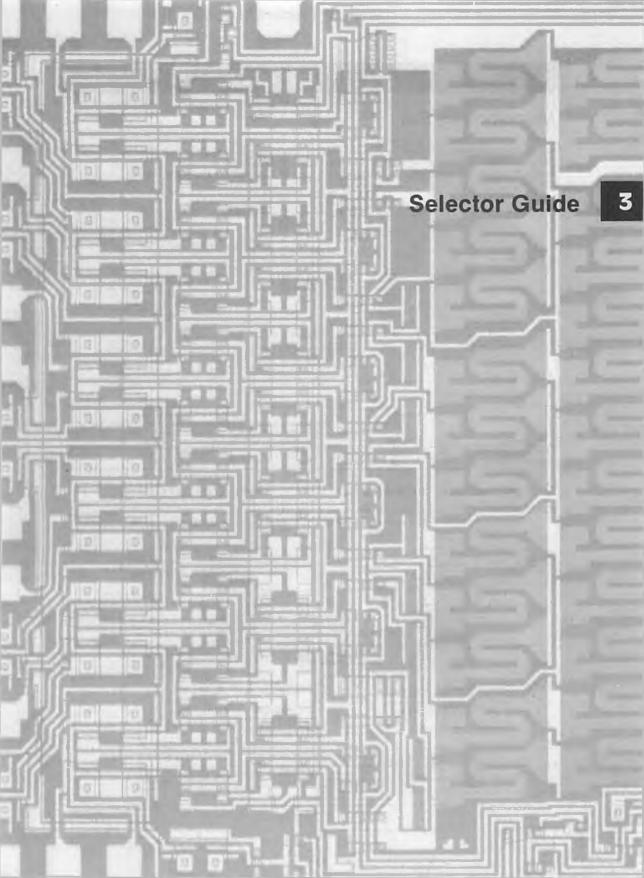
Features:

- 1. Lower cost than JAN-Qualified.
- 2. Devices manufactured using design and processing guidelines contained in MIL-M-38510 and MIL-STD-883
- 3. Product supplied with Motorola standard data sheet electricals

Example of JEDEC **Processed Markings**

DEVICE: 5400/BCBJC ORDER: 5400/BCBJC MARKING: 5400/BCBJC

Lead Finish Table	
A-Type A or B Per MIL-M-38510 with hot solder dip	
B-Type A or B Per MIL-M-38510 with acid tin plate	
C-Type A or B Per MIL-M-38510 with gold plate	
X-Any of the above, for ordering purposes only.	


Screening Procedures

For MiL-M-38510 Jan-Qualified and JEDEC Processed Product (To MIL-STD-883 Requirements)

In recognition of the fact that the level of screening has a direct impact on the cost of the product, as well as its quality and reliability, two standard levels of screening are provided to coincide with two device classes, or levels of quality assurance.

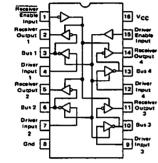
Flexibility is provided in the choice of test conditions and stress levels to provide screens tailored to a particular product or application. Selection of a level better than that required for the specific product and application will result in unnecessary expense. A level less than that required may result in a risk that reliability requirements will not be met. For general hi-rel applications, the Class B screening levels should be considered.

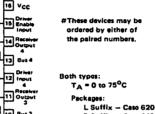
	CLASS	B	CLASS C		
SCREEN	METHOD	RQMT	METHOD	ROMT	
Internal Visual (Precap)	2010 Condition B and 38510	100%	2010 Condition B and 38510	100%	
Stabilization Bake	1008, 24 hrs test Condition C or Equivalent	100 %	1008, 24 hrs test Condition C or Equivalent	100%	
Temperature Cycling	1010 Condition C	100%	1010 Condition C	100%	
Constant Acceleration	2001 Condition E Y1 plane	100%	2001 Condition E Y ₁ plane	100%	
Seal (a) Fine (b) Gross	1014	100%	1014	100%	
Interim Electrical Parameters	Per applicable device 1 specification			_	
Burn-In Test	1015 160 hrs @ 125° C or Equivalent	100%		_	
Interim Electrical Parameters	Per applicable device 1 specification	100%		-	
Final Electrical Tests (a) Static tests (1) 25°C (subgroup 1. table 1, 5005)	Per applicable device 2 specification	100%	Per applicable device 2 specification	100%	
(2) Max. & min. rated operating temp. (subgroups 2 & 3, table 1, 5005)		100%		Sample at Group A	
(b) Dynamic tests &/or switching tests @ 25°C (subgroup 4 and 9, table 1, 5005)		100%		Sample at Group A	
(c) Functional test @ 25°C (subgroup 7, table 1 5005)		100%		100%	
Qualification or Quality Conformance Inspection	5005 Class B 3	Sample per 38510	5005 Class C 3	Sample per 38510	
External Visual	2009	100%	2009	100%	

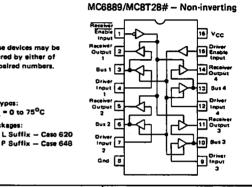
BUS INTERFACE

Microprocessor Bus

This family of devices is designed to extend the limited drive capabilities of today's standard 6800 and 8080 type NMOS microprocessors. All devices are fabricated with Schottky TTL technology for high speed.

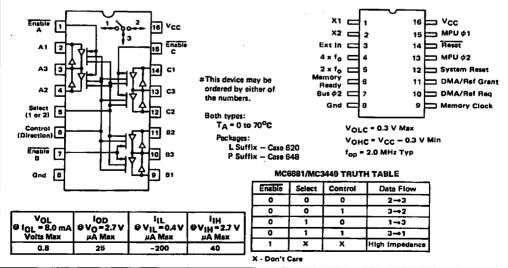

General features include:

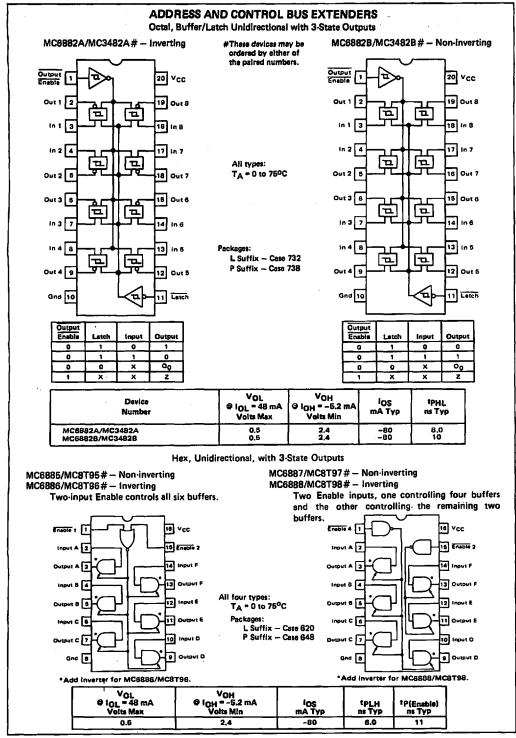

- Single +5.0 V Power Supply Requirement
- Three-State Logic Output
- Low Input Loading 200 µA Max.


DATA BUS EXTENDERS

Quad, Bidirectional, with 3-State Outputs

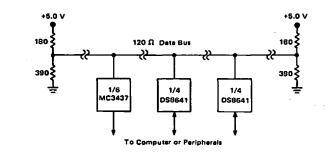
MC6880A/MC8T26A# - Inverting

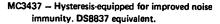

Input Current		IOHL Output Disabled	tPLH, tPHL Propagation Delay Time - High to Low or	
Device			Leakage Current – High Logic State	Low to High
Number			µA Max	ns Max
MC6880A/MC8T26A	25	-200	100	14
MC6889/MC8T28	25	-200	100	17

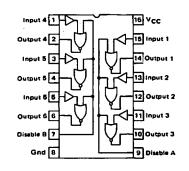

BIDIRECTIONAL BUS SWITCH

MC6881/MC3449# - For exchanging TTL level digital information between selected pairs of ports in a 3-port network.

M6800 CLOCK GENERATOR


MC6875 — Provides the non-overlapping two-phase clock signals for M6800 MPU systems.



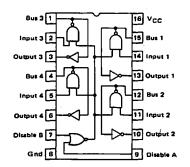

Minicomputer Bus Transceivers and receivers for bus organized minicomputers employing

i ransceivers and receivers for bus organized minicomputers employin 120-ohm terminated lines.

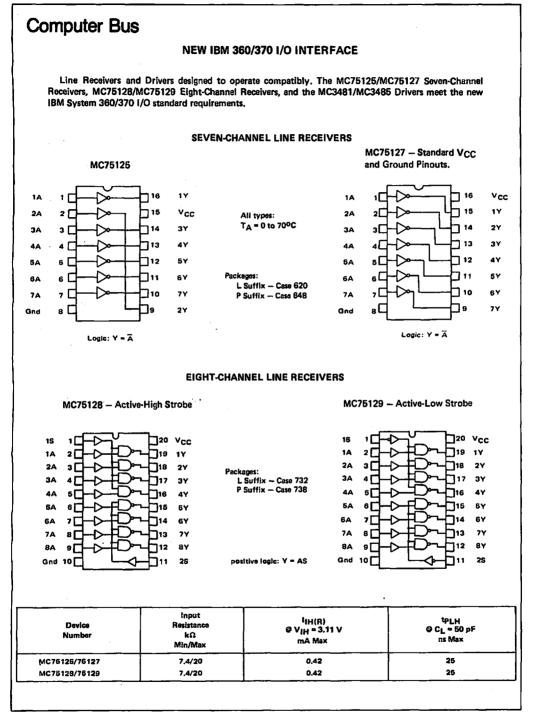
HEX RECEIVERS

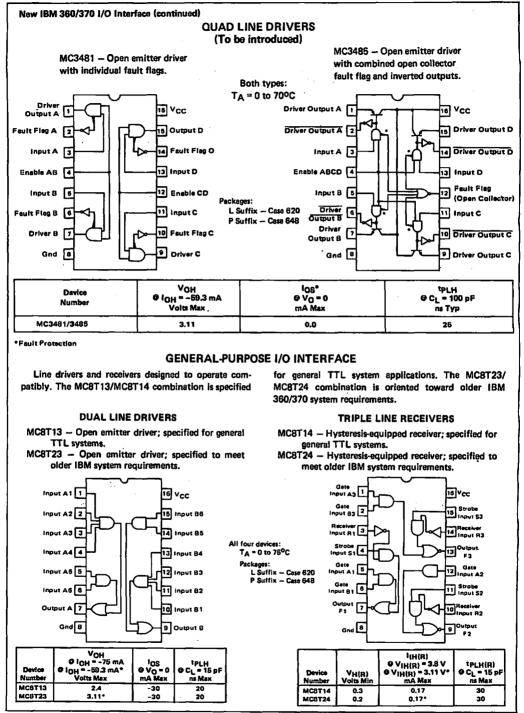
^l 1(R) ΘV _{I(R)} = 4.0 V μΑ Max	Hysteresis Volts Min	^t PLH(R) Ф С _L = 15 pF ns Max
50	0.5	30

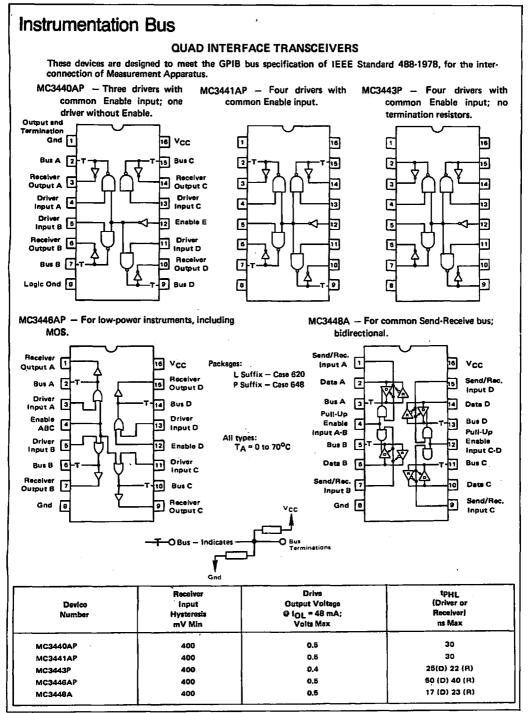
Packages: MC3437

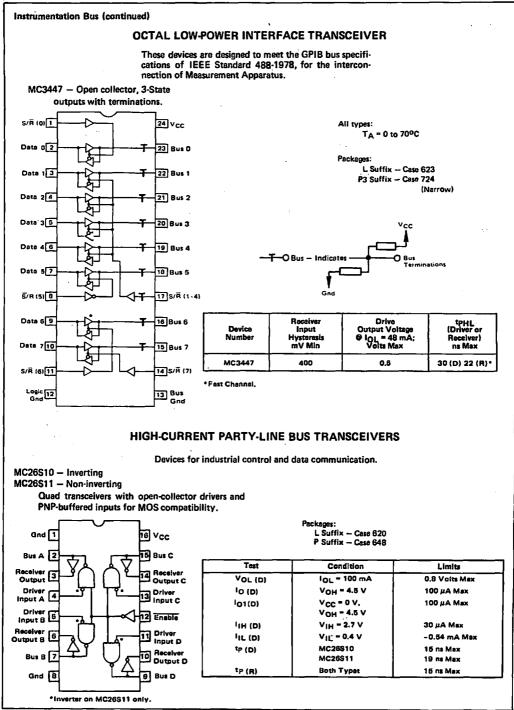

All three devices: $T_A = 0$ to $70^{\circ}C$

> MC3438 DS8641 L Suffix - Case 620 - J Suffix P Suffix - Case 648 - N Suffix


QUAD TRANSCEIVERS


DS8641-MC3438


Open collector driver outputs allow wire-OR connection. MC3438 has hysteresis-equipped receiver for improved noise immunity (not available with DS8641). MC3438 is equivalent to the DS8838.



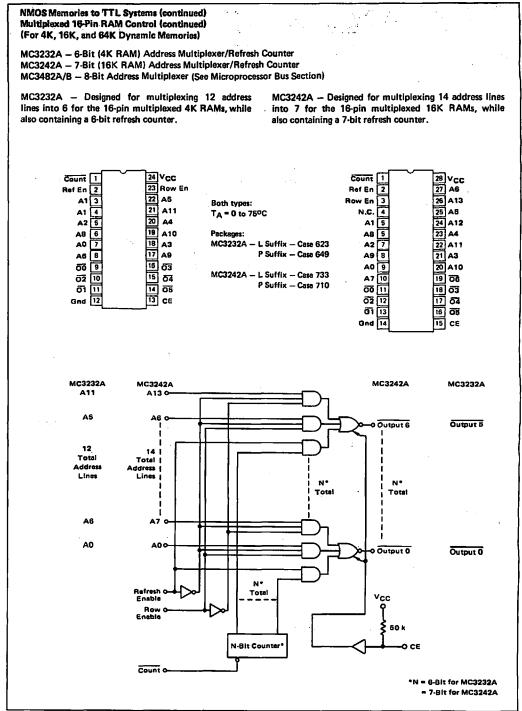
	Heceiver Hysteresis Volts Min	VL(BUS) Ø IBUS = 50 mA Volts Max	^I BUS Ø V _{(H} (BUS) = 4.0 V μΑ Μex	^t PLH(D) Ф CL = 15 pF пя Мах	^t PLH(R) ⊕CL ≠ 15 pF ns Max
	0.25*	0.7	100	25	30
٠i	MC3438 only				

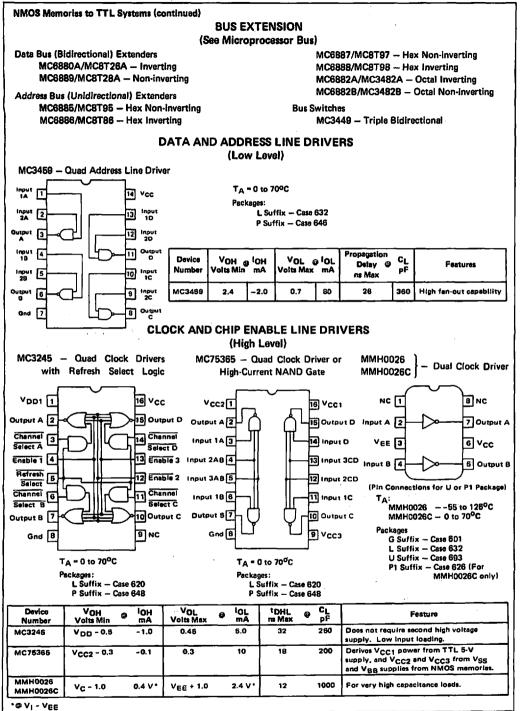
MEMORY INTERFACE AND CONTROL

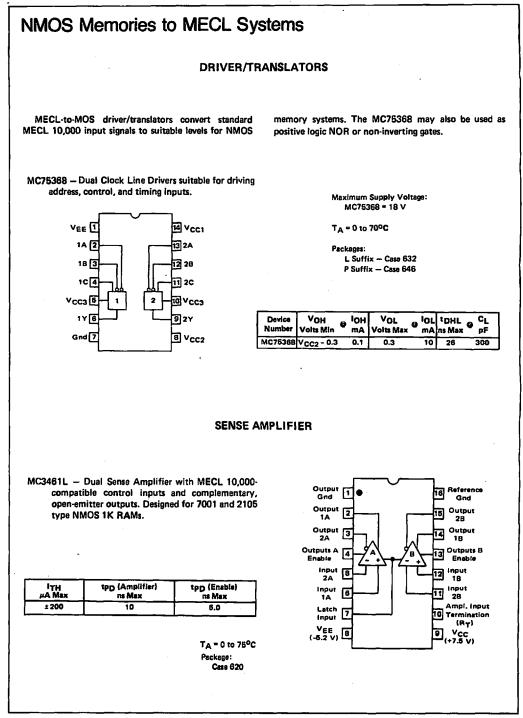
NMOS Memories to TTL Systems

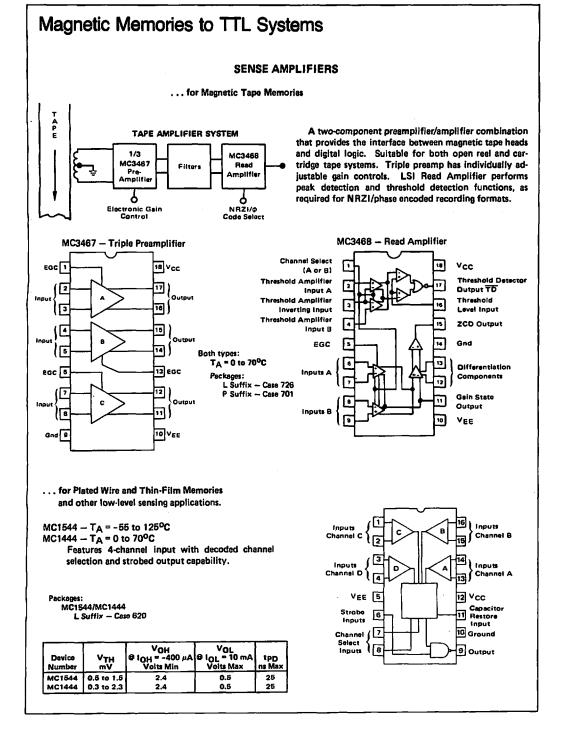
MULTIPLEXED 16-PIN RAM CONTROL (For 4K, 16K, and 64K Dynamic Memories)

MC3480 - Memory Controller. Used with all three levels of RAM.


The memory controller chip is designed to greatly simplify the interface logic required to control popular 16-pin 4K, 16K, or 64K dynamic NMOS RAMs in a microprocessor system such as the M6800. The controller will generate, on command from the microprocessor, the proper \overline{RAS} and timing signals required to successfully transfer data between the microprocessor and the NMOS memories. The controller, in con-


junction with an oscillator, will also generate the necessary signals required to insure that the dynamic memories are refreshed for the retention of data.


With Schottky TTL technology for high performance, and high input impedance for minimum loading of the MPU bus, the MC3480 reduces package count, and reduces system access/cycle times by 30%. The chip enable allows expansion to larger-word capacity.



MEMORY INTERFACE and CONTROL (continued)

MEMORY INTERFACE and CONTROL (continued)

Magnetic Memories to TTL Systems (continued)

FLOPPY DISK READ AMPLIFIER SYSTEM

Пo

2

3

4

5

6

7

8

19

Source

Collectors

Strobes

S2

c

8

Y 7 Gnd 8

Amplifie

thouts

Offset

Gnd

Decoupli

One-Shot

One-Shot Components

Component

18 VCC2

nd i Gau

Differentiator

Differentiator

Components

16 V_{CC2}

x

Aint

n

15

14 8

13 R Node

12

11

10 Z

9 Vcc1

Outputs

14 Inputs

Data

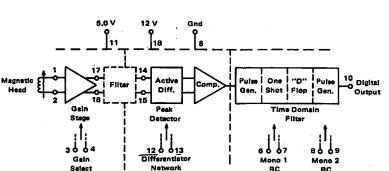
Output

17

16

15 Active

h 3


12

11 Vcc1

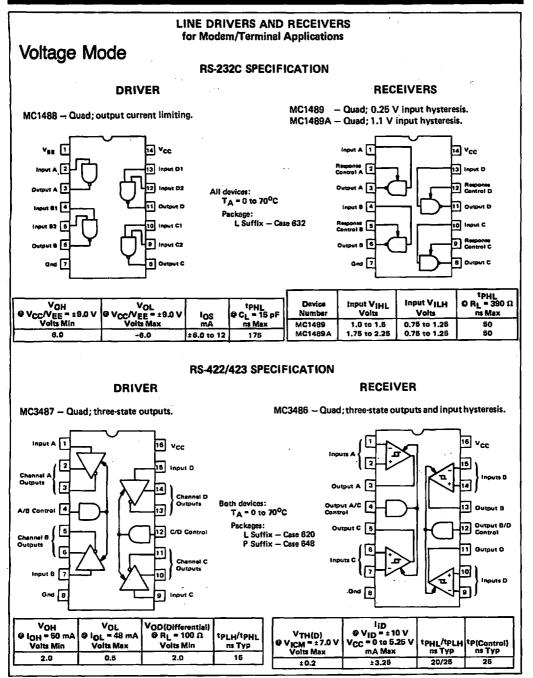
10

MC3470 — Designed as a monolithic READ Amplifier System for obtaining digital information from floppy disk storage. It is designed to accept the differential ac signal produced by the magnetic head and produce a digital output pulse that corresponds to each peak of the input signal. The gain stage amplifies the input waveform and applies it to an external filter network, enabling the active differentiator and time domain filter to produce the desired output. It combines all the active circuitry to perform the floppy disk READ amplifier function in one circuit, and is guaranteed to have a maximum peak shift of 5.0%, adjustable to zero.

CORE DRIVER

MC55325 - T_A = -55 to 125°C MC75325 - T_A = 0 to 70°C

Contains two source switches and two sink switches. Source and sink selection is determined by one of two logic inputs, and turn-on is determined by the appropriate strobe.

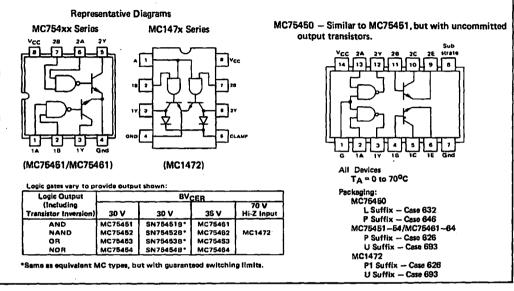

Packages:

L Suffix - Case 620

P Suffix - Case 648 (MC75325 only)

Device Number	V _{sat} © I _{slnk} or I _{source} = 600 mA Volts Max	loff @ V _{CC2} = 24 V μΑ Max	tpLH (Source) ns Max	tPLH (Sink) ns Max
MC55325	0.70	160	60	45
MC75325	0.75	200	60	45

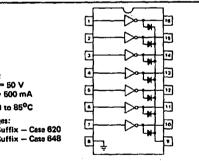
COMPUTER AND TERMINAL INTERFACE

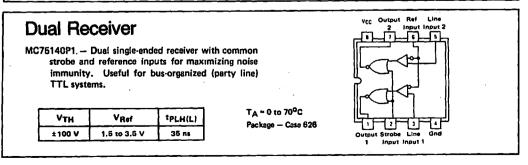


Line Drivers and Receivers for Modem/Terminal Applications (continued) **Differential Current Mode** DRIVERS RECEIVERS MC75107/MC55107 - Dual; active pullup output. MC75S110 - Dual; industry standard. MC75108/MC55108 - Dual; open collector output. Inhibit Input Inout Output Strobe 0 tout VEE Vcc 2A 28 NC 27 26 6 2Z I Y 1Z 24 13 12 10 9 8 14 11 . T_A = 0 to 70⁰C • • 10 9 • * 11 (MC75xxx) -55 to 125°C (MC55xxx) Packages: L Suffix - Case 632 P Suffix - Case 646 (MC75xxx only) з 7 2 4 6 18 20 NC bit in 18 10 1 1 s Inputs 18 Inputs MC3453 - Quad; common inhibit input; current sink MC3450 - Quad; active pullup outputs; common threeapproximately 12 mA. state enable. MC3452 - Quad; open collector outputs. vcc Input A 16 16 Vcc 15 Input B Output Y z 14 Output A 3 Output 8 z 13 5 RPVIT C z All three devices: Output C TA = 0 to 70°C vi C 🖪 12 z 12 VEE 5 Packages: Output D 11 L Suffix - Case 620 Inhibit 6 Y P Suffix - Case 648 c ١Q Input C 7 1 10 Input D D Gnd 0 9 Gnd 8 9 VEE ALL RECEIVERS BOTH DRIVERS ^IjH Θ V_{ID} = 0.5 V μΑ Max ⁱIL θ V_{ID} = -2.0 V μΑ Max ¹O (on) mA Min IO (off) µA Max ^tPHL ns Mai Input VTH [†]PLH ns Max mV Max 6.6 100 15 ±26 76 -10 26 1 .

PERIPHERAL INTERFACE

Dual Drivers

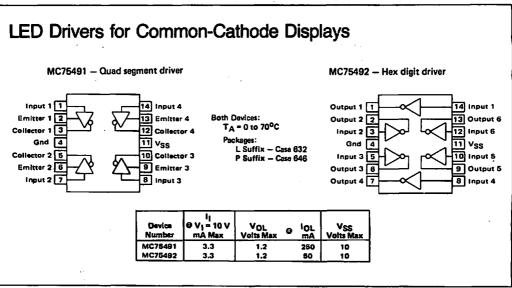

... for relays, lamps, and other peripherals requiring more power than generally available from logic gates.

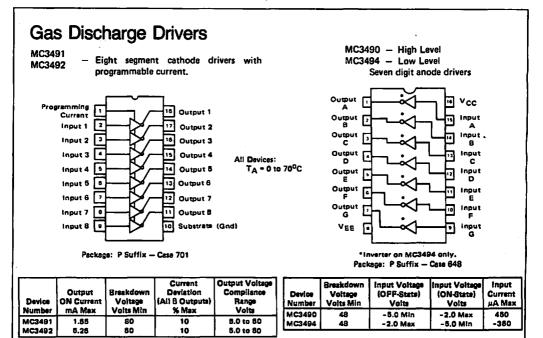


Driver Arrays

... Seven Darlington transistors with output clamp diodes.

Device Number	Application	Input Element	All Types: V _{Max} = 50
MC1411	General Purpose	Basic	I _{Max} = 500
MC1412	14-25 V PMOS	Zener and Series 10.6 kΩ resistor	T _A = 0 to 8 Packages:
MC1413	6 V CMOS or TTL	Series 2.7 kS2 resistor	L Suffi
MC1416	8-18 V MOS	Series 10.5 k resistor	P Suffi

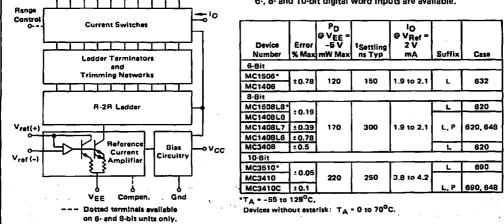




500 mA to 85°C

NUMERIC DISPLAY INTERFACE

... for mating multiplexed LED or gas discharge numeric displays to MOS or TTL logic systems.

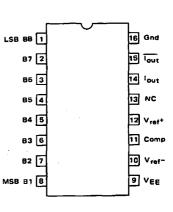

PRECISION CIRCUITS - DATA CONVERSION

Low-cost building blocks for construction of D-A/ A-D systems. Involves use of advanced technologies such as ion implantation, laser trimming and CMOS

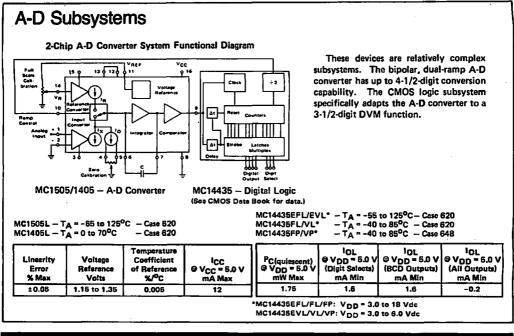
processing where necessary to achieve the required functional capability, operating accuracy and production repeatability.

D-A Converters — General Purpose -10-Bit -B-Bit -6-Bit A7 9 A3 A4 A5 A6 88 9 A2 A10 Range **5**'0 Control Current Switches PD Ø VEE Device Error -5 V Т % Max mW Max Number ns Typ Ladder Terminators 6-Bit and **Trimming Networks** MC1506* ±0.78 120 150 MC1406 8-Bit A-2A Ladder MC1608L8*

Multiplying D-A converters designed to supply an output current that is a linear product of an analog input reference voltage and a digital input word. Devices for 6-, 8- and 10-bit digital word inputs are available.

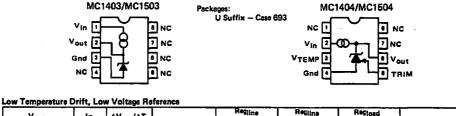


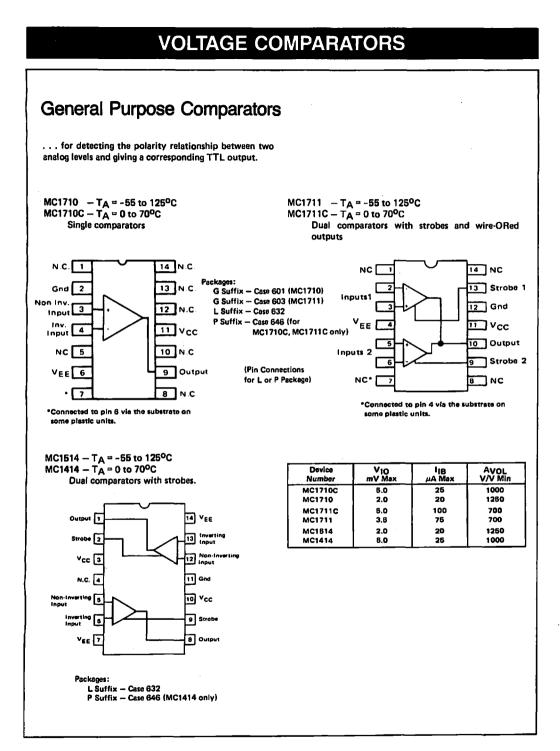
D-A Converters — High Speed

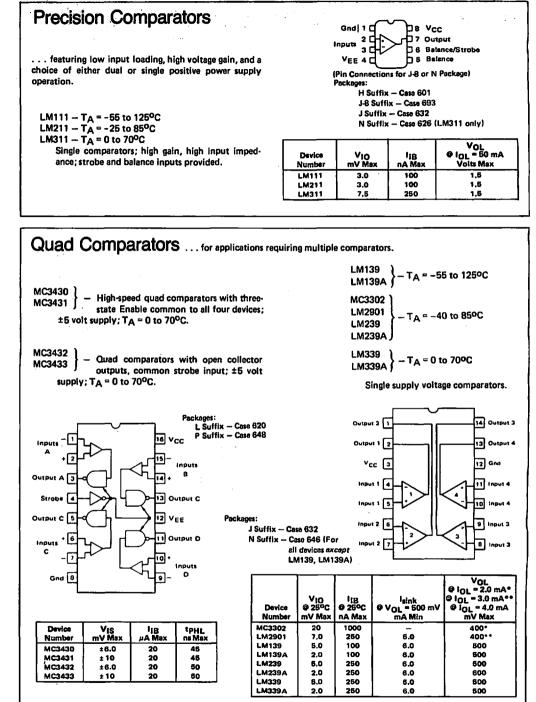

MC10318 - A high speed 8-bit D/A converter capable of data conversion rates in excess of 25 MHz. It is intended for applications in high speed instrumentation and communication equipment, display processing, storage oscilloscopes, radar processing, and TV broadcast systems. The inputs are compatible with MECL 10,000 series logic, while the complementary current outputs have 51 mA full scale capability. 8-bit accurate (± 1/2 LSB) and monotonic over the full temperature range, the outputs typically settle in less than 15 ns.

Pac

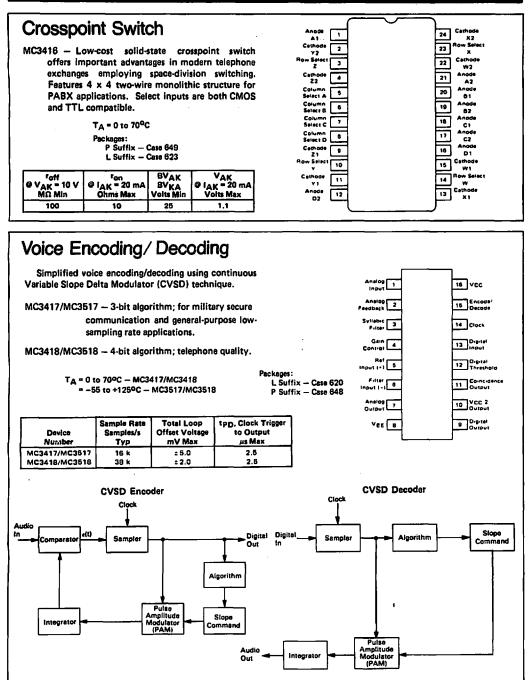
L Suffix - Case 620/690

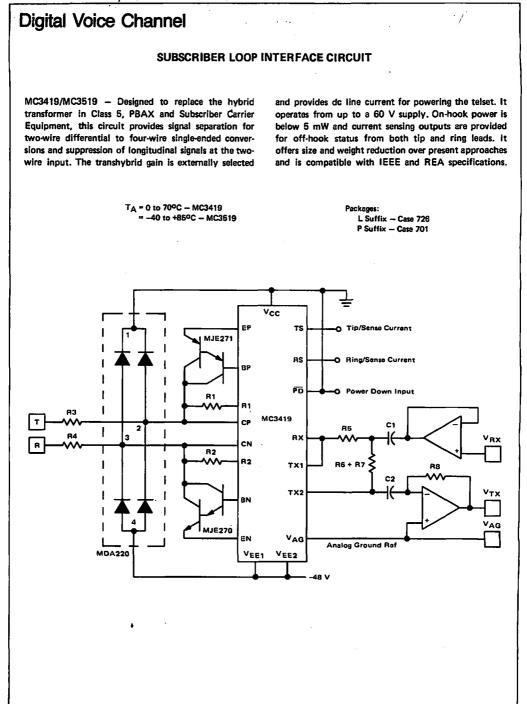

Device Number	Error % Max	PD @ VEE = -5.2 V mW Max	^t Settling ns Typ	l _O & l _O @ V _{Ref} = 10.56 V mA Typ
AC10318L	±0.19	675	15	51
AC10318L9	±0.10	676	16	61

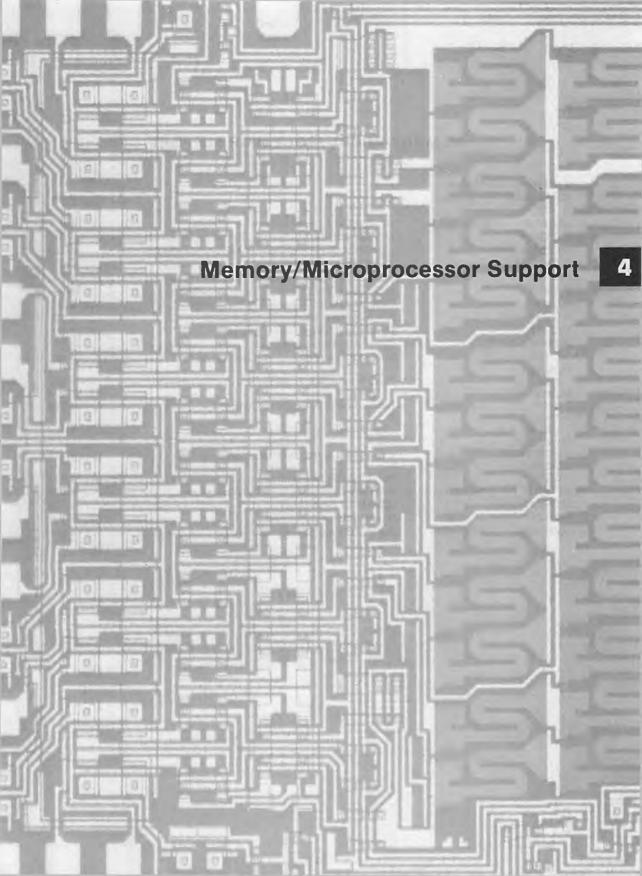

VOLTAGE REFERENCES



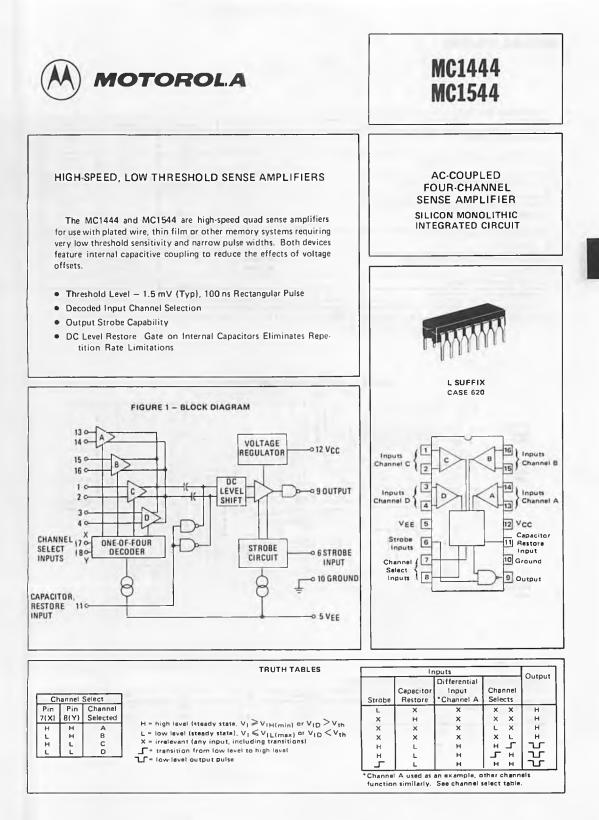
A family of precision low-voltage bandgap voltage reference, these devices are designed for applications requiring low temperature drift.




V _{out} Volts Typ	lo mA Mex	∆V _{out} /∆T ppm/°C Max	Device Number	Regiline 4.6< Vj <16 V/ 15 V <vj <40="" v<br="">mV Max</vj>	Reglina Vin = Vout+ 2.5 V to 40 V mV Max	Restord 0.0 mA IO<10 mA mV Max	τ _Α ∘c
2.5 ± 25 mv	10	40	MC1403	3.0/4.5	N/A	10	0 to +70
		25	MC1403A				
		55	MC 1503]			- 55 to +125
		25	MC1503A				
5.0 ± 60 mV	10	40	MC1404U5	N/A	6.0	10	0 to +70
		26	MC1404AU5				
	1	55	MC1504U5				~55 to +125
		25	MC1504AU5				
6.25 1 60 mV	10	40	MC1404U6	N/A	6.0	10	0 ta +70
		25	MC1404AU5				
		55	MC1504U6	3			-65 to +125
	1	26	MC1504AU6				
10 ± 100 mV	10	40	MC1404U10	N/A	5.0	10	0 to +70
	1	25	MC1404AU10				
		55	MC1504U10				- 55 to +125
	1	25	MC1504AU10	-			



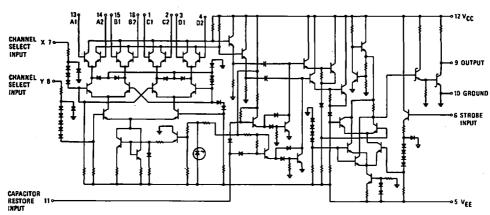
COMMUNICATION INTERFACE (Telephony)



MEMORY/MICROPROCESSOR SUPPORT

Temperatu	re Range		
Commercial	Military		Page
MC1444	MC1544	AC-Coupled 4-Channel Sense Amplifiers	4-3
MC3232A	с ,	Memory Address Multiplexer/Refresh Address Counter	4-11
MC3242A	_	Memory Address Multiplexer/Refresh Address Counter	4-16
MC3245	, 	Quad TTL-to-MOS Driver	4-21
MC3459	_	Quad NMOS Memory Address Driver	4-24
MC3461	—	High-Speed NMOS/MECL Sense Amplifier	4-28
MC3467	·	Triple Magnetic Tape Memory Preamplifier	4-34
MC3468	_	Magnetic Tape Memory Read Amplifier	4-39
MC3470	. — .	Floppy Disk Read Amplifier System	4-59
MC3480	—	Dynamic Memory Controller	4-73
MC6875	 .	M6800 2-Phase Clock Generator/Driver	4-88
MC6880A/ 8T26A	_	Quad 3-State Bus Transceiver	4-99
MC6881/ 3449	_	Bidirectional Bus Extender/Switch	4-104
MC6882A, B/ MC3482A, B	· _	Octal 3-State Buffer/Latch	4-109
MC6885-88/ MC8T95-98	. —	Hex 3-State Buffer/Inverters	4-113
MC6889/ 8T28		Non-Inverting Bus Transceiver	4-118
MC6890	 MC6890A	8-Bit Bus-Compatible MPU D/A Converter	
MC75365		Quad MOS Clock Driver	4-123
MC75368	_	Dual MECL-to-MOS Driver	
MMH0026C		Dual MOS Clock Driver	
	141141110020		

.



Rating		Symbol	Value	Unit
Power Supply Voltages ⁽¹⁾			+7.0 -8.0	Vdc
Input Common-Mode Voltage Range		VICR	+5.0, -6.0	Vdc
Input Differential-Mode Voltage Range ⁽²⁾		VIDR	+5.0, -6.0	Vdc
Input Capacitor Restore, Channel Select, and Strobe Voltage		VI(CR) VI(CS) VI(S)	+5.5	Vdc
Power Dissipation (Package Limitation) Derate above T _A = 25 ^o C		PD	1.0 6.7	Watt mW/ ⁰ C
Operating Ambient Temperature Range	MC1444 MC1544	TA	0 to +75 -55 to +125	°C
Storage Temperature Range		Tstg	-65 to +150	°c
Operating Junction Temperature		T,	+175	°C

MAXIMUM RATINGS (TA = +25°C unless otherwise noted).

(1) All voltage values, except differential voltages, are with respect to the network ground terminal.

(2) Differential input voltages are at A1 with respect to A2, and similarly B1 to B2, C1 to C2, and D1 to D2.

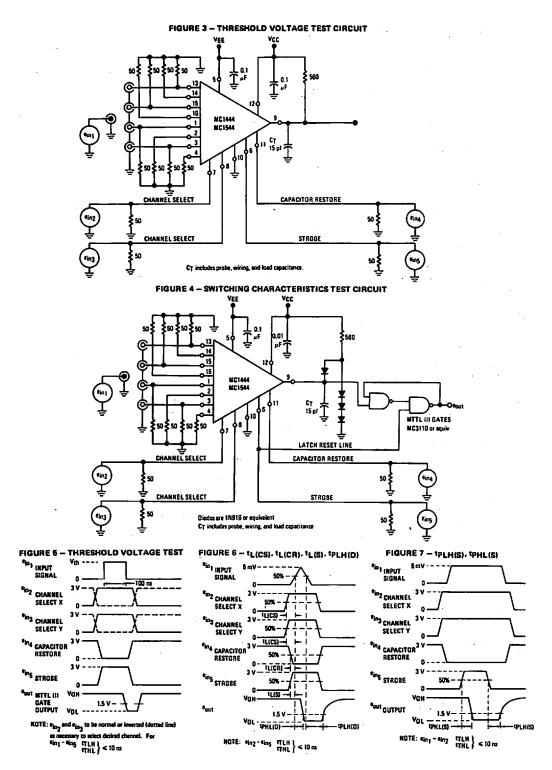
FIGURE 2 - EQUIVALENT CIRCUIT SCHEMATIC

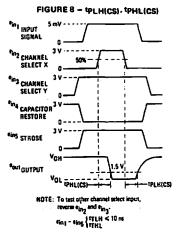
RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltages	Vcc	4,75	5.0	5.25	v
L	VEE	-5.7	-6.0	-6.30	

Γ <u>Α</u> = 25°C.1		MC1444				MC1544		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Threshold Voltage (Figure 4) (V _{CC} = 5.0 V, V _{EE} = -6.0 V, T _A = T _{high} to T _{low}) (1)	Vth	0.3	1.0	2.3	0.5	1.0	1.5	mV
Input Bias Current (Selected Channel)	1B	-	20	50		20	50	μA
Input Offset Current (Selected Channel)	110	-	1.0	10	-	1.0	10	μA
Channel Select Input Current-High Logic State, (V1H(CS) = 3.5 V)	IH(CS)	-	-	2.6	-	-	2.6	mA
Channel Select Input Current - Low Logic State, (VIL(CS) = 0 V)	IL(CS)	-	-	1.0	-	-	1.0	mA
Capacitor Restore Input Current - High Logic State, (VIH(CR) = 3.5 V)	IH(CR)	-	-	10	-	-	10	μA
Capacitor Restore Input Current-Low Logic State, (VIL(CR) = 0 V)	IL(CR)	-	-	-3.5	-		-3.5	mA
Strobe Input Current-High Logic State, (VIH{S} = 3.5 V)	IH(S)	-		200	-	-	200	μA
Strobe Input Current-Low Logic State (VIL(S) = 0 V)	IL(S)	-	-	200	-	-	200	μΑ
Channel Select Input Voltage-Low Logic State	VIL(CS)	-	-	0.7		-	0.7	V
Channel Select Input Voltage-High Logic State	VIH(CS)	2.1			2.1	-	-	_v
Capacitor Restore Input Voltage-Low Logic State	VIL(CR)	-	-	0.8	-	-	0.8	V
Capacitor Restore Input Voltage-High Logic State	VIH(CR)	2.0		-	2.0	-		V
Strobe Input Voltage-Low Logic State	VIL(S)	-	-	0.8	-	-	0.8	v
Strobe Input Voltage-High Logic State	VIH(S)	2.0	-	-	2.0	-	-	. V
Input Common-Mode Voltage Range	VICR+		4.7	-	-	4.7	-	v
	VICR-		-6.0			-6.0	-	L
Input Differential Voltage Range	VIDR		±3.7	<u> </u>		±3.7		V
Output Voltage-Low Logic State (IOL = 10 mA)	VOL	<u> </u>	0.4	0.5	-	0.4	0.5	
Output Voltage-High Logic State (1 _{OH} = -400 µA)	Voн	2.4	-	-	2.4	-	-	¯v
Positive Power Supply Current	icc	-		30	-	-	30	mA
Negative Power Supply Current	IEE	-	-	30		- 1	30	mΑ

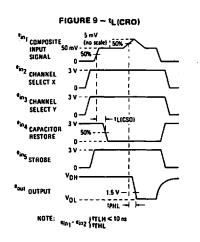
ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply for 4.75 V < V_{CC} < 5.25 V, -5.7 V > V_{EE} > -6.3 V, T_A = 25^oC.)

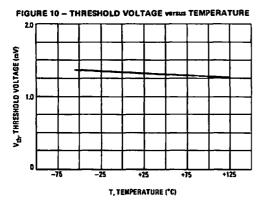

SWITCHING CHARACTERISTICS (unless otherwise noted, TA = 25°C, VCC = 5.0 V, VEE = -6.0 V)


	T	1	MC1444					
Characteristic	Symbol	Min	Тур	Max	Min	Түр	Max	Unit
Propagation Delay Time Differential Inputs to High Logic State Output	¹₽LH(D)	-	40	-	-	40	-	ns -
Propagation Delay Time Differential Input to Low Logic State Output	tPHL(D)	-	18	25	-	18	25	n\$
Propagation Delay Time Strobe Input to High Logic State Output	^t PLH(S)	-	30	-	-	30	-	ns
Propagation Delay Time Strobe Input to Low Logic State Output	የPHL(S)	-	18	25	-	18	25	ns
Lead Time from Channel Select Input to Application of Differential Input Voltage	^t L(CS)	-	45	-	-	45	-	ns .
Lead Time from Application of a 50 mV Offset Signal to Application of the Capacitor Restore Signal	^t L(CRO)	-	15	-	-	15	_	ns
Lead Time from Application of Strobe Input to Application of Differential Input Signal	tL(S)		10	-	-	10	-	ns
Lead Time from Application of Capacitor Restore Signal to Application of Differential Input Signal	¹ L(CR)	-	10	-	-	10	-	ns
Common-Mode Recovery Time (e _{in1} = +2.0 V) (e _{in1} = -2.0 V)	tCMR+ tCMR-	-	50 50	-	-	50 50	-	ns
Differential-Mode Recovery Time (e _{in1} = +1.0 V) (e _{in1} = -1.0 V)	¹ DMR+ ¹ DMR-	-	65 65	-	-	65 65		ns

(1) $T_{high} = 75^{\circ}C$ for MC1444, 125^oC for MC1544. $T_{low} = 0^{\circ}C$ for MC1444, -55^oC for MC1544.

. .


.


DEFINITIONS

Voн	Output Voltage – High Logic State	
VOL	Output Voltage - Low Logic State	
VIH(S)	The minimum high-level voltage at the strobe input which will allow normal operation during the threshold test	t
VIL(S)	The maximum low-level voltage at the strobe input which will result in V_{OH} at the output regardless of input signals	t
Vth	The minimum input signal (e_{in1}) required to drive the MTTL III gates to obtain the e_0 waveform shown in Figure 5	-
VICM+	The maximum common-mode input voltage that will not saturate the emplifier	t
VICM-	The minimum common-mode input voltage that will not break down the amplifier	
VIH(CR)	The minimum high-level voltage at the capacitor restore input required to insure that the capacitors are clamped i.e., the input threshold voltage is greater than 10 mV	ť
VIL(CR)	The maximum tow-level voltage at the capacitor restore input which will allow normal operation during the threshold test	t
VIH(CS)	The minimum high-level voltage at a channel select in- put required to insure that the total of the base currents of all unselected inputs is less than $1.0 \ \mu A$	1
VIL(CS)	The maximum low-level voltage at a channel select in- put required to insure that the total of the base currents of all unselected inputs is less than 1.0 μ A	t
VID	The maximum differential-mode input voltage that will not saturate the amplifier	
юн	Output Source Current - High Logic State	t
ŀΟL	Output Sink Current - Low Logic State	
IH(S)	The current into the strobe input when the input is at a high-level of 3.5 volts	1
IL(S)	The current into the strobe input when the input is at a low-level of 0 volts	
¹ CMR±	The minimum time between the 50% level of the trailing edge of a + or -2 volt common-mode signal (T_{LH} , T_{HL}	1
^t L(CRO)	\leq 15 ns) and the 50% level of the leading edge of a 5 mV input pulse when the capacitor restore and strobe inputs are used in a normal manner as shown in Figure 22 The minimum time between the 50% level of the leading	
	edge of a 50 mV input offset signal and the 50% level of the leading edge of the capacitor restore pulse as shown in Figure 9	I

^t L(CR)	The minimum time between the 50% level of the leading edge of the capacitor restore signal and the 50% level of the leading edge of a 5 mV input signal as shown in Figure 6
^t L(CS)	The minimum time between the 50% level of the leading edge of the channel select and the 50% level of the leading edge of a 5 mV input signal as shown in Figure 6
ሞLH(CS)	The delay time from the 50% level of the trailing edge of the channel select signal to the 1.5 volt level of the positive edge of the output when the input to the selected channel is held at the "1" level as shown in Figure 8
^t ₽HL(CS)	The delay time from the 50% level of the leading edge of the channel select signal to the 1.5 volt level of the negative edge of the output when the input to the select- ed channel is held at the "1" level as shown in Figure 8
^t DMR±	The minimum time between the 50% level of the trailing edge of a + or - 1 volt differential-mode signal (t_{TLH} , $t_{THL} \leq 15$ ns) and the 50% level of the leading edge of a 5 mV input pulse when the capacitor restore and strobe inputs are used in a normal manner as shown in Figure 23
ሞLH(D)	The delay time from the 50% level of the trailing edge of a 5 mV input signal to the 1.5 volt level of the posi- tive edge of the output as shown in Figure 6
¹ PHL(D)	The delay time from the 50% level of the leading edge of a 5 mV input signal to the 1.5 volt level of the nega- tive edge of the output as shown in Figure 6
^t L(S)	The minimum time between the 50% level of the leading edge of the strobe and the 50% level of the leading edge of the input signal as shown in Figure 6
ሞLH(S)	The delay time from the 50% level of the trailing edge of the strobe to the 1.5 volt level of the positive edge of the output when the input is held at the High Logic Level as shown in Figure 7
^t PHL(S)	The delay time from the 50% level of the trading edge of the strobe to the 1.5 volt level of the negative edge of the output when the input is held at the High Logic Level as shown in Figure 7
IH(CS)	The current into the channel select input when the input is at a high-level of 3.5 volts
IH(CR)	The current out of the capacitor restore input when the input is at a low-level of 0 volts
IL(CS)	The input current to a channel select input when that input is at a high-level of 3.5 volts

IL(CR) The current into a channel select input when the input is at a low-level of 0 volts

TYPICAL CHARACTERISTICS (TA = +25°C unless otherwise noted)

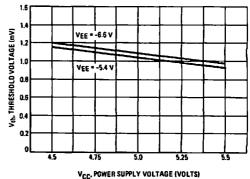


FIGURE 11 - THRESHOLD VOLTAGE Versus POWER SUPPLIES

FIGURE 12 - THRESHOLD versus INPUT OFFSET VOLTAGE

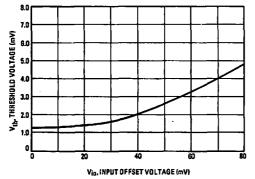
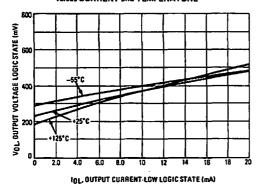
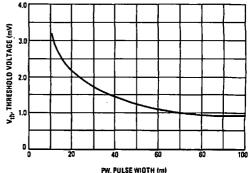
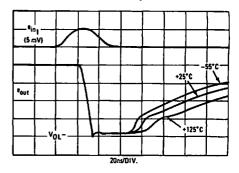
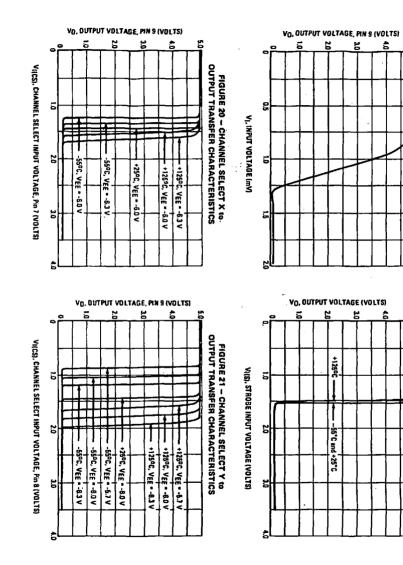
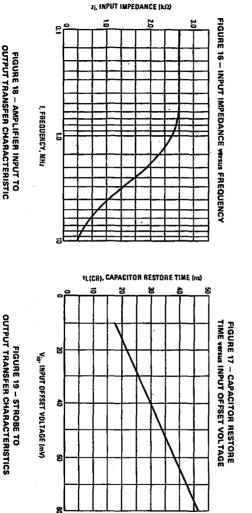


FIGURE 14 - OUTPUT VOLTAGE versus CURRENT and TEMPERATURE

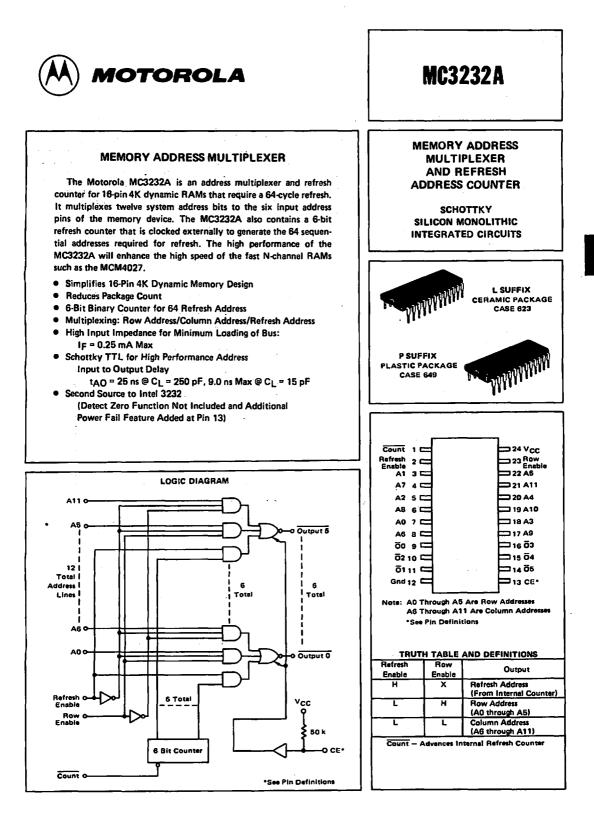

FIGURE 13 - THRESHOLD VOLTAGE versus PULSE WIDTH



PW, PULSE WIOTH (ns) (10% LEVEL OF TRIANGLE)

FIGURE 15 - SENSE AMPLIFIER RESPONSE versus TEMPERATURE (See Figure 3 and 6)

MC1444, MC1544


FIGURE 22 - COMMON-MODE CHARACTERISTICS

Note: The 5mV Input Signal (Differential) is superimposed on the Common-Mode Input and is shown separately for reference only.

COMMON-MODE INPUT 2 V/DIV	COMMON-MODE INPUT 2 V/DIV
SIGNAL INPUT 10 mV/DIV	SIGNAL INPUT 10 mV/DIV
CAPACITOR RESTORE 5 V/DIV	CAPACITOR RESTORE 5 V/DIV
STROBE INPUT 5 V/DIV	STROBE INPUT 5 V/DIV
OUTPUT 2.5 V/DIV	OUTPUT 2.5 V/DIV
25 ^{ns} /DIV	25 ⁰⁸ /DIV

FIGURE 23 - DIFFERENTIAL-MODE CHARACTERISTICS Note: The SmV Input Signal is superimposed on the Differential input and is shown separately for reference only.

DIFFERENTIAL INPUT	DIFFERENTIAL INPUT 1 V/DIV
SIGNAL INPUT 10 mV/DIV	SIGNAL INPUT 10 mV/DIV
CAPACITOR RESTORE 5 VIDIV	CAPACITOR RESTORE 5 V/DIV
	STROBE INPUT 5 V/DIV
OUTPUT 2.5 V/DIV	OUTPUT 2.5 V/OIV
	25 hs/DIV

ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +7.0	V
Input Voltage	V	-0.5 to +7.0	V
Output Voltage	Vo	-0.5 to +7.0	v
Output Current	10	100	mA
Operating Ambient Temperature	TA	0 to +75	
Storage Temperature	T _{stg}	-65 to +150	°C
Junction Temperature Ceramic Package Plastic Package	Ťj	+175 +160	OC.

"Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, Min/Max values apply with 4.5 V < V_{CC} < 5.5 V, 0°C < T_A < 75°C; typical values apply with V_{CC} = 5.0 V, T_A = 25°C.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Current, Low Logic State (VIL = 0.45 V)	¹ IL	_	-0.04	-0.25	mA
Input Current, High Logic State (VIH = 5.5 V)	тн	-	-	10	μA
Input Voltage, Low Logic State	VIL	_	- 1	0.8	V
Input Voltage, High Logic State	VIH	2.0	- 1	_	v
Output Voltage, Low Logic State (IOL = 5.0 mA)	VOL	-	0.25	0.4	v
Output Voltage, High Logic State (IOH = -1.0 mA)	Voн	2.8	4.0		V
Input Clamp Voltage (IIC = -12 mA)	VIC	_	-0.8	-1.5	v
Power Supply Current (V _{CC} = 5.5 V)	100	-	75	125	mA

SWITCHING CHARACTERISTICS (Unless otherwise noted, Min/Max values apply with 4.5 V \leq V_{CC} \leq 5.5 V, 0°C \leq T_A < 75°C; typical values apply with V_{CC} = 5.0 V, T_A = 25°C.}

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Times					
Address Input to Output	140				ns
(Load = 1 TTL, CL = 250 pF)		-	12	25	
(Load = 1 TTL, CL = 15 pF, VCC = 5.0 V, TA = 25°C)	1 1	-	6.0	9.0	
Row Enable to Output	100		<u> </u>		ns
(Load = 1 TTL, CL = 250 pF)		12	27	41	
(Load = 1 TTL, CL = 15 pF, V _{CC} = 5.0 V, T _A = 25 ^o C)		7	12	27	1
Refresh Enable to Output	1EO		1 1		ns
(Load = 1 TTL, CL = 250 pF)		12	30	45	
(Load = 1 TTL, CL = 15 pF, VCC = 5.0 V, TA = 25°C)		7	14	27	
Count Pulse Width	twē	30		_	ns
Counting Frequency	1 51	5.0	10	_	MHz

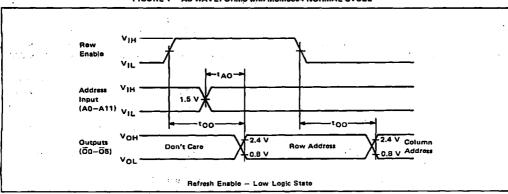
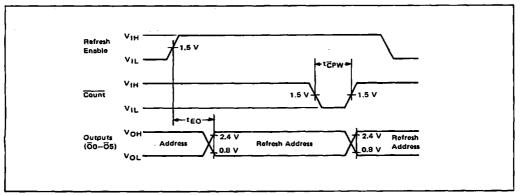



FIGURE 1 - AC WAVEFORMS with MCM6604 NORMAL CYCLE

TYPICAL CHARACTERISTICS

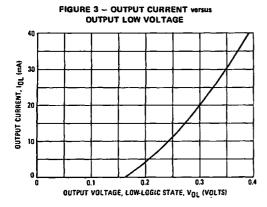
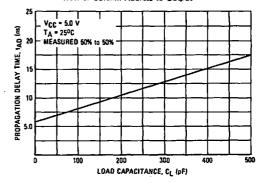



FIGURE 4 - PROPAGATION DELAY versus LOAD CAPACITANCE Row or Column Address to Output

PIN DEFINITIONS

Count Input - Pin 1

Active low input increments internal 6-bit counter by one for each count pulse In.

Refresh Enable Input - Pin 2

Active high input which determines whether the MC3232A is in refresh mode (H) or address enable (L).

A0-A5 Inputs - Pins 7, 3, 5, 18, 20, 22 Row address inputs.

A6-A11 Inputs - Pins 8, 4, 6, 17, 19, 21 Column address inputs.

00-05 Outputs - Pins 9, 11, 10, 16, 15, 14

Address outputs to memories. Inverted with respect to address inputs.

Gnd - Pin 12

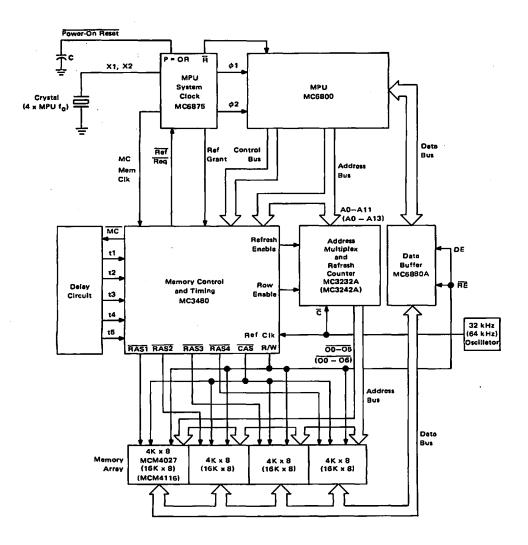
Power supply ground.

CE Input - Pin 13

Optional use, chip enable control pin. Left open, an internal 50 k Ω pullup resistor keeps this pin high and the MC3232A is a functional replacement for the Intel 3232 (without detect zero function). As an active input, when pulled low, all 3232A outputs go three-state. Regardless of Pin 13 (CE) condition, when power (VCC) is removed, all 3232A outputs go three-state. In addition, the refresh address counter is reset to all 1s so that upon return of supply power, control of refresh addressing can be returned to the MC3232A (by pulling Pin 13 high) at a known address (i.e., all 1s). This option is available tested by consulting factory.

Row Enable Input - Pin 23

High input selects row, low input selects column addresses of the driven memories.


V_{CC} – Pin 24

+5 V power supply input. Due to high capacitance drive capability, a 0.1 μ F capacitor should be used to ground along with careful V_{CC} and Gnd Bus layout.

TYPICAL APPLICATION 16K X 8 BIT MEMORY SYSTEM FOR M6800 MPU

Note: Numbers in parenthesis indicata part types or values for 16K'x 1 RAMs

MC3242A

MEMORY ADDRESS

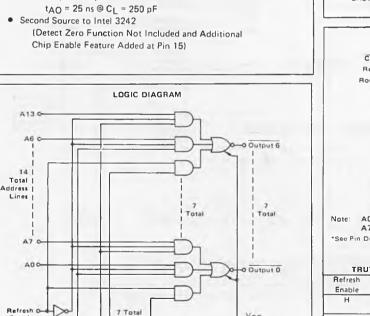
MULTIPLEXER

AND REFRESH

MEMORY ADDRESS MULTIPLEXER FOR 16K RAMS

The Motorola MC3242A is an address multiplexer and refresh counter for 16-pin 16K dynamic RAMs that require a 128-cycle refresh. It multiplexes fourteen system address bits to the seven address pins of the memory device. The MC3242A also contains a 7-bit refresh counter that is clocked externally to generate the 128 sequential addresses required for refresh. The high performance of the MC3242A will enhance the high speed of the N-channel RAMs such as the MCM4116.

- Simplifies 16-Pin 16K Dynamic Memory Design
- Reduces Package Count


Enable

Row C Enable

Count G

- . 7-Bit Binary Counter for 128 Refresh Address
- Multiplexing: Row Address/Column Address/Refresh Address
- High Input Impedance for Minimum Loading of Bus: IF = 0.25 mA Max
- Schottky TTL for High Performance Address Input • to Output Delay -
- (Detect Zero Function Not Included and Additional Chip Enable Feature Added at Pin 15)

7 Bit Counter

ADDRESS COUNTER SCHOTTKY SILICON MONOLITHIC INTEGRATED CIRCUITS I SUFFIX RAMIC PACKAGE CASE 733 WWW P SUFFIX PLASTIC PACKAGE CASE 710 28 VCC Count Ref En 2 27 A6 Row En 26 A13 3 25 A5 N.C. 4 5 24 A12 Δ1 23 A4 AB 6 AZ 22 A11 Α9 8 21 A3 20 A10 AO 9 19 06 A7 10 11 00 18 03 02 12 17 04 ōĩ 13 16 05 Gnd 14 15 CE. AD Through A6 Are Row Addresses A7 Through A13 Are Column Addresses *See Pin Definitions TRUTH TABLE AND DEFINITIONS Row Output Enable Х Refresh Address (From Internal Counter) L н Row Address (A0 through A6) L L Column Address (A7 through A13) Count - Advances Internal Refresh Counter

*See Pin Definitions

Vcc

0

≶ 50 k

CE.

ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +7.0	V
Input Voltage	VI	-0.5 to +7.0	v
Output Voltage	Vo	-0.5 to +7.0	v
Output Current	10	100	mA
Operating Ambient Temperature	TA	0 to +75	°C
Storage Temperature	T _{stg}	-65 to +150	°C
Junction Temperature Cersmic Package Plastic Package	Ťj	+175 +150	°C

"Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, Min/Max values apply with 4.5 V < V_{CC} < 5.5 V, 0°C < T_A < 75°C; typical values apply with V_{CC} = 5.0 V, T_A = 25°C.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Current, Low Logic State (VIL = 0.45 V)	ſIL	_	-0.04	-0.25	mА
Input Current, High Logic State (VIH = 5.5 V)	Чн	-		10	μA
Input Voltage, Low Logic State	V _{IL}		1 - 1	0.8	V
Input Voltage, High Logic State		2.0	- 1	_	
Output Voltage, Low Logic State (IOL = 5.0 mA)	VOL	-	0.25	0.4	T V
Output Voltage, High Logic State (IOH = -1.0 mA)	VOH	3.0	4.0	-	V
Input Clamp Voltage (1µK = -12 mA)	Vik	-	-0.8	-1.5	v
Power Supply Current (VCC = 5.5 V)	lcc	-	95	125	mA

SWITCHING CHARACTERISTICS (Unless otherwise noted, Min/Max values apply with 4.5 V < V_{CC} < 5.5 V, 0^oC < T_A < 75^oC: typical values apply with V_{CC} = 5.0 V, T_A = 25^oC.)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Times					
Address Input to Output	tAO)]		l ns
{Load = 1 TTL, CL = 250 pF}		-	12	25	
(Load = 1 TTL, CL = 15 pF, VCC = 5.0 V, TA = 25°C)		-	6.0	9.0	
Row Enable to Output	100				ns
(Losd = 1 TTL, CL = 250 pF)		12	27	41	1
(Load = 1 TTL, C = 15 pF, V _{CC} = 5.0 V, T _A = 25 ^o C)		7	12	27	
Refresh Enable to Output	1EO				ns
(Load = 1 TTL, CL = 250 pF)		12	30	45	
(Load = 1 TTL, CL = 15 pF, VCC = 5.0 V, TA = 25°C)		7	14	27	
Count Pulse Width	twē	30	-	_	
Counting Frequency	31	5.0	10	-	MHz

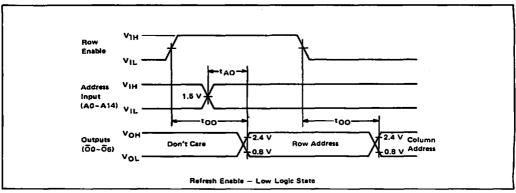
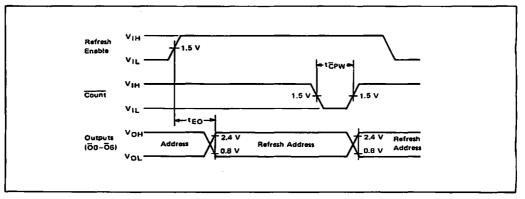



FIGURE 1 - AC WAVEFORMS WITH MCM4116 NORMAL CYCLE

TYPICAL CHARACTERISTICS

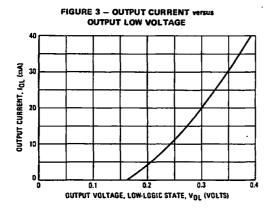
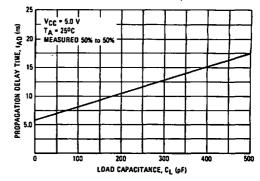



FIGURE 4 - PROPAGATION DELAY versus LOAD CAPACITANCE Row or Column Address to Dutput

PIN DEFINITIONS

Count Input - Pin 1

Active low input increments internal 6-bit counter by one for each count pulse in.

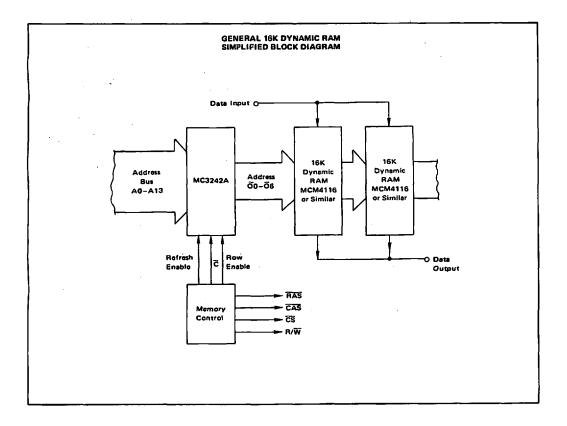
Refresh Enable Input - Pin 2

Active high input which determines whather the MC3242A is in refresh mode (H) or address enable (L).

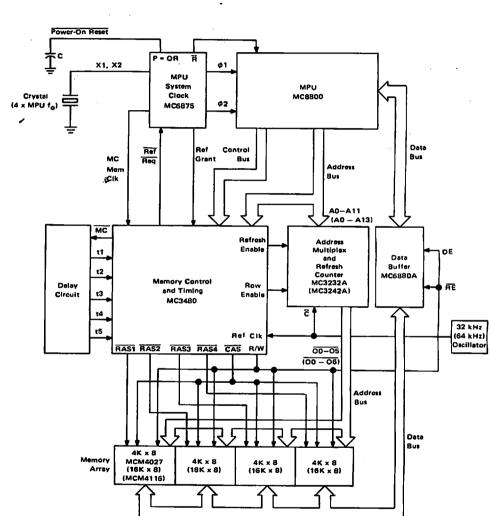
- A0-A6 Inputs Pins 9, 5, 7, 21, 23, 27 Row address inputs.
- A7-A13 Inputs Pins 10, 6, 8, 20, 22, 24, 26 Column address inputs.

00-06 Outputs - Pins 11, 12, 13, 18, 17, 16, 19 Address outputs to memories. Inverted with respect to address inputs.

Gnd - Pin 14


Power supply ground.

CE Input - Pin 15


Optional use, chip enable control pin. Left open, an internal 50 k Ω pullup resistor keeps this pin high and the MC3242A is a functional replacement for the Intel 3242 (without detect zero function). As an active input, when pulled low, all 3242A outputs go three-state. Regardless of Pin 15 (CE) condition, when power (VCC) is removed, all 3242A outputs go three-state. In addition, the refresh address counter is reset to all 1s so that upon return of supply power, control of refresh addressing can be returned to the MC3242A (by pulling Pin 15 high) at a known address (i.e., all 1s). This option is available tested by consulting factory.

V_{CC} – Pin 28

+5 V power supply input. Due to high capacitance drive capability, a 0.1 μ F capacitor should be used to ground along with careful VCC and Gnd Bus layout.

TYPICAL APPLICATION 16K X 8-BIT MEMORY SYSTEM FOR M6800 MPU

Note: Numbers in parenthesis indicate part types or values for 16K x 1 RAMs

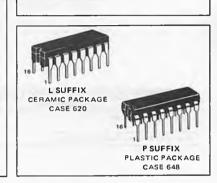
٠

MC3245

GATE-CONTROLLED

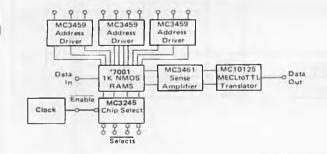
FOUR-CHANNEL MOS CLOCK DRIVERS

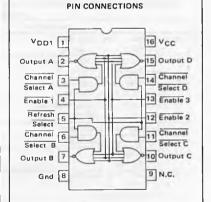
SILICON MONOLITHIC

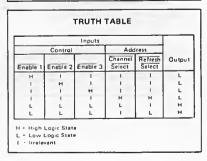

INTEGRATED CIRCUIT

QUAD TTL TO MOS DRIVER

This high-speed driver is intended as a clock (high-level) driver for 22-pin and 18-pin dynamic NMOS RAMs and CCD memories. It is designed to operate on nominal +5 V and +12 V power supplies.


The channel control logic is organized so that all four drivers may be deactivated for STANDBY operation, or single driver may be activated for READ/WRITE operation or all four drivers may be activated for REFRESH operation.


- Control Logic Optimized for Use in MOS RAM Systems
- Output Voltages Compatible with Many Popular MOS RAMs
- TTL and DTL Compatible Inputs High-Speed Switching
- Interchangeable with Intel 3245



TYPICAL APPLICATION WITH 4K NMOS RAM IN TTL SYSTEM 999 0 9 99 0 999 MC3459 MC3459 MC3459 Address Address Address Driver Drive Driver 48 Data o o Data NMOS Out RAMS Enable MC3245 Clock O Refresh Clock Driver 8 8

1

MAXIMUM	RATINGS	(TA = 25 ⁰	C unless oth	erwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltages	Vcc	-0.5 to +7.0	Vdc
	VDD	-0.5 to +14	Vdc
Output Voltage	Vo	-1.0 to VDD +1.0	Vdc
Input Voltage	V ₁	-1.0 to V _{DD}	Vdc
Operating Ambient Temperature Range	TA	0 to +75	°C
Storage Temperature Range	Tstg	-65 to +150	°C
Junction Temperature	T J	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	°C
Ceramic Package	l T	175	
Plastic Package		. 150	1

. .

RECOMMENDED OPERATING CONDITIONS

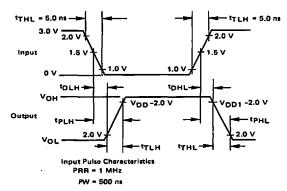
Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltages	Vcc	4.75	5.0	5.25	Vdc
	VDD	11.4	.12	12.6	Vdc
Operating Ambient Temperature Range	ТА	0		75	∞

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, these specifications apply over recommended power supply and temperature conditions. Typical values measured at $T_A = 25^{\circ}$ C.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage High Logic State (VIL = 0.8 V, I _{OH} = -1.0 mA)	Voh	V _{DD} - 0.5			Vdc
Output Clamp Voltage High Logic State (IOH = 5.0 mA, VIL = 0 V)	Vонс	_	-	V _{DD} + 1.0	Vdc
Output Voltage Low Logic State (VIH = 2.0 V, IOL = 5.0 mA)	VOL	_	-	0,45	Vdc
Output Clamp Voltage Low Logic State (VIH = 5.0 V, IOL -5.0 mA)	Volc	-1.0	-	-	Vdc
Input Voltage High Logic State		2.0	- 1	-	Vdc
Input Voltage - Low Logic State	ViL	_	- 1	0.8	Vdc
Input Clamp Voltage (I _{IK} = -5.0 mA)	VIK	_		-1.0	Vdc
Input Current — High Logic State (V1 = 5.0 V) Channel Select Inputs Refresh Select and Enable Inputs	JIH		-	10 40	μA
Input Current – Low Logic State (VIL = 0.45 V) ' Channel Select Inputs Refresh Select and Enable Inputs	ι)Γ	-	-	-0.25 -1.0	mĀ
Power Supply Current – Output High Logic State (VCC = 5.25 V, VIL = 0 V, IOH = D mA, VDD = 12.6 V)		-	23 19	30 26	mA
Power Supply Current – Output Low Logic State (VCC = 5.25, VIH = 5.0 V, IOL = 0 mA, VDD = 12.8 V)	ICCL IDDL	_	29 12	39 15	mA

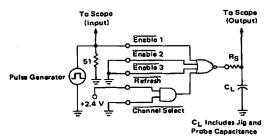
SWITCHING CHARACTERISTICS (Unless otherwise noted, these specifications apply over recommended power supply and temperature conditions. Typical values measured at +25°C.)

Characteristic	Symbol	Min (1)	Typ (2)	Max (3)	Unit
Delay Time					ns
Output High to Low Level ($R_S = 0 \Omega$)	1 TOHL	3.0	7.0	-	
Output Low to High Level (Rs = 0 Ω)	1 DLH	5.0	11	-	
Transition Time					ns
Output High to Low Level (Rs = 20 Ω)	1 THL	5.0	17	25	1
Output Low to High Level (Rs = 20 S)	TLH	10	17	25	
Propagation Delay Time					ns
Output High to Low Level (Rg = 0 Ω)	TONL 1	-	18	32	
Output Low to High Level ($R_S = 0 \Omega$)	TPLH1	-	20	32	
(Rs = 20 Ω)	tPLH2	-	27	38	1


(1) CL = 150 pF

(2) CL = 200 pF (3) CL = 250 pF

CAPACITANCE* (Unless otherwise specified, TA = +25°C, f = 1.0 MHz, VI = 2.0 V, and VCC = 0 V.)


Characteristic	Symbol	Min	Тур	Max	Unit
Input Capacitance Channel Select Inputs	C _{in} (CS)	-	5.0	8.0	pF
Input Capacitance Refresh or Enable Inputs	C _{in} (Ĕ)	-	8.0	12	ρF

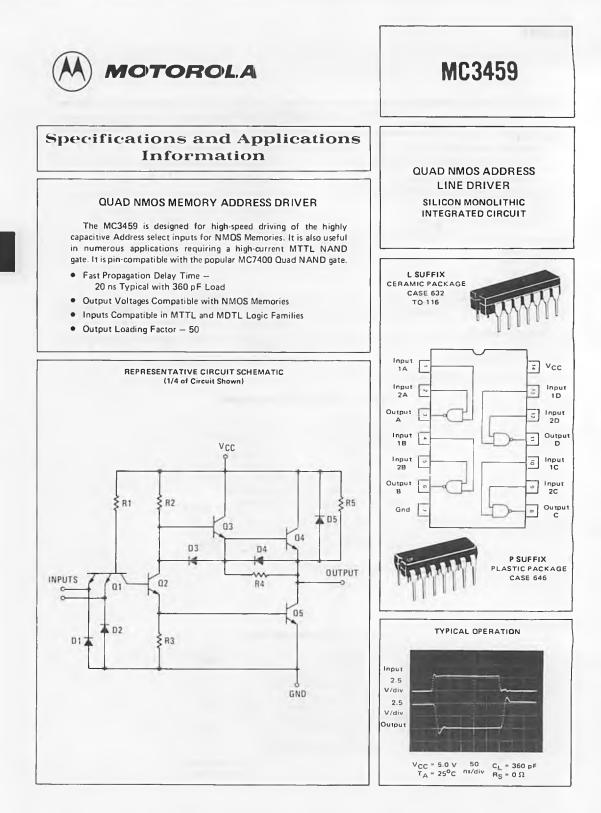
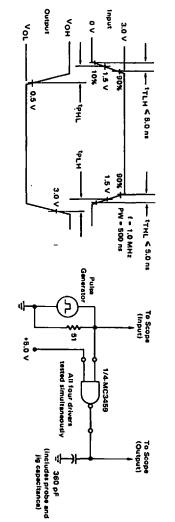

*Periodically sampled, but not 100% tested.

FIGURE 1 - SWITCHING TEST WAVEFORMS

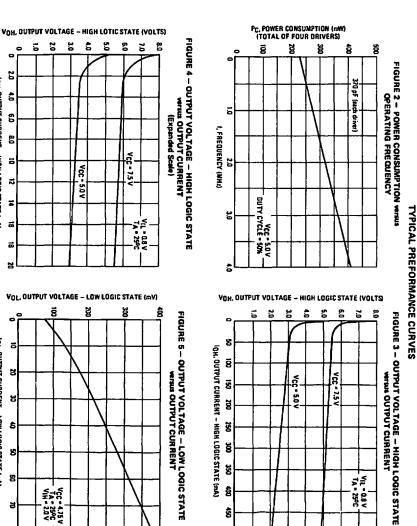
4

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	8.5	Vdc
Input Voltage		5.5	Vdc
Power Dissipation (Package Limitation Ceramic Package @ $T_A = 25^{\circ}C$ Derate above $T_A = 25^{\circ}C$	PD 1/Røja	1000 6.6	mW mW/ ^o C
Plastic Package @ T _A = 25 ⁰ C Derate above T _A = 25 ⁰ C	PD 1/R _{ØJA}	830 6.6	mW mW/ ⁰ C
Ceramic Package @ T _C = 25 ⁰ C Derate above T _C = 25 ⁰ C	PD 1/R∂JC	3.0 20	Watts⁺ mW/ ⁰ C
Plastic Package @ T _C = 25 ⁰ C	PD	1.8	Watts
Derate above T _C = 25 ⁰ C	1/R _{0JC}	14	mW/ ⁰ C
Operating Ambient Temperature Range	TA	0 to 70	°C
Junction Temperature Ceramic Package Plastic Package	LI	175 150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

MAXIMUM RATINGS (TA = 25°C unless otherwise noted.)

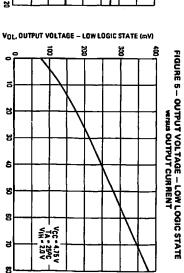

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, 4.75 V < V_{CC} < 5.25 V and 0 < T_A < 70°C)

Characteristic	Symbol	Min	Typ(1)	Max	Unit
Input Voltage – High Logic State	VIH	2.0	-	-	V
Input Voltage - Low Logic State	VIL	-	-	0.8	V V
Input Current - High Logic State					
(V _{CC} = 5.25 V, V _{IH} = 2.4 V)	4001	_	} -	80	μA
(V _{CC} = 5.25 V, V _{IH} = 5.5 V)	liH2	-		2.0	mA
Input Current - Low Logic State	կլ	-		-3.6	mA
(V _{CC} = 5.25 V, V _{IL} = 0.4 V)			·		
Input Clamp Voltage	ViC	-	-	-1.5	V V
$(I_{IC} = -12 \text{ mA})_{i}$					
Output Voltage - High Logic State					- v
(V _{CC} = 4.75 V, V _{IL} = 0.8 V, I _{OH} = -640 μA)	VOH1	3.2	1 -	1 -	
(VCC = 4.75 V, VIL = 0.8 V, IOH = -2.0 mA)	VOH2	2.4	-	- 1	
Output Clamp Voltage	Voc	-	5.8	6.75	V
(V _{CC} = 5.25 V, V _{IL} = 0 V, I _{OC} = 5.0 mA)			_		
Output Voltage - Low Logic State			_		V V
(V _{CC} = 4.75 V, V _{IH} = 2.0 V, I _{OL} = 640 μA)	VOL1	-	-	0.3	
(VCC = 4.75 V, VIH = 2.0 V, IOL = 80 mA)	VOL2	-		0.7	
Power Supply Current - Outputs High Logic State	іссн	_	12	18	mA
(V _{CC} = 5.25 V, V _{IL} = 0 V)				1	
Power Supply Current - Outputs Low Logic State	ICCL	-	85	122	mA
(V _{CC} = 5.25 V, V _{IH} = 5.0 V)				1	


SWITCHING CHARACTERISTICS (Untess otherwise noted, V _{CC} = 5.0 V, T _A = 25 ^C	5°C, C1	= 360 pF)
--	---------	-----------

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time - High to Low Logic State	1PHL	-	21	32	ns
Propagation Delay Time - Low to High Logic State	1PLH	-	16	26	ns

(1) Typical values measured at $T_A = 25^{\circ}C$, $V_{CC} = 5.0 V$.


⋝⋛

25°C

ğ

ŝ

8 ä

Vcc - 7.5

3.0 5 50 50

VCC - 5.0 V

20

5

0

۰

2

â

50

80

ä

2

Ŧ

6

8

IOH, DUTPUT CURRENT -

HIGH LOGIC STATE (mA)

IOL, OUTPUT CURRENT - LOW LOGIC STATE (mA)

4

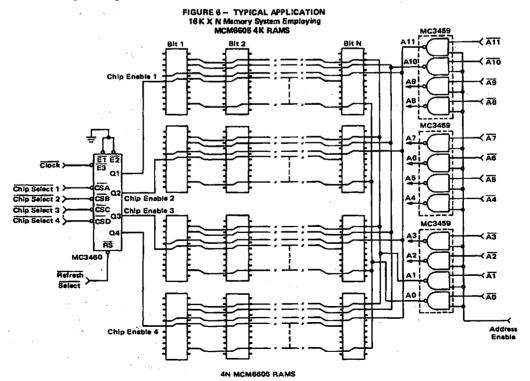
⁴⁻²⁶

APPLICATIONS SUGGESTIONS

A majority of the new N-Channel MOS memories have TTL logic compatible inputs that exhibit extremely low input current and capacitance (typically 5 pF to 10 pF). However, in a typical memory system (Figure 6) where some of the inputs such as Address lines have to be common, the total parallel input capacitance can be over 300 pF. Standard TTL logic gates have insufficient current drive capability to rapidly switch a high capacitive load; a high speed buffer, such as the MC3459, is required.

¢

A considerable amount of noise can be generated during switching due to the high speed and high current drive capability of the MC3459. The high capacitive discharge current during the high to low transition, plus current spikes can result in a considerable amount of noise being generated on the ground lead. Current spikes are due to both the upper and lower output drive transistors being on for a short period of time during switching. This causes a very low impedance path between V_{CC} and ground.


In order to minimize the effects of these currents, the following layout rules should be followed:

- The V_{CC} supply pin of each package should be by passed with a low inductance 0.01 μF capacitor. The 0.01 μF capacitor will sustain the high surge currents required during switching.
- There is a large amount of current out of the ground node during switching - the noise seen at this node

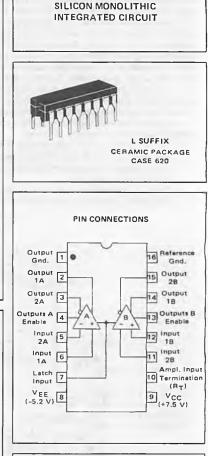
will be proportional to the ground impedance. The impedance of the ground bus can be reduced by increasing its width. At least a 50 mil ground width is recommended.

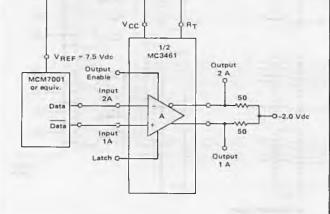
Some of the NMOS memories with TTL logic compatible inputs do not actually meet the TTL logic level requirements in the input high state voltage (V1H). There are N-Channel MOS memories with a VIH minimum ranging from 2.4 V to 4.0 V. The MC3459 can directly interface with those N-Channel memories having a VIH minimum of 3.0 V. The higher driver output levels can be accomplished by adding a pull-up resistor to VCC or by increasing the VCC voltage. There are some N-Channel MOS memories, such as the MCM7001, that have a supply requirement of 7.5 V. The high maximum supply voltage rating of the MC3459 can accommodate a 7.5 V VCC supply without affecting its input TTL logic compatibility. Figure 4 gives the typical VOH versus IOH characteristics for both V_{CC} = 5.0 V and V_{CC} = 7.5 V. An expanded output characteristic curve of Figure 4 is illustrated in Figure 5.

The MC3459 can be used in a variety of applications including, high fan-out buffer (drives 50 standard TTL loads) and low impedance transmission line driver.

MC3461

DUAL NMOS MEMORY SENSE AMPLIFIER


HIGH-SPEED NMOS/MECL SENSE AMPLIFIER


The MC3461 is a dual current sense amplifier with MECL 10,000 compatible control inputs and open emitter complementary outputs. The device is designed for use with Motorola MCM7001 or Intel 2105 NMOS 1K RAMs. A common latch input retains information in the amplifier at the time of latch closure. Separate channel output enables are provided to force the outputs to predetermined states until amplifier information exchange is desired.

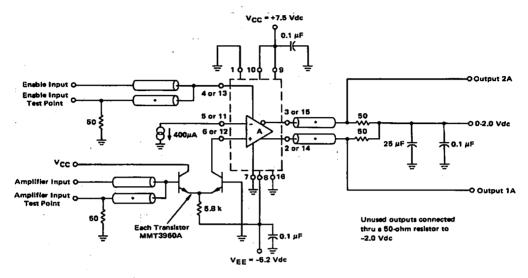
When the latch input goes to a logic "0" the outputs are locked in their present state unless the output enable is at, goes to, logic "1". In this event, the Output 1 and Output 2 remain at, or go to, logic "0" and logic "1" respectively.

- Complete NMOS Sense Amplifier No External Components Required
- Minimum Propagation Delay Amplifier Response - 5.0 ns Typ Enable Response - 2.5 ns Typ Latch Response - 1.0 ns Typ
- Power Supplies Compatible With MCM7001/MECL10,000 Systems
- Amplifier Input Termination Voltage Range from Gnd to VREF Supply on MCM7001

APPLICATION WITH MCM7001 MEMORY

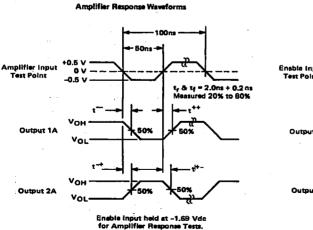
	Output	Output	Output
Input	Enable	1	2
1(1) ≥ -200 µA	0	0	1
1(2) = 0 μA	1	0	1
I(1) = 0 μA	0	1	0
1(2) ≥ 200 µA	1	0	1

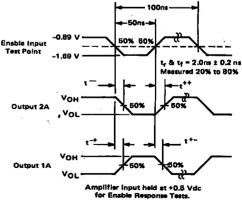
MAXIMUM RATINGS (Unless otherwise noted, TA = 25°C)


Rating	Symbol	Value	Unit
Power Supply Voltages	Vcc	8.5	v
	VEE	-6.0	v
Termination Voltage	۷T	0 to VCC	-
Operating Ambient Temperature Range	TA	0 to 75	°C
Package Power Dissipation	••		
Still Air	PD	1000	mW
Derate above 25°C	-	6.7	mW/ ^o C
Transverse Air flow > 500 linear fpm		2000	• mW
Derate above 25°C		13.3	m₩/ºC

ELECTRICAL CHARACTERISTICS

This device has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lineer fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one sense amplifier. The other half is tested in the same manner.


fpm is maintained. Outputs are to	ermin•											TEST	VOLTA	GE/CURRI (Volta)	INT VALU	ES		
ated through a 50-ohm resistor to volts. Test procedures are shown for										Test				· · ·				1
one sense amplifier. The other I	nalf is								Tem;	perature	1587738				VILAmax		VEE	
tested in the same manner.										0°C	>200µA	-0.850	-1.870	-1.155	-1.485	+7.5	-5.2	
										25°C	>200µA	-0.810	-1.850	-1.105	-1.475	+7.5	-5.2	
										75°C	>200µA	-0.720	-1.830	-1.045	-1.445	+7.5	-5.2	
		Pin				MC3461 1	est Limita		_									1 · 1
		Under	00	c i		+25°C		75	èc	•	TEST V	OLTAGE/	CURREN	T APPLIED	TO PINS	LISTED	SELOW:	
Characteristic	Symbol	Test	Min	Max	Min	Түр	Max	Min	Мах	Unit	Isense	ViHmax	VILmin	ViHAmin	VILAmax	Vcc	VEE	Gnd
Power Supply Drain Current	1cc	9	-	-	-	40	59	•	-	mAdc	6.12	-	-	-	-	9, 10	8	1, 16
	IEE	8	_	-	-	-50	-73	-	-	mAde	6,12	-	- 1	-	-	9, 10	8	ə, 16
Input Current	I'mH	4	1		-	-	500 500	-	-	μAde: μAde:	5, 11 5, 11	4	<u> </u>	-	-	9, 10 9, 10	8	1, 16 1, 16
	linL.	4		-	0.5 0.5	-	-	-	-	µAdc µAdc	5, 11 5, 11	-	4	-	-	9, 10 9, 10	8	1, 16
Logic "1" Output Voltage	∀он	3 2	-1.010]	-0.850	-0.960	-	-0.810	-0.900	-0.720	Vac	6 5	777	-	-		9, 10	8	1, 16
Logic "0" Output Voltage	VOL	3	-1.870	-1.660	-1.850		-1.650	-1.630	-1.620	Vde	5	7,4	<u></u> -		-	9, 10		1, 16
		2				-			1	17	6	7 7,4	=	=	-	1	Ĭ	1
Logic "1" Threshold Voltage	VOHA	3.2	-1.030	-	-0.980	-	-	-0.920	-	Vde	6			7	4	9, 10	8	1, 16
		3	1 1	- 1	+	i -	1 -	1.1	- 1	+	5	-	1 -	4.7	-	•	+	† 1
Logic "0" Threshold Voltage	VOLA	3	-	-1.640	-	-	-1.630	-	-1.600	Vdc	5 6	-	-	7 7	4	9, 10	8	1, 16
		2	-	1	-	-	<u> </u>	-	1.		5		~	4,7	-	1		<u> </u>
Switching Times (50-ohm load) Propagation Delay Amplifier	t	1 2	-	-	_	5.0	10.0	·]	'	_	-	_	Pulse In 6	Pulse Out	9, 10	8	1, 18
	1++ 1-+	2	-	2	-	łŤ		·-	-	11	-	-	-		2			
	t+-	3	-		-			-	-		-	_	-	•	3	•		+
Enable	1 t++	3	-	-	-	2.5	5.0	-	-		-	-	-	1	3	9, 10	B	1, 16
	(-+ (+-	2	-	-	-	[+		-		[_+	-	1	=	+	2 2	(+	[+]	+


*Negative currents are defined as currents leaving the device.

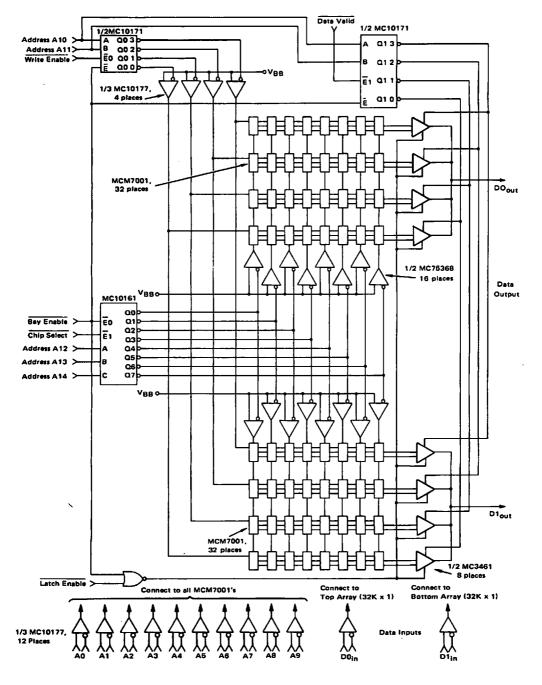


FIGURE 1 - SWITCHING RESPONSE TEST CIRCUIT AND WAVEFORMS @ 25°C (Other Section Tested Similarly)

*Denotes equal lengths of 50-ohm coaxial cabla. Wire length should be < 1/4" from test point to pin or BNC connector.

1 <u>1</u> 1 Enable Response Waveforms

FIGURE 2 - 32K x 2 MEMORY BOARD (MECL SYSTEM)

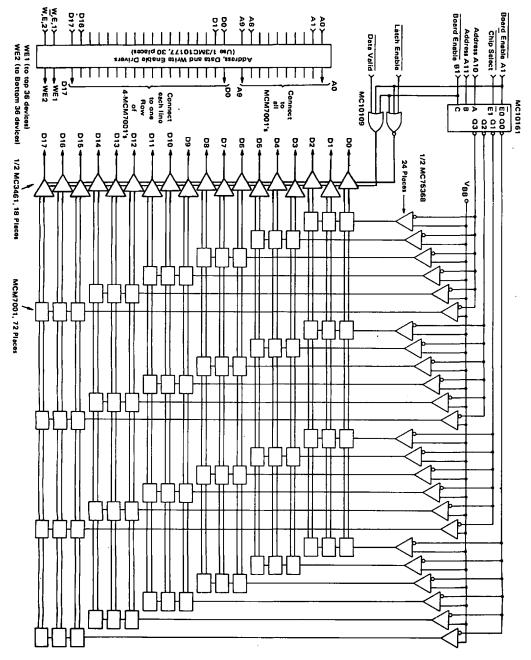
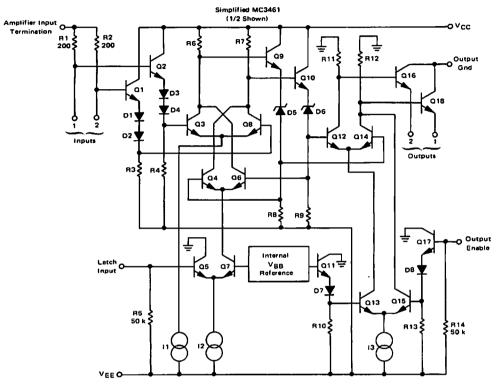



FIGURE 3 - 4K × 18 MEMORY BOARD (MECL SYSTEM)

WC3491

7

REPRESENTATIVE CIRCUIT SCHEMATIC

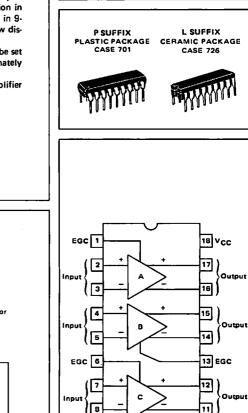
MC3467

TRIPLE MAGNETIC TAPE MEMORY PREAMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

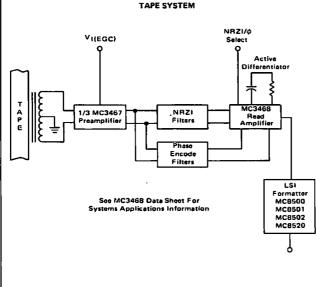
TRIPLE WIDEBAND PREAMPLIFIER WITH ELECTRONIC GAIN CONTROL (EGC)

The MC3467 provides three independent preamplifiers with individual electronic gain control in a single 18-pin package. Each preamplifier has differential inputs and outputs allowing operation in completely balanced systems. The device is optimized for use in 9track magnetic tape memory systems where low noise and low distortion are paramount objectives.


The electronic gain control allows each amplifier's gain to be set anywhere from essentially zero to a maximum of approximately 100 V/V.

The MC3467 is intended to mate with the MC3468 read amplifier to provide the entire magnetic tape read function.

TYPICAL APPLICATION

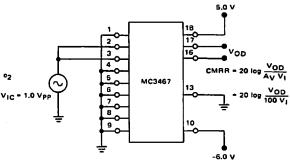

HIGH PERFORMANCE 9-TRACK OPEN REEL

- Wide Bandwidth 15 MHz (Typ)
- Individual Electronic Gain Control
- Differential Input/Output

Gnd 9

10 VEE

MC3467


MAXIMUM RATINGS (TA = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltages Positive Supply Voltage Negative Supply Voltage	VCC VEE	6.0 -9.0	v
EGC Voltages (Pins 1, 6 and 13)	VI(EGC)	-5.0 to V _{CC}	v
Input Differential Voltage	VID	±5.0	v
Input Common-Mode Voltage	VtC	±5.0	v
Amplifier Output Short Circuit Duration (to Ground)	ts	10	5
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Junction Temperature	TJ	+150	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0 V, V_{EE} = -6.0 V, f = 100 kHz, T_A = 0 to +70°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltage Range Positive Supply Voltage Negative Supply Voltage Operating EGC Voltage	VCCR VEER VI(EGC)	4.75 -5.5 0	5.0 6.0 	5.25 -7.0 Vcc	v v v
Differential Voltage Gain (Balanced) (VI(EGC) = 0, ej = 25 mVp-p) (See Figure 1)	AVD	85	100	120	V/V
Differential Voltage Gain (VI(EGC) = VCC)	Avd	-	0.5	2.0	V/V
Maximum Input Differential Voltage (Belanced) (T _A = 25°C)	VIDR	0.2	-	-	V _{PP}
Output Voltage Swing (Balanced) (Figure 1) (e; = 200 mVp-p)	VOR	6.0	8.0	-	V _{pp}
Input Common-Mode Range	VICR	±1.5	±2.0	-	v ·
Differential Output Offset Voltage (T _A = 25 ^o C)	VOOD	-	500	-	mV
Common-Mode Output Offset Voltage (T _A = 25°C)	Vooc	-	600	-	mV
Common Mode Rejection Ratio (Figure 2) VI(EGC) = 0, VCM = 1.0 Vpp (f = 100 kHz) (f = 1.0 MHz)	CMRR	60 40	100 100		dB
Small-Signal Bandwidth (Figure 1) (-3.0 dB, ej = 1.0 mVp-p, T _A = 25 ^o C)	BW	10	15	-	MHz
Input Bias Current	1 _{IB}	-	5.0	15	μA
Output Sink Current (Figure 5)	los	1.0	1.4	- 1	mA
Differential Noise Voltage Referred to Input (Figure 3) (V1(EGC) = 0, Rs = 50 Ω , BW = 10 Hz to 1.0 MHz, TA = 25°C)	en.	-	3.5	-	^µ VRMS
Positive Power Supply Current (Figure 4)	I ICC	-	30	40	mA
Negative Power Supply Current (Figure 4)	'EE		30	-40	mA
Input Resistance (T _A = 25 ^o C)	ri I	12	25	-	kΩ
Input Capacitance (T _A = 25 ^o C)	Ci	-	2.0	-	pF
Output Resistance (Unbalanced) (T _A = 25 ^o C)	ro	-	30	-	Ohms

FIGURE 2 - COMMON-MODE REJECTION RATIO (Channel A under test, other amplifiers tested similarly)

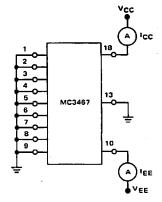
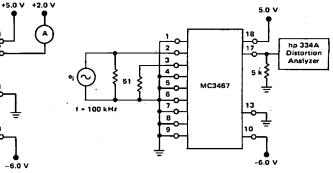
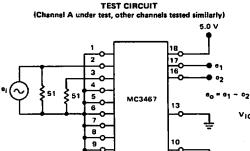
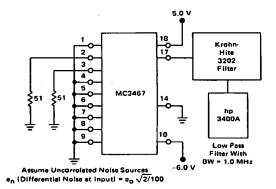
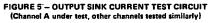
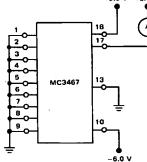
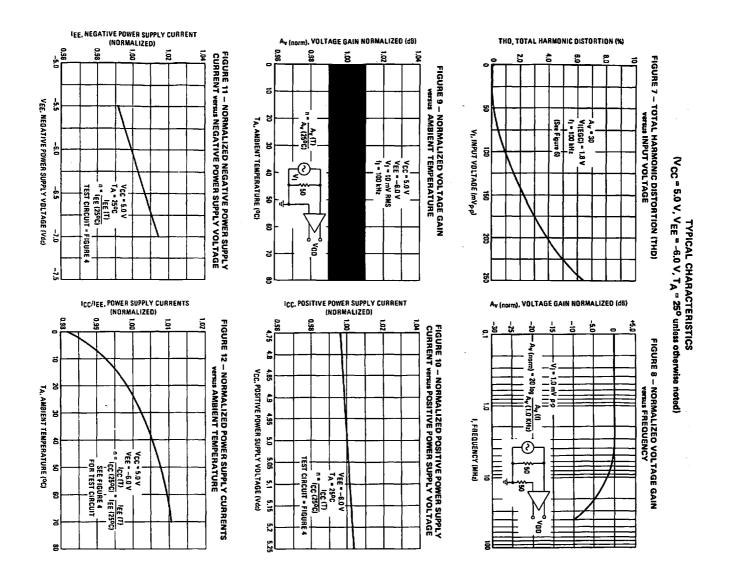



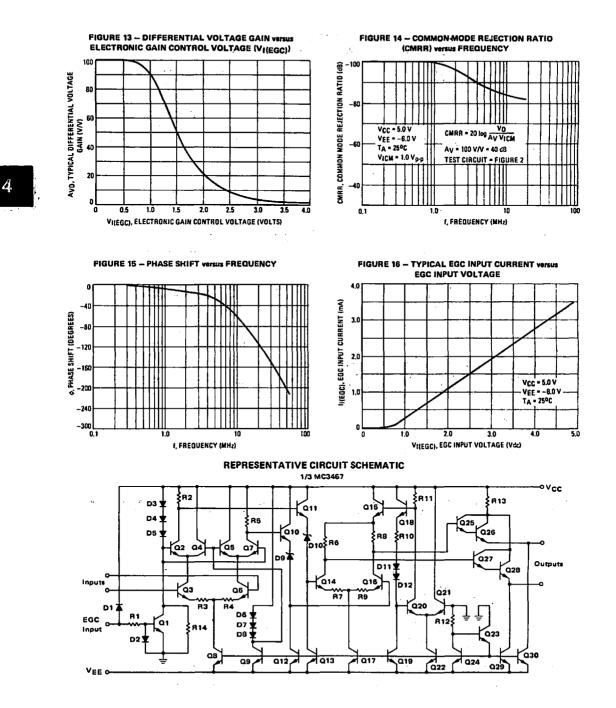
FIGURE 6 - TOTAL HARMONIC DISTORTION TEST CIRCUIT (Channel A under test, other channels tested similarly)

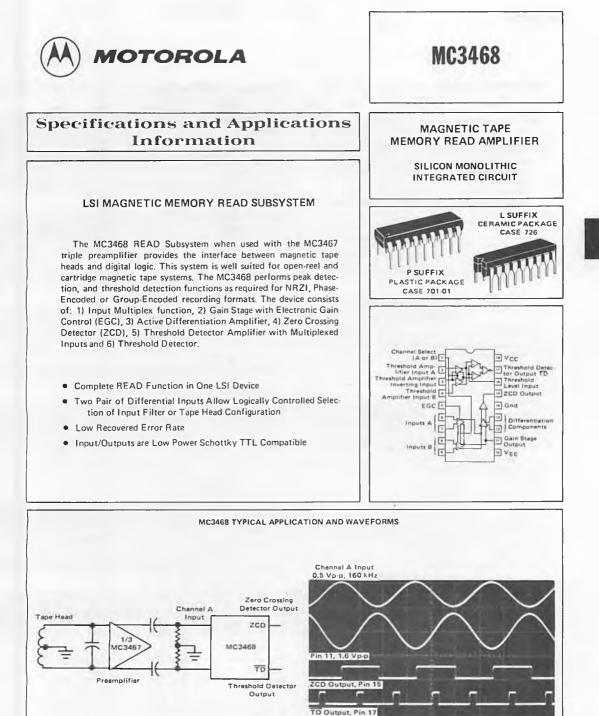




FIGURE 1 - DIFFERENTIAL VOLTAGE GAIN,


BANDWIDTH AND OUTPUT VOLTAGE SWING


FIGURE 3 - DIFFERENTIAL NOISE VOLTAGE **REFERRED TO THE INPUT**




-6.0 V

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted) MAXIMUM RATINGS (continued)

Rating	Symbol	Value	Unit
Power Supply Voltages			
Positive Supply Voltage	Vcc ∣	+7.0	v
Negative Supply Voltage	VEE	-8.0	v
Pin Voltages			
EGC Voltage (Pin 5)	VI(EGC)	-5.0 to +7.0	v
Threshold Voltage (Pin 16)	Vin)	+1.0 to3.5	v
ZCD Output (Pin 15)	Vo(ZCD)	+7.0	v
Channel Select A/B Input (Pin 1)	VI(CS)	+7.0 to -2.0	v
Threshold Output TD (Pin 17)	VO(TD)	+7.0	v
Differential Input Voltage			
Threshold Amplifier	VID(T)	±5.0	v
Gain Amplifier	VID	±5.0	V

Rating	Symbol	Value	Unit
Common Mode Input Voltage Threshold Amplifier Gain Amplifier	VIC(T) VIC	±5.0 ±5.0	v
Amplifier Output Short Circuit Duration (Ground Pin 11)	ts	. 10	5
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	Tstg	-65 to +150	°C
Junction Temperature	Τj	150	°C

.

ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0 V, V_{EE} = -6.0 V, T_A = 0 to +70°C unless otherwise noted)

Characteristic	Figure	Symbol	Min	Тур	Мах	Unit
TOTAL DEVICE						
Power Supply Voltage Range @ T _A = 25 ^o C Positive Supply Voltage Negative Supply Voltage			4.75 5.5	5.0 -6.0	5.25 -7.0	v
Positive Supply Current (VCC = +5.25 V)	7-13	ICC		35	45	mA
Negative Supply Current (VEE = -7.0 V)	7-13	IEE		30	45	mA
Channel Select Input Voltage - Low Logic State		VIL(CS)		-	0.8	v
Channel Select Input Voltage - High Logic State		VIH(CS)	2.0	-	-	v
Channel Select Input Current – Low Logic State (VIL(CS) = 0, VCC = 5.25 V)	6	IL(CS)	-	-	-100	μA
Channel Select Input Current — High Logic State {VIH(CS) = VCC = 5.25 V}	6	IIH(CS)	_	-	10	μA
GAIN AMPLIFIER SECTION						
Voltage Gain (Unbalanced @ Max Gain) (e _i = 100 mV _{D-D} , f = 1.0 kHz	1, 14	Av	6.6	7.5	8.5	V/V
Voltage Gain (Unbalanced @ Min Gain)* (VI(EGC) = VCC, ei = 800 mV _{P-P})	1, 14	Avs	-	0.05	0.1	v/v
Operating EGC Current (VEGC = 0 to +5.25 V)	1, 15	II(EGC)	-	-	6.0	mA
Maximum Differential Input Voltage (T _A = 25 ^o C)		VIDR	0.8	-	-	Vpp
Common Mode Rejection Ratio (VI(EGC) = 0, VCM = 1.0 Vpp, f = 100 kHz, T _A = 25 ⁰ C)	3	CMRR	40	80	-	dB
Bandwidth (-3.0 dB, $T_A = 25^{\circ}C$)	1	BW	-	15	-	MHz
Input Besistance		ri	30	60	-	kΩ
Channel Isolation (f = 100 kHz, ej = 800 mV _{P-D})	2, 16		40	60	-	dB
Input Bias Current	4	LIB.	-	5.0	15	μA
Input Common Mode Voltage Range		VICR	±1.0	±1.5	-	v
Output Resistance (Pin 11) -(T _A = 25°C)		ro	-	15	30	Ohms
Output Sink Current (Pin 11)	5	los-	1.2	2.1	-	mA
Output Voltage Swing (Pin 11) (f = 1.0 kHz, ej = 800 mV _{p-p})	1	VOR	2.25	3.0	-	Vpp
Output Offset Voltage (T _A = 25 ⁰ C)		Voo		±400	-	mV

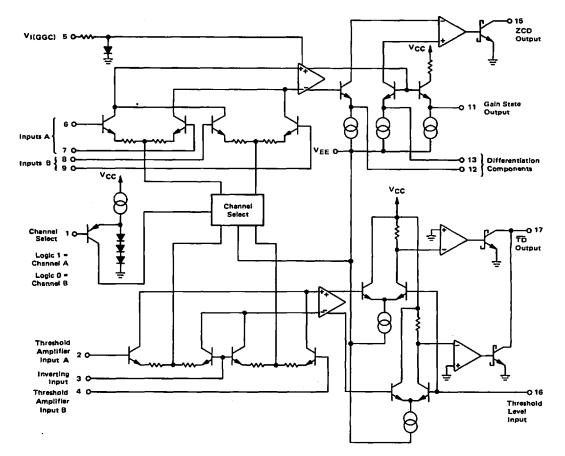
MC3468

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
ACTIVE DIFFERENTIATOR SECTION						
Timing Distortion (I = 1.0 mA, A = 1.5 Vpp, f = 100 kHz, T _A = 25 ^o C)	12		-	1.0	3.0	%
Zero Cross Detector High Level Output Current (VOH = 5.5 V)	8	IOH(ZCD)	-	-	150	μΑ
Zero Cross Detector – Low Level Output (IOL = 8.0 mA)	9	VOL(ZCD)	-	-	0.50	v
Differentiator Output Sink Current (Pins 12 and 13)	5	10(D)-	1.0	1.4	-	mA
Differentiator Output Resistance (Unbalanced) $(T_A = 25^{\circ}C)$		ro(D)	-	20	-	Ohms
THRESHOLD AMPLIFIER SECTION						
Differential Voltage Gain (e; = 200 mV)		AVD	4.25	5.0	5.75	V/V
Maximum Differential Input Voltage Without Distortion (T _A = 25 ^o C)		VIDR(T)	-	-	400	mVpp
Maximum Differential Input Voltage Before Timing Shift ($T_A = 25^{\circ}C$)		VIDR(T)	-	-	1.4	Vpp
Maximum Threshold Voltage (Linear Operation)		VIR(T)	-	_	-1.0	v
Threshold Voltage Required to Disable Threshold Comparators ($V_{TD} > 2.7 V$, $T_A = 25^{\circ}C$)		V _{I(T)}	-	-2.0	-2.5	v
Bandwidth (-3.0 dB, T _A = 25 ⁰ C)		BW	-	15	-	MHz
Input Resistance		G(INT)	25	50	-	kΩ
Threshold Amplifier Bias Current	4	IB(T)	-	5.0	15	μA
Channel Isolation Ratio (f = 100 kHz)	2		40	60	-	dB
Threshold Detector Output Voltage – Low Logic State (IOL = 8.0 mA, Pin 17)	10	VOL(T)	-	-	0.50	v
Threshold Detector Output Current – High Logic State (VOH = 5.5 V, Pin 17)	11	IOL(T)	-	-	150	μA
Threshold Voltage Input Current (Pin 16)		тнс	-	25	50	Αų

ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0 V, V_{EE} = -6.0 V, T_A = 0 to +70°C unless otherwise noted) (Continued)

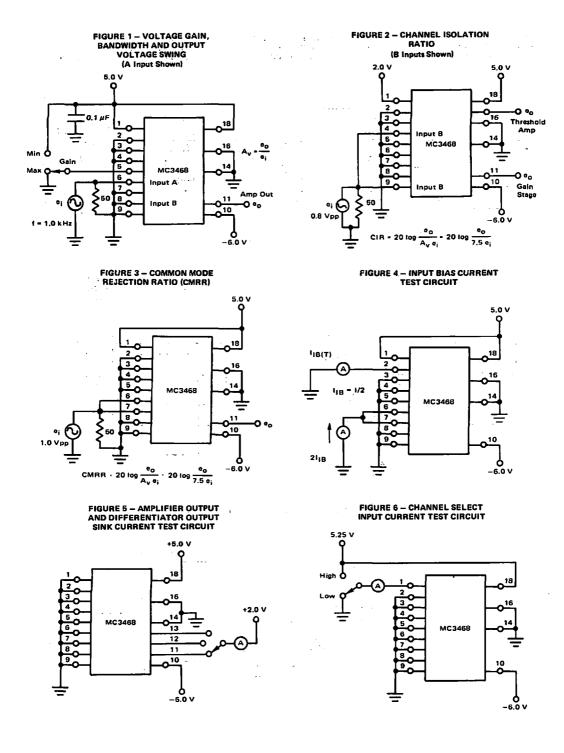
DESCRIPTION OF FUNCTION

Input Multiplex – Input multiplexing allows logiccontrolled (TTL compatible) selection of either of a pair of differential gain stages. Two separate tracks or one track processed through different filter networks for different recording formats can be selected (e.g., Phase Encoded/NRZI, Group-Coded/PE).


Gain Stage – The gain stage is controlled by Electronic Gain Control (EGC) and differential outputs are provided for the active differentiator and a single output is available for the threshold function. The EGC range is from essentially zero to 7.5 (unbalanced).

Active Differentiation – Active differentiation requires minimum external passive component count. The procedure for selecting component values insures linear operation and optimum zero-crossing detector performance for excellent noise rejection.

Zero Crossing Detector (ZCD) – The zero-crossing detector generates an output transition corresponding to the peak of the incoming signal to the MC3468. Careful attention has been paid to avoid timing distortion between the outputs of the active differentiator and the inputs of the zero crossing comparator. The output is open collector Schottky TTL. Threshold Amplifier and Detector - The gain stage output is ac coupled or differentiated into the Threshold Amplifier multiplexer. This allows logic-controlled (TTL compatible) selection of either of a pair of single-ended to differential gain stages. Thus, the possibility of selecting between a differentiated or straight capacitive coupled signal for thresholding. The select line is the same as for the Gain Stage multiplexing. The unbalanced gain of the threshold amplifier is 5. An inverting input is available for balancing the input signal to minimize the effects of offset current. The differential outputs of the threshold amplifier are compared to an external threshold in the threshold comparators. An output signal is provided whenever the signal exceeds the threshold setting in the positive or negative direction. The output is open collector Schottky TTL.


The versatility of the MC3468 facilitates the design of dual mode (NRZI/PE, Group/PE) tape drives with the ability of dynamically switch gain, active differentiator components, and thresholds for different recording speeds or interchanged tapes.

Note: For proper operation a dc path must be provided for all inputs of all amplifiers.

MC3468 BLOCK SCHEMATIC

.

4

. . . .

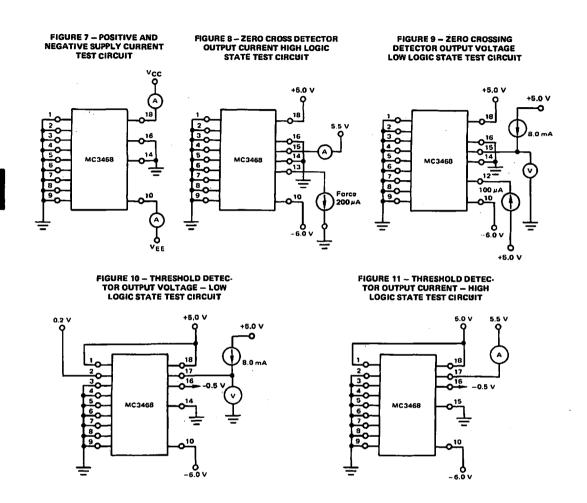
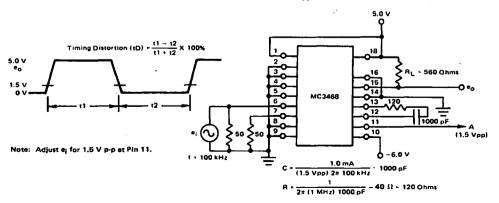
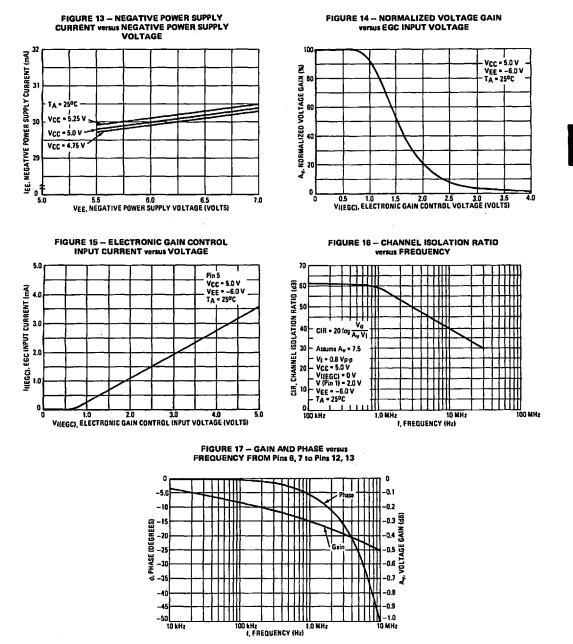
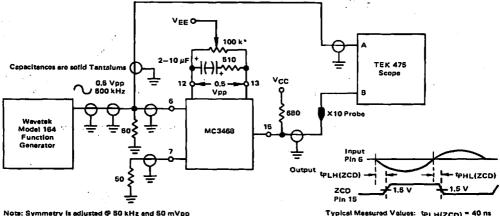




FIGURE 12 - TIMING DISTORTION TA = 25°C

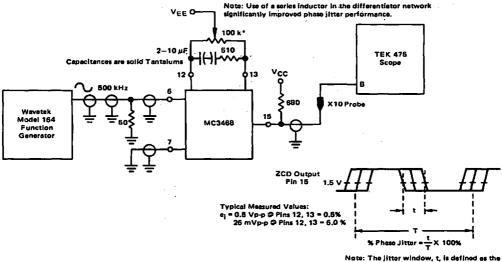
TYPICAL PERFORMANCE CURVES

4-45


SYSTEM PARAMETERS

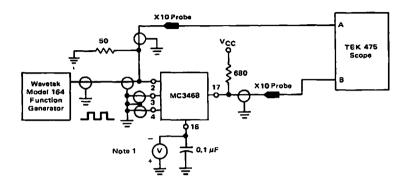
The following system parameters are characteristic of not only the device but external component values and circuit layout. Detailed test circuits and measured parameters are provided only as a guide to expected system performance. These parameters are not readily measureable on a production volume basis.

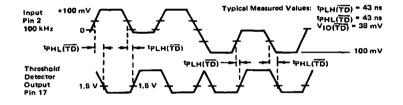
FIGURE 18 - TEST CIRCUIT FOR MEASURING PROPAGATION DELAYS


From Gain Stage Input to Zero Crossing Detector Output

(Pin 6 to Pin 16) (Subtract 8 ns from measurement for probe and cable delays)

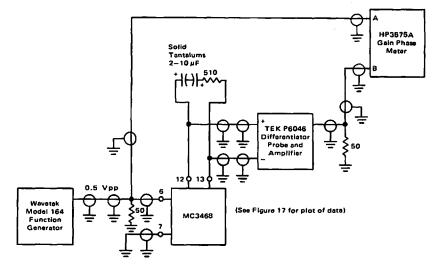
Note: Symmetry is adjusted @ 50 kHz and 50 mVpp *Adjust 100 k per Figure 21, Part II Typical Measured Values: 'PLH(ZCD) = 40 ns 'PHL(ZCD) = 50 ns


FIGURE 19 - TEST SETUP FOR MEASURING PHASE JITTER



3 of points on a Gussion curve.

•


FIGURE 20 – TEST SETUP FOR THRESHOLD AMPLIFIER DELAY AND THRESHOLD COMPARATOR EQUIVALENT OFFSET MEASUREMENTS

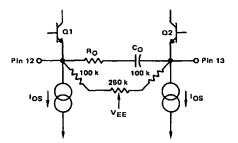
Notes: 1. For Delay measurements, V is fixed at -250 mV; for equivalent comparator offset voltage measurements, V is adjusted until Pin 17 goes low. The voltage, V, is the equivalent offset, V₁₀(TD).

> Some compensation is possible using a resistor from Pin 3 to ground.

FIGURE 21 - TEST SETUP FOR GAIN AND PHASE versus FREQUENCY (5 kHz to 1 MHz) FROM INPUT TO DIFFERENTIATOR (Pin 6, 7 to Pin 12, 13)

Actual Test Measurements (Calibrate Instrumentation for Phase Compensation)

DESIGN SUGGESTIONS


Gain Stage Bias Current

One must consider supplying 15 μ A of bias current to the Gain Stage when designing a filter network. A good design value for the equivalent resistance from each input leg to ground is 5 k Ω .

II Adjusting Peak Shift to Zero (See Figure 22)

The worst peak shift observed on the ZCD output occurs for the smallest slaw rate provided by the Active Differentiator at the ZCD inputs. In Turn, the Active Differentiator produces the smallest slaw rate when the gain-bandwidth product applied at its inputs is the smallest. Current source, resistors, and diode imbalances will exhibit the maximum peak shift under this condition. Using the resistor network shown, these imbalances are adjusted out for the worst case condition.

FIGURE 22 - PEAK SHIFT NETWORK

Note: The 100 k Ω resistors should be close to the IC to suppress noise.

MC3468 APPLICATIONS INFORMATION

MC3468 For NRZI Encoded Magnetic Tape

NRZI Encoding was one of the first popular recording formats and is formalized as an American National Standard for the purpose of facilitating the interchange of magnetic tapes. Although the Phase-Encoded format is now more widely accepted than NRZI, vast libraries of NRZI tapes still exist. Computers will be reading these tapes for years to come, and in some cases, re-writing them in phase-encoded format. Thus, the ability of the tape drive electronics to read both NRZI and PE tapes is a feature often sought in new designs.

For NRZI recording, the magnetic surface of the tape is magnetized to saturation in one direction or the other each time a logical "1" is to be recorded. The magnetization remains unchanged for a logical "O". The resulting signal from the read head for a typical NRZI data stream is shown in Figure 23. The NRZI data stream consists of a continuum of Fourier components up to a maximum frequency of 5fH, where fH is numerically equal to one-half the maximum flux changes per second (FCPS). For long strings of zeroes, the lowest Fourier component could theoretically be near dc, but on a typical tape a long interval with no "1's" is not allowed. Consequently, most of the energy in the pulse train is around fH and its harmonics (up to the fifth). A suitable corner frequency for ac coupling from the preamplifier is 60 Hz. although for high speed systems it could be considerably higher (1/10 fH). The -3 dB frequency of a low pass filter is usually placed at a frequency greater than fg. In most systems, this low pass filter must do more than provide a roll-off for high-frequency transients. It also equalizes the read amplifier chain and differentiation network for linear phase versus frequency response. Once the transfer function of this equalization filter is known, it may be incorporated either as part of the ac coupling between the preamplifier and amplifier or as part of the differentiation network.

The American National Standard specifies that NRZI be recorded at 800 BPI (Bits Per Inch) on open reel magnetic tape, Typical read/write tape speeds range from 12.5 to 300 IPS (Inches Per Second), Examples 1 and 4 show MC3468 NRZI designs.

MC3468 For Phase-Encoded (PE) Magnetic Tape

Of the numerous methods for encoding digital data on magnetic tape, phase encoding is currently most popular. As shown in Figure 23, data is represented by transitions occurring in the middle of a "data cell". A low-to-high flux transition (toward the magnetization level representing erased tape) is defined as a logical "one" and a high-to-low transition is defined as a logical "zero". For consecutive "one's" or "zero's" phase transitions are introduced as needed at the "data cell" borders. Phase transitions are not required when the encoded data consists of "one-zero" patterns.

The read head signal resulting from mixed data streams consists of two fundamental frequencies, f_H and f_L which represent most of the harmonic content (with some energy at harmonics up to the fifth). These are numerically equal to $\frac{FCPI}{2} \times IPS$ and $\frac{PCPI \times IPS}{4}$ (where

FCPI is maximum flux changes per inch and IPS is tape speed in inches per second). In high-speed, low-level systems, the amplitude of these read head signals is only a few millivolts and conditioning with a preamplifier such as the MC3467 followed by a passive bandpass filter is required. The bandpass characteristic sets the lower -3dB frequency below f_L and the upper -3 dB frequency above f_H. In most systems, the bandpass filter must do more than filter out noise. The low-pass portion also equalizes the read amplifier chain and differentiation network for a linear phase versus frequency response. Once the transfer function of this equalization filter is known, it may be incorporated as part of the filter between the preamplifier and amplifier or as part of the differentiation network.

The American National Standard specifies that PE data be recorded at 1600 BPI (Bits Per Inch) on openreel magnetic tape, Typical read/write tape speeds range from 6.25 to 200 IPS (Inches Per Second). Cartridges use 1600 BPI and have tape speeds of 30 IPS for read/ write. Examples 2, 3, and 4 show MC3468 designs for PE systems.

MC3468 For Group Code Recorded (GCR) Magnetic Tape

Basically, Group-Coded Recording (GCR) is a high density recording scheme which uses the NRZI convention for "1's" and "0's", but adds the restriction that flux changes occur at least once in every three bit cells (Figure 23). The read head signal resulting from mixed data streams consists primarily of Fourier components from f_L to $3f_L = f_H$ and their harmonics up to the fifth. The frequencies f_L and f_H are numerically equal to $\frac{FCPI \times IPS}{2}$ and $\frac{FCPI \times IPS}{6}$, respectively (where FCPI is

maximum flux changes per inch and IPS is tape speed in inches per second). The amplitude of the read head signals is only a few millivolts or less and conditioning with a preamplifier such as the MC3467 followed by a passive bandpass filter is required. The bandpass characteristic sets the lower -3 dB frequency below f_L and the upper -3 dB frequency above f_H . The bandpass filter must do more than filter out noise. The low pass portion equalizes the read amplifier chain and differentiation network for linear phase versus frequency response. Once the transfer function of this equalization filter is known, it may be incorporated as part of the filter between the preamplifier and amplifier or as part of the differentiation network.

The proposed American National Standard specifies that GCR data be recorded at 9042 FCPI (Flux Changes Per Inch). Because of the data format, the usable data density is 6250 BPI rather than 9042 BPI. The "6250 BPI" is a throughput specification and should not be used in read amplifier calculations. The original GCR concept was intended for high speed drives (200 IPS). However, it is also being applied to lower speed (125 IPS) systems. Examples 5 and 6 illustrate the use of the MC3468 in GCR systems.

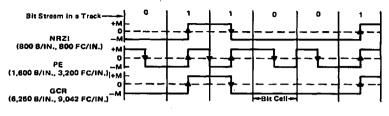
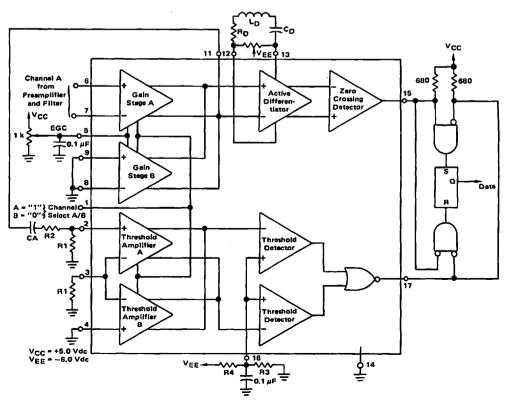


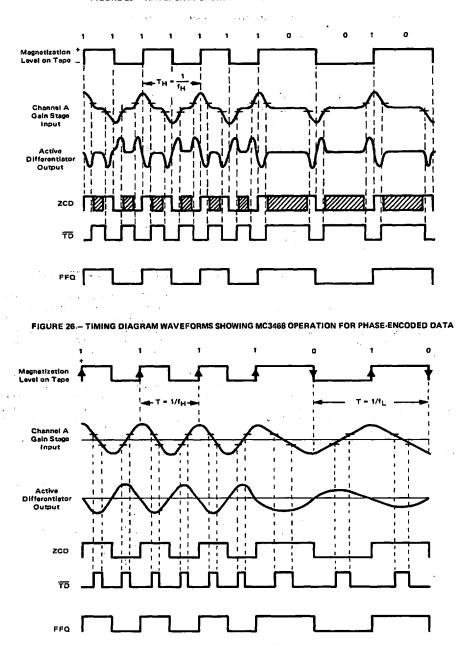
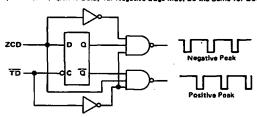

FIGURE 23 - MOST POPULAR MAGNETIC TAPE RECORDING FORMATS


CIRCUIT OPERATION

(See Figure 24 for component wiring and Figures 25 and 26 for Timing Diagrams)

The operation of the MC3468 is similar for NRZI, PE, and GCR data formats. The preamplifier and filtered signal is applied differentially to either Channel A or B Gain Stages. The Gain Stage output differentially feeds an Active Differentiator and a single-ended output is available for straight capacitive or differentiated (active or passive) coupling into either Channel A or B inputs to the Threshold Amplifier.

For the circuit configuration shown, the Active Differentiator output leads the input by almost 90°. The Active Differentiator output is applied to a Zero-Crossing Detector, which goes low for positive levels and high for negative levels, changing state at the zero crossings. The Threshold Circuit amplifies the Gain Stage output and compares positive and negative signals to a threshold level. When the level is exceeded, the \overline{TD} output is low. From the waveforms, it is seen that the ZCD output makes a transition approximately in the middle of the period when \overline{TD} is low. Wiring ZCD "anded" with TD to the set input and \overline{ZCD} "anded" with TD to the reset" input of the R-S type flip-flop reconstructs the data stream encoded on the tape. This circuit works for zero clip (zero threshold) operation, but has the disadvantage that timing distortion results from capacitive loading. Digital circuits for reconstructing the data stream which utilize pipe-line delays to overcome capacitive loading timing distortion are shown in Figure 27.

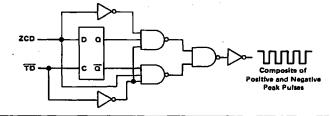
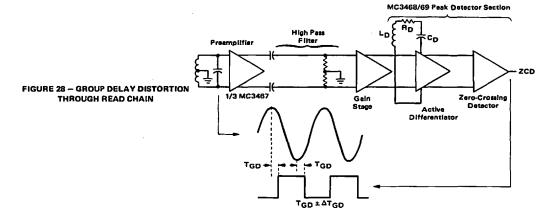

FIGURE 25 - WAVEFORMS SHOWING MC3468 OPERATION FOR NRZI DATA

FIGURE 27 - OTHER DIGITAL CIRCUITS FOR RECONSTRUCTING DATA STREAMS FROM THE MC3468

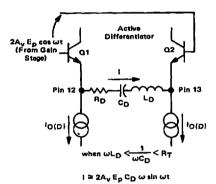
1) Ousl Output Circuit (Pipeline Delay for Negative Edge Must Be the Same for Both Outputs)



Group Delay Distortion

The ultimate purpose of the magnetic read amplifier chain in Figure 28 is to produce a digital signal with transitions corresponding to the peaks of a read head signal. Because the active and passive elements in the chain exhibit phase characteristics, there will be a "pipe-line" delay between peaks at the read head and the digital output from the zero-crossing detector. Variations in this delay with frequency or amplitudes cause timing distortion which translates directly into increasing error rates. The primary consideration in the read chain implementation is to equalize the read chain for almost flat delay over the frequencies and amplitudes of required operation. Figure 28 depicts one of several possible read chain configurations which can be equalized for best-flat time delay performance. The determination of the component values is relatively straight forward provided the active elements have negligible phase characteristics in the frequency range of operation. Below 1 MHz, the MC3467/MC3468 read chain active elements have negligible phase characteristics. Although phase effects start showing above 1 MHz, phase versus frequency is linear (constant time delay).

Other read chain configurations have a band-pass filter between the preamplifier and Gain Stage. It is possible to move some of the poles of the filter into the active differentiator. The technique suggested in Figure 28 transfers poles into the active differentiator to minimize component count. The insertion loss of the technique is also less than an equalization filter ahead of the READ amplifier.



Determining RD, CD, and LD For the Active Differentiator

For the equalized read chain shown in Figure 28, CD, RD and LD are determined respectively in that order. The phase characteristics of the active elements are assumed to be negligible.

An active differentiator is formed by RD, CD and LD coupling the emitters of a differential amplifier having current sources IOD in each leg. If a differential voltage A_VE_D cos ωt is applied to the Active Differentiator, the resulting current through RD and CD is:

$$I = \frac{2A_{\nu}E_{p}}{\sqrt{R_{T}^{2} + \left(\frac{1}{\omega C_{D}} + \omega L_{D}\right)^{2}}} \cos\left\{\omega t - \arctan\left(\frac{-1/\omega C_{D}}{R_{T}}\right)\right\}$$

where $2A_vE_p$ is the product of the differential input to the Gain Stage E_p and its unbalanced gain, A_v .

where R_T is the total of R_D and the output impedances of Q1 and Q2. The combined output impedances of Q1 and Q2 is 40 Ohms.

condition is approximated for
$$\frac{1}{R_T C_D} = \omega_C$$

 $3\omega_{\rm H}$ (where $\omega_{\rm H}$ is the maximum applied frequency of appreciable Fourier content).

The peak value of I (i.e., $2A_V E_P C_D \omega$) is important. As I approaches IO(D), the transistor Q2 turns off and the waveform at Pin 12 distorts. The circuit no longer behaves as a differentiator and peak distortion results.

For best zero crossing detector performance, it is essential that I be maximized. A design value of I which results in good noise performance and minimum peak shift is 900 microamperes.¹

$$I = 2A_V E_D C_D \omega = 900 \times 10^{-6}$$

Rearranging the equation for I,

This

$$C_{\rm D} = \frac{900 \times 10^{-6}}{2A_{\rm V} E_{\rm P} \omega}$$

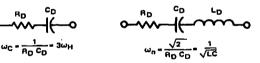
Also, solving
$$\omega_{C} = \frac{1}{R_{T}C_{D}}$$
 for R_{T} ,
 $R_{T} = \frac{1}{\omega_{C}C_{D}}$

Assuming the output impedance of Q1 and Q2 combined is 40 Ohms.

$$R_{\rm D} \approx \frac{1}{\omega_{\rm C} C_{\rm D}} - 40$$

where $\omega_{\rm C} = 3 \omega_{\rm H_{\odot}}$

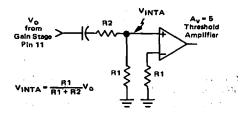
rearranging


As shown in Table 1, the addition of an inductor, LD, significantly improves phase linearity versus frequency as well as providing a roll off for high frequency noise. This optimum solution requires the following relationships:

$$\frac{2}{R_{T}C_{D}} = \frac{R_{T}}{L_{D}}$$
$$\frac{R_{T}^{2}C_{I}}{L_{D}} = \frac{R_{T}^{2}C_{I}}{2}$$

¹For optimum zero-crossing detector performance, dl/dt should be as large as possible at zero-crossing.

Motorola guarantees a minimum IO(D) of 1.0 mA.

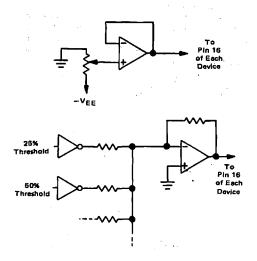

ξļε	θ	Δθ	$\frac{\omega}{\omega_n}$	θ	Δ 0
1.0	+45.00		1.0	o	
0.9	+48.01	+3.01	0.9	+8.49	+8.49
0.8	+51.34	+3.33	0.8	+17.65	+9.16
0.7	+55.01	+3.67	0.7	+27.26	+9.61
0.6	+59.04	+4.03	0.6	+37.03	+9.77
0.5	+63.43	+4.39	0.5	+48.69	+9.66
0.4	+68,20	+4.77	0.4	+56.04	+9.36
0.3	+73.30	+5.10	0.3	+65,00	+8.96
0.2	+78,69	+6.39	0.2	+73.68	+8.58
0.1	+84.29	+5.60	0.1 (+81.87	+8.29

Threshold Considerations

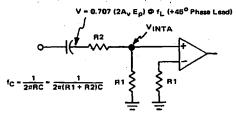
•

The threshold circuitry is used in read after write systems to insure that good data was written, to set up gain during an ID burst, and sometimes to indicate a minimum signal voltage for invalid data. Optimum thresholding requires a large swing at the threshold amplifier inputs. A good design value for V_{INTA} is 1.0 Vp-p, and should not exceed 1.4 Vp-p. If it does, a timing shift results. Internal clipping is provided for all signals greater than 400 mVp-p. The distortion resulting from clipping has no effect on thresholding because only peaks are clipped.

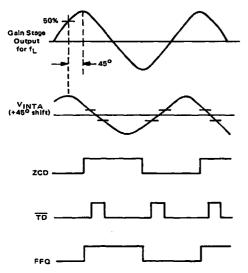
As shown in Figure 24, the Gain Stage output at Pin 11 is ac coupled to the threshold amplifier so that voltage offsets do not influence thresholding. An attenuator, R1/R2, is often required in the ac coupling networks because the gain stage output is between 1.6 Vp-p and 2.4 Vp-p for optimum zero-crossing-detector performance.


The magnitude of R1 should be less than 5 k Ω to minimize the effects of Threshold Amplifier Bias current (ITHA = 15 μ A). Also, R1 + R2 must be greater than 3 k Ω because the minimum output sink current (IOS) of the Gain Stage is 1.5 mA. A resistance equal to R1 should be wired to ground from the – leg of the Threshold Amplifier (minimize offset bias current effects).

Note that only the selected amplifier input contributes to bias current. Each output of the Threshold Amplifier is 5 VINTA, and is applied to its resepctive Threshold comparator. Each comparator sees 2.5 VINTA. Thresholding is based on a percentage of the nominal voltage applied to the comparators, 2.5 VINTA. Both positive and negative references are derived from VEF as follows:


R3 should be less than 1 k Ω to minimize the effects of Threshold Comparator Bias Current (I_{THC} = 50 μ A). A 0.1 μ F decoupling capacitor is required for transients.

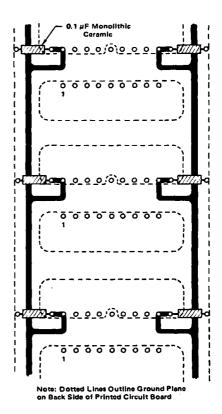
The following circuits are useful for multi-channel and/or dynamic threshold switching applications.


Base Line Shift in PE Systems

In phase-encoded recording, the read signal may not make symmetrical transitions about the zero bias level. A lower amplitude signal with a low frequency component is often superimposed. Although a highpass filter attenuates some of this component, its frequency is often close to the -3 dB frequency of the filter and may be only -- 6 dB down from signal amplitudes. This baseline shift has no adverse effects on the performance of the Active Differentiator, However, the Threshold Detector is sensitive to the unequal signal peaks. Signal-tonoise ratio can be improved by performing a passive differentiation into the Threshold Amplifier. With the corner frequency, fC, placed at fL, the fL signal is attenuated -3 dB; the fH = 2fL signal is for all practical purposes unattenuated. Figure 29 shows the 45° phase lead introduced by passive differentiation. Note that this technique is not directly applicable to high thresholds because the ZCD transitions fall outside the thresholding window. However, the threshold window can be delayed to overcome this drawback.

The design of the attenuator, R1/R2, follows as described previously. Example 3 shows a typical application of passive differentiation to overcome base-line shift.

Board Layout and Testing Considerations


An LSI package has many input/output pins in close proximity, some carrying high level signals and others low level signals. As carefully as the on-chip isolation of the devices connected to these pins is implemented by the manufacturer, the coupling of signals or noise between external wires is under the control of the end-user who designs the integrated circuit into a piece of equipment. The designer should be familiar with the following layout procedures which will optimize the performance of the device. See Figure 30.

- Build all circuits on printed circuit boards (including breadboards). Transmission line theory for flat conductors in a plane quite convincingly proves that coupling is far less than for round conductors in 3dimensions.
- Use a ground plane under the IC and over as much of the printed circuit board surface as possible without exceeding practical limits.
- Avoid signal runs under the IC, also avoid parallel runs of 1 inch or greater on the opposite or same side of board.
- 4. Use monolithic ceramic 0.1 μF capacitors for decoupling power supply transients. One from V_{CC} to ground and one from V_{EE} to ground for each IC package. Keep lead lengths to ¼ inch or less and place in close proximity to the IC.

5. Keep all signal runs as short as possible. The lead on Pin 15 will radiate and can couple back into the active differentiator. This will result in excessive phase jitter. The tell-tale behavior is a ringing at Pin 11 corresponding to the transitions at Pin 15. To overcome this coupling problem, keep the lead on Pin 15 short and isolated from the other Input/Output lines to the MC3468. Preferably, put it over or next to a ground plane. For long distance runs, use a twisted pair or coaxial cable.

When evaluating the device for phase jitter and frequency response, a special test jig should be designed to reduce ground loops and coupling caused by instrumentation, Instrumentation test set-ups must be calibrated at each test frequency and differential equipment utilized where required. A valid evaluation of the performance of any read amplifier chain requires considerable care and thought.

FIGURE 30 – POWER AND GROUND DISTRIBUTION FOR MC3468 PRINTED CIRCUIT BOARD LAYOUT

EXAMPLES

Example #1 (See Figure 24 for Component Hookup)

Tape Drive Type: Open Reel Encoding: NRZI Recording Density: 800 BPI (800 FCPI) Tape Speed: 200 IPS Stanal into Gain Stage

Epp = 0.3 to 0.6 Vp-p @ 80 kHz

Threshold: 25% of minimum voltage peaks

The voltage from the Gain Stage is designed for 1.6 Vp-p at Pin 11.

$$\frac{1.6}{0.6} = A_v = 2.7$$

Set the EGC for a gain of 2.7, unbalanced.

The maximum p-p voltage to the Threshold Amplifier, VINTA,

is designed for 1 Volt. The required attenuation factor is $\frac{1}{1.6}$

$$\frac{V_{\text{INTA}}}{V_{\text{O}}} = \frac{R1}{R1 + R2} = \frac{1}{1.6}$$

 $R1 + R2 \ge 3 k\Omega$ and $R1 \le 5 k\Omega$ (See text)

These constraints are satisfied when R1 = 4.7 k Ω and R2 = 3 k Ω . This is an optimum solution for a minimum coupling capacitor value.

Now consider the minimum voltage applied to the Threshold Amplifier

The threshold comparator reference voltage, V_R , is set at 25% of 2.5V INTA(MIN)

Let R3 = 470 Ω ; then R4 = 10 k Ω

The values of R_D and C_D are determined from the equations given in the text;

$$C_{D} = \frac{\frac{900 \times 10^{-6}}{2A_{V}E_{P}\omega}}{\frac{900 \times 10^{-6}}{A_{V}E_{PP}\omega}} = \frac{\frac{900 \times 10^{-6}}{A_{V}E_{PP}\omega}}{\frac{900 \times 10^{-6}}{2.7 \times 0.6 \times 2\pi \times 80 \times 10^{3}}}$$

Assume f_c = 3f

$$R_{D} = \frac{1}{\omega_{C}C_{D}} - 40 = \frac{1}{2\pi \times 3 \times 80 \times 10^{3} \times 10^{-9}} - 40$$
$$R_{D} = 670 - 40 \approx 600 \Omega$$
$$L_{D} = \frac{R_{T}^{2}C_{D}}{2} = \frac{(670)^{2} \times 10^{-9}}{2} = 224 \,\mu\text{H}$$

Example #2 (See Figure 24 for Component Hookup)

C_D ≥ 1000 pF

Tape Drive Type: Open Reel Encoding: Phase-Encoded Recording Density: 1600 BPI (3200 FCPI) Tape Speed: 200 IPS Signal Into Gain Stage

Е_{рр} = 0.2 Vp-р@ 320 kHz 0.4 Vp-р@ 160 kHz

Threshold: 25% of minimum voltage peaks

The voltage from the Gain Stage is designed for 1.6 Vp-p at Pin 11.

$$\frac{1.6}{0.4} = A_V = 4$$

Set the EGC for a gain of 4, unbalanced.

The maximum p-p voltage to the Threshold Amplifier, V_{INTA}, is designed for 1 Volt. The required attenuation factor is $\frac{1}{1 \text{ e}^2}$

$$\frac{V_{\text{INTA}}}{V_{\text{O}}} = \frac{R1}{R1 + R2} = \frac{1}{1.6}$$

 $R1 + R2 > 3 k\Omega$ and $R1 < 5 k\Omega$ (See text)

These constraints are satisfied when $R1 \cong 4.7 \ k\Omega$ and $R2 \cong 3 \ k\Omega$. This is an optimum solution for a minimum coupling capacitor value. Now consider the minimum voltage applied to the Threshold Amplifier.

The threshold comparator reference voltage, $V_{\rm R},$ is set at 25% of 2.5 VINTA(MIN)

$$V_R = 0.25 \times 2.5 \times 0.5 ≈ 300 mV$$

-300 x 10⁻³ = $\frac{R3}{R3 + R4}$ (-6)
R3 ≤ 1 kΩ (See text)

Let R3 = 470 Ω ; then R4 = 10 k Ω

The values of R_D and C_D are determined from the equations given in the text.

$$C_{D} = \frac{900 \times 10^{-6}}{2A_{V}} E_{PP} = \frac{900 \times 10^{-6}}{A_{V}} E_{P} = \frac{900 \times 10^{-6}}{4 \times 0.4 \times 2\pi \times 160 \times 10^{3}}$$

C_D ≥ 560 pF

Assume fc = 3fH

$$R_{D} = \frac{1}{W_{C}C_{D}} - 40$$

$$= \frac{1}{2\pi \times 3 \times 320 \times 10^{3} \times 5.6 \times 10^{-10}} - 40$$

$$R_{D} = 295 \text{ ohms} - 40 \simeq 250 \Omega$$

$$L_{D} = \frac{R_{T}^{2}C_{D}}{2} = \frac{(295)^{2} \times 560 \times 10^{-12}}{2} = 24 \ \mu\text{H}$$

Example #3 (See Figure 24 for Component Hookup)

Same as Example #2, but consider base-line shift.

In addition to ac coupling between the Gain Stage and Threshold, a passive differentiation is performed to attenuate the lower frequencies producing base-line shift. This improves signal-to-noise ratio. The corner frequency is chosen at $f_{\perp} = 160$ kHz where the attenuation is 0.707 (-3 dB) and the phase angle is +45°.

$$f_L = \frac{1}{2\pi C (R1 + R2)} = 160 \times 10^3$$

For C = 200 pF

R1 + R2 ≃ 5 kΩ

Now
$$\frac{R1}{R1 + R2} = \frac{1}{1.6 \times 0.707} = 0.9$$

Let R1 = 4.7 kΩ, then R2 = 470 Ω

MC3468

Example #4 (See Figure 31 for Component Hookup)

Tape Drive Type: Open Reel Encoding: Duał Mode (Phase-Encoded/NRZI) Recording Denaity: 1600 BPI (3200 FCPI) for PE mode and 800 BPI (800 FCPI) for NRZI mode

Tape Speed: 200 IPS Signal Into Gain Stage

Same as Examples 1 and 2

Threshold: 25% of minimum voltage peaks

NOTE: Consider base-line shift for PE mode.

This tape drive performs either the NRZI or the PE functions of Examples #1 and #3, under control of the SEL A/B line. Using the Gain Stage and Threshold Amplifier Channel A, Channel B inputs, the hook-up for a single track is implemented as shown in Figure 31. Note that an electronic switch is required for Gain switching when the mode is changed. This particular design did not require the threshold voltage to be switched, although in a typical system it probably would be.

It is necessary to electronically switch differentiator components. A low impedance MOSFET switch is shown.

Example #5 (See Figure 24 for Component Hookup)

Tape Drive Type: Open Reel Encoding: Group Code Recording Denaity: 6250 BPI, 9042 FCPI Tape Speed: 200 IPS Signal Into Gain Stage

Epp = 0.1 Vp-p @ 900 kHz = fH

Epp = 0.3 Vp-p @ 300 kHz = f

Considerations for setting Gein Stage EGC, coupling (passive dif-

ferantiation for base-line shift or straight ac) into the Threshold Amplifier, and Threshold satting are similar to the previous examples. For Group-coded data the EGC satting can be electronically locked during the ID burst in conjunction with Threshold satting. (See Figure 32.)

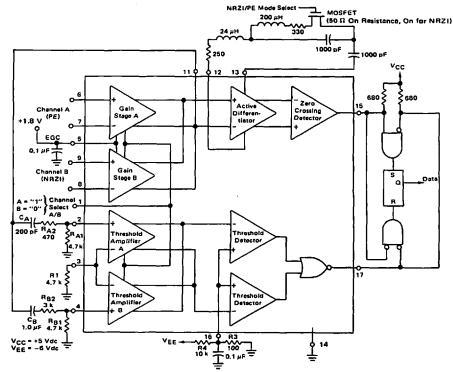
Values for CD and RD

$$C_{D} = \frac{900 \times 10^{-6}}{2A_{v}} E_{p} \omega$$

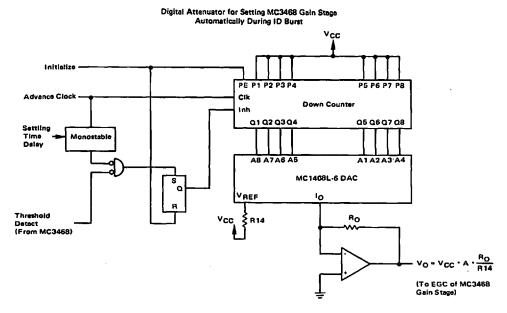
= $\frac{900 \times 10^{-6}}{A_{v}} E_{pp} \omega$ = $\frac{900 \times 10^{-6}}{5.3 \times 0.3 \times 2\pi \times 300 \times 10^{3}}$

C_D ≅ 300 pF Assume f_C = 3f_H

$$R_{\rm D} = \frac{1}{\omega_{\rm C}C_{\rm D}} - 40 = \frac{1}{2\pi \times 3 \times 900 \times 10^3 \times 300 \times 10^{-12}} - 40$$


$$L_{D} = \frac{R_{T}^{2} C_{D}}{2} = \frac{(200)^{2} \times 300 \times 10^{-12}}{2} = 6 \,\mu H$$

Example #6 (See Figure 24 for Component Hookup) Same as Example #5 except 125 IPS tape speed.


Signal Into Gain Stage

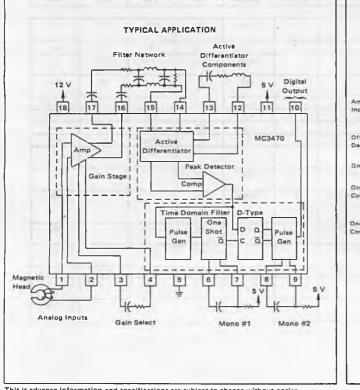
E_{pp} = 0.3 Vp-p @ 565 kHz E_{pp} = 0.6 Vp-p @ 188 kHz C**D** = 300 pF, R**D** = 250 Ω L**D** = 12.6 μH

FIGURE 31 - MC3468 COMPONENT HOOKUP FOR DUAL MODE PE/NRZI EXAMPLE #4

MC3470

FLOPPY DISK READ AMPLIFIER SYSTEM SILICON MONOLITHIC

INTEGRATED CIRCUIT


Advance Specifications and Applications Information

FLOPPY DISK READ AMPLIFIER

The MC3470 is a monolithic READ Amplifier System for obtaining digital information from floppy disk storage. It is designed to accept the differential ac signal produced by the magnetic head and produce a digital output pulse that corresponds to each peak of the input signal. The gain stage amplifies the input waveform and applies it to an external filter network, enabling the active differentiator and time domain filter to produce the desired output.

- Combines All the Active Circuitry To Perform the Floppy Disk Read Amplifier Function in One Circuit
- Guaranteed Maximum Peak Shift of 5.0%

This is advance information and specifications are subject to change without notice.

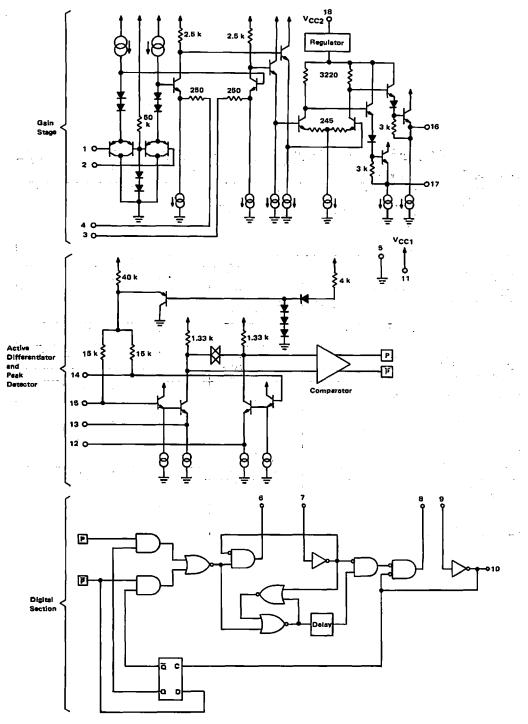
ABSOLUTE MAXIMUM RATINGS (Note 1)(TA = 25°C)

Rating	Symbol	Value	Unit
Power Supply Voitage (Pin 11)	Vcc1	7.0	Vdc
Power Supply Voltage (Pin 18)	V _{CC2}	16	Vdc.
Input Voltage (Pins 1 and 2)	- VI	-0.2 to +7.0	Vdc
Output Voltege (Pin 10)	Vo	-0.2 to +7.0	Vdc
Operating Ambient Temperature	TA	0 to +70	°c
Storage Temperature	Tstg	-65 to +150	°C
Operating Junction Temperature Plastic Package	L <u>T</u>	150	°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provices conditions for actual device operation.

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	+4,75 to +5.25	Vdc
Operating Ambient Temperature Range	TA	0 to +70	°C


ELECTRICAL CHARACTERISTICS (TA = 0 to +70°C, VCC1 = 4.75 to 5.25 V, VCC2 = 10 to 14 V unless otherwise noted)

Characteristic	Figure	Symbol	Min	Түр	Max	Unit
GAIN AMPLIFIER SECTION					<u> </u>	
Differential Voltage Gain (f = 200 kHz, Vip = 5.0 mV(RMS)	2	AVD	80	100	120	V/V
Input Bias Current	3	118	_	-10	-25	μA
Input Common Mode Range Linear Operation (5% max THD)		ViCM	-0.1	-	1.0	v
Differential Input Voltage Linear Operation (5% max THD)		۷iD	1	-	25	mVp-p
Output Voltage Swing Differential	2	V₀D	3.0	4.0	-	Vp-p
Output Source Current, Toggled		10	-	8.0	-	mA
Output Sink Current, Pins 18 and 17	4	los	2.8	4.0	-	mA
Small Signal Input Resistance (TA = 25°C)		ri	100	250	-	kΩ
Small Signal Output Resistance, Single-Ended (TA = 25°C, V _{CC1} = 5.0 V, V _{CC2} = 12 V		ro	-	15	-	ົ້
Bandwidth, -3.0 dB (v_{1D} = 2.0 mV(RMS), T _A = 25°C, V _{CC1} = 5.0 V, V _{CC2} = 12 V)	2	BW	5.0	-	-	MHz
Common Mode Rejection Ratio (T _A = 25 ^o C, f = 100 kHz, AvD = 40 dB, vin = 200 mVp-p, V _{CC1} = 5.0 V, V _{CC2} = 12 V)	5	CMRR	50	-	-	dB
V _{CC1} Supply Rejection Ratio (TA = 25°C, V _{CC2} = 12 V, 4.75 < V _{CC1} < 5.25 V, A _{VD} = 40 dB)			60	. –		dB
V _{CC2} Supply Rejection Ratio (T _A = 25 ^o C, V _{CC1} = 5.0 V, 10 V < V _{CC2} < 14 V, A _{VD} = 40 dB)		-	60	-	-	dB
Differential Output Offset (T _A = 25°C, v _{iD} = v _{in} = 0 V)		VDO	-		0.4	v
Common Mode Output Offset (v _{ID} = V _{In} =0 V, Differential and Common Mode)		Vco	-	3.0		Ý
Differential Noise Voltage Referred to Input (BW = 10 Hz to 1.0 MHz, T _A = 25 ^o C)	22	e ⁿ	-	15	-	μV(RMS)

	Figure	Symbol	Min	Тур	Max	Unit
ACTIVE DIFFERENTIATOR SECTION						
Differentiator Output Sink Current, Pins 12 and 13 (VOD = VCC1)	6	100	1.0	1.4	-	mA
Peak Shift (f = 250 kHz, v_{iD} = 1.0 Vp-p, i_{cap} = 500 μ A, where PS = 1/2 $\frac{tPS1 - tPS2}{tPS1 + tPS2} \times 100\%$,	7,8	PS	-	-	5.0	%
V _{CC1} = 5.0 V, V _{CC2} = 12 V)						
Differentiator Input Resistance, Differential		^r iD	-	30	_	kΩ
Differentiator Output Resistance, Differential (T _A = 25 ^o C)		۲۰D		40	-	Ω Ω
DIGITAL SECTION		<u> </u>				
Output Voltage High Logic Level, Pin 10 (V _{CC1} = 4.75 V, V _{CC2} = 12 V, I _{OH} = -0.4 mA)	9	Voн	2.7		-	v
Output Voltage Low Logic Level, Pin 10 (V _{CC1} = 4.75 V, V _{CC2} = 12 V, 10L = 8.0 mA)	10	VOL	-	-	0.5	v
Output Rise Time, Pin 10	11, 12	1TLH		-	20	ns
Output Fall Time, Pin 10	11, 12	THL	-	-	25	ns
Timing Range Mono #1 (t1A and t1B)	13	tiA.B	500	-	4000	ns
Timing Accuracy Mono #1 (t1 ~ 1.0 μs = 0.625 R1C1 + 200 ns) (R1 = 6.4 kΩ, C1 = 200 pF) Accurancy guaranteed for R1 in the range	12,13	E _{t1}	85	-	115	%
1.5 k Ω < R1 < 10 k Ω and C1 in the range 150 pF < C1 < 680 pF.						
Note: To minimize current transients, C1 should be kept as small as is convenient.						
Timing Range Mono #2	11, 12	t2	150	_	1000	nş
Timing Accuracy Mono #2 (t2 = 200 ns = 0.625 R2C2) (R2 = 1.6 kΩ, C2 = 200 pF)	12, 13	Et2	85	-	115	%
Accuracy guaranteed for 1.5 k Ω < R2 < 10 k Ω , 100 pF < C2 < 800 pF						

ELECTRICAL CHARACTERISTICS (continued)(TA = 0 to +70°C, V_{CC1} = 4.75 to 5.25 V, V_{CC2} = 10 to 14 V unless otherwise noted)

MC3470 CIRCUIT SCHEMATIC

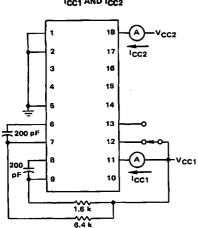


FIGURE 1 – POWER SUPPLY CURRENTS, ICC1 AND ICC2

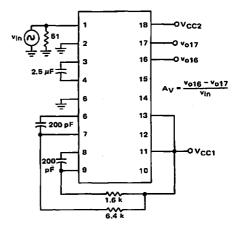
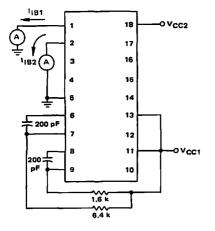
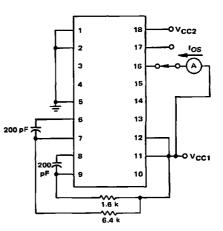




FIGURE 2 – VOLTAGE GAIN, BANDWIDTH, OUTPUT VOLTAGE SWING

FIGURE 3 - AMPLIFIER INPUT BIAS CURRENT, IIB

FIGURE 4 – AMPLIFIER OUTPUT SINK CURRENT, PINS 16 AND 17

4

.

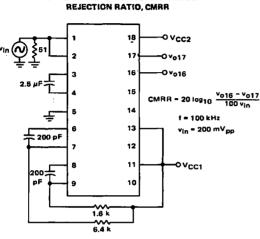
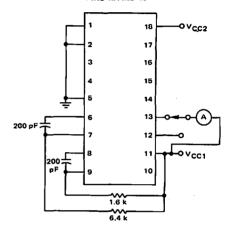



FIGURE 5 - AMPLIFIER COMMON MODE

FIGURE 6 – DIFFERENTIATOR OUTPUT SINK CURRENT, PINS 12 AND 13

NOTE: Measurements may be made with vector voltmeter hp 8405A or equivalent at 1.0 MHz to guarantee 100 kHz performance.

FIGURE 7 – PEAK SHIFT, PS See Figure 8 for Output Waveform

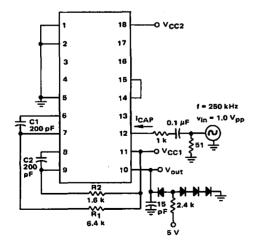
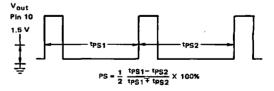



FIGURE 8 -- PEAK SHIFT, PS Vin = 1.0 Vpp f = 250 kHz Test schematic on Figure 7

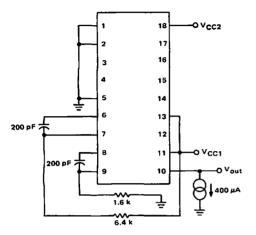
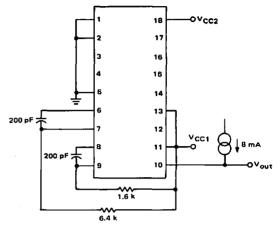



FIGURE 9 - DATA OUTPUT VOLTAGE HIGH, PIN 10

FIGURE 10 - DATA OUTPUT VOLTAGE LOW, PIN 10

FIGURE 11 – DATA OUTPUT RISE TIME, t_{LLH} DATA OUTPUT FALL TIME, t_{THL} TIMING ACCURACY MONO #2, E_{T2}

 $V_{\mbox{in}}$ is same as shown on Figure 13, test schematic on Figure 12

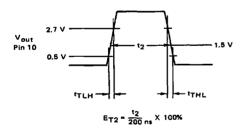
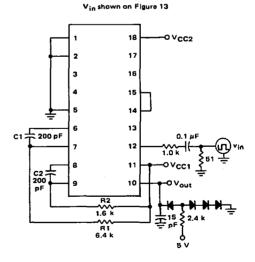
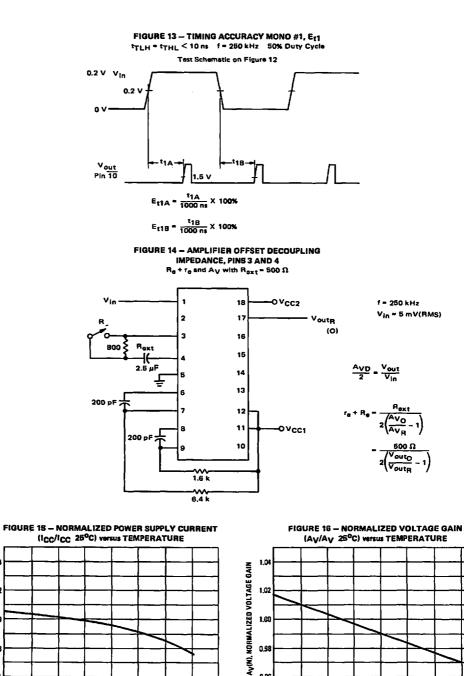




FIGURE 12 – TIMING ACCURACY, $\rm E_{t1}$ AND $\rm E_{t2}$ DATA OUTPUT RISE AND FALL TIMES, $\rm t_{TLH}$ AND $\rm t_{THL}$

ICC(N), NORMALIZED POWER SUPPLY CURRENT

1.04

1.02

1,00

0.98

0.98

ā

10 20 30 40

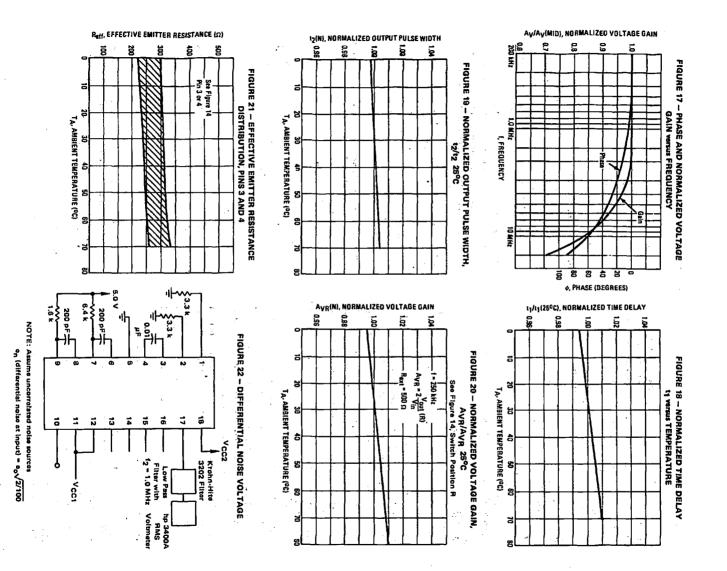
TA, AMBIENT TEMPERATURE (PC)

50

60

70 80 0,96

ō

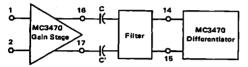

10 20 30 50

60

70 80

40

TA, AMBIENT TEMPERATURE (°C)



4-67

APPLICATION INFORMATION

The MC3470 is designed to accept a differential ac input from the magnetic head of a floppy disk drive and produce a digital output pulse that corresponds to each peak of the ac input. The gain stage amplifies the input waveform and applies it to a filter network (Figure 23a),

FIGURE 23a - BLOCKING CAPACITORS USED TO ISOLATE THE DIFFERENTIATOR

enabling the active differentiator and time domain filter to produce the desired output.

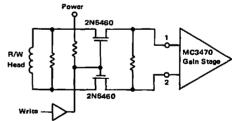
FILTER CONSIDERATIONS

The filter is used to reduce any high frequency noise present on the desired signal. Its characteristics are dictated by the floppy disk system parameters as well as the coupling requirements of the MC3470. The filter design parameters are affected by the read head characteristics, maximum and minimum slew rates, system transient response, system delay distortion, filter center frequency, and other system parameters. This design criteria varies between manufacturers; consequently, the filter configuration also varies. The coupling requirements of the MC3470 are a result of the output structure of the gain stage and the input structure of the differentiator, and must be adhered to regardless of the filter configuration.

The differentiator has an internal biasing network on each input. Therefore, any dc voltage applied to these inputs will perturbate the bias level. Disturbing the bias level does not affect the waveform at the differentiator inputs, but it does cause peak shifting in the digital output (Pin 10). Since the output of the gain stage has an associated dc voltage level, it, as well as any biasing introduced in the filter, must be isolated from the differentiator via series blocking capacitors. The transient response is minimized if the blocking capacitors C and C' are placed before the filter as shown in Figure 23a. The charging and discharging of C and C' is controlled by the filter termination resistor instead of the high input impedance of the differentiator.

The filter design must also include the current-sinking capacity of the amplifier output. The current source in the output structure (see circuit schematic – pins 16 and 17) is guaranteed to sink a current of 2.8 mA. If the current requirement of the filter exceeds 2.8 mA, the current source will saturate, the output waveform will be distorted, and inaccurate peak detection will occur in the differentiator. Therefore, the total impedance of the filter must be greater than Zmin as calculated from

$$Z_{\min} = \frac{(EpAVD)_{\max}}{2.8 \text{ mA}}$$


where $\mathbf{E}_{\mathbf{p}}$ is the peak differential input voltage to the MC3470.

TRANSIENT RESPONSE

The worst-case transient response of the read channel occurs when dc switching at the amplifier input causes its output to be toggled. The dc voltage changes are a consequence of diode switching that takes place when control is transferred from the write channel to the read channel.

If the diode network is balanced, the dc change is a common mode input voltage to the amplifier. The switching of an unbalanced diode network creates a differential input voltage and a corresponding amplified swing in the outputs. The output swing will charge the blocking capacitor resulting in peak shifting in the digital output until the transient has decayed. Eliminating the differential dc changes at the amplifier input by matching the diode network or by coupling the read head to the amplifier via FET switches, as shown in Figure 23b, will minimize the filter transient response.

FIGURE 236 – FET SWITCHES USED TO COUPLE THE R/W HEAD TO THE MC3470

Two of the advantages FET switches have over diode switching are:

- They isolate the read channel from dc voltage changes in the system; therefore, the transient response of the filter does not influence the system transient response.
- The low voltage drop across the FETs keeps the input signal below the amplifier's internal clamp voltage; whereas, the voltage dropped across a diode switching network adds a dc bias to the input signal which may exceed the clamp voltage.

AMPLIFIER GAIN

For some floppy systems, it may become necessary to either reduce the gain of the amplifier or reduce the signal at the input to avoid exceeding the output swing capability of the amplifier. The voltage gain of the amplifier can be reduced by putting a resistor in series with the capacitor between pins 3 and 4 (Figure 14). The relationship between the gain and the external resistor is given by

$$\frac{AV_0}{AV_B} = \frac{R_{ext}}{2(r_e + R_e)} + 1$$

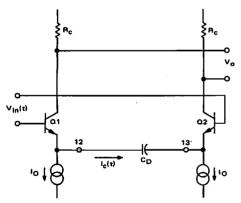
where $A_{VO} \stackrel{\Delta}{=}$ voltage gain with the external resistor = 0,

 AV_{B}^{Δ} voltage gain with the external resistor in,

 R_{ext}^{Δ} the external resistor, and

 $r_e + R_e \stackrel{\Delta}{=}$ the resistance looking into pin 3 or pin 4.

Thus,


$$\mathbf{R}_{ext} = 2\left(\frac{AV_{O}}{AV_{R}} - 1\right)(\mathbf{r}_{e} + \mathbf{R}_{e}).$$

A plot of $(r_e + R_e)$ versus temperature is shown in Figure 21. Figure 20 shows the normalized voltage gain versus temperature with the external resistor equal to 500 ohms.

ACTIVE DIFFERENTIATOR

The active differentiator in the MC3470 (simplified circuit shown in Figure 24), is implemented by coupling

FIGURE 24 – ACTIVE DIFFERENTIATOR NETWORK

the emitters of a differential amplifier with a capacitor resulting in a collector current that will be the derivative of the input voltage,

If the output voltage is taken across a resistor through which the collector current is flowing, the resulting voltage will be the derivative of the input voltage.

$$V_0 = 2Ri_c = 2RC \frac{dv_{in}(t)}{dt}$$

Vo is applied to a comparator which will provide zero

crossing detection of the current waveform. Since the capacitor shifts the current 90° from the input voltage, the comparator performs peak detection of the input voltage.

The following terms will be used in determining the value of C to be used in the differentiator:

- Ep peak differential voltage applied to MC3470 amplifier input.
- Ep sin ωt A voltage waveform applied to MC3470 amplifier input (for purposes of discussion, assume a sine wave).

AVD ^A differential voltage gain of input amplifier.

- vin(t) differential voltage waveform applied to the differentiator inputs.
 - = E_pA_{VD}sin ωt (Note: The filter is assumed to be lossless.)
- $i_{c}(t) \stackrel{\Delta}{=} current through capacitor CD.$

 $R_0 \stackrel{\Delta}{=} output$ resistance of Q1 (Q2) at pin 12 (13).

If $v_{in}(t) = E_pAVDsin \omega t$, then the current through the capacitor CD is given by

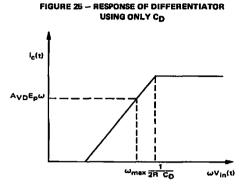
 $i_c(t) = C_D A_{VD} E_D \omega \cos \omega t$

and
$$V_O(t) = 2R_C C_D A_{VD} E_p \omega \cos \omega t$$
.

Accurate zero crossing detection of VO(t) [peak detection of vin(t)] occurs when the current waveform i_c(t) crosses through zero in a minimum amount of time. This condition is satisfied by maximizing current slew rate. For a given value of ω , the maximum slew rate occurs for the maximum value of i_c or $\cos\omega t = 1$. Therefore,

$$i_c = C_D A V_D E_0 \omega$$

The MC3470 current-sourcing capacity will determine the maximum value i_c ; therefore, CD must be chosen such that the maximum i_c occurs at the maximum AVDEp ω product.

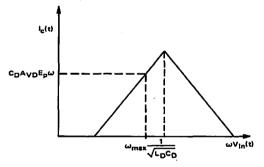

$$C_{D} = \frac{i_{c} max}{(A_{VD} E_{p} \omega)_{max}} = \frac{1 mA}{(120)(E_{p} \omega)_{max}}$$

If the peak value specified for $i_{\rm C}$ is exceeded, the current source (IQ in Figure 24) will saturate and distort the waveform at pins 12 and 13. Consequently, the differentiator will not accurately locate the peaks and peak shifting will occur in the digital output.

The effective output resistance R_O of Q1 (Q2) will create a pole (as shown in Figure 25) at 1/2 R_OC_D. If this pole is ten times greater than the maximum operating frequency (ω_{max}), the phase shift approaches 84°. Locating the pole at a frequency much greater than 10 ω_{max} needlessly extends the noise bandwidth thus:

$$2R_{O} = \frac{1}{C_{D} 10 \omega_{max}}$$

If RO is not large enough to satisfy this condition, a series



resistor can be added so that

$$R = 2R_O + R_D = \frac{1}{C_D 10 \,\omega_{max}}.$$

To further reduce the noise bandwidth, a second pole can be added (as shown in Figure 26) by putting an

FIGURE 26 - COMPLETE RESPONSE OF DIFFERENTIATOR

inductor in series with the resistor and the capacitor. The values of R and L are determined by choosing the center frequency (ω_0) and the damping ratio (δ) to meet the systems requirements where

$$\omega_{o} = \frac{1}{\sqrt{LC_{D}}}$$
$$\delta = \frac{RC_{D}}{2\sqrt{LC_{D}}}$$
$$\omega_{o} = 10 \ \omega_{max} = \frac{1}{\sqrt{LC_{D}}}$$

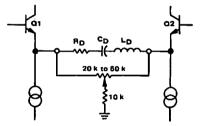
where CD is chosen for maximum ic as shown previously. Solving for L gives:

$$L = \frac{1}{100 C_D(\omega_{max})^2}$$

Using this value for L gives:

$$\delta = \frac{RC_D}{\frac{2}{10}\sqrt{\frac{C_D}{C_D(\omega_{max})^2}}}$$

Solving for R gives:


$$R = \frac{\delta}{5 C_D \omega_{max}}$$

The total resistance (R) is the effective output resistance (R₀) plus the resistor added in the differentiator (R_D). Values of δ from 0.3 to 1 produce satisfactory results.

PEAK SHIFT CONSIDERATIONS

Peak shift, resulting from current imbalance in the differentiator, offset voltage in the comparator, etc., can be eliminated by nulling the current in the emitters of the differentiator with a potentiometer as shown in Figure 27.

FIGURE 27 - PEAK SHIFT COMPENSATION

The potentiometer across the differentiator components is adjusted until a symmetrical digital output cycle is obtained at pin 10 for a sinusoidal input with the minimum anticipated $E_{D}\omega$ product.

DESIGN EQUATIONS FOR ONE-SHOTS

As shown in Figure 28, the MC3470 input waveform may have distortion at zero crossing, which can result in false triggering of the digital output. The time domain filter in the MC3470 can be used to eliminate the distortion by properly setting the period (t_1) of the one-shot timing elements on pins 6 and 7. The following equation will optimize immunity to this signal distortion at zero crossing of the read head signal.

The timing equation for the time domain filter's oneshot is:

where K1 = 0.625, To = 200 ns.

Actual time will be within $\pm 15\%$ of t₁ due to variations in the MC3470.

If ΔT is the maximum period of distortion (see Figure

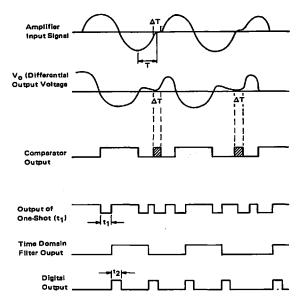


FIGURE 28 - WAVEFORMS THROUGH THE READ CIRCUIT

28), then choose t1 such that

$$\Delta T < t_1 > T - \frac{\Delta T}{2}$$

where $T = \frac{1}{4f(max)}$.

The width of the digital output pulse t₂ (pin 10) is determined by

$$t_2 = R_2 C_2 K_2$$

where K2 = 0.625.

Actual pulse width will be within $\pm 15\%$ of t2 due to variations in the MC3470.

To preserve the specified accuracy of the MC3470, R1, R2, C1, and C2 should remain in the ranges shown in the Electrical Characteristics. Also, to minimize current transients, it is important to keep the values of C1 and C2 as small as is convenient. For $t_1 = 1 \mu s$ and $t_2 = 200$ ns, suggested good values for the capacitors are

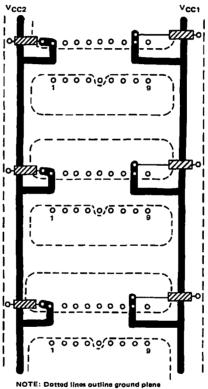
C₁ = 250 pF C₂ = 160 pF

BOARD LAYOUT AND TESTING CONSIDERATIONS

An LSI package has many input/output pins in close proximity, some carrying high level signals and others low level signals. As carefully as the on-chip isolation of the devices connected to these pins is implemented by the manufacturer, the coupling of signals or noise between external wires is under the control of the end-user who designs the integrated circuit into a piece of equipment. The designer should be familiar with the following layout procedures which will optimize the performance of the device. See Figure 29.

 Build all circuits on printed circuit boards (including breadboards). Transmission line theory for flat conductors in a plane quite convincingly proves that coupling is far less than for round conductors in three dimensions.

 Use a ground plane under the IC and over as much of the printed circuit board surface as possible without exceeding practical limits.


3. Avoid signal runs under the IC. Also avoid parallel runs of 1 inch or greater on the opposite or same side of board.

4. Use monolithic ceramic 0.1 μ F capacitors for decoupling power supply transients: one from V_{CC1} to ground and one from V_{CC2} to ground for each IC package. Keep lead lengths to 1/4 inch or less and place in close proximity to the IC.

5. Keep all signal runs as short as possible.

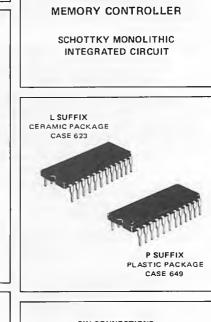
When evaluating the device for phase jitter and frequency response, a special test jig should be designed to reduce ground loops and coupling caused by instrumentation. Instrumentation test setups must be calibrated

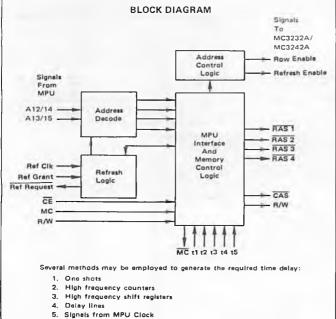
at each test frequency and differential equipment utilized where required. A valid evaluation of the performance of any read amplifier chain requires considerable care and thought.

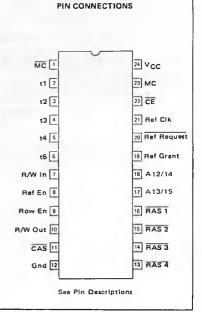
FIGURE 29 – POWER AND GROUND DISTRIBUTION FOR MC3470 PRINTED CIRCUIT BOARD LAYOUT

OTE: Dotted lines outline ground plane on back side of printed circuit board.

MC3480


DYNAMIC


Specifications and Applications Information

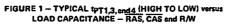

MEMORY CONTROLLER FOR 16 PIN 4K, 16K AND 64K DYNAMIC RAMS

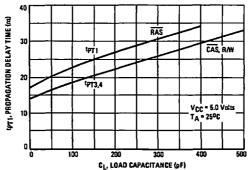
The memory controller chip is designed to greatly simplify the interface logic required to control the popular 16 pin multiplexed dynamic NMOS RAMs in a microprocessor system such as the M6800. The controller will generate, on command from the microprocessor, the proper timing signals required to successfully transfer data between the microprocessor and the NMOS memories. The controller, in conjunction with an oscillator, will also generate the necessary signals required to insure that the dynamic memories are refreshed for the retention of data.

- · Greatly Simplify the MPU-Dynamic Memory Interface
- Reduce Package Count and System Access/Cycle Times 30%
- Chip Enable for Expansion to Larger Word Capacity
- Generate 1 of 4 RAS Signals for an Optimum 16K/64K Memory System
- High Input Impedance for Minimum Loading of MPU Bus
- Schottky TTL Technology for High Performance
- Useful with 4K and 16K and Future Expanded Dynamic RAMs

ABSOLUTE MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
Power Supply Voltage	v _{cc}	7.0	Vdc
Input Voltage	VI VI	-0.5 to +7.0	Vdc
Output Voltage	Vo	-0.5 to +7.0	Vdc
Operating Ambient Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	-65 to +150	°C
Operating Junction Temperature Ceramic Package	L1	175	°C
Plastic Package		150	


Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.


RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	+4.50 to +5.50	Vdc
Operating Ambient Temperature Range	TA	0 to +70	°C

ELECTRICAL CHARACTERISTICS (Unless otherwise noted specifications apply over recommended power supply and temperature

ranges./					
Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage - Low Logic State	ÝIL		-	0.8	V
Input Voltage - High Logic State	VIH	2.0	-	-	V
Input Current – Low Logic State (VIL ~ 0.5 V)	կլ		-	-250	μΑ
Input Current – High Logic State {V _{IH} = 2.7 V} {V _{IH} = 5.5 V}	ін	-	-	40 100	μA
Input Clamp Voltages (I _{IK} = 18 mA)	VIK	-	-	-1.5	V
Output Voltage – Low Logic State (IOL = 24 mA for RAS, CAS, and R/W) (IOL = 8.0 mA for Row En, Ref En, MC, Ref Req)	VoL	-	-	0.5 0.5	V
Output Voltege — High Logic State (I _{OH} ≃ -1.0 mA for RAS, CAS, end R/W) (I _{OH} ≃ -0.4 mA for Row En, Ref En, and MC) I _{OH} ≃ -0.2 mA for Ref Req (Note: Ref Req output has internal 5.0 k resistive pullup to V _{CC} .)	√он	3.0 2.4 2.4			v
Power Supply Current — During R/W or Refresh — During Idle	Icc	-	-	65 40	mΑ
Output Short-Circuit Current (VOL = 0 V for Row En, Ref En, and MC)	los	-10	-	-55	mA

SWITCHING CHARACTERISTICS	(Unless otherwise noted, $4.5 \le V_{CC} \le 5.5$ V, and $0 \le T_A \le 70^{\circ}$ C
---------------------------	---

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Times (Full AC Load - All Outputs)					ns
MC to MC - Low to High	tPLH(MC)	-	- 1	14	
MC to MC - High to Low	TPHL(MC)	- 1	- 1	17	
t1 to RAS	^t PT1	18	-	40	
12 to Row En	tPT2	16	- 1	35	
t3 to CAS	1PT3	17	- 1	45	
t4 to R/W	^t PT4	16	_	45	
t5 to CAS	¹ PT5C	22	-	42	
to RAS		19	L _	40	
to R/W	IPT5R	30	-	58	
to Row En (Refresh)	^t PT5W	30	_	65	
to Row En (R/W)	^t PT5ER	25	_	48	
	^t PT5E	20	[46	
to Refresh En	^t PT5F	10		27	
Ref Cik to Ref Req	^t PCQ	20	_	43	
Ref Grant to Row En	tPGS	20	[-		
to Ref En				60	
t1 to Ref Reg (Ref only)	^t PTQ	22		60	
Propagation Delay Times (AC Load, 15 pF — All Outputs))			ns
t1 to RAS	tPT1	10	-	30	
t2 to Row En	IPT2	16	- 1	35	1
t3 to CAS	tPT3	8.0	- 1	25	
t4 to R/W	tPT4	8.0	-	25	
t5 to CAS	¹ PT5C	14		35	1
to RAS	1PT5R	14	- 1	35	
to R/W	1PT5W	22	-	45	
to Row En (Refresh)	1PTSER	30	_	65	1
to Row En (R/W)	1PT5E	25	_	48	
to Refresh En	1PT5F	22	- 1	46	
	410				
Setup Times (Full AC Load - All Pins)					ns
Ref Cik before Ref Grant	tsu(RC)	35	-	-	
A12, A13 before t1	^t su(A)	10	-	-	
RW Input before t4	^t su(R/W)	33	-	-	
CE before t1	tsu(CE)	20	-	- 1	1
Ref Grant before t1	tsu(RG)	25	-	-	
Hold Times (Full AC Load - All Pins)					ns
A12, A13 after t5	τ _{h(A)}	15	- 1	- 1	1
CE after t1	th(CE)	Ö	l –	- 1	
R/W after t4	th(R/W)	ŏ	j _	- 1	
MC Rising after t1 Rising	th(MC)	30	1 -	- 1	
	-11(10)			<u> </u>	ns
Minimum Delay Times (Note 2 – Full AC Load – All Pins)			1	1	1
t1 Low to High to t2 Low to High	^t d(1-2)	30	-	I -	
t1 Low to High to t4 Low to High	td(1-4)	33	-		1
t2 Low to High to t3 Low to High	¹ d(2-3)	30	-	1 -	
t3 Low to High to t5 Low to High	¹ d(3-5)	30	-		L
Minimum Pulse Widths					ns
t1 through t5 Low	tWL(t)	30	-	_	i i
High	WH(t)	30	-	- 1	
MC	tw(MC)	30	-	- 1	
···	I AA(IAIC)	25	1	1	1

Note 2: If delays between t1-t5 are less than the minimum specified, the succeeding outputs may not switch.

AC LOADS (Note 3)

R/W and CAS Outputs	450 pF to God*
RAS Outputs	150 pF to Gnd*
MC, Row En, Ref En, and Ref Req Outputs	15 pF to Gnd*

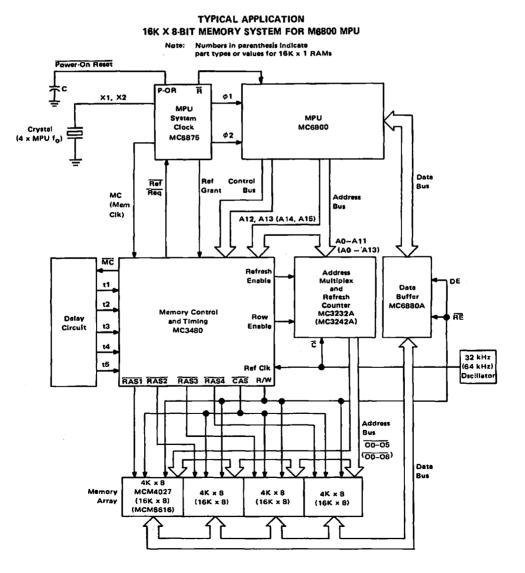
*Includes probe and jig capacitance.

NOTE 3: All outputs can drive larger capacitive loads than those shown with a small decrease in speed. See Figure 1.

Name	No.	Function
RAS1 .	16	
RAS2	15	Row Address Strobe pins which connect to each of the dynamic RAMs to latch in row address on memory chips. Decoded to 1 of 4 during R/W cycle. All 4 go low during refresh cycle.
RAS3	14	becould to 1 of 4 daming new cycle. All 4 go low daming remain cycle.
RAS4	13	
CAS ·	11	Column Address Strobe pin which connects to each dynamic RAM to latch in column address.
R/W Out *	10	This pin signals the dynamic RAM whether the RAM is to be read from or written into.
Row En	9	Row Enable output which goes to the MC3232A (MC3242A). It signals the Address Multiplexer that the lower half (Row Addresses) or the upper half (Column Addresses) of the address lines are to be multiplexed into the dynamic RAM address inputs. A Logic 1 on this output indicates the Row Addresses, and a Logic 0 indicates Column Addresses.
Ref En	8	Refresh Enable output. A Logic 1 signals the Address Multiplexer that a refresh cycle is to be done, and a Logic 0 indicates that address multiplexing should be done.
ĈĒ	22	Chip Enable Input. A Logic 1 on this pin disables all chip functions, except that of Refresh and the MC output. CE must be low during t1 low to high transition to initiate R/W cycle. Once t1 is initiated, the cycle is independent of CE.
R/W In	7	The Read/Write input pin receives information from the M6800 MPU as to the direction of data exchange in the dynamic RAM. It transmits a Logic 0 to the R/W output for a Write Cycle and a Logic 1 for a Read Cycle.
A13 (A15)	17	Upper Order Address lines from the M6800. These two inputs decode to four signals controlling the four RAS outputs.
A12 (A14)	18	A14 and A15 apply to 16K RAMs.
MC	23	Memory Clock input from MC6875 clock or other signal source. The rising edge of MC must occur after the rising
		edge of t1 to avoid aborting the refresh cycle. When MC rises, it resets an internal flag that will terminate refresh at the end
		of the current cycle. Failure to reset the flag forces the 3480 to refresh every cycle thereafter. MC can be connected to
		12 or 13 in noncritical applications.
MC	1	The buffered complement output of MC. It is a buffered output which may be used to drive the circuitry creating the time delays used on inputs t1 through t5.
t 1	2	These pins use external timing inputs to sequentially select the outputs to be enabled. They are positive-edge triggered
t2	3	inputs. Assuming a Read/Write cycle is to be executed, a positive edge on t1 forces a logic 0 on one of the four RAS
t3	4	outputs as determined by the A12/14, A13/15 inputs. After a delay, a positive edge on t2 causes Row En to go to a
t4 t5	5 6	Logic 0, providing address-multiplexing information to the MC3232A or MC3242A. t3 enables the CAS output and it goes low, t4 enables the R/W output and it goes low, assuming the R/W input was low, t5 resets all the outputs to a
.5		Logic 1 (with the exception of MC, Ref En, and Ref Req). The inputs 11, 12, 13, and 15 are daisy-chained, so they must be sequentially driven to obtain the desired output signals. 14 can be driven at any time after 11.
Ref Clk	21	The 32 kHz (64 kHz) Refresh Clock signals this pin that another refresh cycle is required. It is a positive-edge triggered input, and upon triggering, the Ref Req pin goes to a Logic 0.
Ref Req	20	The Refresh Request output acts as an input to the MPU system, requesting a refresh cycle. This output has a 5 k Ω pullup resistor to the V _{CC} supply to allow wire-ORing if desired.
Ref Grant	19	Through the Refresh Grant input, the MC6875 initiates a refresh cycle. This input is positive-edge triggered and is enabled only after the Ref Req pin has gone low. This allows the MC3480 to discern between a Refresh Grant or a DMA Grant even though they appear on the same line. When employing both dynamic memory (refresh) and DMA in a microprocessor-based system with a combined Refresh/DMA Request control on the clock, provision must be
		made for holding off a DMA request during a refresh period (and visa versa). If this provision is not made, clock stretching (cycle stealing) will continue indefinitely and dynamic microprocessor data will be lost. The positive edge
		on Ref Grant causes Row En output to go low and Ref En output to go high. This signals the MC3232A (MC3242A) that a refresh address is required. The refresh cycle occurs with the succeeding pulses on 11-t5. A positive edge on 11 causes Ref Req to go high and all the RAS outputs to go low. A positive going edge on 12 causes no change in the
		outputs, since it controls the address multiplexing (Row En) during the Read/Write cycles. There is no output change in the RAS outputs, since it controls the address multiplexing (Row En) during the Read/Write cycles. There is no output change when 13 and 14 go high because no CAS or R/W signal is needed during refresh. A positive edge on 15 resets the RAS and Row En to a Logic 1 state, and Ref En to a Logic 0 state, ready for the next Read/Write cycle.
Vcc	24	+5.0 V supply. A 0.1 µF capacitor is recommended to bypass pin 24 to ground.
Gnd	12	System Ground,
GIU	12	system ground,

PIN DESCRIPTION TABLE

* These outputs are designed to drive the highly capacitive inputs of multiple dynamic RAMs/(150 pF for RAS outputs, and 450 pF for \overline{CAS} and R/W outputs). Consequently, these outputs have no short-circuit limit and must be handled accordingly. Good high capacitance load driving techniques usually include a 10 Ω or greater series damping resistor. It is highly recommended that this be done on RAS, CAS and R/W outputs of the MC3480. The effect of these series damping resistors on rise and fall times must be included in timing considerations.


NOTE: All other outputs are LS/TTL totem-pole configuration unless otherwise noted.

TIME DELAY INFORMATION

TIMING REQUIREMENT CONSTRAINTS

- Δt1
 Minimum is determined by MPU Address Delay (t_{AD}), plus RAM Row Address Set-Up Time (t_{ASR}), minus MC3480

 Propagation Delay (tp_{T1}).
- Δt2 Δt1 Minimum is determined by RAM Row Address Hold Time (t_{RAH}) minus the minimum MC3232A/3242A Row Enable to Output Delay (t_{ODMIN}).
- Δt3 Δt2 Minimum is determined by RAM Column Address Set-Up Time (t_{ASC minimum}) plus maximum MC3232A/3242A Row Enable to Output Delay (t_{001MAX}).
- Δt4 Δt3 No Minimum
- Δ15 Δ13 Minimum is determined by RAM minimum CAS Pulse Width (t_{CAS}) or Access Time from CAS (t_{CAC}) plus Data Set-Up Time of MPU (t_{DSR}).
- Δt5 Δt4 Minimum is determined by the RAM minimum Write Pulse Width (typ).
- Note: Also required in computing time delays are the various delays incurred by the particular delay scheme used; i.e., delays between $4 \times f_0$, $2 \times f_0$, and f_0 from the MC6875 which are used as inputs or the gate delays of the gates used in Figures 5A through 5C.

-R/W Cycle 4u(ĈĒ) -**ħ**(ĈĒ) CE 7 .6 Ref Cik / Low Ref Grant R/W In R 1.5 V 1.5 V th(R/W) **ጜ**።(R/W) A12/A14 7 1.5 V th(A)-Sys Cik -tsu(A) 1.5 V tWH(t) Note: twL(t) and twH(t) typical all t inputs tWL(t) t¹ 7 1.6 V Note 4 td(1-2) ∆t1 127 1.5 V td(2-3) **∆t**2 1.5 V td(1-4) Δ13 14 1.5 V Δ14 ld(3-5) 1.5 V ΔιΒ Ref Reg 7 ΨT 1 TPT5R RAS ФТЗ 21 v 0.8 V PTSC-CAS ν 0.8 V R/W Out 2.4 v 1_0.8 V ΨТ2-IPT5W Row En -*PT4 1.6 V 1.5 **tPTSE** Low Ref En -Don't care.

FIGURE 2 - READ/WRITE TIMING CYCLE

4

NOTE 4: Although t1 and CE are shown as don't care after their respective minimum hold times, t1 may rise again after the initial rising edge in a R/W cycle only if CE is low. Bringing t1 high a second time during a cycle when CE is high will improperly terminate the cycle.

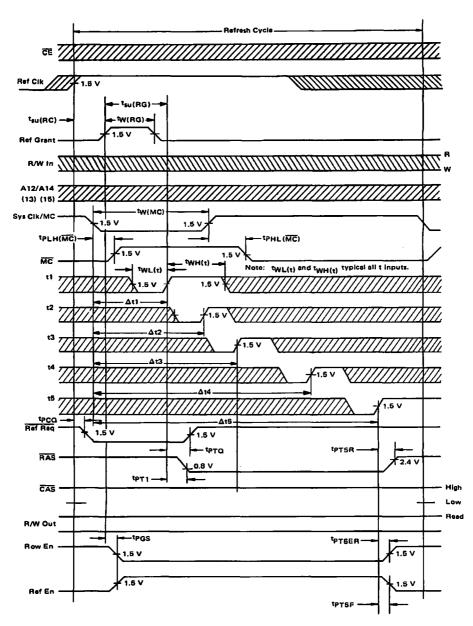
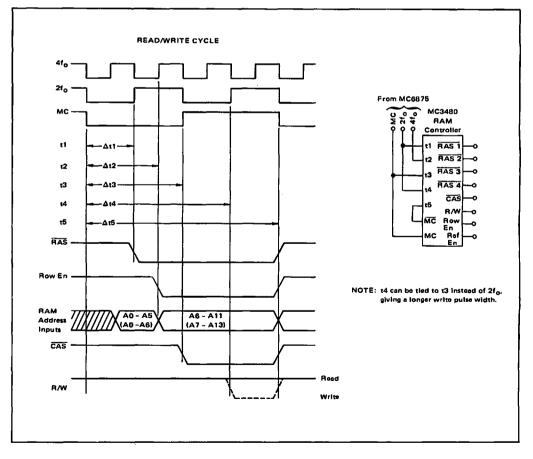
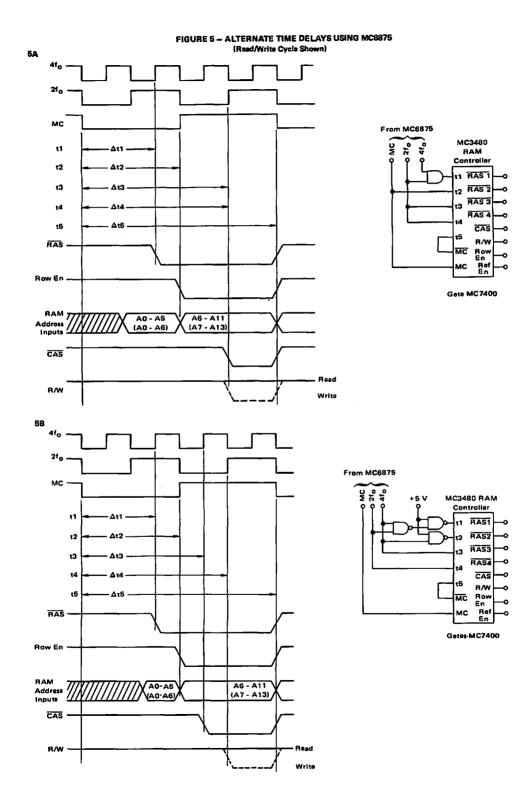



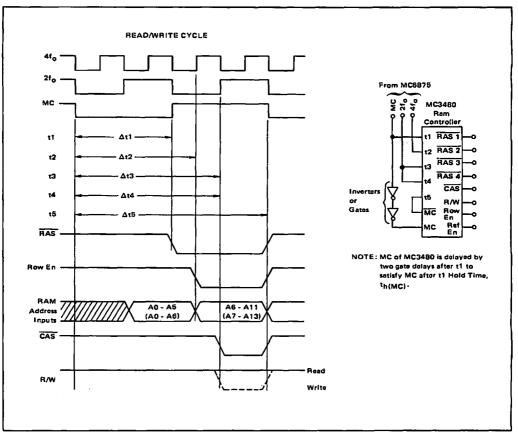
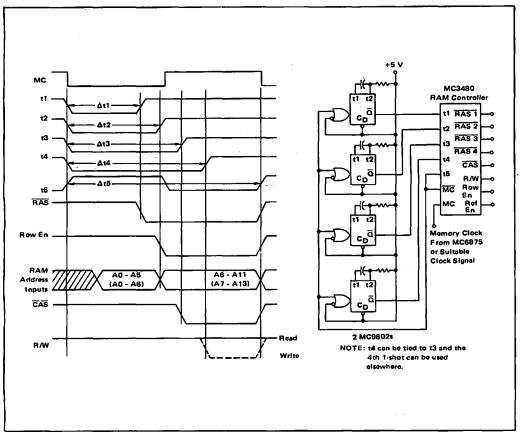
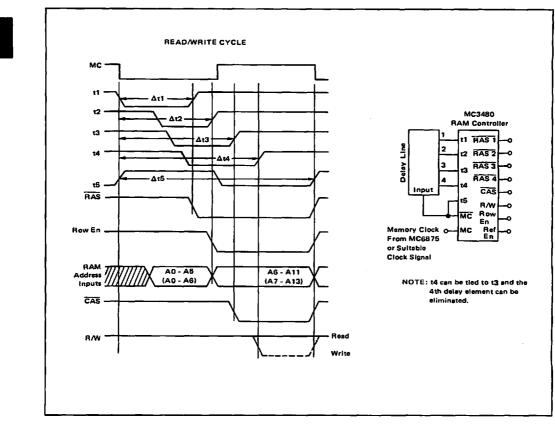
FIGURE 3 - REFRESH TIMING CYCLE


APPLICATIONS INFORMATION

GENERAL DESCRIPTION

The MC3480 uses five general timing inputs in place of a master clock with on-chip timing generation. This gives the system designer optimum flexibility in interfacing with the various microprocessor families and dynamic memories that are available. In simpler slow speed systems, the timing signals required can be directly obtained from those available from the microprocessor. In systems requiring high speed memory/microprocessor cycle times, timing input t1-t5 can be obtained using delay lines or a range of techniques as shown in Figures 4 thru 8. It is only necessary to maintain the time delay relationships shown under time delay information.

FIGURE 4 - UNIVERSAL TIME DELAY USING MC6875

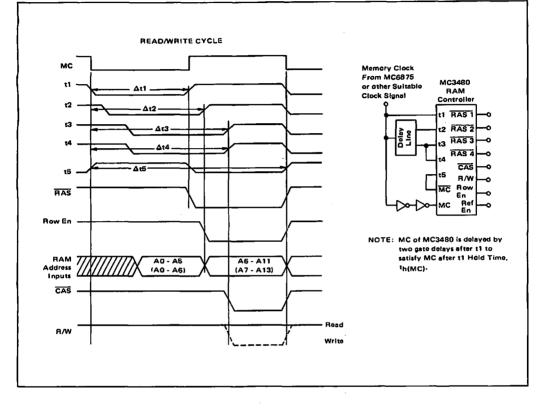

FIGURE 5C - ALTERNATE TIME DELAYS USING MC6875

FIGURE 6 - ONE SHOT TIME DELAY METHOD

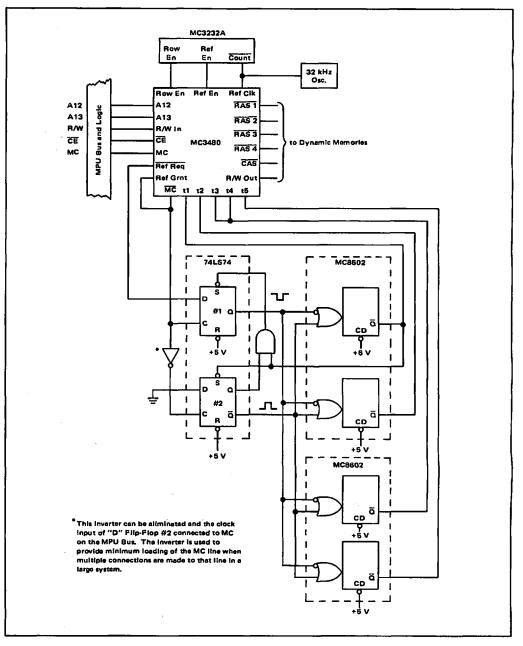
FIGURE 7 - DELAY LINE TIME DELAY METHOD

FIGURE 8 - DELAY LINE TIME DELAY (ALTERNATE METHOD)

REFRESH CONSIDERATIONS

The MC3480/MC3232A (MC3242A) memory control system can be used with either cycle steal or transparent refresh methods. Figure 9 shows one transparent technique employing refresh during ϕ 2 low in an M6800 microprocessor-based system. Using this technique requires that the memory be capable of completing a Read/Write Cycle and a Refresh Cycle sequentially during the M6800 cycle. The minimum cycle time at the time of printing for dynamic multiplexed RAMs is 320 ns, therefore limiting the microprocessor to 1.56 MHz operation. The D flips of Figure 9 produce a trigger at the beginning of both ϕ 1 and ϕ 2. For a 1.0 MHz system, the t1-t5 inputs should be adjusted for the following delays:

RAS falls at 150 ns (triggered by t1) Row En falls at 250 ns (triggered by t2) CAS, R/W falls at 300 ns (triggered by t3) t5 rises at 500 ns.


A delay line could be used to generate t1-t5 in place of

the four monostables. For the 1.0 MHz system, it would require either two 5 tap delay lines with 50 ns per tap or a 10 tap line with 50 ns/tap. For use with a 600 kHz system, a delay line with 5 taps of 150 ns each could be used. For this case:

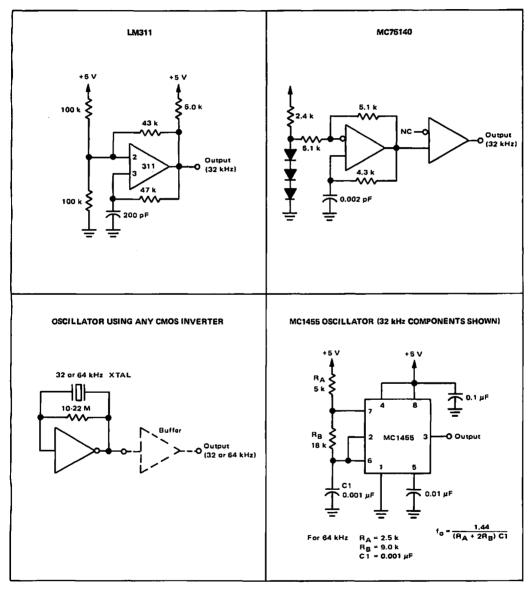
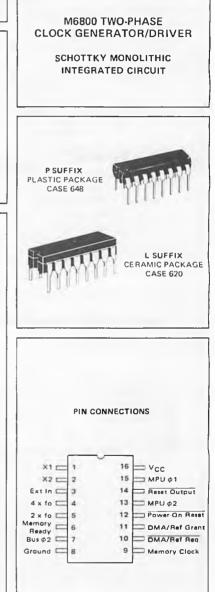

RAS falls at 150 ns Row En falls at 300 ns CAS, R/W falls at 450 ns t5 rises at 750 ns

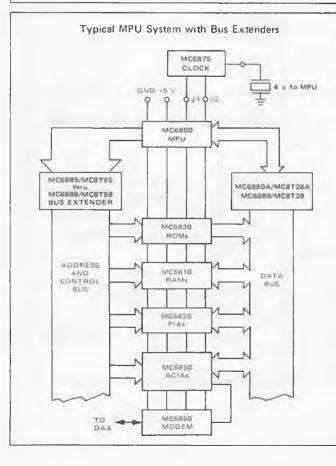
Figure 10 shows typical refresh oscillator configurations for both 32 kHz (fREFmin for 4K) and 64 kHz (fREFmin for 16K). In the case of transparent refresh, if the designer is not concerned with power consumption, the refresh oscillator may be eliminated and the Ref Clk input connected to the MC input yielding a refresh every ϕ 1.

For DMA operation combined with cycle stealing refresh, care must be taken not to allow a DMA request during a Refresh Request/Grant period and to hold off a refresh during a DMA operation. See comments under pin descriptions, Pin 19.

FIGURE 9 – EXAMPLE OF ¢2 LOW METHOD OF HIDDEN REFRESH USING MC3480 AND 4K RAMS

FIGURE 10 - SUGGESTED 32 kHz OSCILLATORS


MC6875


Specifications and Applications Information

M6800 CLOCK GENERATOR

Intended to supply the non-overlapping $\phi 1$ and $\phi 2$ clock signals required by the microprocessor, this clock generator is compatible with 1.0, 1.5, and 2.0 MHz versions of the MC6800. Both the oscillator and high capacitance driver elements are included along with numerous other logic accessory functions for easy system expansion.

Schottky technology is employed for high speed and PNP-buffered inputs are employed for NMOS compatibility. A single +5 V power supply, and a crystal or RC network for frequency determination are required.

ABSOLUTE MAXIMUM RATINGS (Unless otherwise noted TA = 25°C.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	+7.0	Vdc
Input Voltage	٧I	+5.5	Vdc
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range Ceramic Package Plastic Package	T _{stg}	-65 to +150 -55 to +125	°C
Operating Junction Temperature Ceramic Package Plastic Package	T,	175	°C

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	+4.75 to +5.25	Vdc
Operating Ambient Temperature Range	TA	0 to +70	°C

ELECTRICAL CHARACTERISTICS

(Unless otherwise noted specifications apply over recommended power supply and temperature ranges. Typical values measured at VCC = 5.0 V and $T_A = 25^{\circ}C.$)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage - High Logic State					
MPU ϕ 1 and ϕ 2 Outputs				[[v
$(V_{CC} = 4.75 V, I_{OHM} = -200 \mu A)$	∨онм	V _{CC} - 0.6	-	-	
(V _{CC} = 5.25 V, I _{OHMK} = +5.0 mA)	VOHMK	-	-	V _{CC} + 1.0	
Bus ¢2 Output					
(V _{CC} = 4.75 V, I _{OHB} = -10 mA)	VOHB	2.4	-		
(V _{CC} = 5.25 V, I _{OHBK} = +5.0 mA)	VOHBK	-		V _{CC} + 1.0	
4 x fo Output					- v
(V _{CC} = 4.75 V, V _{IH} = 2.0 V, I _{OH4X} ≃ -500 µA)	VOH4X	2.4	-	-	_
2 x fo, DMA/Refresh Grant and Memory Clock Outputs	VOH	2.4	_	1	v
(VCC = 4.75 V, 10H = -500 µA)					_
Reset Output	VOHR	2.4	-	-	v
(V _{CC} = 4.75 V, V _{IH} = 3.3 V, I _{OHR} = -100 μA)		í I			
Output Voltage - Low Logic State				1	
MPU 01 and 02 Outputs					v
(V _{CC} = 4.75 V, I _{OLM} = +200 µA)	VOLM	-	_	0.4	-
(V _{CC} = 4.75 V, I _{OLMK} = -5.0 mA)	VOLMK		_	-1.0	
Bus d2 Output	-OLMK				- v
(V _{CC} = 4.75 V, I _{OLB} = +48 mA)	Vala	i _	_	0.5	•
(Vcc = 4.75 V, 101 BK = -5.0 mA)	VOLB	_	_	-1.0	
4 x fo Output	VOLBK			-1.0	
	Ver		_	0.0	v
$(V_{CC} = 4.75 V, V_{IL} = 0.8 V, I_{OL4X} = 16 mA)$	VOL4X	<u>↓</u>		0.5	v
2 x fo, DMA/Refresh Grant and Memory Clock Outputs		-	-	0.5	v
(V _{CC} = 4.75 V, I _{OL} = 16 mA)	- 11				
Reset Output	VOLÂ	-	-	0.5	v
(V _{CC} = 4.75 V, V _{1L} = 0.8 V, I _{OL} R = 3.2 mA)	_			_	
Input Voltage - High Logic State					v
Ext. In, Memory Ready and DMA/Refresh Request Inputs	∨ін	2.0	-	-	
Input Voltage - Low Logic State					v
Ext. In, Memory Ready and DMA/Refresh Request Inputs	VIL	-	-	8.0	
Input Thresholds - Power-On Reset Input (See Figure 2)		1			
Output Low to High	(<u>v</u>	(_	2.8	3.6	v
Output High to Low	VILH	0.8	1.4	3.0	
	VIHL	0.8	1.4		
Input Clamp Voltage	VIC	-	-	-1.0	v
(V _{CC} = 4.75 V, I _{IC} = -5.0 mA)	_	1 1			
Input Current - High Logic State		1			
Ext. In, Memory Ready and DMA/Refresh Request Inputs	100	-	_	25	μA
(V _{CC} = 4.75 V, V _{IH} = 5.0 V)		J		· · ·	••••
Power-On Reset	ЧнВ	_	_	50	μA
(V _{CC} = 5.0 V, V _{IH} H = 5.0 V)					
Input Current – Low Logic State	<u>_</u>				
				-250	
Ext. In, Memory Ready and DMA/Refresh Request Inputs	46	-	-	-200	μA
$(V_{CC} = 5.25 V, V_{1L} = 0.5 V)$				0.00	
Power-On Reset Input	JILR	-	-	-250	μA
(V _{CC} = 5.25 V, V _{IL} = 0.5 V)					

OPERATING DYNAMIC POWER SUPPLY CURRENT

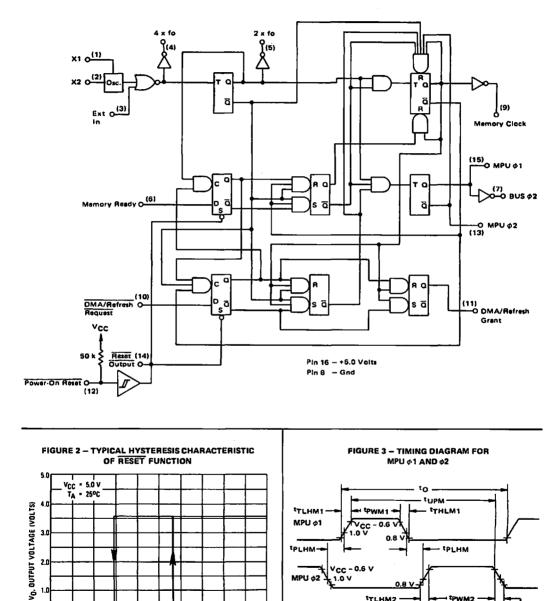
Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Currents				1	
(VCC = 5.25 V. fosc = 8.0 MHz, VIL = 0 V, VIH = 3.0 V) Normal Operation (Memory Ready and DMA/Refresh Request Inputs at	ICCN	_	-	150	πА
High Logic State)					
Memory Ready Stretch Operation	ICCMB	_	-	135	mA
(Memory Ready Input at Low Logic State; DMA/Refresh Request Input at High Logic State)					ļ
DMA/Refresh Request Stretch Operation (Memory Ready Input at High Logic State; DMA/Refresh Request Input at Low Logic State)	ICCDR	_	-	135	mA

SWITCHING CHARACTERISTICS

These specifications apply whether the Internal Oscillator (see Figure 9) or an External Oscillator is used (see Figure 10). Typical values measured at V_{CC} = 5.0 V, T_A = 25°C, fo = 1.0 MHz (see Figure 8).

Characteristic	Symbol	Min	Тур	Max	Unit
MPU Ø1 AND Ø2 CHARACTERISTICS					
Output Period (Figure 3)	to	500	-	<u> </u>	ns
Pulse Width (Figure 3)	t PWM				ni
$(f_0 = 1.0 \text{ MHz})$		400	-	- 1	{
(fo = 1.5 MHz)		230	-	-	
(fo = 2.0 MHz)		180	-	-	
Total Up Time (Figure 3)	1 UPM				ns
(fo = 1.0 MHz)	•	900	-	- 1	ļ
(fo = 1.5 MHz)		600	-		
(fo = 2.0 MHz)		440	-	-	
Delay Time Referenced to Output Complement (Figure 3)					
Output High to Low State (Clock Overlap at 1.0 V)	TPLHM	0	- 1	-	
Delay Times Referenced to 2 x fo (Figure 4 MPU ¢2 only)				t	
Output Low to High Logic State	TPLHM2X	_	- 1	85	
Output High to Low Logic State	1PHLM2X	_	-	70	ns
Transition Times (Figure 3)	THEMEN				
Output Low to High Logic State	TLHM	_	_	25	ns
Output High to Low Logic State	THLM	_	_	25	
BUS ¢2 CHARACTERISTICS	-1766				
Pulse Width - Low Logic State (Figure 4)			r <u> </u>		
(fo = 1.0 MHz)	^t PWLB	430	_		ns
(fo = 1.5 MHz)		280		_	
(fo = 2.0 MHz)		210		_	
Pulse Width - High Logic State	10000				
(fo = 1.0 MHz)	(PWHB	450	_		
(fo = 1.5 MHz)		295	_		
(fo = 2.0 MHz)		235	_	_	
				<u> </u>	
Delay Times – (Referenced to MPU ϕ 1) (Figure 4)					
Output Low to High Logic State	tPLHBM1			Í	ns
(fo = 1.0 MHz)		480	-	-	
(fo = 1.5 MHz)		320	-	[-	
(fo = 2.0 MHz)		240	-	-	
Output High to Low Logic State	¹ PHLBM1			25	
$(C_L = 300 \text{ pF})$		-	-	25	
(CL = 100 pF)			-	20	
Delay Times (Referenced to MPU ϕ 2) (Figure 4)					
Output Low to High Logic State	^t PLHBM2	-30	-	+25	n s
Output High to Low Logic State	¹ PHLBM2	0	-	+40	ns
Transition Times (Figure 4)					
Output Low to High Logic State	TLHB	-	- 1	20	ាន
Output High to Low Logic State	1 THLB	-	-	20	ាន

SWITCHING CHARACTERISTICS (continued)


SWITCHING CHARACTERISTICS (continued)	·				
Characteristic	Symbol	Min	Тур	Max	Unit
MEMORY CLOCK CHARACTERISTICS					
Delay Times (Referenced to MPU ¢2) (Figure 4)					
Output Low to High Logic State	TPLHCM	-50	-	+25	ns
Output High to Low Logic State	¹ PHLCM	0		+40	11
Delay Times (Referenced to 2 x fo) (Figure 4)				65	
Output Low to High Logic State	TPLHC2X	-	-	65 85	ns ns
Output High to Low Logic State	tPHLC2X		<u>_</u>		
Transition Times (Figure 4)				25	
Output Low to High State Output High to Low State	^t TLHC	_	1 -	25	ns
	*THLC				
2 x fo CHARACTERISTICS					
Delay Times (Referenced to 4 x fo) (Figure 4)			((
Output Low to High Logic State	^t PLH2X	-	-	50	ាន
Output High to Low Logic State	tPHL2X			65	<u>ns</u>
Delay Time (Referenced to MPU Ø1) (Figure 4)	-			l	
Output High to Low Logic State	华HL2XM1		ļ		ns
(fo = 1.0 MHz)		365	- 1	- 1	
(fo = 1.5 MHz)		220			
Transition Times (Figure 4)			1		
Output Low to High Logic State	^t TLH2X	-	-	25	ns
Output High to Low Logic State	tTHL2X			25	ns
4 x fo CHARACTERISTICS					
Delay Times (Referenced to Ext. In) (Figure 4)					
Output Low to High Logic State	1PLH4X	-	-	50	ាន
Output High to Low Logic State	TPHL4X	-	-	30	ាន
Transition Time (Figure 4)				· · ·	1
Output Low to High Logic State	tTLH4X	-	-	25	ns
Output High to Low Logic State	THL4X	-	-	25	ns
MEMORY READY CHARACTERISTICS					
Set-Up Times (Figure 5)			l	1	<u> </u>
Low Input Logic State	*SMBL	55	-	- 1	ns
High Input Logic State	TSMRH	75	1 _	- 1	ns.
Hold Time (Figure 5)					<u> </u>
Low Input Logic State	THMBL	10	-	- 1	ns
DMA/REFRESH REQUEST CHARACTERISTICS	-rumit		L	<u> </u>	
			I	1	· · -
Set-Up Times (Figure 6) Low Input Logic State	1000	65		_	ne
High Input Logic State	^t SDRL	75			03
Hold Time (Figure 6)	^t SDRH			<u> </u>	
Low Input Logic State	THORL	10	_	l _	05
	, HURL				
DMA/REFRESH GRANT CHARACTERISTICS	······				
Delay Time Referenced to Memory Clock (Figure 6)			1	l	
Output Low to High Logic State	^t PLHG	-15	- 1	+25	ns n
Output High to Low Logic State	^t PHLG	-25		+15	ns
Transition Times (Figure 6)					ľ
Output Low to High Logic State	^t TLHG	-	-	25	ាន
Output High to Low Logic State	^t THLG	-	L	25	N\$
RESET CHARACTERISTICS					
Delay Time Referenced to Power-On Reset (Figure 7)					
Output Low to High Logic State	^t PLHR	-	-	1000	ns
Output High to Low Logic State	TPHLR	-	-	250	ns
Transition Times (Figure 7)			1	1	
Output Low to High Logic State	^t TLHR	-	- 1	100	ាន
Output High to Low Logic State	^t THLR	-	1 -	50	ns

DESCRIPTION OF PIN FUNCTIONS

	OMA/REF REG REF GRANT MEMORY READY	A free numming oscillator at four times the MPU clock rate useful for a system tynk upput. A first numming oscillator at two times the MPU clock rate. An anythonous input used to freesi the MPU clock in the #1 hugh, #2 lear sists for dynamic memory refersh or cycle stee DMA. (Direct Memory Access). A synchronous input used to princhrenks the refersh or DMA operation to the MPU. A synchronous input used to threas the MPU clocks in the #1 lear, #2 hugh state for slow memory interface.	MEMORY CLOCK FOWER ON RESET RESET	 An output nommality in phase with MPU #2 howing MCST28A type drive cambbing. An output nominally in phase with MPU #2 which free one during a sthele request cycle A Sound toget mout which controls Reveal. Accountor to ground is inscered to set the during of unit contains. Internal 80 it insultor to V_{CC}. See General Design Suggestions for Monual Reve (Darston. An output to the MPU and I/O devole. An output to the MPU and I/O devole.
•	NPU #1 NPU #2	 Capable of driving the #1 and #2 inputs on two MC5800s. 	• EXT IN	 Allows driving by an external TTL signal to synchronize the MPU to an external system.

٥Ļ

FIGURE 1 - BLOCK DIAGRAM

4

5.0

40

3.0

2.0

•

VI, INPUT VOLTAGE (VOLTS), POWER ON RESET PIN

1.0

V_{CC} - 0.6 V

0.8 V

VOV = 1.0 V = Clock Qverlap

tPWM2

measurement point

٦ THLM2

TLHM2

1.0 V

MPU 02 3

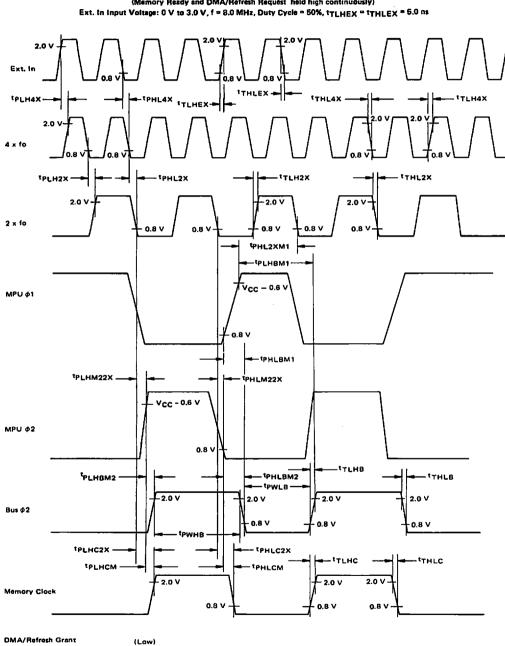
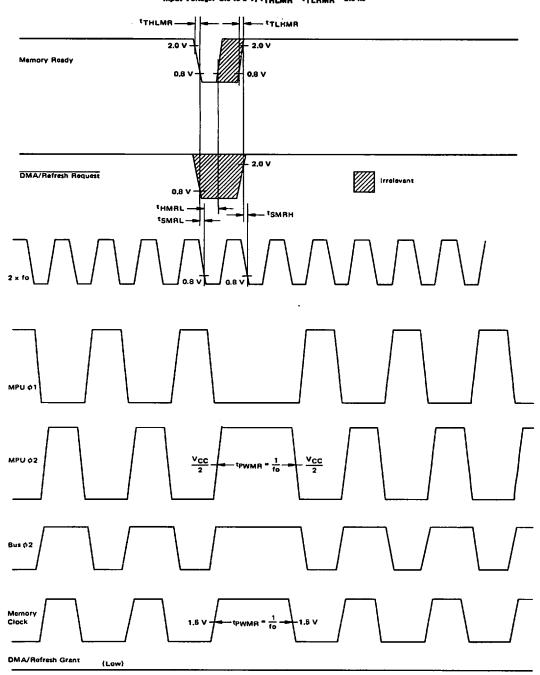
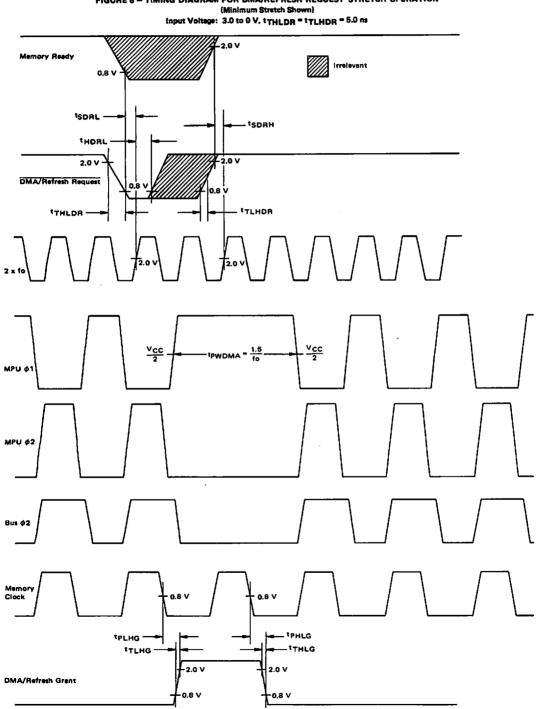




FIGURE 4 - TIMING DIAGRAM FOR NON-STRETCHED OPERATION (Memory Ready and DMA/Refresh Request held high continuously)

FIGURE 5 - TIMING DIAGRAM FOR MEMORY READY STRETCH OPERATION (Minimum Stretch Shown) Input Voltage: 3.0 to 0 V, 1 THLMR = 1 TLHMR = 5.0 ns

MC6875

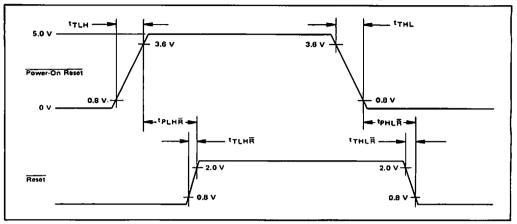
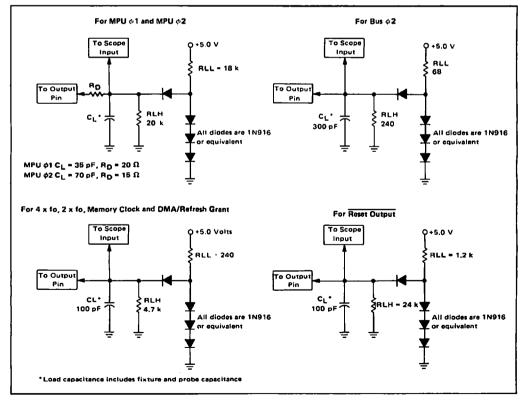
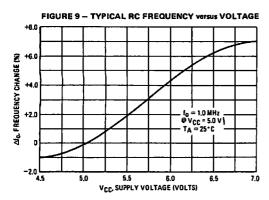
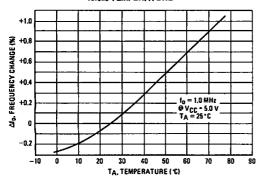
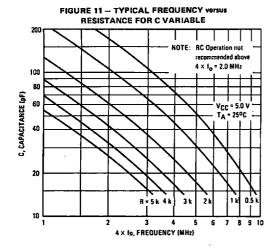




FIGURE 7 - POWER ON RESET Input Voltage: 0 to 5.0 V, 1 = 100 kHz - Pulse Width = 1.0 µs, tTLH = tTHL = 25 ns



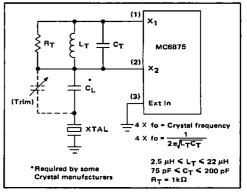

.

APPLICATIONS INFORMATION

FIGURE 10 - TYPICAL RC FREQUENCY

GENERAL

The MC6875 Clock Generator/Driver should be located on the same board and within two inches of the MC6800 MPU. Series damping resistors of 10-30 ohms may be utilized between the MC6875 and the MC6800 on the $\phi 1$ and $\phi 2$ clocks to suppress overshoot and reflections.


The V_{CC} pin (pin 16) of the MC6875 should be bypassed to the ground pin (pin 8) at the package with a 0.1 μ F capacitor. Because of the high peak currents associated with driving highly capacitive loads, an adequately large ground strip to pin 8 should be used on the MC6875. Grounds should be carefully routed to minimize coupling of noise to the sensitive oscillator inputs. Unnecessary grounds or ground planes should be avoided near pin 2 or the frequency determining components. These components should be located as near as possible to the respective pins of the MC6875. Stray capacitance near pin 2 or the crystal, can affect the frequency. The can of the crystal should not be grounded. The ground side of the crystal or the C of the R-C oscillator should be connected as directly as possible to pin 8.

Unused inputs should be connected to VCC or ground. Memory Ready, $\overline{DMA/Refresh}$ Request and Power-On Reset should be connected to VCC when not used. The External Input should be connected to ground when not used.

OSCILLATOR

A tank circuit tuned to the desired crystal frequency connected between terminals X₁ and X₂ as shown in Figure 12, is recommended to prevent the oscillator from starting at other than the desired frequency. The 1kΩ resistor reduces the Q sufficiently to maintain stable crystal control. Crystal manufacturers may recommend a capacitance (C_L) to be used in series with the crystal for optimum performance at series resonance.

See Figures 9 and 10 for typical oscillator temperature and V_{CC} supply dependence for R-C operation.

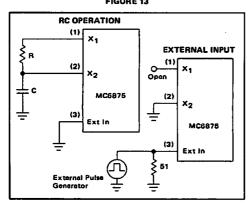


FIGURE 12 - OSCILLATOR-CRYSTAL OPERATION

	TANK CIRCUIT APPROXIMATE PARAMETERS CRYSTAL PARAMETERS				McCOY ELECT. CO. WATTS & CHESTNUTS STS. MT. HOLLY SPRING, PA 17065	TYCO CRYSTAL PRODUCTS 3940 W. MONTECITO PHOENIX, AZ 85019		
LT #H	CT P ^F	R _S Ohms	Co pF	C1 mpF		(815) 788-8411	(717) 485-3411	(602) 272-7945
10	150	16-75	3-6	12	4.0	MP-04A * 390 pF	113-31	150-3260
4.7	82	8-45	4-7	·23	8.0	MP-080 * 47 pF	113-32	150-3270

TABLE 1 - OSCILLATOR COMPONENTS

Inductors may be obtained from: Colleraft, Cary, IL 60013 (312) 639-2361 FIGURE 13

To precisely time a crystal to desired frequency, a variable trimmer capacitor in the range of 7 to 40 pF would typically be used. Note it is not a recommended practice to tune the crystal with a parallel load capacitance.

The table above shows typical values for CT and LT, typical crystal characteristics, and manufacturers' part numbers for 4.0 and 8.0 megahertz operation.

The MC6875 will function as an R-C oscillator when connected as shown in Figure 13. The desired output frequency (Mø1) is approximately:

Formula 320	C in picofarads
$4 \text{ x fo} \approx \frac{320}{C (R+.27) + 23}$	R in K ohms
F : 44)	4 v fo in Manshartz

(See Figure 11)

It would be desirable to select a capacitor greater than 15 pF to minimize the effects of stray capacitance. It is also desirable to keep the resistor in the 1 to 5 k Ω range. There is a nominal 270 Ω resistor internally at X1 which is in series with the external R. By keeping the external R as large as possible, the effects due to process variations of the internal resistor on the frequency will be reduced. There will, however, still be some variation in frequency in a production lot both from the resistance variations, external and internal, and process variations of the input switching thresholds. Therefore, in a production system, it is recommended a potentiometer be placed in series with a fixed R between X1 and X2.

POWER-ON RESET

As the power to the MC6875 comes up, the Reset Output will be in a high impedance state and will not give

a solid VOL output level until VCC has reached 3.5 to 4.0 V. During this time transients may appear on the clock outputs as the oscillator begins to start. This happens at approximately VCC = 3 V. At some VCC level above that, where Reset Output goes low, all the clock outputs will begin functioning normally. This phenomenon of the start-up sequence should not cause any problems except possibly in systems with battery back-up memory. The transients on the clock lines during the time the Reset Output is high impedance could initiate the system in some unknown mode and possibly write into the backup memory system. Therefore in battery backup systems, more elaborate reset circuitry will be required.

Please note that the Power-On Reset input pin of the MC6875 is not suitable for use with a manual MPU reset switch if the DMA/Ref Reg or Memory Ready inputs are going to be used. The power on reset circuitry is used to initialize the internal control logic and whenever the input is switched low, the MC6875 is irresponsive to the DMA/Ref Reg or Memory Ready inputs. This may result in the loss of dynamic memory and/or possibly a byte of slow static memory. The circuit of Figure 14 is recommended for applications which do not utilize the DMA/Ref Reg or Memory Ready inputs. The circuit of Figure 15 is recommended for those applications that do. FIGURE 14 - MANUAL RESET FOR APPLICATIONS NOT USING

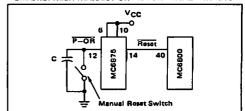
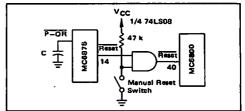



FIGURE 15 - MANUAL RESET FOR SYSTEMS USING DYNAMIC RAM OR SLOW STATIC RAM IN CONJUNCTION WITH MEMORY READY OR DMA/REFRESH REQUEST INPUTS

MC6880A MC8T26A

This device may be ordered under either of the above type numbers.

QUAD THREE-STATE

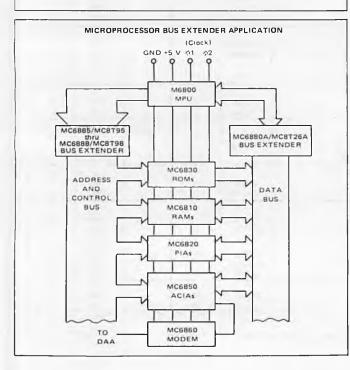
BUS TRANSCEIVER

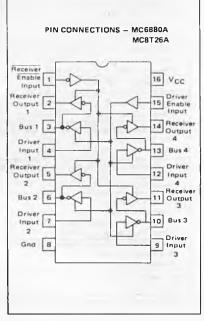
MONOLITHIC SCHOTTKY

INTEGRATED CIRCUITS

QUAD THREE-STATE BUS TRANSCEIVER

This quad three-state bus transceiver features both excellent MOS or MPU compatibility, due to its high impedance PNP transistor input, and high-speed operation made possible by the use of Schottky diode clamping. Both the -48 mA driver and -20 mA receiver outputs are short-circuit protected and employ three-state enabling inputs.


The device is useful as a bus extender in systems employing the M6800 family or other comparable MPU devices. The maximum input current of 200 μ A at any of the device input pins assures proper operation despite the limited drive capability of the MPU chip. The inputs are also protected with Schottky-barrier diode clamps to suppress excessive undershoot voltages.


The MC8T26A is identical to the NE8T26A and it operates from a single +5 V supply.

- High Impedance Inputs
- Single Power Supply
- High Speed Schottky Technology
- Three-State Drivers and Receivers
- Compatible with M6800 Family Microprocessor

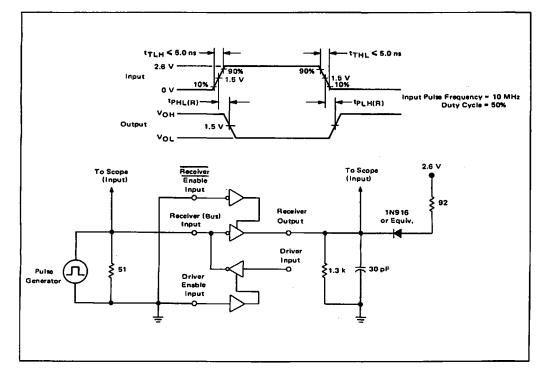
P SUFFIX PLASTIC PACKAGE CASE 648

MC6880A, MC8T26A

MAXIMUM RATINGS (TA = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	8.0	Vdc
Input Voltage	VI VI	5.5	Vdc
Junction Temperature	TJ		°c
Ceramic Package		175	
Plastic Package		150	
Operating Ambient Temperature Range	TA	0 to +75	°C
Storage Temperature Range	Tstg	-65 to+150	°C

ELECTRICAL CHARACTERISTICS (4.75 V < V_{CC} < 5.25 V and $0^{\circ}C$ < T_A < 75°C unless-otherwise noted.)


Characteristic	Symbol	Min	Тур	Max	Unit
Input Current - Low Logic State					
(Receiver Enable Input, VIL(RE) = 0.4 V)	^I IL(A€)	-	- 1	-200	μΑ
(Driver Enable Input, VIL(DE) = 0.4 V)	IL(DE)	-	-	-200	
(Driver Input, VIL(D) = 0.4 V)	IL(D)	-	-	-200	
(Bus (Receiver) Input, VIL(B) = 0.4 V)	IL(B)	_	-	-200	
Input Disabled Current - Low Logic State				-	
 (Driver Input, V_{1L(D)} = 0.4 V) 	12(0) 013	-	-	- 25	μA
Input Current-High Logic State			-		
(Receiver Enable Input, VIH(RE) * 5.25 V)	LIH(RE)	-	-	25	μΑ
(Driver Enable Input, VIH(DE).= 5.25 V)	IH(DE)	-	- 1	25	
(Driver Input, VIH(D) = 5.25 V)	IH(D)	_	- 1	25	
(Receiver Input, VIH(B) = 5.25 V)	IH(B)	-	-	100	
Input Voltage - Low Logic State					
(Receiver Enable Input)		-	-	0.85	l v
(Driver Enable Input	VIL(DE)	_	-	0.85	
(Driver Input)	VIL(D)	-	-	0.85	
(Receiver Input)		_	-	0.85	
Input Voltage – High Logic State			f		
(Receiver Enable Input)		2.0	-	-	l v
(Driver Enable Input)		2.0	-	_	'
(Driver Input)	VIH(D)	2.0	_	L _	
(Receiver Input)	VIH(B)	2.0	- 1	_	
Output Voltage - Low Logic State			·		
(Bus Driver) Output, IOL(B) = 48 mA)	VOL(B)	-	_	0.5	l v
(Receiver Output, IOL(B) = 20 mA)	VOL(B)	_		0.5	
Output Voltage - High Logic State			 	0.5	
					l v
(Bus (Driver) Output, I _{OH(B)} = -10 mA)	Vон(в)	2.4	3.1	-	l v
(Receiver Output, I _{OH(R)} = -2.0 mA)	VOH(R)	2.4	3.1	- 1	
(Receiver Output, $I_{OH}(R) = -100 \ \mu A$, $V_{CC} = 5.0 \ V$)		3.5	-	-	
Output Disabled Leakage Current - High Logic State				1	
(Bus Driver) Output, VOH(B) = 2.4 V)	OHL(B)	-	-	100	μA
(Receiver Output, V _{OH(R)} = 2.4 V)	^I OHL(R)		-	100	
Output Disabled Leakage Current - Low Logic State					
(Bus Output, $V_{OL(B)} = 0.5 V$)	OLL(B)	-	-	-100	μA
(Receiver Output, VOL(R) = 0.5 V)	IOLL(R)	-	-	100	
nput Clamp Voltage					
(Driver Enable Input IID(DE) = -12 mA)	VIC(DE)	-	- 1	-1.0	v
(Receiver Enable Input I _{IC(RE)} = +12 mA)	VIC(RE)	-	- 1	-1.0	
(Driver Input I _{IC(D)} = -12 mA)	VIC(D)	-	-	-1.0	
Dutput Short-Circuit Current, V _{CC} = 5.25 V ⁽¹⁾					
(Bus (Driver) Output)	IOS(B)	-50	- 1	- 150	, mA
(Receiver Output)	IOS(R)	-30	-	-75	
Power Supply Current	'cc	-	-	87	mA
(V _{CC} = 5.25 V)					

(1) Only one output may be short-circuited at a time.

MC6880A, MC8T26A

Cheracteristic	Symbol	Figure	Min	. Max.	Unit
Propagation Delay Time from Receiver (Bus) Input to High Logic State Receiver Output	^{tp} LH(R)	1	-	14	ns
Propagation Delay Time from Receiver (Bus) Input to Low Logic State Receiver Output	^t PHL(R)	1	-	14	ns
Propagation Delay Time from Driver Input to High Logic State Driver (Bus) Output	^t PLH(D)	2	-	14	ns
Propagation Delay Time from Driver Input to Low Logic State Driver (Bus) Output	^t PHL(D)	2	· . –	14	ns
Propagation Delay Time from Receiver Enable Input to High Impedance (Open) Logic State Receiver Output	^t PLZ(RE)	3.	-	15	ns
Propagation Delay Time from Receiver Enable Input to Low Logic Level Receiver Output	^t PZL(RE)	3	-	20	ns
Propagation Delay Time from Driver Enable Input to High Impedance Logic State Driver (Bus) Output	^t PLZ(DE)	4	-	20	ns
Propagation Delay Time from Driver Enable Input to Low Logic State Driver (Bus) Output	^t PZL(DE)	4	-	25	ns

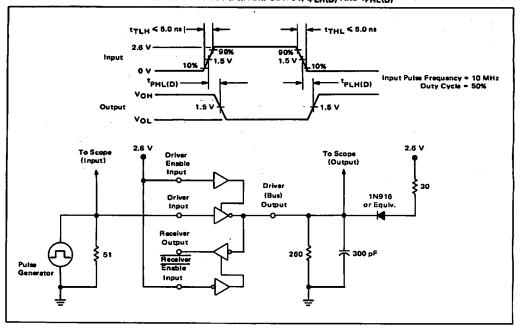
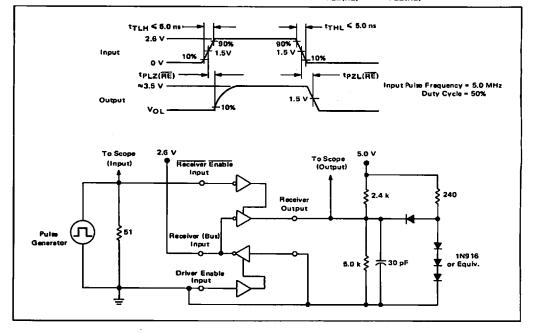
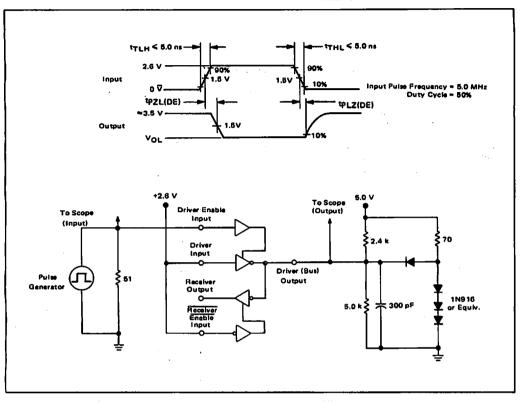




FIGURE 2 – TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM DRIVER INPUT TO BUS (DRIVER) OUTPUT, WLH(D) AND 1PHL(D)

· · · · · · · · ·

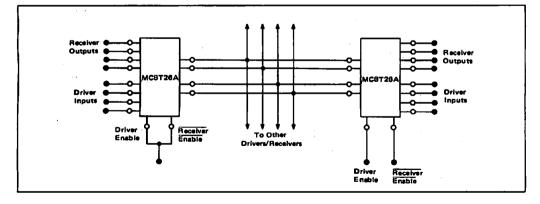

FIGURE 3 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM RECEIVER ENABLE INPUT TO RECEIVER OUTPUT, tPLZ(RE) AND tPZL(RE)

FIGURE 4 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIMES FROM DRIVER ENABLE INPUT TO DRIVER (BUS) OUTPUT, 1PL2(DE) AND 1P2L(DE)

FIGURE 5 - BIDIRECTIONAL BUS APPLICATIONS

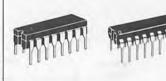
4

MC6881 MC3449

This device may be ordered under either of the above type numbers.

BI-DIRECTIONAL

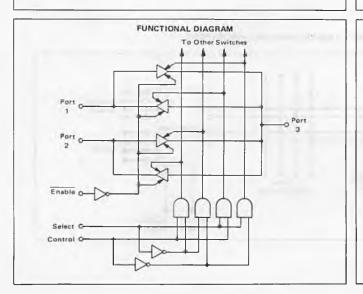
BUS EXTENDER/SWITCH

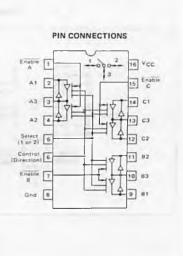

TRIPLE BI-DIRECTIONAL BUS SWITCH

The MC6881/3449 is a three channel, non-inverting, bi-directional Bus Extender. It is designed to allow the bi-directional exchange of TTL level digital information between a selected pair of ports in a three port network. All three ports of each channel may be forced to a high impedance condition through that channel's Enable input.

Port pair selection and listener/talker status for the three channels is determined through the Control and Select inputs. All inputs are PNP buffered, M6800 Family compatible, and protected with Schottky-Barrier diode clamps to suppress undershoot voltages.

A summary of MC6881/3449 features include:

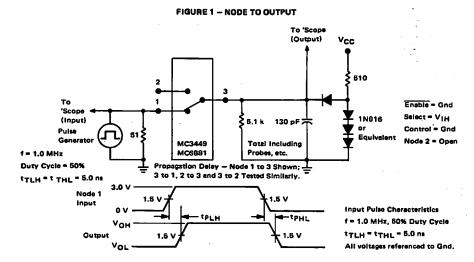

- Three Channels
- Non-Inverting Data Exchange
- Bi-Directional Operation
- Active Pull-Up with Three-State Capability
- High Impedance Inputs
- TTL Compatible
- High Speed Schottky Technology
- Single Power Supply



L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX LASTIC PACKAGE CASE 648

TRUTH TABLE						
Enable	Select	Control	Data Flow			
0	0	0	2-+3			
0	0	1	3→2			
0	1	0	1→3			
0	1	1	3→1			
1	х	X	High Impedance			

X - Don't Care


MC6881, MC3449

MAXIMUM RATINGS (Unless otherwise noted T_A = 25°C.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	7.0	Vdc
Input Voltage	VI VI	5.5	Vdc
Operating Ambient Temperature Range	TA	0 to +70	- °C
Storage Temperature Range	Tstg	-65 to +150	°C
Junction Temperature Range Ceramic Package Plastic Package	T.	175 150	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = 4.75 to 6.25 Volts and T_A = 0 to +70°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage - Low Logic State	VIL VIL	-	- 1	8.0	Vdc
Input Voltage – High Logic State	VIH	2.0	-	-	Vdc
Input Current – Low Logic State (VIL = 0.4 V)	ΪL	~	-	-100	μA
Input Current – High Logic State (VIH = 2.7 V)	ЧН	_	· _	40	μA
(V _{IH} = 5.25 V)			-	100	
Input Clamp Voltage (IIC = -18 mA)	VIC	-	-	-1.5	Vdc
Output Voltage – Low Logic State (IOL = 8.0 mA)	VOL	-	-	0.5	v
Output Voltage – High Logic State (IOH = -400 µA)	VOH	2.7	-	-	v
Output Disabled Leakage Current (VOZ = 0.4 V)	loz	_		-40	Aµ
(VOZ = 2.7 V)			-	40	
(V _{OZ} = 5.25 V)		_ ·	-	100	
Output Short Circuit Current	los	-20	-	-55	mA
Crosstalk Current — Low Logic State {V _{IH} = 2.4 V on Node 3, opposite node selected V _{IL} = 0.4 V on node tested)	1XL	-	-	-40	μA
Crosstalk Current — High Logic State (V _{IL} = 0.8 V on Node 3, opposite node selected V _{IH} = 2.4 V on node tested).	¹ ХН	*	-	40	μA
Power Supply Current (VIH = 2.4 V, VCC = 5.25 V)	'cc	- v	-	70	mA
SWITCHING CHARACTERISTICS (VCC = 5.0 V a	nd TA = 25 ⁰ C unit	ss otherwise no	ted.)		
Propagation Delay Times - Nodes 1, 2, 3			1 .	1	05
Low-to-High Output	1 TPLH	· -	30	-	
High-to-Low Output	TPHL	_	24	-	
Enable Delay Times			-		ПS
Disabled to High or Low-Logic State	ten	-	18	-	-
High or Low-Logic State to Disabled	TDIS	_	10		
Select Delay Times					ns
Third-State to High or Low-Logic State	ton	-	25	[_]	
High or Low-Logic State to Third-State	^t OFF	-	25	- '	
Control Delay Times					ព៖
Third-State to High or Low-Logic State	ton	-	25	-	
High or Low-Logic State to Third-State	10FF	· _	25	-	

PROPAGATION DELAY TIME TEST CIRCUITS AND WAVEFORMS

FIGURE 2 - THIRD-STATE

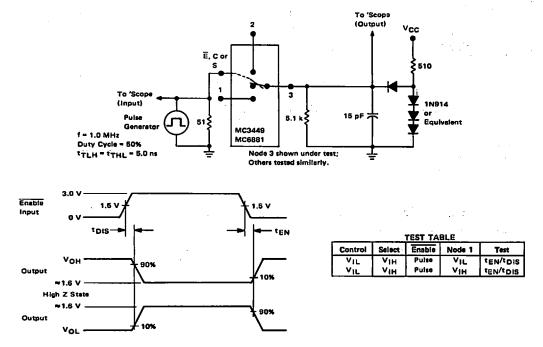
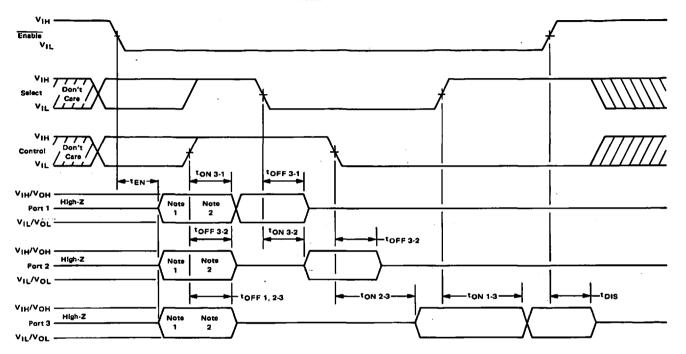



FIGURE 3 - TIMING DIAGRAM

- Note 1: Data is transmitted to only 1 of the 3 ports. Which port acts as an output depends on logic state of the select and control pins when the channel is enabled.
- Note 2: A part chosen to act as the output is either high or low, depending on the logic state of the part chosen to be the input.
- Note 3: The arrow indicates the direction of data flow. Each buffer is non-inverting, so data maintains the same logic state through the buffer.
- Note 4: t_{ON} is the time from third state to active (high or low) state; t_{OFF} is time from active to third state.

TRUTH TABLE

Enable	Select	Control	Data Direction (Note 3)
1	×	×	All Ports are High-Z
0	0	0	Port 2 → Port 3
0	0	1	Port 3 → Port 2
0	1	0	Port 1 → Port 3
0	1	1	Port 3 → Port 1

4

۰.

1

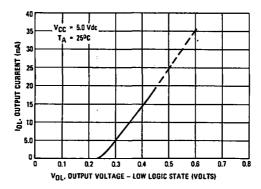
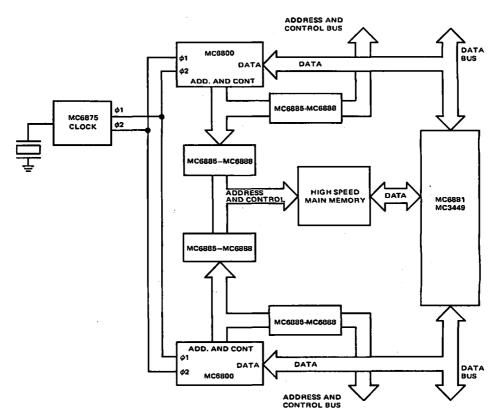
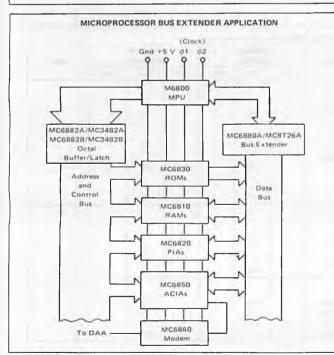



FIGURE 4 - TYPICAL IOL VERSUS VOL

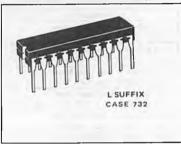
4

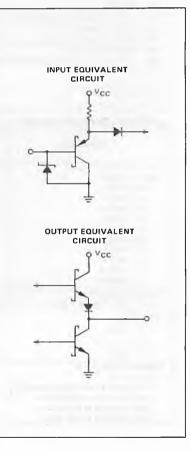
MC6882A/MC3482A MC6882B/MC3482B


This device may be ordered under either of the above type numbers.

Advance Information

OCTAL THREE-STATE BUFFER/LATCH


This series of devices combines four features usually found desirable in bus-oriented systems: 1) High impedance logic inputs insure that these devices do not seriously load the bus; 2) Three-state logic configuration allows buffers not being utilized to be effectively removed from the bus; 3) Schottky technology allows for high-speed operation; 4) 48 mA drive capability.


- Inverting and Non-Inverting Options of Data
- SN74S373 Function Pinouts
- Eight Transparent Latches/Buffers in a Single Package
- Full Parallel-Access for Loading and Reloading
- Buffered Control Inputs
- All Inputs Have Hysteresis to Improve Noise Rejection
- High Speed 8.0 ns (Typ)
- Three-State Logic Configuration
- Single +5 V Power Supply Requirement
- Compatible with 74S Logic or M6800 Microprocessor Systems
- High Impedance PNP Inputs Assure Minimal Loading of the Bus

This is advance information and specifications are subject to change without notice.

OCTAL THREE-STATE BUFFER/LATCH

MAXIMUM RATINGS (TA = 25°C unless otherwise noted.)

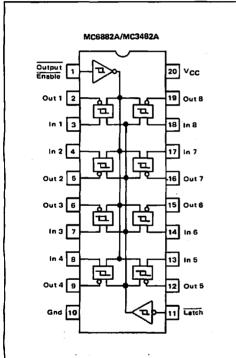
Rating	Symbol	Vatue	Unit
Power Supply Voltage	Vcc	8.0	Vdc
Input Voltage	VI	5.5	Vdc
Operating Ambient Temperature Range	TA	0 to +75	°C
Storage Temperatura Range	T _{stg} .	-65 to +150	°C
Operating Junction Temperature	Ťj		<u>°C</u>
Plastic Package		150	
Ceramic Package		175	

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, 0°C <TA <75°C and 4.75 V <V_{CC} <6.25 V)

Cheracteristic	Symbol	Min	Тур	Max	Unit
Input Voltage – High Logic State (V _{CC} = 4.75 V, T _A = 25 ⁹ C)	VIH	2.0	-	-	v
Input Voltage – Low Logic Stata (V _{CC} = 4.75 V, T _A = 25°C)	VIL	-	-	0.8	v
Input Current – High Logic State (V _{CC} = 5.25 V, V _{IH} = 2.4 V)	Чн	-	-	40	μA
Input Current — Low Logic State (V _{CC} = 5.25 V, V _{IL} = 0.5 V, V _{IL} (OE) = 0.5 V)	ԿՆ	_	-	-260 '	μΑ
Output Voltage High Logic State (V _{CC} = 4.75 V, I _{OH} = -20 mA)	∨он	2.4	-	-	v
Output Voltage — Low Logic State (IQL = 48 mA)	VOL	-	-	0.5	v
Output Current – High Impedance State (V _{CC} = 5.25 V, V _{OH} = 2.4 V) (V _{CC} = 5.25 V, V _{OL} = 0.5 V)	loz	-	-	100 -100	μA
Output Short-Circuit Current $(V_{CC} = 5.25 V, V_O = 0)$ (only one output can be shorted at a time)	los	-30	-80	-130	mA
Power Supply Current MC6882A/MC3482A (V _{CC} = 5.25 V) MC6882B/MC3482B	¹ CC	-		130 150	mA
Input Clamp Voltage (V _{CC} = 4.75 V, I K = -12 mA)	V _{IK}	-	-	-1.2	· · ·

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = 25°C unless otherwise noted.)

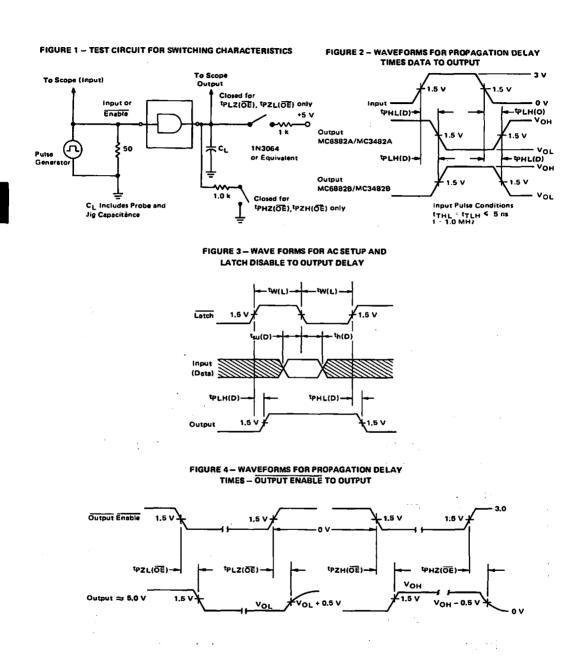
Characteristics	Symbol	MC6882A/ Symbol MC3482A		MC6882B/ MC3482B			Unit	
	-	Min	Тур	Max	Min	Тур	Max	
Propagation Delay Times								ns
Data to Output			·					
Low to High	ሞLH(D)						· ·	
C ₁ = 50 pF		-	10	- 1	-	12	-	
CL = 250 pF		-	-	-	-	-	-	
CL = 375 pF		-	-	-	-	-	-	
CL = 500 pF		-	21	-	-	20	- 1	
High to Low	tPHL(D)							
C1 = 50 pF		_	8.0	l _	- 1	10	_	
C1 = 250 pF		-	-	_	- 1	-	- 1	
C1 = 375 pF		_	— .	- 1	-	_	- 1	
CL = 500 pF		- 1	17	-	- 1	18	- 1	
Propagation Delay Times			†					10
Latch Disable (Low to High)			1					
to Output]			
Low to High	ሞLH(L)			1				
СL = 50 рF		- 1	17	-		22	-	
High to Low	ΦHL(L)							
CL = 50 pF		-	19	- 1	-	17	-	
Propagation Delay Times								rts
(CL = 20 pF)		1						
High Output Level to High Impedance	PHZ(OE)	l –	7.0	-	- 1	7.0	-	
Low Output to High Impedance	PLZ(OE)	- 1	18	- 1	-	18	-	
High Impedance to High Output	PZH(OE)	- 1	8.0	- 1	- 1	15	-	
High Impedance to Low Output	ΨZL(OE)	<u>ـ</u> ا	12	- 1	_ ·	9.0	- 1	


MC6882A, B, MC3482A, B

AC SETUP CHARACTERISTICS (V_{CC} = 5.0 V, T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	MC6882A/ MC3482A			MC6882B/ MC3482B			Unit
		Min	Тур	Max	Min	Тур	Max	
Setup Time (Data to Negative Going Latch Enable)	^t su(D)	-	0	-	-	0	-	ns
Hold Time (Data to Negative Going Latch Enable)	ካ(D)	-	11	-	-	11	-	ns
Minimum Latch Enable Pulse Width (High or Low)	tw(L)	-	_15	-		15	-	ns.

PIN CONNECTIONS AND TRUTH TABLES

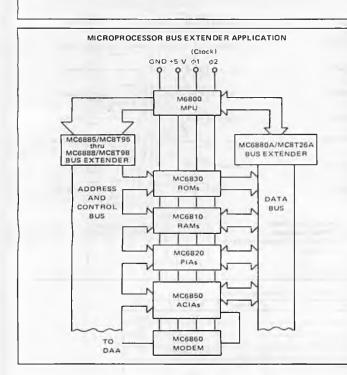

· • • •

Output Enable	Latch	Input	Output
0	1	0	1
0	1	1	0
0	0	×	
1	x	×	z

MC66828/MC3482B Output Enable 20 Vcc Out 1 2 19 Out 8 Ц Ц in 1 3 18 In 8 17 In 7 In 2 4 -11 Ц Out 2 5 16 Out 7 Out 3 6 15 Out 6 Ц L. - In 3 7 14 In 6 13 In 5 In 4 8 Ъ Ъ. Out 4 9 12 Out 6 Gnd 10 11 Latch

Output Enable	Latch	Input	Output
0	1	0	0
0	1	1	1
0	0	X	a°
1	×	×	z

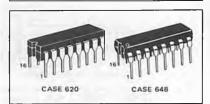
4-112

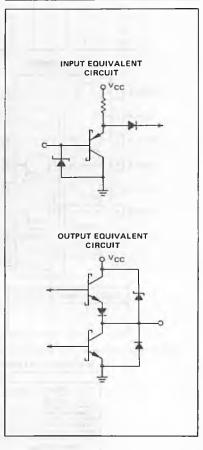

HEX THREE-STATE BUFFER INVERTERS

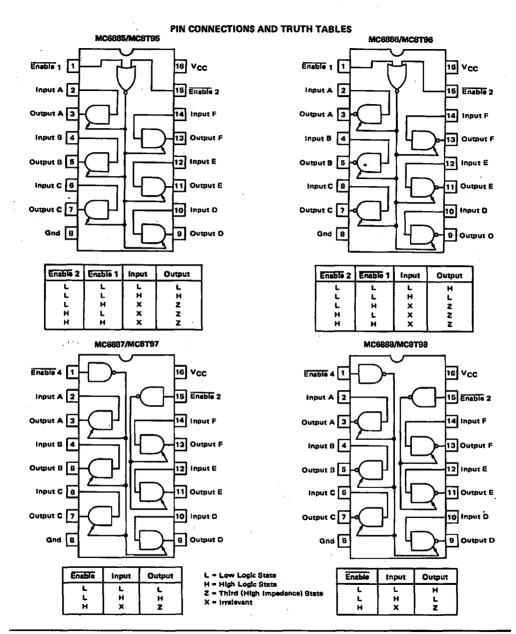
This series of devices combines three features usually found desirable in bus-oriented systems: 1) High impedance logic inputs insure that these devices do not seriously load the bus; 2) Three-state logic configuration allows buffers not being utilized to be effectively removed from the bus; 3) Schottky technology allows high-speed operation.

The devices differ in that the non-inverting MC8T95/MC6885 and inverting MC8T96/MC6886 provide a two-input Enable which controls all six buffers, while the non-inverting MC8T97/MC6887 and inverting MC8T98/MC6888 provide two Enable inputs – one controlling four buffers and the other controlling the remaining two buffers.

The units are well-suited for Address buffers on the M6800 or similar microprocessor application.


- High Speed 8.0 ns (Typ)
- Three-State Logic Configuration
- Single +5 V Power Supply Requirement
- Compatible with 74LS Logic or M6800 Microprocessor Systems
- High Impedance PNP Inputs Assure Minimal Loading of the Bus




MC6885/MC8T95 MC6886/MC8T96 MC6887/MC8T97 MC6888/MC8T98

This device may be ordered under either of the above type numbers.

HEX THREE-STATE BUFFER/INVERTERS

MAXIMUM RATINGS (TA = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	8.0	Vdc
Input Voltage	VI	5.5	Vdc
Operating Ambient Temperature Range	TA	0 to +75	. °C
Storaga Temperatura Ranga	Tstg	-65 to +150	°C
Operating Junction Temperature Plastic Package	Tj Tj	150	°C
Ceramic Package		175	

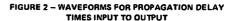
MC6885-88, MC8T95-98

Characteristic	Symbol	Min	Түр	Max	Unit
Input Voltage – High Logic State (V _{CC} = 4.75 V, T _A = 25 ⁰ C)	VIH	2.0	-	-	v
Input Voltage – Low Logic State {V _{CC} = 4.75 V, T _A = 25 ^o C}	VIL	-	-	0.8	v
Input Current – High Logic State (VCC = 5.25 V, V1H = 2.4 V)	ЧН	-	-	40	μA
Input Current - Low Logic State {VCC = 5.25 V, V L = 0.5 V, V L(E) = 0.5 V)	11	-	. –	-400	Αų
Input Current — High Impedance State (VCC = 5.25 V, VIL(I) = 0.5 V, VIH(E)= 2.0 V)	IH(E)			-40	μA
Output Voltage – High Logic State (VCC = 4.75 V, IOH = -5.2 mA)	VOH	2.4	-	-	v
Output Voltage – Low Logic State (IQL = 48 mA)	VOL		-	0.5	v
Output Current - High Impedance State (V _{CC} = 5.25 V, V _{OH} = 2.4 V) (V _{CC} = 5.25 V, V _{OH} = 0.5 V)	loz		-	40 -40	Aμ
Output Short-Circuit Current $(V_{CC} = 5.25 V, V_{O} = 0)$ (only one output can be shorted at a time)	los	-40	-80	-115	mA
Power Supply Current (VCC = 5.25 V) MC8795, MC8797, MC68885, MC68887 MC8796, MC8798, MC68886, MC68888	1cc		65 59	98 89	mA
Input Clamp Voltage {V _{CC} = 4.75 V, I _{IC} = -12 mA}	VIC	-	-	-1.5	l v
Output V _{CC} Clamp Voltage (V _{CC} = 0, I _{OC} = 12 mA)	Voc	-	-	1.5	v
Output Gnd Clamp Voltage (VCC = 0, IOC = -12 mA)	Voc	-	-	-1.5	v
Input Voltage (I) = 1.0 mA)	VI	5.5		- 1	v

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, 0°C <TA <75°C and 4.75 V <VCC <5.25 V)

SWITCHING CHARACTERISTICS (VCC = 5.0 V, TA = 25°C unless otherwise noted.)

Characteristic	Symbol	MC8T95/97 MC6885/87			MC8T96/98 MC6886/88			
		Min	Тур	Max	Min	Тур	Min	Unit
Propagation Delay Time - High to Low State	TPHL			-		-		ns
. (CL = 50 pF)	_	3.0	- 1	12	4.0	-	11	
(CL = 250 pF)		-	16	-	-	15	-	
(CL = 375 pF)		- 1	20		- 1	18	-	
(CL = 500 pF)		-	23		-	22	. –	
Propagation Delay Time - Low to High State	TPLH							ns
(CL = 50 pF)	_	3.0	-	13	3.0	-	10	
(CL = 250 pF)		-	25	· _	– '	22	-	
(CL = 375 pF)		-	33	-	- 1	28	-	
(CL = 500 pF)		- 1	42	-	- 1	35	-	
Transition Time - High to Low State	^t THL		· ·	``				ns
(CL = 250 pF)		-	10	-	-	10	-	
(CL = 375 pF)		-	11	1	- 1	13	i –	
(CL = 500 pF)		-	14 -	1 - 1	-	15	-	
Transition Time - Low to High State	1TLH							ns
(CL = 250 pF)		-	32	-	-	28	-	1
(CL = 375 pF)		-	42	1 -	-	38	-	
(CL = 500 pF)	1	- 1	60	i –	- 1	53	- 1	


.

Characteristic	Symbol	MC8T95/97 MC6885/87			MC8T96/98 MC6886/88			
		Min	Тур	Max	Min	Тур	Max	Unit
Propagation Delay Time – High State to Third State (CL = 5.0 pF)	^t PHZ(Ë)	3.0	-	10	3.0	-	10	R3
Propagation Delay Time - Low State to Third State (CL = 5.0 pF)	^t PLZ(Ē)	3.0	-	12	5.0	-	16	ns
Propagation Delay Time - Third State to High State (CL = 50 pF)	¹ PZH(Ē)	8.0		25	7.0	-	22	ns
Propagation Delay Time - Third State to Low State (CL = 50 pF)	^T PZL(Ë)	12	-	25	11	-	24	ns

SWITCHING CHARACTERISTICS (VCC = 5.0 V, TA = 25°C unless otherwise noted.)

4

FIGURE 1 - TEST CIRCUIT FOR SWITCHING CHARACTERISTICS

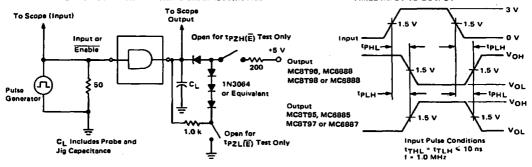
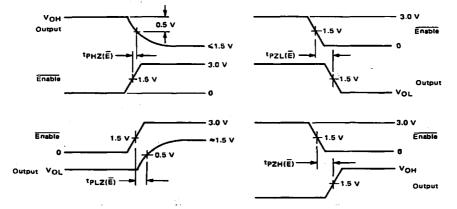



FIGURE 3 - WAVEFORMS FOR PROPAGATION DELAY TIMES - ENABLE TO OUTPUT

H = High-Logic State, L = Low-Logic State, Z = High Impedance State

۰.

FIGURE 4 - ADDRESS MULTIPLEXER FOR 16-PIN 4K NMOS MEMORY

.

MC6889 MC8T28

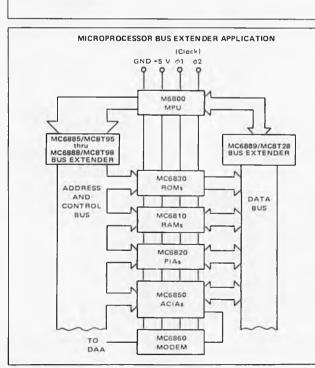
This device may be ordered under either of the above type numbers.

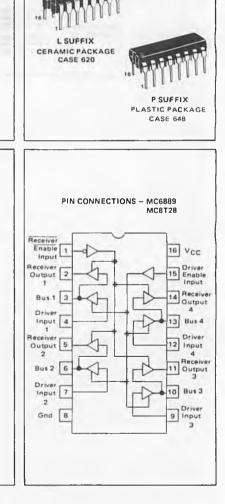
NON-INVERTING

BUS TRANSCEIVER

MONOLITHIC SCHOTTKY

INTEGRATED CIRCUITS


NON-INVERTING QUAD THREE-STATE BUS TRANSCEIVER


This quad three-state bus transceiver features both excellent MOS or MPU compatibility, due to its high impedance PNP transistor input, and high-speed operation made possible by the use of Schottky diode clamping. Both the -48 mA driver and -20 mA receiver outputs are short-circuit protected and employ three-state enabling inputs.

The device is useful as a bus extender in systems employing the M6800 family or other comparable MPU devices. The maximum input current of 200 μ A at any of the device input pins assures proper operation despite the limited drive capability of the MPU chip. The inputs are also protected with Schottky-barrier diode clamps to suppress excessive undershoot voltages.

Propagation delay times for the driver portion are 17 ns maximum while the receiver portion runs 17 ns. The MC8T28 is identical to the NE8T28 and it operates from a single +5 V supply.

- High Impedance Inputs
- Single Power Supply
- High Speed Schottky Technology
- Three-State Drivers and Receivers
- Compatible with M6800 Family Microprocessor
- Non-Inverting

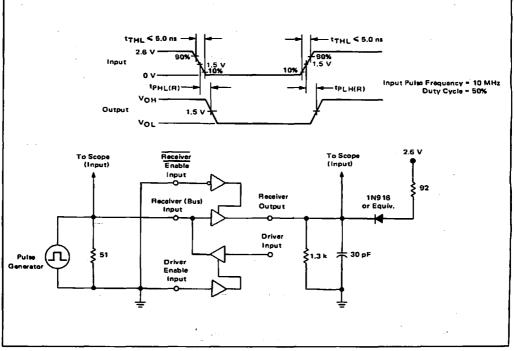
MC6889, MC8T28

MAXIMUM RATINGS (TA = 25°C unless otherwise noted.).

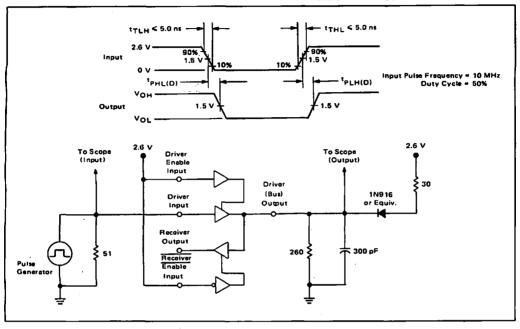
Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	8.0	Vdc
Input Voltage	VI VI	5.5	Vdc
Junction Temperature	Тл		°C
Ceramic Package	1 -	175	-
Plastic Package		150	
Operating Ambient Temperature Range	TA	0 to +75	° C
Storage Temperature Range	Tstg	-65 to+150	20

ELECTRICAL CHARACTERISTICS (4.75 V < V_{CC} < 5.25 V and 0° C < T_A < 75°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Current - Low Logic State					
(Receiver Enable Input, VIL(RE) = 0.4 V)	hL(AE)	-	-	-200	μA
(Driver Enable Input, VIL (DE) = 0.4 V)	IL(DE)	-	- 1	-200	
(Driver Input, VIL(D) = 0.4 V)	IL(D)	-	-	-200	
(Bus (Receiver) Input, VIL(B) = 0.4 V)	L(B)	-	-	-200	_
Input Disabled Current - Low Logic State					
(Driver Input, VIL(D) = 0.4 V)		-	-	- 25	μA
Input Current-High Logic State					
(Receiver Enable Input, VIH(RE) = 5.25 V)	IH(RE)	-	- 1	25	μA
(Driver Enable Input, VIH(DE).= 5.25 V)	IH(DE)	-	-	25	
(Driver Input, VIH(D) = 5.25 V)	LIH(D)	_	-	25	
Input Voltage - Low Logic State					
(Receiver Enable Input)		_	-	0.85	v
(Driver Enable Input	VIL(DE)	· _	-	0.85	
(Driver Input)	VIL(DE)	-	l _	0.85	
(Receiver Input)	VIL(B)	_	1 -	0.85	
	VIL(B)			0.00	
Input Voltage - High Logic State					
(Receiver Enable Input)	VIH(RE)	2.0	~	- 1	v
(Driver Enable Input)	VIH(DE)	2.0	- 1	- 1	
(Driver Input)	VIH(D)	2.0	-	-	
(Receiver Input)	⊻ін(в)	2.0	- 1	-	
Output Voltage - Low Logic State					
(Bus Driver) Output, IOL(B) = 48 mA)		-	-	0.5	v
(Receiver Output, IOL(R) = 20 mA)	VOL(B)	-	-	0.5	
Output Voltage - High Logic State			i		
(Bus (Driver) Output, IOH(B) = -10 mA)	VOH(B)	2.4	3.1	-	v
(Receiver Output, IOH(R) = -2.0 mA)	VOH(B)	2.4	3.1	_	-
(Receiver Output, $1_{OH(R)} = -100 \mu$ A, $V_{CC} = 5.0 V$)	•0n(n)	3.5			
Output Disabled Leakage Current - High Logic State			1	100	
(Bus Driver) Output, VOH(B) = 2.4 V)	OHL(B)		-	100	Aμ
(Receiver Output, VOH(R) = 2.4 V)	OHL(R)			100	
Output Disabled Leakage Current - Low Logic State					
(Bus Output, VOL(B) = 0.5 V)	OLL(B)	-	- 1	-100	μA
(Receiver Output, V _{OL(R)} = 0.5 V)	OLL(R)		-	-100	
nput Clamp Voltage					
(Driver Enable Input I(D(DE) = -12 mA)	VIC(DE)	-	1 -	-1.0	v
(Receiver Enable Input IIC(RE) = +12 mA)	VIC(RE)	-	- 1	-1.0	
(Driver Input IIC(D) = -12 mA)	VIC(D)	_	- 1	-1.0	
Dutput Short-Circuit Current, VCC = 5.25 V [1]					
(Bus (Driver) Output)	IOS(B)	-50	_	- 150	mA
(Receiver Output)	IOS(R)	-30	- 1	-75	
Power Supply Current				110	mA
(V _{CC} = 6.25 V)	,	-			

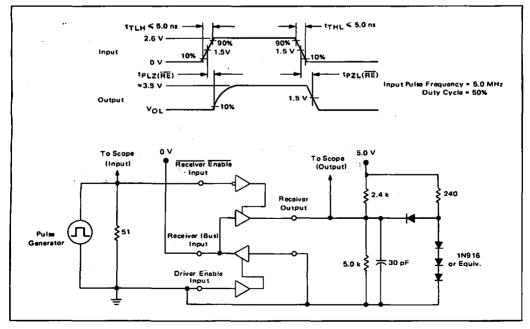

(1) Only one output may be short-circuited at a time.

• •


Characteristic	Symbol	Min	Мах	Unit
Propagation Delay Time-Raceiver (CL = 30 pF)	ቝLH(R) ቝHL(R)	-	17 17	ns
Propagation Delay Time-Driver (CL = 300 pF)	፡፡ ፡፡ ፡፡ ፡፡ ፡፡ ፡፡ ፡፡ ፡፡ ፡፡ ፡፡ ፡፡ ፡፡ ፡፡	-	17 17	na
Propagation Delay Time-Enable (CL = 30 pF) - Receiver	tPZL(R) tPLZ(R)	-	23 18	
— Driver Enable (CL 300 pF)	^t PZL(D) tPLZ(D)	-	28 23	

SWITCHING CHARACTERISTICS (Unless otherwise noted, VCC = 5.0 V and TA = 25°C)

FIGURE 1 – TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY FROM BUS (RECEIVER) INPUT TO RECEIVER OUTPUT, tPLH(R) AND tPHL(R)



 τ^{\prime}_{i}

FIGURE 2 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM DRIVER INPUT TO BUS (DRIVER) OUTPUT, tpLH(D) AND tpHL(D)

FIGURE 3 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM RECEIVER ENABLE INPUT TO RECEIVER OUTPUT, tplz(RE) AND tpzl(RE)

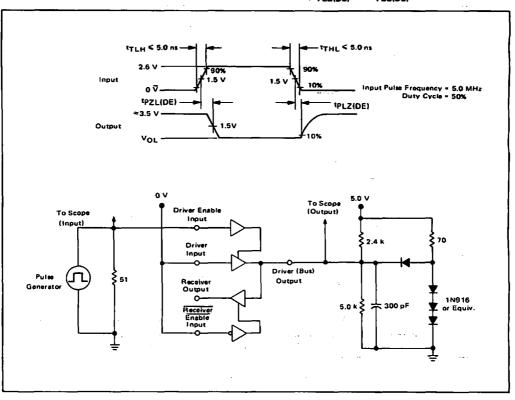
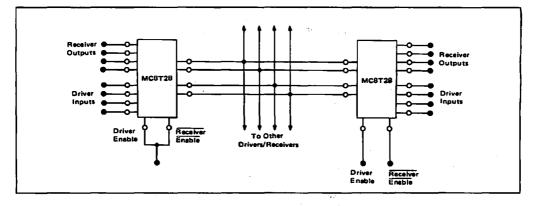



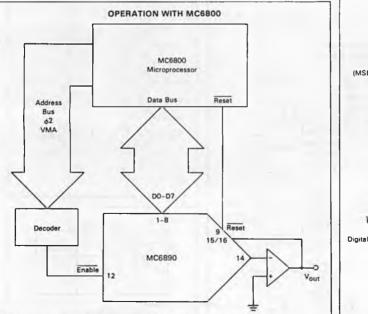
FIGURE 4 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIMES FROM DRIVER ENABLE INPUT TO DRIVER (BUS) OUTPUT, tPLZ(DE) AND tPZL(DE)

· ·

FIGURE 5 - BIDIRECTIONAL BUS APPLICATIONS

4

Product Preview


BUS-COMPATIBLE 8-BIT MPU D-TO-A CONVERTER

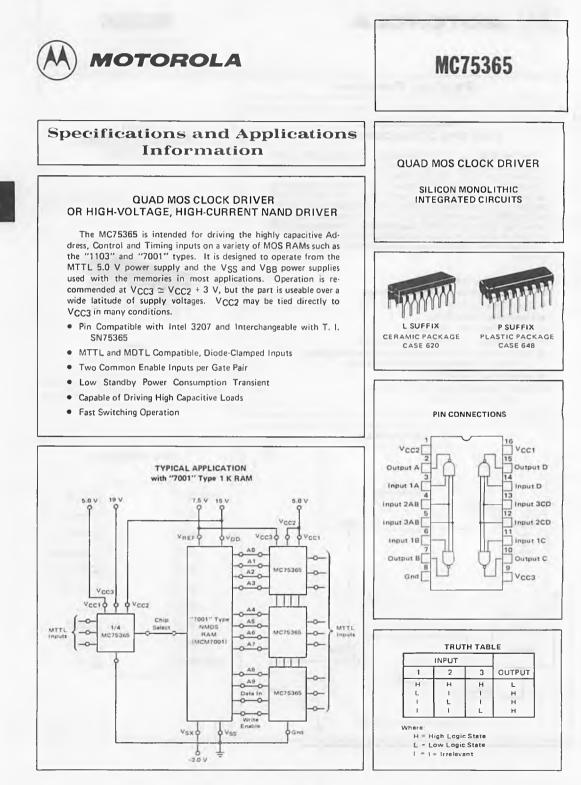
The MC6890 is a self-contained, bus-compatible, 8-bit (±0.19% accuracy) D-to-A converter system capable of interfacing directly with 8-bit microprocessors.

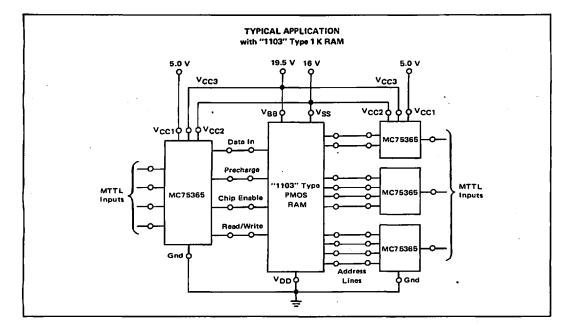
Available in both commercial and military temperature ranges, this monolithic converter contains master/slave registers to prevent transparency to data transitions during active enable; a laser-trimmed, low-TC, 2.5 V precision bandgap reference; and high-stability, laser-trimmed, thin-film resistors for both reference input and output span and offset control.

A reset pin provides for overriding stored data and forcing I_{OUI} to zero.

- ±1/2 LSB Nonlinearity
- Available in Military Temperature Range
- Direct Data Bus Link
- Low Power: 130 mW Typ
- Fast Settling Time: 140 ns Typ
- Single Enable: 10 ns Max Data Hold Time
- Self-Contained 2.5-V Precision Laser-Trimmed Voltage Reference (May Also Be Used Externally)
- Reset Pin to Override Data
- Output Voltage Ranges: +5.0, +10, +20, or ±2.5, ±5.0, ±10 Volts

CASE 732 **PIN CONNECTIONS** (MSB) D7 1 20] VCC D6 2 18 Ref Out D5 🖸 II Ref In D4 4 17 Analog Gnd D3 5 16 20 V Span D2 0 15 10 V Span D1 7 14 lout 13 Bipolar Offset D0 🔳 12 Enable Reset 9 Digital Gnd 10 II VEE


L SUFFIX


MC6890

8-BIT

BUS-COMPATIBLE MPU DAC

This is advance information and specifications are subject to change without notice.

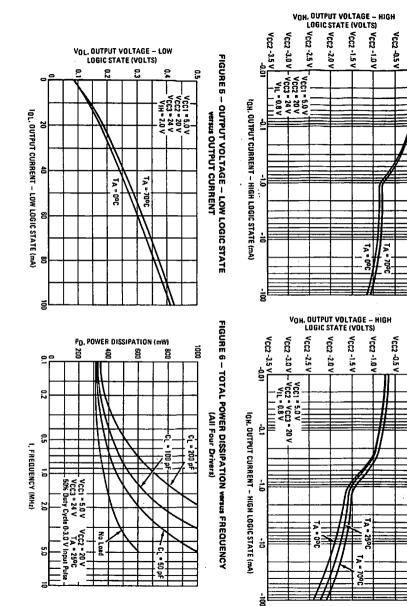
MAXIMUM RATINGS (T_A = 25^oC unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltages	Vcc1 Vcc2 Vcc3	-0.5 to 7.0 -0.5 to 25 -0.5 to 30	V
Input Voltage	V _I	5.5	v
Input Differential Voltage (see Note 1)	VID	5.5	v
Power Dissipation (Package Limitation) Ceramic Package $@ T_A = 25^{\circ}C$ Derate above $T_A = 25^{\circ}C$ Plastic Package $@ T_A = 25^{\circ}C$ Derate above $T_A = 25^{\circ}C$ Ceramic Package $@ T_C = 25^{\circ}C$ Derate above $T_C = 25^{\circ}C$ Plastic Package $@ T_C = 25^{\circ}C$ Derate above $T_C = 25^{\circ}C$	РД 1/Røja РД 1/Røja РД 1/RøjC 1/RøjC	1000 6.6 830 6.6 3.0 20 1.8 14	mW mW/ ⁰ C mW mW/ ⁰ C Watts mW/ ⁰ C Watts mW/ ⁰ C
Operating Ambient Temperature Range	TA	0 to 70	°C
Junction Temperature Ceramic Package Plastic Package	LT L	175 150	°C
Storage Temperature Range	Tstg	-65 to +150	°C

Note 1. This is the differential voltage between any two inputs to any single gate.

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Түр	Max	Unit
Power Supply Voltages	Vcc1 Vcc2 Vcc3	4.75 4.75 Vcc2	5.0 20 24	5.25 24 28	V
Difference between VCC3 and VCC2	VCC3-VCC2	0	4.0	10	v
Operating Temperature Range	TA	0	-	70	°C


Characteristic	Symbol	Min	Typ*	Max	Unit
Input Voltage – High Logic State	VIH	2.0	-	-	v
Input Voltage - Low Logic State	VIL	-	_	0.8	v
Input Clamp Voltage (I _{IC} = -12 mA)	VIC	_		1.5	v
Input Current Maximum Input Voltage (VIH = 5.5 V)	Чнт		-	1.0	mA
Input Current – High Logic State (VIH (1) = 2.4 V) (VIH (2) or VIH (3) = 2.4 V)	¹ 1H2			40 80	μA
Input Current — Low Logic State (V1L (1) = 0.4 V) (V1L (2) or V1L (3) = 0.4 V)	ι _Γ		-1.0 -2.0	-1.6 -3.2	mA
Output Voltage - High Logic State {V _{CC3} = V _{CC2} + 3.0 V, V _I L = 0.8 V, I _{OH} = -100 µA} {V _{CC3} = V _{CC2} + 3.0 V, V _I L = 0.8 V, I _{OH} = -10 nA} {V _{CC3} = V _{CC2} - V _I L = 0.8 V, I _{OH} = -50 µA} {V _{CC3} = V _{CC2} - V _I L = 0.8 V, I _{OH} = -10 nA}	Vон1 Vон2 Vон3 Vон4	V _{CC2} -0.3 V _{CC2} -1.2 V _{CC2} -1.0 V _{CC2} -2.3	V _{CC2} -0.1 V _{CC2} -0.9 V _{CC2} -0.7 V _{CC2} -1.8		v
Output Clamp Voltage (VIL = 0 V, IOC = 20 mA)	Voc	-	_	V _{CC2} +1.5	v
Output Voltage – Low Logic State (V _{IH} = 2.0 V, I _{OL} = 10 mA) (15 V < V _{CC3} < 28 V, V _{IH} = 2.0 V, I _{OL} = 40 mA)	VOL1 VOL2		0.15 0.25	0.3 0.5	v
Power Supply Currents – Outputs High Logic State (VCC1 = 5.25 V, VCC2 = 24 V, VCC3 = 28 V, VIL = 0 V, IOH = 0 mA) (VCC1 = 5.25 V, VCC2 = 24 V, VCC3 = 24 V VIL = 0 V, IOH = 0 mA)	^I CC1(H) ^I CC2(H) ^I CC3(H) ^I CC2(H) ^I CC3(H)		4.0 -2.2 2.2 -	8.0 -3.2/+0.25 3.5 0.25 0.5	mA
Power Supply Currents – Output Low Logic State $VCC1 = 5.25 V, V_{CC2} = 24 V, V_{CC3} = 28 V$ $V_{IH} = 5.0 V, I_{OL} = 0 mA$	^I CC1(L) ^I CC2(L) ^I CC3(L)	-	31 16	47 2.5 25	mA
Power Supply Currents Standby Condition (V _{CC1} = 0 V, V _{CC2} = 24 V, V _{CC3} = 24 V V _{IH} = 5.0 V, I _{OL} = 0 mA)	ICC2(S) ICC3(S)		-	0.25 0.5	mA

$\label{eq:linear} \begin{array}{l} \textbf{ELECTRICAL CHARACTERISTICS} & (Unless otherwise noted $T_A = 25^\circ C$, $V_{CC1} = 5.0$, $V_{CC2} = 20$, $V_{CC3} = 24$, $V_{C1} = 200$ pF, $R_D = 24\Omega$, See Figures 1 and 2.] \end{array}$

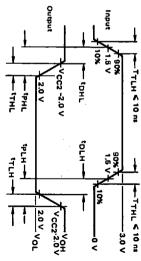
*Typical Values at 25°C, V_{CC1} = 5.0 V, V_{CC2} = 20 V and V_{CC3} = 24 V

SWITCHING CHARACTERISTICS (Unless otherwise noted $T_A = 25^{\circ}C$, $V_{CC1} = 5.0$ V, $V_{CC2} = 20$ V, $V_{CC3} = 24$ V, $C_L = 200$ pF, $R_D = 24\Omega$, See Figures 1 and 2.)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time, Low to High State Output	TPLH	10	31	48	ns
Propagation Dalay Tima, High to Low State Output	TPHL	10	30	46	· ·
Delay Time, Low to High State Output	^t DLH	-	11	20	rs (
Delay Time, High to Low State Output	^t DHL	-	10	18	
Transition Time, Low to High State Output	TLH	-	20	33	R\$
Transition Time, High to Low State Output	THL	- 1	20	33	

4-127

FIGURE 4 - OUTPUT VOLTAGE - HIGH LOGIC STATE


versus OUTPUT CURRENT

1

FIGURE 3 - OUTPUT VOLTAGE - HIGH LOGIC STATE

TYPICAL PERFORMANCE CURVES

Generator

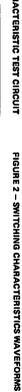
Pulso

50

200 pf

(Includes Probe

and Jig


는 Capacitance)

To Scope 2.4 V (Input) 0

> To Scope (Output)

1/4MC75365

MC75365

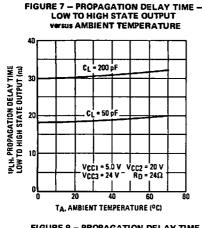
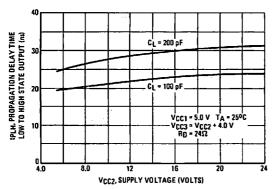
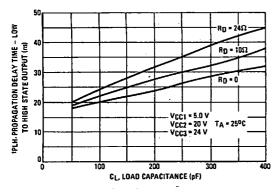




FIGURE 9 – PROPAGATION DELAY TIME – LOW TO HIGH STATE OUTPUT versus V_{CC2} SUPPLY VOLTAGE

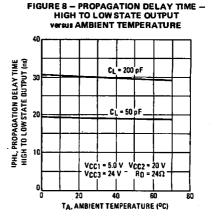


FIGURE 10 - PROPAGATION DELAY TIME -HIGH TO LOW STATE OUTPUT versus VCC2 SUPPLY VOLTAGE

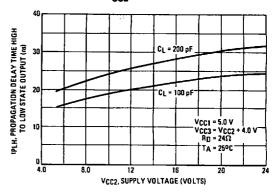
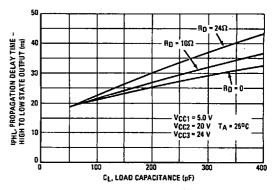



FIGURE 12 – PROPAGATION DELAY TIME – HIGH TO LOW STATE OUTPUT versus LOAD CAPACITANCE

APPLICATIONS SUGGESTIONS

(1)

(2)

POWER CONSIDERATIONS

Circuit performance and long-term circuit reliability are affected by die temperature. Normally, both are improved by keeping the integrated circuit junction temperatures low. Electrical power dissipated in the integrated circuit is the source of heat. This heat source increases the temperature of the die relative to some reference point, normally the ambient temperature. The temperature increase depends on the amount of power dissipated in the circuit and on the net thermal resistance between the heat source and the reference point. The basic formula for converting power dissipation into junction temperature is:

$$T_J = T_A + P_D (R_{\theta JC} + R_{\theta CA})$$

where

or

 T_J = junction temperature T_A = ambient temperature P_D = power dissipation

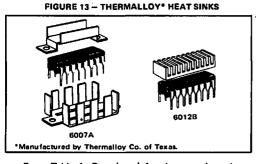
 $T_J = T_A + P_D (R_{\theta JA})$

 $R_{\theta JC}$ = thermal resistance, junction to case $R_{\theta CA}$ = thermal resistance, case to ambient $R_{\theta JA}$ = thermal resistance, junction to ambient.

Power Dissipation for the MC75365 MOS Clock Driver: The power dissipation of the device (P_D) is dependent on the following system requirements: frequency of operation, capacitive loading, output voltage swing, and duty cycle. The variation of power dissipation with frequency and load capacitance for the MC75365 is illustrated in Figure 6. The power dissipation, when substituted into equation (2), should not yield a junction temperature, T_J, greater than T_J(max) at the maximum encountered ambient temperature. T_J(max) is specified for two integrated circuit packages in the maximum ratings section of this data sheet.

With these maximum junction temperature values, the maximum permissible power dissipation at a given ambient temperature may be determined. This can be done with equations (1) and (2) and the maximum thermal resistance values given in Table 1 shown on the following page.

PACKAGE TYPE		(°C/W) Il Air	R _{0 JC} (°C/W) Still Air		
(Mounted in Socket)	MAX	TYP	MAX	ТҮР	
"L" (Ceramic Package)	150	100	50	27	
"P" (Plastic Package)	150	100	70	40	


TABLE 1 - THERMAL CHARACTERISTICS OF "L" AND "P" PACKAGES

If the power dissipation determined by a given system produces a junction temperature in excess of the recommended maximum rating for a given package type, something must be done to reduce the junction temperature.

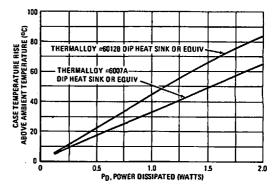
There are two methods of lowering the junction temperature without changing the system requirements. First, the ambient temperature may be reduced sufficiently to bring T_J to an acceptable value. Secondly, the $R_{\theta}CA$ term can be reduced. Lowering the $R_{\theta}CA$ term can be accomplished by increasing the surface area of the package with the addition of a heat sink or by blowing air across the package to promote improved heat dissipation.

Heat Sink Considerations:

Heat sinks come in a wide variety of sizes and shapes that will accomodate almost any IC package made. Some of these heat sinks are illustrated in Figure 13.

From Table 1, $R_{\theta JA}(max)$ for the ceramic package with no heat sink and in a still air environment is 150°C/W.

For the following example the Thermalloy 6012B type heat sink, or equivalent, is chosen. With this heat sink, the R θ_{CA} for natural convection from Figure 14 is 44°C/W. From Table 1 R $\theta_{JC}(max) = 50°C/W$ for the ceramic package. Therefore, the new R $\theta_{JA}(max)$ with the 6012B heat sink added becomes:


 $R_{\theta,JA}(max) = 50^{\circ}C/W + 44^{\circ}C/W = 94^{\circ}C/W.$

Thus the addition of the heat sink has reduced $R_{\theta JA}$ (max) from 150°C/W down to 94°C/W. With the heat sink, the maximum power dissipation by equation (2) at $T_A = +70^{\circ}$ C is:

$$P_D = \frac{175^{\circ}C - 70^{\circ}C}{+94^{\circ}C/W} = 1.11$$
 watts.

This gives approximately a 60% increase in maximum power dissipation over the power dissipation which is allowable with no heat sink.

FIGURE 14 - CASE TEMPERATURE RISE ABOVE AMBIENT wrsus POWER DISSIPATED USING NATURAL CONVECTION

Forced Air Considerations:

As illustrated in Figure 15, forced air can be employed to reduce the $R_{\theta JA}$ term. Note, however, that this curve is expressed in terms of typical $R_{\theta JA}$ rather than maximum $R_{\theta JA}$. Maximum $R_{\theta JA}$ can be determined in the following manner:

From Table 1 the following information is known:

(a) $R_{\theta JA}(typ) = 100^{\circ}C/W$ (b) $R_{\theta JC}(typ) = 27^{\circ}C/W$

Since: Then:

 $R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$ (3)

(4)

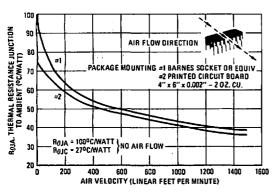
ROCA = ROJA - ROJC

Therefore, in still air

 $R_{\theta CA}(typ) = 100^{\circ}C/W - 27^{\circ}C/W = 73^{\circ}C/W$

From Curve 1 of Figure 14 at 500 LFPM and equation (4),

 $R_{\theta CA}(typ) = 53^{\circ}C/W - 27^{\circ}C/W = 26^{\circ}C/W.$


Thus $R_{\theta \subset A}(typ)$ has changed from 73°C/W (still air) to 26°C/W (500 LFPM), which is a decrease in typical R_{\theta CA} by a ratio of 1:2.8. Since the typical value of R_{\theta CA} was reduced by a ratio of 1:2.8, R_{\theta CA}(max) of 100°C/W should also decrease by a ratio of 1:2.8.

This yields an $R_{\theta CA}(max)$ at 500 LFPM of 36°C/W. Therefore, from equation (3):

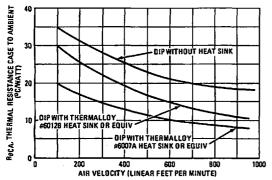
 $R_{\theta JA}(max) = 50^{\circ}C/W + 36^{\circ}C/W = 86^{\circ}C/W.$

Therefore the maximum allowable power dissipation at 500 LFPM and TA = $+70^{\circ}$ C is from equation (2):

$$P_D = \frac{175^{\circ}C - 70^{\circ}C}{86^{\circ}C/W} = 1.2$$
 watts.

FIGURE 15 - TYPICAL THERMAL RESISTANCE ($R_{\theta JA}$) OF "L" PACKAGE wirsus AIR VELOCITY

Heat Sink and Forced Air Combined:


1

Some heat sink manufacturers provide data and curves of $R_{\theta CA}$ for still air and forced air such as illustrated in Figure 16. For example the 6012B heat sink has an $R_{\theta CA} = 17^{\circ}C/W$ at 500 LFPM as noted in Figure 15. From equation (3):

Max $R_{\theta JA} = 50^{\circ}C/W + 17^{\circ}C/W = 67^{\circ}C/W$ From equation (2) at $T_A = +70^{\circ}C$

$$P_D = \frac{175^{\circ}C - 70^{\circ}C}{67^{\circ}C/W}$$
 1.57 watts.

FIGURE 16 - THERMAL RESISTANCE ROCA

Note from Table 1 and Figure 15 that if the 16-pin ceramic package is mounted directly to the PC board (2 oz. cu. underneath), that typical $R_{0,JA}$ is considerably less than for socket mount with still-air and no heat sink. The following procedure can be employed to determine the maximum power dissipation for this condition.

Given data from Table 1: typical $R_{\theta JA} = 100^{\circ}C/W$ typical $R_{\theta JC} = 27^{\circ}C/W$

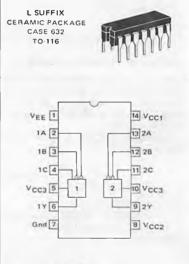
From Curve 2 of Figure 15, $R_{\theta JA}(typ)$ is 75°C/W for a PC mount and no air flow. Then the typical $R_{\theta CA}$ is 75°C/W – 27°C/W = 48°C/W. From Table 1 the typical value of $R_{\theta CA}$ for socket mount is 100°C/W – 27°C/W = 73°C/W. This shows that the PC board mount results in a decrease in typical $R_{\theta CA}$ by a ratio of 1:1.5 below the typical value of $R_{\theta CA}$ in a socket mount. Therefore, the maximum value of socket mount $R_{\theta CA}$ of 100°C/W should also decrease by a ratio of 1:1.5 when the device is mounted in a PC board. The maximum $R_{\theta CA}$ becomes:

$$R_{\theta}CA = \frac{100^{\circ}C/W}{1.5} = 66^{\circ}C/W$$
 for PC board mount

Therefore the maximum $R_{\theta JA}$ for a PC mount is from equation (3).

 $R_{\theta JA} = 50^{\circ}C/W + 66^{\circ}C/W = 116^{\circ}C/W.$

With maximum $R_{\theta JA}$ known, the maximum power dissipation can be found. If $T_A = 70^{\circ}$ C then from equation (2) the maximum power dissipation may be found to be 905 mW.

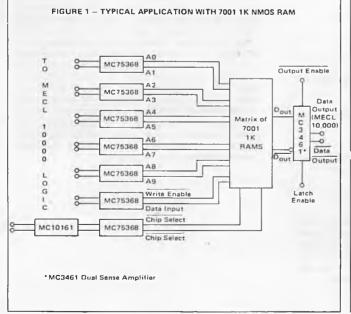

In most cases, heat sink manufacturer's publish only Raca socket mount data. Although data for PC mounting is generally not available, this should present no problem. Note in Figure 15 that an air flow greater than 250 LFPM yields a socket mount Reja approximately 6% greater than for a PC mount. Therefore, the socket mount data can be used for a PC mount with a slightly greater safety factor. Also it should be noted that thermal resistance measurements can vary widely. These measurement variations are due to the dependency of R θ CA of the type environment and measurement techniques employed. For example, Reca would be greater for an integrated circuit mounted on a PC board with little or no ground plane versus one with a substantial ground plane. Therefore, if the maximum calculated junction temperature is on the border line of being too high for a given system application, then thermal resistance measurements should be done on the system to be absolutely certain that the maximum junction temperature is not exceeded.

MC75368

DUAL MECL-to-MOS DRIVER

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 646


Input Voltage Con	nditions
Differential	Logic Lavel Output
(More positive of A or B) -C	ABCY
$(V_{1D} \ge 150 \text{ mV})$	L H L H L H L H H L
(-150 mV < V _{1D} < 150 mV)	X X X Indeter minate
$(V_{1D} \leq -150 \text{ mV})$	ссн н

DUAL MECL-to-MOS DRIVER

The MC75368 is a dual MECL-to-MOS driver and interface circuit. The device accepts standard MECL 10,000 and IBM groundedreference ECL input signals and creates high-current and high-voltage output levels suitable for driving MOS circuits. Specifically, it may be used to drive address, control, and timing inputs for several types of MOS RAMs. The device may also be used as a MECL-to-MTTL translator

The MC75368 is optimized for higher voltage capability.

- Dual MECL-to-MOS Driver
- Dual MECL-to-MTTL Driver
- · Versatile Interface Circuit for Use Between MECL and High-Current, High-Voltage Systems

MC75368

Rating	Symbol	Value	Unit
Power Supply Voltages	VCC1	-0.5 to 7.0	Vdc
	V _{CC2}	-0.5 to 22	Vdc
	V _{CC3}	-0.5 to 30	Vdc
	VEE	-8.0 to 0.5	Vdc
Most Negative of VCC1, VCC2, or VCC3 with respect to VEE		-0.5	Vdc
Input Voltage	VI	-8.0 to 0.5	Vdc
Inter-Input Voltage(1)	-	5.5	Vdc
Most negative Input Voltage with respect to VEE	VI - VEE	-5.0	Vdc
Power Dissipation (Package Limitation)			
Ceramic Package @ T _A = 25 ⁰ C	PD	1000	mW
Derate above T _A = 25°C	1/R _{0JA}	6.6	mW/ ^o C
Plastic Package @ T _A = 25°C	PD	830	mW
Derate above T _A = 25 ^o C	1/R _{∂JA}	6.6	mW/ ^o C
Ceramic Package @ T _C = 25 ^o C	PD	3.0	Watts
Derate above T _C = 25°C	· 1/R _{0JC}	20	mW/ºC
Plastic Package @ T _C = 25 ^o C	PD	1.8	Watts
Derate above T _C = 25 ^o C	1/R _{0JC}	14	mW/ ^o C
Operating Ambient Temperature Range	TA	0 to 70	°C
Storage Temperature Range	Tstg	-65 to 150	°c

MAXIMUM RATINGS (Unless otherwise noted, voltages measured with respect to GND terminals, $T_A = 25^{\circ}C.$)

(1) With respect to any pair of inputs to either of the input gates.

RECOMMENDED OPERATING CONDITIONS

4

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltages	V _{CC1}	4.75	5.0	5.25	v
	VCC2	4.75	20	22	v
	V _{CC3}	V _{CC2}	24	28	V
	VCC3 · VCC2	0	4.0	10	v
	VEE	-4.68	-5.2	-5.72	v
Operating Ambient Temperature Range	TA	0	-	70	°C
DEFINITION OF INPUT LOGIC LEVELS					
Input Voltage - High Logic State (Any Input) (1)	. V _{IH}	-1.5	-	-0.7	v
Input Voltage - Low Logic State (Any Input) (1)	VIL	VEE	-	V _{IH} -150	mV
Input Differential Voltage - High Logic State (2)	VIDH	150	-	-	⊡ mV
Input Differential Voltage - Low Logic State (2)	VIDL	-150	-	-	mV

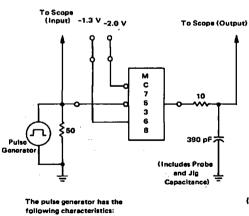
40

(1) The definition of these Logic Levels use Algebraic System of notation.

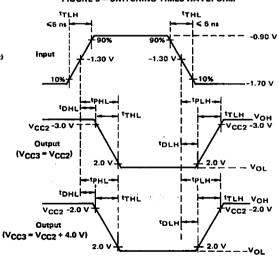
(2) The input differential voltage is measured from the more positive inverting input (A or B) with respect to the non-inverting input (C) of the same gate.

ų,

.


ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply over recommended power supply and temperature							
			ues measured at V	CC1 = 5.0 V, VE	E = -6.2 V, TA	= 25°C and V _{CC2} = 20,	
х 1	• •	V _{CC3} = 24 V.)	•				

VCC3 - 24 V.1					
Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage High Logic State					V
(V _{CC3} = V _{CC2} + 3.0 V, V _{IDL} = -150 mV, I _{DH} = -100 μA)	VOH1	V _{CC2} - 0.3	V _{CC2} - 0.1	-	
(V _{CC3} = V _{CC2} + 3.0 V, V _{IOL} = -150 mV, I _{DH} = -10 mA)	- VOH2	V _{CC2} - 1.2	V _{CC2} · 0.9	· • •	v *
(V _{CC3} = V _{CC2} , V _{IDL} = -150 mV, I _{DH} = -50 μA)	VOH3	V _{CC2} - 1.0	V _{CC2} · 0.7	-	v
(V _{CC3} ^w V _{CC2} , V _{IDL} ^w -150 mV, I _{DH} ^w -10 mA)	VOH4	V _{CC2} - 2.3	V _{CC2} 1.8	-	v
Output Voltage - Low Logic State					v
(VIDH = 150 mV, IDL = 10 mA)	VOL1	-	0.15	0.3	
(VIDH = 150 mV, IOL = 30 mA)	VOL2				्ष
$10 V < V_{CC3} < 22 V$ 10 V < Veca < 28 V		-	- 0.2	0.4	
10 V < V _{CC2} < 28 V	L	-	0.2		
Output Clamp Voltage (VIDH = 500 mV, IOC = 20 mA)	Voc	-	-	V _{CC2} +1.5 V	v
Input Current - High Logic State	Чн	-	300	800	μA
(V _{EE} = -5.72 V, V _{IL} = -5.72 V, V _{IH} = -0.7 V)					
Input Current - Low Logic State			1.111		μA
(VIH = -0.7 V, VIL = -2.0 V)	կել	-	-	-10	
(VEE = ~5.72 V, VIH = -0.7 V, VIL = -5.72 V)	IIL2	-		-100	
Power Supply Current – Both Outputs High Logic State					
(V _{CC} = 5.25 V, V _{CC2} = 22 V, V _{CC3} = 26 V	ICC1(H)	-	21	38	mA
VEE = -5.72 V,	ICC2(H)	-	-1.1	+0.25	mΑ
VIL (A) and (B) = -2.0 V,		i na da	197 - 1	at .	
VIH(C) = -0.7 V, 10H = 0)	CC3(H)	— ·	0.6	1.0	mA
	¹ EE(H)	- ·	-21	-38	⁺mA
Power Supply Current – Both Outputs Low Logic State	1				
$V_{CC1} = 5.25 V, V_{CC2} = 22 V, V_{CC3} = 28 V, V_{EE} = -5.72 V,$	CC1(L)	-	13	24	mA
VIH(A) and (B) = -0.7 V,	ICC2(L)	· _· ·	0.5	1.0	mA
$V_{IL(C)} = -2.0 V, I_{OL} = 0$	loor		4.0	- 7.0	mA
• •	CC3(L)		-21	-38	mA mA
Power Supply Current - Both Outputs					
High Logic State (V _{CC1} = 5.25 V, V _{CC2} = 22.V,	ICC2(H)	-	· _ ·	0.25	mA
$V_{CC3} = 22 V, V_{EE} = -5.72 V,$ VIL(A) and (B) = -2.0 V,	ICC3(H)	-	° °	0.25	mA
ViH(C) = -0.7 V, IOL = 0) Power Supply Current - Stand By					
Condition					
(V _{CC1} = 0 V, V _{CC2} = 22 V, V _{CC3} = 22 V, V _{EE} = 0 V,	¹ CC2(S)	-	-	0.25	mΑ
$V_{IH(A)}$ and $(B) = -0.7 V$, $V_{IL(C)} = -2.0 V$, $I_{OL} = 0$)	ICC3(S)	-	-	0.25	mA


Characteristic	Symbol	Min	Тур	Max	Unit
Delay Time - Low to High Output Logic Level	tDLH				ns
(VCC3 = 24 V)		-	12	24	
(V _{CC3} = 20 V)		-	13	25	
Delay Time - High to Low Output Logic Level	^t DHL				ns
(V _{CC3} = 24 V)		- 1	13	24	
(V _{CC3} = 20 V)		-	15	26	
Transition Time, Low-to-High Output Logic Level	ԾԼΗ		 		ns
(V _{CC3} = 24 V)		- 1	19	30	
(V _{CC3} = 20 V)		-	20	30	1
Transition Time, High-to-Low Output Logic Level	tTHL				ns.
(V _{CC3} = 24 V)		-	20	33	
(V _{CC3} = 20 V)		-	18	30	· .
Propagation Delay Time, Low-to-High Logic Level	1PLH	· · · · · · · · · · · · · · · · · · ·			ns
(V _{CC3} = 24 V)	1	-	31	54	
(V _{CC3} = 20 V)		-	33	55	
Propagation Delay Time, High-to-Low Logic Level	tPHL				ns
(V _{CC3} = 24 V)		-	33	57	
(V _{CC3} = 20 V)		-	33	56	

SWITCHING CHARACTERISTICS (Unless otherwise noted, V_{CC1} = 5.0 V, V_{EE} = -5.2 V, T_A = 25°C and V_{CC2} = 20 V.)

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT

PRR = 1 MHz. z_o ≈ 50 Ω. Duty Cycle = 50%

FIGURE 3 - SWITCHING TIMES WAVEFORM

4

APPLICATIONS INFORMATION . MODES OF OPERATION

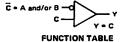
FIGURE 4 - POSITIVE-NOR GATE

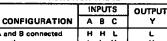
JNCTI		

	I	NPL	JTS	OUTPUT
CONFIGURATION	A	8	С	Y
	L	L	V _{BB}	н
Cat VBB	H I	х	VBB	L
	×	н	VBB	L

H — High Level, L — Low Level, X — Irrelevant V_{BB} — Reference Supply voltage for MECL 10,000.

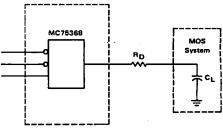
FIGURE 6 - NON-INVERTING GATE


FUNCTION TABLE


	INPUTS	OUTPUT
CONFIGURATION	A BC	Υ
A and B at VBB	V ₈₈ V ₈₈ L V ₈₈ V ₈₈ H	L H
A at VBB. B connected low	V _{BB} L L V _{BB} L H	L H
B at V _{BB} , A connected low	L V _{BB} L L V _{BB} H	L H

The need for four separate power supplies V_{CC1}, V_{CC2}, V_{CC3} and V_{EE} can be avoided in many cases by tying V_{CC2} to V_{CC3}. However, performance advantages can be obtained by connecting either one or both V_{CC3} pins to an additional power supply of higher voltage than V_{CC2}. Both V_{CC3} pins do not have to be held at the same voltage. For MECL-to-TTL level converter applications both V_{CC3} are generally connected to a +5.0 V power source.

By providing two out-of-phase (A and B) inputs and one in-phase (C) input, each gate can be used as positive NOR, or as a inverting or non-inverting gate. This flexibility is achieved by connecting an externally supplied MECL 10,000 Series reference supply voltage (VgB) to the appropriate input as shown in Figures 4 thru 6. An unused out-of-phase input should be tied low or connected to the other out-of-phase input of the same gate. The


FIGURE 5 - DIFFERENTIAL MECL LINE RECEIVER

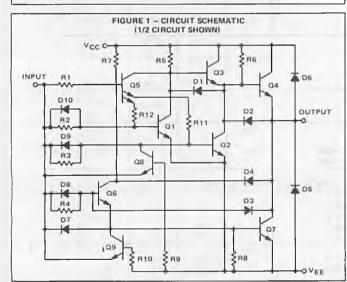
A and B connected	ННГ	L
together	LLH	н
A not used but	L H L	L
connected low	іігн	н
B not used but	HLL	L
connected lew	L L H	н

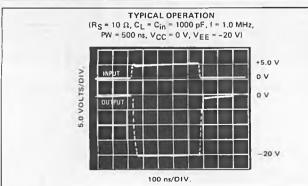
Note: $B_D \approx 10\Omega$ to 30Ω (optional)

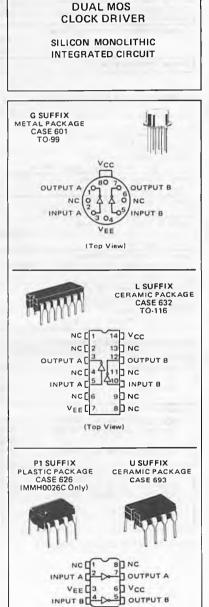
required VBB voltage source may be obtained from MECL 10,000 Series devices such as the MC10115 line receiver, or by connecting the output of a MECL 10,000 gate, like the MC10102, to the respective out-of-phase inputs (as an example connect pins 4 and 5 to 2 of the MC10102 to obtain a VBB reference voltage).

When driven differentially, the MC75368 may be used as a differential MECL line receiver, without the need for the VBB reference voltage.

Undesirable output transient overshoot due to load or wiring inductance and the fast switching speeds of the MC75368 can be eliminated or reduced by adding a-small amount of series resistance. The value of this damping resistance is dependent on specific load characteristics and switching speed but typical values lie in the range of 10 to 30 ohms. This is illustrated in Figure 7.


MMH0026 MMH0026C


Specifications and Applications Information


DUAL MOS CLOCK DRIVER

 \ldots designed for high-speed driving of highly capacitive loads in a MOS system.

- Fast Transition Times 20 ns with 1000 pF Load
- High Output Swing 20 Volts
- High Output Current Drive ± 1.5 Amperes
- High Repetition Rate 5.0 to 10 MHz Depending on Load
- MTTL and MDTL Compatible Inputs
- Low Power Consumption when in MOS "0" State 2.0 mW
- +5.0-Volt Operation for N-Channel MOS Compatibility

(Top View)

MMH0026, MMH0026C

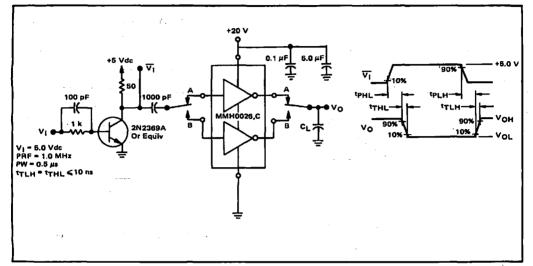
MAXIMUM RATINGS (TA = +25°C unless otherwise noted.)

Rating	Symbol		Value		Unit
Differential Supply Voltage	VCC-VEE		+22		Vdc
Input Current	· · · · · ·	+100		mA	
Input Voltage	v,	VEE + 5.5			Vdc
Pesk Output Current	^I Opk		±1.5		A
Junction Temperature	ΤJ	+175	+175	+150	°C
Operating Ambient Temperature Range	TA	G	U,L	P1 -	°c
MMH0026		-55 to +125	-55 to +125	-	
MMH0026C		0 to +70	0 to +70	0 to +70	
Storage Temperature Range	Tstg	-65 to +150	-65 to +150	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V_{CC}-V_{EE} = 10 V to 20 V, C_L = 1000 pF, T_A = -55 to +125^oC for MMH0028 and 0 to +70^oC for MMH0026C for min and max values; T_A = +25^oC for all typical values otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Logic "1" Level Input Voltage Vo = VEE + 1.0 Vdc	⊻ін	VEE + 2.0	VEE + 1.5		Vdc
Logic "1" Level Input Current VI -VEE = 2.4 Vdc, VO = VEE + 1.0 Vdc	Чн	-	10	15	mA
Logic "0" Level Input Voltage Vo = Vcc -1.0 Vdc	VIL	-	VEE + 0.6	VEE + 0.4	Vdc
Logic "0" Level Input Current VIVEE = 0 Vdc, VO = VCC -1.0 Vdc	11	-	-0.005	-10	μA
Logic "0" Level Output Voltage V _{CC} = +5.0 Vdc, V _{EE} = -12 Vdc, V _I = -11.6 Vdc V _I -V _{EE} = 0.4 Vdc	VOH	4.0 V _{CC} -1.0	4.3 V _{CC} -0.7		Vdc
Logic "1" Level Output Voltage V _{CC} = +5.0 Vdc, V _{EE} = -12 Vdc, V _I = -9.6 Vdc V _I -V _{EE} = 2.4 Vdc	VOL	=	-11.5 VEE + 0.5	-11 V _{EE} + 1.0	Vdc
"On" Supply Current (Note 1) VCC-VEE = 20 Vdc, VI -VEE = 2.4 Vdc	ICCL	-	30	40	mA
"Off" Supply Current MMH0028C VCC-VEE = 20 Vdc, V1VEE = 0 V MMH0026	ССН	-	10 -	100 500	µА

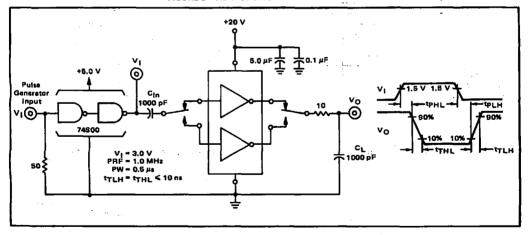
SWITCHING CHARACTERISTICS (V_{CC}-V_{EE} = 10 V to 20 V, C_L = 1000 pF, T_A = 25°C)

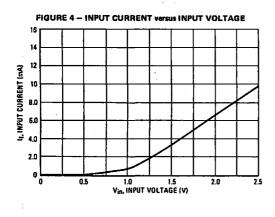

Propagation Time						1
High to Low	(Figure 2)	1PHL	5.0	7.5	12	ns
	(Figure 3)	· · · ·	-	11	-	
Low to High	(Figure 2)	UPLH	5.0	12	15	1 .
-	(Figure 3)		-	13	-	
Transition Time (High to Low)	,	τнι				ns
V _{CC} -V _{EE} = 20 Vdc, C _L = 250 pF	(Figure 2)		-	12	- 1	1
V _{CC} -V _{EE} = 20 Vdc, C _L = 500 pF	(Figure 2)		- 1	15	18	
	(Figure 3)		-	30	40	
V _{CC} -V _{EE} = 20 Vdc, C _L = 1000 pF	(Figure 2)		-	20	35	
	(Figure 3)		_ ·	36	50	
Transition Time (Low to High)		TLH			1	ns
V _{CC} -V _{EE} = 20 Vdc, C _L = 250 pF	(Figure 2)		-	10	-	í
VCC-VEE = 20 Vdc, CL = 500 pF	(Figure 2)		i – '	12	16	
	(Figure 3)		-	28	35	
V _{CC} -V _{EE} = 20 Vdc, C _L = 1000 pF	(Figure 2)		- ·	17	25	
	(Figure 3)			31	40	
			1			

.

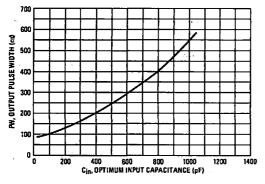
1 <u>1</u> 1

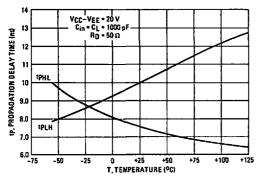
Note 1: Tested with one output on at a time.


÷

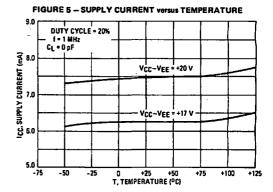


TEST CIRCUIT


FIGURE 3 - AC TEST CIRCUIT AND WAVEFORMS



TYPICAL CHARACTERISTICS (V_{CC} = + 20 V, V_{EE} = θ V, T_A = +25^oC unless otherwise noted.)



•••

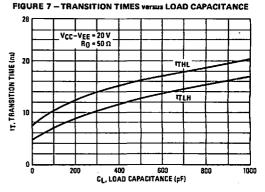
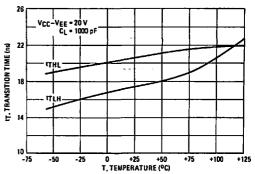
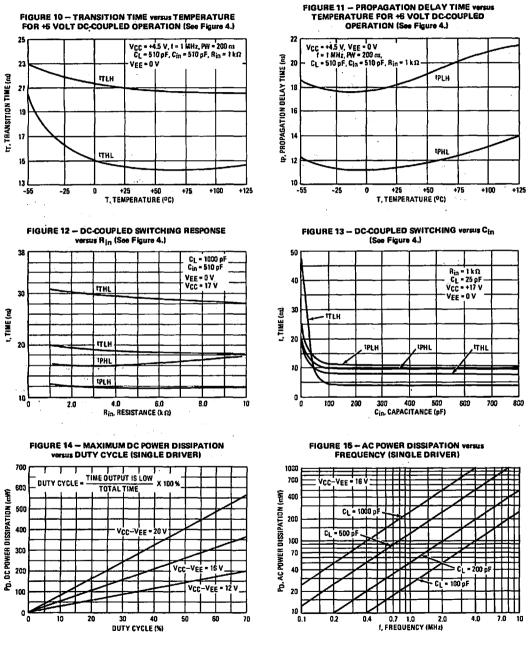




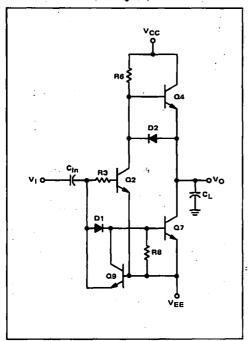
FIGURE 8 - TRANSITION TIMES versus TEMPERATURE

.

TYPICAL CHARACTISTICS (continued)

 $(V_{CC} = +20 V, V_{EE} = 0 V, T_A = +25^{\circ}C$ unless otherwise noted.)

4


APPLICATIONS INFORMATION

OPERATION OF THE MMH0026

The simplified schematic diagram of MMH0026, shown in Figure 16, is useful in explaining the operation of the device. Figure 16 illustrates that as the input voltage level goes high, diode D1 provides an 0.7-volt "dead zone" thus ensuring that Q2 is turned "on" and Q4 is turned "off" before Q7 is turned "on". This prevents undesirable "current spiking" from the power supply, which would occur if Q7 and Q4 were allowed to be "on" simultaneously for an instant of time. Diode D2 prevents "zenering" of Q4 and provides an initial discharge path for the output capacitive load by way of Q2.

As the input voltage level goes low, the stored charge in $\Omega 2$ is used advantageously to keep $\Omega 2$ "on" and $\Omega 4$ "off" until $\Omega 7$ is "off". Again undesirable "current spiking" is prevented. Due to the external capacitor, the input side of C_{in} goes negative with respect to V_{EE} causing $\Omega 9$ to conduct momentarily thus assuring rapid turn "off" of $\Omega 7$.

FIGURE 16 - SIMPLIFIED SCHEMATIC DIAGRAM (Ref.: Figure 1)

The complete circuit, Figure 1, basically creates Darlington devices of transistors Q7, Q4 and Q2 in the simplified circuit of Figure 16. Note in Figure 1 that when the input goes negative with respect to V_{EE} , diodes D7 through D10 turn "on" assuring faster turn "off" of transistors Q1, Q2, Q6 and Q7. Resistor R6 insures that the output will charge to within one V_{BE} voltage drop of the V_{CC} supply.

SYSTEM CONSIDERATIONS

Overshoot:

In most system applications the output waveform of the MMH0026 will "overshoot" to some degree. However, "overshoot" can be eliminated or reduced by placing a damping resistor in series with the output. The amount of resistance required is given by: $R_S = 2\sqrt{L/C_L}$ where L is the inductance of the line and C_L is the load capacitance. In most cases a series of damping resistor in the range of 10-to-50 ohms will be sufficient. The damping resistor also affects the transition times of the outputs. The speed reduction is given by the formula:

 $t_{THL} \approx t_{TLH} = 2.2 \text{ Rs CL}$ (Rs is the damping resistor).

The MMH0026 is sensitive to crosstalk when the output voltage level is high ($V_O \approx V_{CC}$). With the output in the high voltage level state, Q3 and Q4 are essentially turned "off". Therefore, negative-going crosstalk will pull the output down until Q4 turns "on" sufficiently to pull the output back towards V_{CC} . This problem can be minimized by placing a "bleeding" resistor from the output to ground. The "bleeding" resistor should be of sufficient size so that Q4 conducts only a few milliamperes. Thus, when noise is coupled, Q4 is already "on" and the line is quickly clamped by Q4. Also note that in Figure 1 D6 clamps the output one diode-voltage drop above V_{CC}

Power Supply Decoupling:

The decoupling of VCC and VEE is essential in most systems. Sufficient capacitive decoupling is required to supply the peak surge currents during switching. At least a $0.1-\mu F$ to $1.0-\mu F$ low inductive capacitor should be placed as close to each driver package as the layout will permit.

Input Driving:

For those applications requiring split power supplies $(V \in E \leq GND)$, ac coupling, as illustrated in Figure23, should be employed. Selection of the input capacitor size is determined by the desired output pulse width. Maximum performance is attained when the voltage at

the input of the MMH0026 discharges to just above the device's threshold voltage (about 1.5 V). Figure 6 shows optimum values for C_{in} versus the desired output pulse width. The value for C_{in} may be roughly predicted by:

$$C_{in} = (2 \times 10^{-3}) (PW_O).$$
 (1)

For an output pulse width of 500 ns, the optimum value for C_{in} is:

 $C_{in} = (2 \times 10^{-3}) (500 \times 10^{-9}) = 1000 \text{ pF}.$

If single supply operation is required (VEE = GND), then dc coupling as illustrated in Figure24can be employed. For maximum switching performance, a speed-up capacitor should be employed with dc coupling. Figures 12 and 13 show typical switching characteristics for various values of input resistance and capacitance.

POWER CONSIDERATIONS

Circuit performance and long term circuit reliability are affected by die temperature. Normally, both are improved by keeping the integrated circuit junction temperatures low. Electrical power dissipated in the integrated circuit is the source of heat. This heat source increases the temperature of the die relative to some reference point, normally the ambient temperature. The temperature increase depends on the amount of power dissipated in the circuit and on the net thermal resistance between the heat source and the reference point. The basic formula for converting power dissipation into junction temperature is:

oŗ

$$T_{J} = T_{A} + P_{D} (R_{\theta JC} + R_{\theta CA})$$
 (2)

where

T_A = ambient temperature

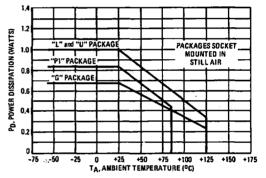
 P_D = power dissipation

 $R_{\theta,JC}$ = thermal resistance, junction to case

 $T_J = T_A + P_D (R_{\theta JA})$

 $R_{\theta CA}$ = thermal resistance, case to ambient

 $R_{\theta,JA}$ = thermal resistance, junction to ambient.


Power Dissipation for the MMH0026 MOS Clock Driver:

The power dissipation of the device (P_D) is dependent on the following system requirements: frequency of operation, capacitive loading, output voltage swing, and duty cycle. This power dissipation, when substituted into equation (3), should not yield a junction temperature, TJ, greater than TJ(max) at the maximum encountered ambient temperature. TJ(max) is specified for three integrated circuit packages in the maximum ratings section of this data sheet.

TABI	LE 1	- TH	ERMA	L CH	ARA	CTE	RISTICS
OF	"G".	"L".	"P1".	AND	"U"	PACI	KAGES

PACKAGE TYPE	R _{ØJA} (Sti	°C/W) Il Air	R _{ØJC} (°C/W) Still Air		
(Mounted in Socket).	MAX	TYP	MAX	ТҮР	
"G" (Metal Package)	220	175	70	40	
"L" (Ceramic Package)	150	100 -	50	27	
"P1" (Plastic Package)	150	100	70	40	
"U" (Ceramic Package)	150	100	50	27	

With these maximum junction temperature values, the maximum permissible power dissipation at a given ambient temperature may be determined. This can be done with equations (2) or (3) and the maximum thermal resistance values given in Table 1 or alternately, by using the curves plotted in Figure 17. If, however, the power dissipation determined by a given system produces a calculated junction temperature in excess of the recommended maximum rating for a given package type, some thing must be done to reduce the junction temperature.

There are two methods of lowering the junction temperature without changing the system requirements. First, the ambient temperature may be reduced sufficiently to bring TJ to an acceptable value. Secondly, the R $_{\theta}CA$ term can be reduced. Lowering the R $_{\theta}CA$ term can be accomplished by increasing the surface area of the package with the addition of a heat sink or by blowing air across the package to promote improved heat dissipation.

(3)

The following examples illustrate the thermal considerations necessary to increase the power capability of the MMH0026.

Assume that the ceramic package is to be used at a maximum ambient temperature (T_A) of $+70^{\circ}C$. From Table 1:R $gJA(max) = 150^{\circ}C/watt$, and from the maximum rating section of the data sheet: $T_J(max) = +175^{\circ}C$. Substituting the above values into equation (3) yields a maximum allowable power dissipation of 0.7 watts. Note that this same value may be read from Figure 17. Also note that this power dissipation value is for the device mounted in a socket.

Next, the maximum power consumed for a given system application must be determined. The power dissipation of the MOS clock driver is conveniently divided into dc and ac components. The dc power dissipation is given by:

$$P_{dc} = (V_{CC} - V_{EE}) \times (I_{CCL}) \times (Duty Cycle)$$
(4)
where I_{CCL} = 40 mA ($\frac{V_{CC} - V_{EE}}{20 V}$).

Note that Figure 14 is a plot of equation (4) for three values of $(V_{CC}-V_{EE})$. For this example, suppose that the MOS clock driver is to be operated with $V_{CC} = +16 V$ and $V_{EE} =$ GND and with a 50% duty cycle. From equation (4) or Figure 14, the dc power dissipation (per driver) may be found to be 256 mW. If both drivers within the package are used in an identical way, the total dc power dissipation is 700 mW, the maximum ac power that can be dissipated for this example becomes:

$$P_{ac} = 0.7 - 0.512 = 188 \text{ mW}$$

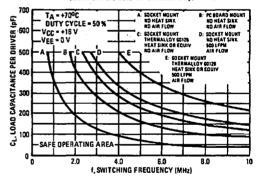
The ac power for each driver is given by:
$$P_{ac} = (V_{CC} - V_{EE})^2 \times f \times C_L$$

where f = frequency of operation CL = load capacitance (including all strays and

wiring).

Figure 16 gives the maximum ac power dissipation versus switching frequency for various capacitive loads with $V_{CC} = 16$ V and $V_{EE} = GND$. Under the above conditions, and with the aid of Figure 15, the safe operating area beneath Curve A of Figure 18 can be generated.

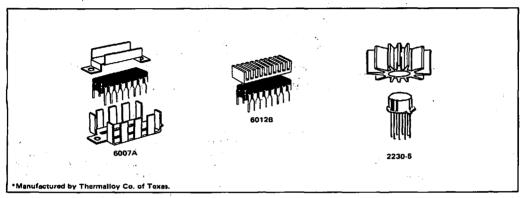
Since both drivers have a maximum ac power dissipation of 188 mW, the maximum ac power per driver becomes 94 mW. A horizontal line intersecting all the capacitance load lines at the 94 mW level of Figure 15 will yield the maximum frequency of operation for each of the capacitive loads at the specified power level. By using the previous formulas and constants, a new safe operating area can be generated for any output voltage swing and duty cycle desired.


Note from Figure 18, that with highly capacitive loads, the maximum switching frequency is very low. The switching frequency can be increased by varying the following factors:

- (a) decrease TA
- (b) decrease the duty cycle
- (c) lower package thermal resistance (RøJA)

In most cases conditions (a) and (b) are fixed due to system requirements. This leaves only the thermal resistance $R_{\theta,JA}$ that can be varied.

Note from equation (2) that the thermal resistance is comprised of two parts. One is the junction-to-case thermal resistance $(R_{\theta,JC})$ and the other is the case-to-ambient thermal resistance $(R_{\theta,CA})$. Since the factor $R_{\theta,JC}$ is a function of the die size and type of bonding employed, it cannot be varied. However, the $R_{\theta,CA}$ term can be changed as previously discussed, see Page 7.

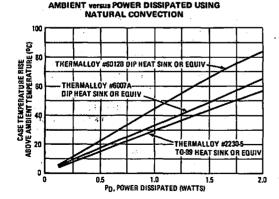

Heat Sink Considerations:

Heat sinks come in a wide variety of sizes and shapes that will accomodate almost any IC package made. Some of these heat sinks are illustrated in Figure 19. In the previous example, with the ceramic package, no heat sink and in a still air environment, R@JA(max)was 150°C/W.

For the following example the Thermalloy 6012B type heat sink, or equivalent, is chosen. With this heat sink, the $R_{\theta CA}$ for natural convection from Figure 20 is 44°C/W. From Table 1 $R_{\theta JC}(max) = 50^{\circ}C/W$ for the ceramic

(5)

package. Therefore, the new $R_{0JA}(max)$ with the 6012B heat sink added becomes:


 $R_{\theta}JA(max) = 50^{\circ}C/W + 44^{\circ}C/W = 94^{\circ}C/W.$

Thus the addition of the heat sink has reduced Rg jg(max) from 150°C/W down to 94°C/W. With the heat sink, the maximum power dissipation by equation (3) at Tg = $+70^{\circ}$ C is:

 $P_D = \frac{175^{\circ}C - 70^{\circ}C}{94^{\circ}C/W} = 1.11$ watts.

This gives approximately a 58% increase in maximum power dissipation. The safe operating area under Curve C of Figure 18 can now be generated as before with the aid of Figure 15 and equation (5).

FIGURE 20 - CASE TEMPERATURE RISE ABOVE

Forced Air Considerations: ' As illustrated in Figure 21, forced air can be employed to

reduce the R_{0JA} term. Note, however, that this curve is expressed in terms of typical R_{0JA} rather than maximum R_{0JA}. Maximum R_{0JA} can be determined in the following manner:

From Table 1 the following information is known:

(a) $R_{\theta}JA(typ) = 100^{\circ} C/W$ (b) $R_{\theta}JC(typ) = 27^{\circ} C/W$ $R_{\theta}JA = R_{\theta}JC + R_{\theta}CA$

Since:

$$R_{\theta CA} = R_{\theta JA} - R_{\theta JC}$$
(7)

(6)

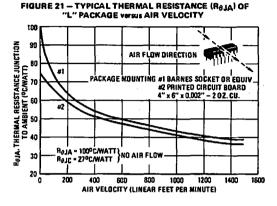
Therefore, in still air

 $R_{\theta}CA(typ) = 100^{\circ}C/W - 27^{\circ}C/W = 73^{\circ}C/W$

From Curve 1 of Figure 21 at 500 LFPM and equation (7).

 $R_{\theta CA(typ)} = 53^{\circ}C/W - 27^{\circ}C/W = 26^{\circ}C/W.$

Thus $R_{\theta CA}(typ)$ has changed from $73^{\circ}C/W$ (still air) to $26^{\circ}C/W$ (500 LFPM), which is a decrease in typical $R_{\theta CA}$ by a ratio of 1:2.8. Since the typical value of $R_{\theta CA}$ was reduced by a ratio of 1:2.8, $R_{\theta CA}(max)$ of 100°C/W should also decrease by a ratio of 1:2.8.


This yields an $R_{\theta CA(max)}$ at 500 LFPM of 36°C/W.

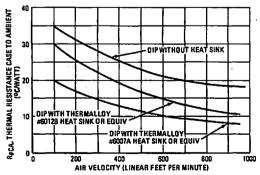
Therefore, from equation (6):-

 $R_{\theta JA(max)} = 50^{\circ}C/W + 36^{\circ}C/W = 86^{\circ}C/W.$

Therefore the maximum allowable power dissipation at 500 LFPM and TA = $+70^{\circ}$ C is from equation (3):

$$P_D = \frac{175^{\circ}C - 70^{\circ}C}{+86^{\circ}C/W} = 1.2$$
 watts.

As with the previous examples, the dc power at 50% duty cycle is subtracted from the maximum allowable device dissipation (P_D) to obtain a maximum P_{ac}. The safe operating area under Curve D of Figure 18 can now be generated from Figure 15 and equation (5).


Heat Sink and Forced Air Combined:

Some heat sink manufacturers provide data and curves of R_{∂CA} for still air and forced air such as illustrated in Figure 22. For example the 6012B heat sink has an R_{∂CA} = 17° C/W at 500 LFPM as noted in Figure 22. From equation (6):

Max $R_{\theta JA} = 50^{\circ}C/W + 17^{\circ}C/W = 67^{\circ}C/W$ From equation (3) at $T_A = +70^{\circ}C$

$$P_D = \frac{175^{\circ}C - 70^{\circ}C}{67^{\circ}C/W}$$
 1.57 watts.

As before this yields a safe operating area under Curve E in Figure 18.

Note from Table 1 and Figure 21 that if the 14-pin ceramic package is mounted directly to the PC board (2 oz. cu. underneath), that typical $R_{\partial JA}$ is considerably less than for socket mount with still air and no heat sink. The following procedure can be employed to determine a safe operating area for this condition.

Given data from Table 1:

typical $R_{\theta JA} = 100^{\circ}C/W$ typical $R_{\theta JC} = 27^{\circ}C/W$

From Curve 2 of Figure 21, $R_{0JA}(typ)$ is 75°C/W for a PC mount and no air flow. Then the typical R_{0CA} is 75°C/W – 27°C/W = 48°C/W. From Table 1 the typical value of R_{0CA} for socket mount is 100°C/W – 27°C/W = 73°C/W. This shows that the PC board mount results in a decrease in typical R_{0CA} by a ratio of 1:1.5 below the typical value of R_{0CA} in a socket mount. Therefore, the maximum value of R_{0CA} in a trait of 1:1.5 when the device is mounted in a PC board. The maximum R_{0CA} by a ratio of 1:1.5 when the device is mounted in a PC board.

$$R_{\theta}CA = \frac{100^{\circ}C/W}{1.5} = 66^{\circ}C/W$$
 for PC board mount

Therefore the maximum $R_{\theta JA}$ for a PC mount is from equation (6).

 $R_{\theta,JA} = 50^{\circ}C/W + 66^{\circ}C/W = 116^{\circ}C/W.$

With maximum $R_{\theta,JA}$ known, the maximum power dissipation can be found and the safe operating area determined as before. See Curve B in Figure 18.

CONCLUSION

In most cases, heat sink manufacturer's publish only ROCA socket mount data. Although ROCA data for PC mounting is generally not available, this should present no problem. Note in Figure 21 that an air flow greater than 250 LFPM yields a socket mount Reja approximately 6% greater than for a PC mount. Therefore, the socket mount data can be used for a PC mount with a slightly greater safety factor. Also it should be noted that thermal resistance measurements can vary widely. These measurement variations are due to the dependency of R_{0CA} on the type environment and measurement techniques employed. For example, Raca would be greater for an integrated circuit mounted on a PC board with little or no ground plane versus one with a substantial ground plane. Therefore, if the maximum calculated junction temperature is on the border line of being too high for a given system application, then thermal resistance measurements should be done on the system to be absolutely certain that the maximum junction temperature is not exceeded.

TYPICAL APPLICATIONS

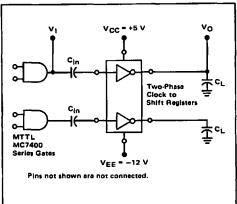
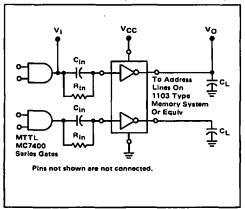
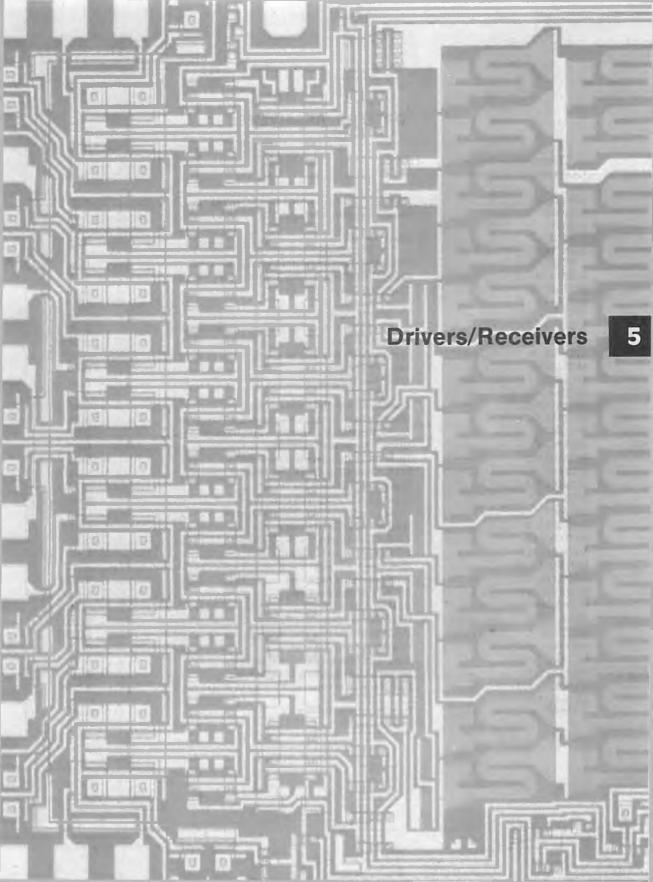




FIGURE 23 - AC-COUPLED MOS CLOCK DRIVER

FIGURE 24 - DC-COUPLED RAM MEMORY ADDRESS OR PRECHARGE DRIVER (POSITIVE-SUPPLY ONLY)

.

DRIVERS/RECEIVERS

Temperatur	e Range		
Commercial	Military		Page
AM26LS31	. –	Quad RS-422 Line with 3-State Outputs	5-3
D\$8641	— , ,	Quad Unified Transceiver	5-6
MC8T13/			
8T23	-	Dual Line Drivers	5-9
MC8T14/			
8T24	_	Triple Line Receivers with Hysteresis	
MC26S10/11	_	Quad Open-Collector Bus Transceivers	
MC75S110	—	Dual Line Driver	5-19
MC1411,			
12, 13, 16*	— , ,	Peripheral Driver Arrays	
MC1472	. <u> </u>	Dual Peripheral Positive "NAND" Driver	
MC1488		Quad MDTL Line Driver	
MC1489, A	· <u> </u> ·	Quad MDTL Line Receivers	
MC3437	—	Hex Bus Receiver	
MC3438	_	Quad Bus Transceiver	5-47
MC3440A/	•		
41A/43	· <u> </u>	Quad Interface Bus Transceivers	5-50
MC3446A	_	Quad General Purpose Interface Bus Tranceiver	5-54
MC3447	_	Bidirectional Instrumentation Bus Transceiver	5-57
MC3448A	. —	Quad 3-State Bus Transceiver	5-63
MC3450/52	-	Quad MTTL Compatible Line Driver	5-68
MC3453	. 	MTTL Compatible Quad Line Driver	5-75
MC3481/85	·. —	Quad Single Ended Line Driver	5-79
MC3486	_	Quad RS-422/423 Line Receiver	5-80
MC3487		Quad Line Driver with 3-State Outputs	5-83
MC3488A, B	· <u> </u>	Dual RS-423/232C Drivers	5-87
MC3490/94	<u>.</u>	7-Digit Gas-Discharge Display Drivers	5-90
MC3491/92	—	8-Segment Visual Display Drivers	5-96
MC75107/108	. —	Dual Line Receivers	5-103
MC75125/127	_	7-Channel Line Receivers	5-108
MC75128/129	_	8-Channel Line Receivers	5-112
MC75140P1	· —	Dual Line Receiver	5-116
MC75325	MC55325	Dual Memory Drivers	5-120
MC75450	_	Dual Peripheral Positive "AND" Driver	5-126
MC75451-454	— .	Dual Peripheral Drivers	5-131
MC75461-464	<u> </u>	Dual High-Voltage Peripheral Drivers	
MC75491/92	·	Multiple Light-Emitting Diode Drivers	
SN75431/432	·	Dual Peripheral Drivers	
SN75451BP-			-
454BP	_	Dual Peripheral Drivers	5-147

*Industrial

۰.

.

:

.

4

AM26LS31

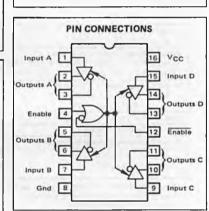
QUAD RS-422 LINE DRIVER WITH THREE-STATE OUTPUTS

SILICON MONOLITHIC

D SUFFIX

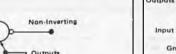
CERAMIC PACKAGE

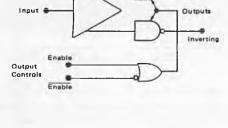
CASE 620

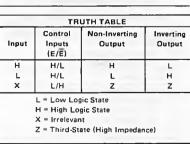

QUAD LINE DRIVER WITH NAND ENABLED THREE-STATE OUTPUTS

The Motorola AM26LS31 is a quad differential line driver intended for digital data transmission over balanced lines. It meets all the requirements of EIA Standard RS-422 and Federal Standard 1020.

The AM26LS31 provides an enable/disable function common to all four drivers as opposed to the split enables on the MC3487 RS-422 driver.


The high impedance output state is assured during power down.


- Full RS-422 Standard Compliance
- Single +5 V Supply
- Meets Full V_O = 6.0 V, V_{CC} = 0 V, I_O < 100 μA Requirement
- Output Short Circuit Protection
- Complementary Outputs for Balanced Line Operation
- High Output Drive Capability
- Advanced LS Processing
- PNP Inputs for MOS Compatibility


P SUFFIX

CASE 648

DRIVER BLOCK DIAGRAM

*ABSOLUTE MAXIMUM RATINGS					
Rating	Symbol	Value	Unit		
Power Supply Voltage	Vcc	0.8	Vdc		
Input Voltage	V ₁	5.5	Vdc		
Operating Amblent Temperature Range	TA	0 to +70	°C		
Operating Junction Temperature Range Ceramic Package Plastic Package	T.	175 150			
Storage Temperature Range	Tsto	-65 to +150	°c		

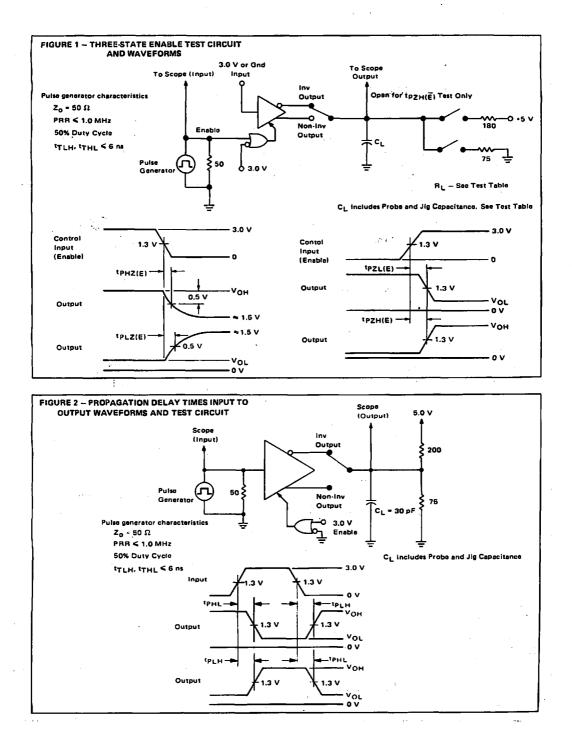
"Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits.

The "Table of Electrical Characteristics" provides conditions for actual device operation.

ELECTRICAL CHARACTERISTICS (Unless otherwise noted specifications apply 4.75 V < V_{CC} < 6.25 V and 0°C < T_A < 70°C. Typical values measured at V_{CC} = 5.0 V, and T_A = 25° C.) · · ..

			H		
Characteristic	Symbol	Min	Тур	Mex	· Unit
Input Voltage - Low Logic State	VIL	_	-	0.8	Vdc
Input Voltage - High Logic State	VIH	2.0	- 1		Vdc
Input Current - Low Logic State (VjL = 0.4 V)	41	-		-360	μA
Input Current High Logic State (V _{IH} = 2.7 V) (V _{IH} 7.0 V)	ЧН	-	-	+20 +100	μA
Input Clamp Voltage (IIK = -18 mA)	VIK	-	-	-1.5	v
Output Voltage - Low Logic State (IOL ~ 20 mA)	VoL	-	-	0.5	
Output Voltage - High Logic State (IOH = -20 mA)	VOH	2.5		-	v
Output Short-Circuit Current (VIH = 2.0 V) 2	los	-30	-	-150	mA
Output Leskage Current - Hi-Z State (VOL = 0.5 V, VIL(E) = 0.8 V, VIH(E) = 2.0 V) (VOH = 2.5 V, VIL(E) = 0.8 V, VIH(E) = 2.0 V)	¹ 0(Z)			-20 +20	μА
Output Leakage Current - Power OFF (V _{OH} = 6.0 V, V _{CC} = 0 V) (V _{OL} = -0.25 V, V _{CC} = 0 V)	lO(off)	-		+100 -100	μA
Output Offset Voltage Difference1	Vos-Vos	-	-	±0.4	v
Output Differential Voltage 1		2.0		-	v
Output Differential Voltage Difference 1	$V_T - V_T$	-	-	±0.4	v
Power Supply Current (Output Disabled) ³	lccx	-	60	80	mА

1. See EIA Specification RS-422 for exact test conditions.

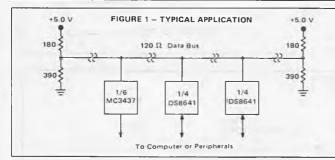

Only one output may be shorted at a time.
 Circuit in three-state condition.

SWITCHING CHARACTERISTICS (VCC = 5.0 V, TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Times			· · ·		ns
High to Low Output	tehr.	-	I	20	
Low to High Output	^t PLH	-	-	20	
Output Skew		-	T - T	6.0	ns
Propagation Delay - Control to Output					ns
(CL = 10 pF, RL = 75 Ω to Gnd)	1PHZ(E)	-		30	
(CL = 10 pF, RL = 180 Ω to V _{CC})	TPLZ(E)	-	-	35	
(CL = 30 pF, RL = 75 Ω to Gnd)	TPZH(E)	-	1 - 1	40	
(C ₁ = 30 pF, R _L = 180 Ω to V _{CC})	TPZL(E)		1 - 1	45	

. . .

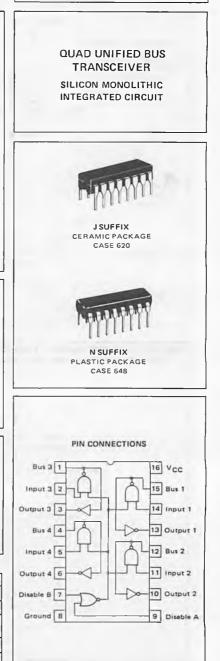
AM26LS31



DS8641

QUAD UNIFIED TRANSCEIVER

Consists of four pair of drivers and receivers with the output of each driver connected to the input of its mating receiver. These devices are intended for use in bus organized data transmission system employing terminated 120 Ω lines. A disable function consisting of a two-input NOR gate is provided to control all four drivers. Up to 27 driver/receiver pairs can share a common line.


- Receiver Input Threshold Is Not Affected by Temperature
- Open Collector Driver Outputs Allow Wire-OR
- TTL Compatible Receiver Outputs and Disable and Driver Inputs
- Driver Propagation Delay = 15 ns
- Receiver Propagation Delay = 20 ns
- Guaranteed Minimum Bus Noise Immunity = 0.6 V
- Low Bus Terminal Current (Supply On or Off) = 30 μA typ

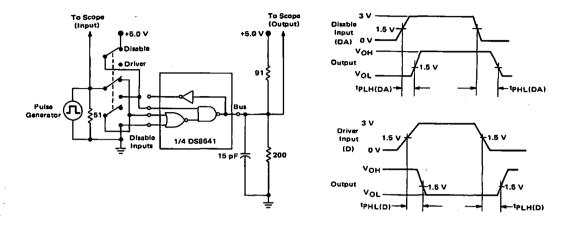
	TRUTH	TABLES					
RECEIVER SECTION		DF	DRIVER SECTION				
		Disable 1	Disable 2	Input	Bus		
Bus	Output	L	L	L	н		
VIH(B) > 1.7 V	L	L	L	н	L		
$V_{IH(R)} > 1.7 V$ $V_{IL(R)} < 1.3 V$	н	L	н	L	н		
121117		L	н	н	н		
		н	L	L	н		
Where: L = Low Logic State H = High Logic State		н	L	н	н		
		н	н	L	н		
	ogio Diato	н	н	н	н		

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted.)

Rating		Symbol	Value	Unit
Supply Voltage Input and Output Voltage		Vcc	7.0	Vdc
		V ₀ , V ₁	5.5	Vdc
Junction Temperature	Plastic Ceramic	Tj	150 175	°C
Operating Ambient Temperature Range		TA	0 to +70	°C
Storage Temperature Range		Tstg	-65 to +150	°C

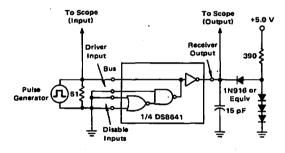
DS8641

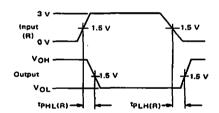
Characteristic	Symbol	Min	Тур	Max	Unit
Disable Input Voltage - High Logic State	VIH(DA)	2.0	-	_	V
Diseble Input Voltage Low Logic State	VIL(DA)	-	-	0.8	V
Driver Input Voltage - High Logic State	VIH(D)	2.0	-	-	V
Driver Input Voltage - Low Logic State	VIL(D)	_	- 1	0.8	v
Receiver Input Threshold Voltage — High Logic State (V _{1L} (D) = 0.8 V, I _{OL} (R) = 16 mA, V _{OL} (R) ≤ 0.4 V)	VILH(R)	1,70	1.50	-	v
Receiver Input Threshold Voltage – Low Logic State (V _{1L} (D) = 0.8 V, IOH(R) = -400 µA, VOH(R) ≥ 2.4 V)	VIHL(R)	-	1,50	1.30	~
Disable Input Current – High Logic State (VIH(D) = 2.4 V, VIH(DA) = 2.4 V) (VIH(D) = 5.5 V, VIH(DA) = 5.6 V)	li H(DA)	-	-	40 1.0	μA mA
Driver Input Current – High Logic State (VIH(DA) = 2.4 V, VIH(D) = 2.4 V) (VIH(DA) = 5.5 V, VIH(D) = 5.5 V)	lih(D)		-	40 1.0	μ۹ mA
Disable Input Current – Low Logic State (VIL(DA) = 0.4 V, VIL(D) = 0.4 V)	IL(DA)		-	-1.6	πA
Driver Input Current – Low Logic State (VIL(D) = 0.4 V, VIL(DA) = 0.4 V)	IL(D)	+	-	-1.6	mA
Bus Current (VIL(DA) = 0.8 V, VIL(D) = 0.8, VIH(BUS) = 4.0 V)	IBUS				μA
(V _{CC} = 5.25 V) (V _{CC} = 0 V)		-	30 2.0	100 100	
Bus Voltage — Low Logic State (VIL(DA) = 0.8 V, VIH(D) = 2.0 V, IBUS = 50 mA)	VL (BUS)		0.4	0.7	V
Receiver Output Voltage – High Logic State (VIL(DA) = 0.8 V, VIL(D) = 0.8 V, VIL(BUS) = 0.5 V, IOH(R) = -400 μA)	VOH(R)	2.4	_	- .	V
Receiver Output Voltage – Low Logic State (VIL(DA) = 0.8 V, VIL(D) = 0.8 V, VIH(BUS) = 4.0 V. IOL(R) = 16 mA)	VOL(R)	-	0.25	0.4	v
Receiver Output Short Circuit Current (Note 1) (VIL(DA) = 0.8 V, VIL(D) = 0.8 V, VIL(BUS) = 0.5 V, VCC = 5.25 V)	^I OS(R)	-18	-	-55	mA
Power Supply Current (VIL(DA) = 0 V, VIH(D) = 2.0 V)	icc	-	50	70	πA
Input Clamp Diode Voltage (T _A = 25 ^o C) (I ₁ (DA) = I ₁ (D) = 1BUS = -12 mA)	- Vi		-1.0	-1.5	V

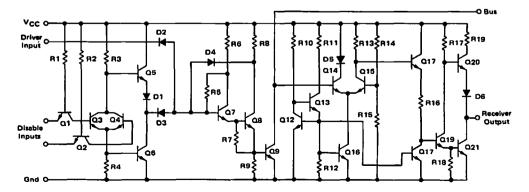

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply for 0 < TA < 70°C and 4.75 < V_{CC} < 5.25 V.)

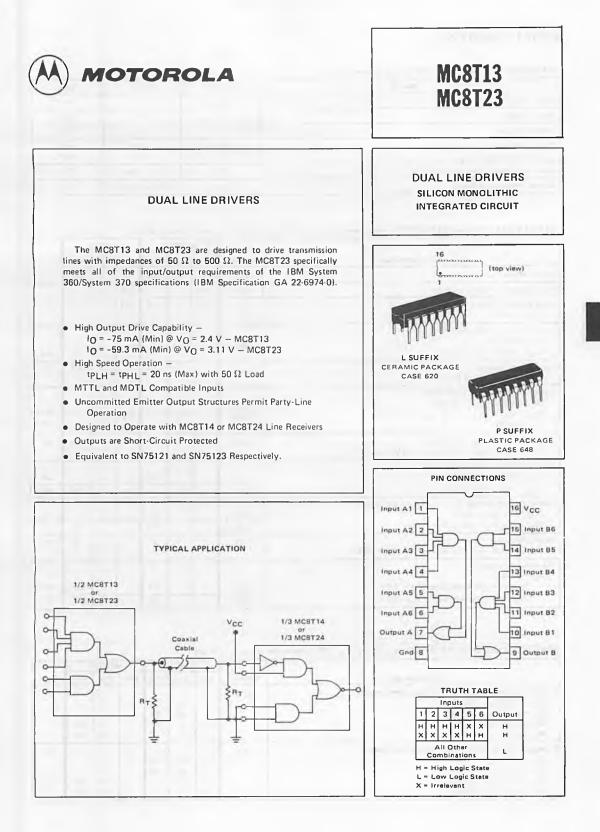
NOTE 1: Only one output at a time.

1


SWITCHING CHARACTERISTICS (TA = 25°C, VCC = 5.0 V unless otherwise noted.)


Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time from Disable Input to High Logic Level Output	^t PLH(DA)	-	19	30	ns
Propagation Delay Time from Disable Input to Low Logic Level Output	ሞዘL(DA)	-	15	23	ns
Propagation Delay Time from Driver Input to High Logic Level Output	ሞLH(D)	-	17	25	ns
Progpgation Delay Time from Drive Input to Low Logic Level Output	ሞHL(D)	-	9.0	15	ns
Propagation Delay Time from Bus Input to High Logic Level Output	ሞLH(R)	-	20	30	ns
Propagation Delay Time from Bus Input to Low Logic Level Output	华HL(A)		18	- 30	ns


FIGURE 2 - DRIVER AND DISABLE TEST CIRCUIT AND WAVEFORMS

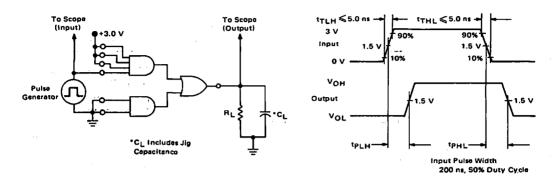


REPRESENTATIVE CIRCUIT SCHEMATIC (1/4 Shown)

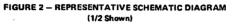
5-9

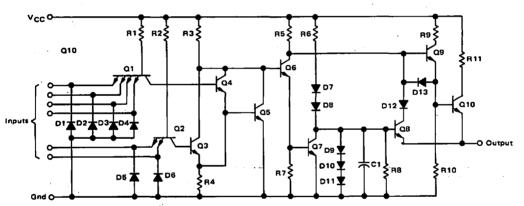
MC8T13, MC8T23

MAXIMUM RATINGS (TA = +25°C unless otherwise noted.)


Rating	Symbol	Vatue	Unit
Power Supply Voltage	Vcc	7.0	Vdc
Input Voltage	V _I	5.5	Vdc
Output Voltage	Vo	7.0	Vdc
Power Dissipation @ T _A = +25 ^o C Derate above 25 ^o C	۴D	1000 6.7	mW mW/ ^o C
Operating Ambient Temperature Range	TA	0 to +75	°c
Storage Temperature Renge	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, 4.75 V \leq V_{CC} \leq 5.25 V and 0°C \leq T_A \leq 75°C)


• •		N	ACBT 1	3	MC8T23			
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Voltage - Low Logic State	VIL	-	-	0.8	-	-	0.8	v
Input Voltage - High Logic State	VIH	2.0	-	-	2.0	-	-	v
Input Current — Low Logic State (VIL = 0.4 V)	¹ IL	-0.1	-	-1.6	-0,1	-	-1.6	mA
Input Current — High Logic State (VIH = 4.5 V)		-	-	40	-	-	40	μA
(VIH = 5.5 V, V _{CC} = 5.0 V)	liH2	-	-	10	-	-	10	mА
Input Clamp Voltage (Ij = -12 mA, V _{CC} = 5.0 V)	VI(clamp)	-	-	-1.5	-	-	-1.5	v
Output Voltage — High Logic State (V _{IH} = 2.0 V, I _{OH} = -75 mA)	V _{OH1}	2.4	-	-	:-		-	>
(V _{CC} = 5.0 V, V _{IH} = 2.0 V, I _{OH} = -59.3 mA) (T _A = 25 ^o C)	VOH2	-	_	-	2.9 3.11	- -	-	v
Output Current — High Logic State {VIH = 4.5 V, V _{CC} = 5.0 V, V _O = 2.0 V, T _A = 25 ^o C)	ЮН	-100	-	-250	-100	-	-250	mA
Ourput Current – Low Logic Stete (V _{IL} = 0.8 V, V _O = 0.4 V)	^I OL1	1	_	-800	1	1	_	μA
(V _{IL} = 0.8 V, V _O = 0.15 V)	¹ 0L2	t	-	-	- 1		-240	μA
Output Reverse Leakage Current – Low Logic State (VIL = 0 V, VO = 3.0 V)	OR1	1	_	80	-	_	_	μA
(V _{IL} = 0 V, V _O = 3.0 V, V _{CC} = 0 V)	IOR2	-	-	500	-	-	40	μA
Output Short-Circuit Current (V _{IH} = 4.5 V, V _{CC} = 5.0 V, V _O = 0 V, T _A = 25 ^o C)	los	-	-	-30	-	1	-30	mA
Power Supply Currents (IO = 0 mA)								
Outputs – Low Logic State, VIL = 0.8 V Outputs – High Logic State, VIH = 2.0 V		-		60 28	-		60 28	mA mA


SWITCHING CHARACTERISTICS ($V_{CC} = 5.0 V$, $T_A = 25^{\circ}C$ unless otherwise noted.) Figure 1

			MC8T1	3	-	MC8T2	3	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Propagation Delay Time - Low to High Level Output	^t PLH							ns
(RL = 37 Ω, CL = 15 pF)		-	11	20	-	-	_	
(R _L = 37 Ω, C _L = 1000 pF)		-	22	50	-	-	-	
(R _L = 50 Ω, C _L = 15 pF)		-	-	-	-	12	20	
(R _L = 50 Ω, C _L = 100 pF)		- 1	-	-	-	20	35	
Propagation Delay Time - High to Low Level Output	1PHL							ns
(R _L = 37 Ω, C _L = 15 pF)		-	8.0	20	_	-	-	
(R = 37 Ω, C_ = 1000 pF)		-	20	50	-	-	_	
$(R_{L} = 50 \Omega, C_{L} = 15 pF)$	1	l -	_	-	-	12	20	
(RL = 50 Ω, CL = 100 pF)		-	-	-	-	15	25	

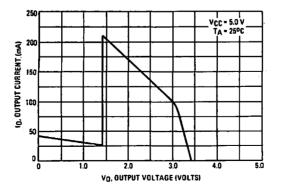
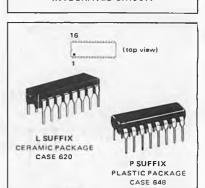
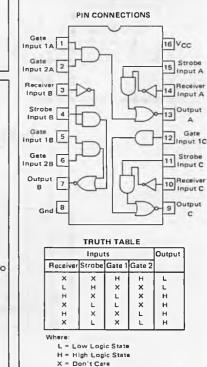


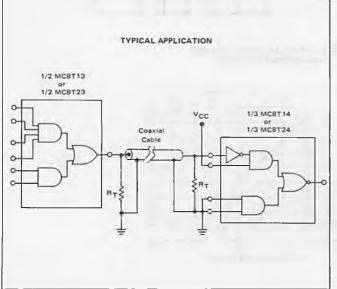
FIGURE 1 - SWITCHING TEST CIRCUIT AND WAVEFORMS


FIGURE 3 – TYPICAL OUTPUT CURRENT versus OUTPUT VOLTAGE



MC8T14 MC8T24

TRIPLE LINE RECEIVERS WITH HYSTERESIS SILICON MONOLITHIC INTEGRATED CIRCUIT



TRIPLE LINE RECEIVERS WITH HYSTERESIS

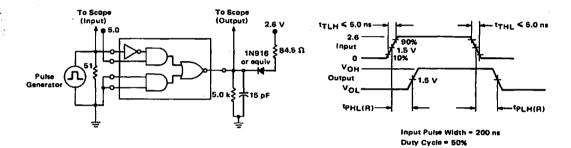
... specifically designed to meet the input/output specifications for IBM 360/370 Systems (IBM specification GA 22-6974-0). Each receiver incorporates hysteresis to provide high noise immunity and also high input impedance to minimize loading on the related driver.

- Each Channel Can Be Independently Strobed
- High Speed tpLH ≈ tpHL = 20 ns
- Input Gating Provided on Each Line
- Operates on a Single +5.0 V Power Supply
- Fully Compatible with MTTL or MDTL Logic Systems
- Input Hysteresis Results in High Noise Immunity

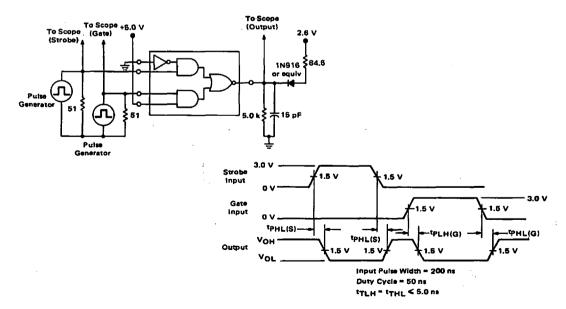
MAXIMUM RATINGS (TA = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC}	7,0	Vdc
Receiver Input Voltage (V _{CC} = 0)	Mi(R)	7.0 6.0	Vdc
Strobe or Gate Input Voltage	VI(S) or (G)	5.5	Vdc
Output Voltage	Vo	7.0	Vdc
Output Current	10	±100	mA
Power Dissipation (Package Limitation) Ceramic Package Derate above 25 ⁰ C	PD	1000 6.7	mW mW/ ⁰ C
Plastic Package Derate above 25 ⁹ C		830 6.7	mW mW/ ⁰ C
Junction Temperature Ceramic Package Plastic Package	Tj	175 150	°c
Operating Ambient Temperature Range	TA	0 to +75	°C
Storage Temperature Range	Tstg	-65 to +150	°C

		N	AC8T1	4	N	ICBT24	4	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Uni
Gate or Strobe Input Voltage - High Logic State	VIH(G) or (S)	2.0	-	-	2.0	-	-	v
Gate or Strobe Input Voltage - Low Logic State	VIL(G) or (S)	-	-	0.8	-	-	0.8	۲V
Receiver Input Voltage - High Logic State	VIH(R)	2.0	-	-	1.7	-	-	Vdd
Receiver Input Voltage – Low Logic State		-	-	0.8	-	-	0.7	Vd
Receiver Input Hysteresis (1) (V _{CC} = 5.0 V, T _A = 25 ^o C, V _{1L(G)} = 0, V _{1H(S)} = 4.5 V)	VH(R)	0.3	0.5	-	0.2	0.4	-	v
Input Clamp Voltage (V _{CC} = 5.0 V, T _A = 25 ⁰ C, I _I = -12 mA) (Strobe or Gate Inputs)	VIC(G) or (S)	-	-	1.5	-	-	1.5	v
Input Breakdown Voltage {V _{CC} = 5.0 V, I _I = 10 mA} (Strobe or Gate Inputs)	VI(G) or (S)	5.5	-	-	5.5	_	-	×
Receiver Input Current – High Logic State (VIH(R) = 3.8 V) (VIH(R) = 3.11 V) (VIH(R) = 5.0 V, V _{CC} = 0 V)	liH(R)			0.17	-		- 0.17 5.0 5.0	mA
Content Content High Logic State (VIH(S) = 4.5 V, VIH(R) = 3.11 V) (VIH(G) = 4.5 V)	^I IH(G) or (S)	-	-	40 40	-	- -	40 40	μA
Gate or Strobe Input Current – Low Logic State (VIL(G) or (S) = 0.4 V, VIL(R) = 0 V)	ItL(G) or (S)	-0.1	-	-1,6	-0.1	. – 1	-1.6	mA
Output Voltage – High Logic State {VIH(R) = 2.0 V, VIH(S) = 2.0 V, VIL(G) = 0.8 V, IOH = -800 µA} (VIH(R) = 0.8 V, VIL(S) = 0.8 V, VIL(G) = 0.8 V, IOH = -800 µA} (VIH(R) = 1.7 V, VIH(S) = 2.0 V, VIL(G) = 0.8 V, IOH = -800 µA} (VIH(R) = 0.7 V, VIL(S) = 0.8 V, VIL(G) = 0.8 V, IOH = -800 µA}	∨он	2.6 2.6 	3.5 3.5 -	- - -	- - 2.6 2.6	- - 3.4 3.4	- - -	V
Output Voltage – Low Logic State (VIL(R) = 0.8 V, VIH(S) = 2.0 V, VIL(G) = 0.8 V, IOL = 16 mA) (VIL(R) = 0.8 V, VIL(S) = 0.8 V, VIH(G) = 2.0 V, IOL = 16 mA) (VIL(R) = 0.7 V, VIH(S) = 2.0 V, VIL(G) = 0.8 V, IOL = 16 mA) (VIL(R) = 0.7 V, VIL(S) = 0.8 V, VIH(G) = 2.0 V, IOL = 16 mA)	Vol		- - -	0.4 0.4 - -	- - -	_ _ _ _	- - 0.4 0.4	V
Dutput Short-Circuit Current (2) (V H(R) = 3.8 V. V L(G) = 0 V. V L(S) = 0, V _{CC} = 5.0 V, T _A = 25 ^o C) (V H(R) = 3.11 V. V L(G) = 0 V. V L(S) = 0 V. V _{CC} = 5.0 V, T _A = 25 ^o C)	'OS	-50 	-	-100 	- -50	=	-100	m/
Power Supply Current	icc	_	60	72	-	60	72	m/


(1) The Input Hysteresis is defined as the difference the input voltage at which the output begins to go from the high logic state to the low logic state and the input voltage which causes the output to begin to go from the low logic state to the high logic state.

(2) Only one output may be shorted at a time.


SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = 25°C unless otherwise noted.)

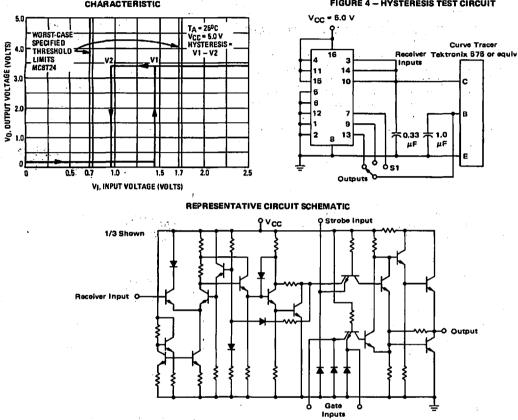
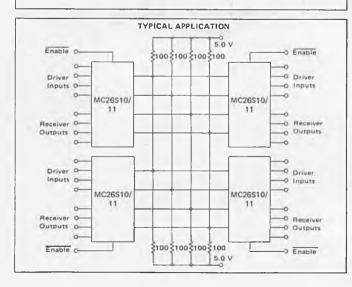

		M	C8T14, MC8T	24	1
Parameter	Symbol	Min	Тур	Max	Unit
Propagation Delay Time - Receiver Input to High Logic State Output	^t PLH(R)	-	20	30	ns
Propagation Delay Time Receiver Input to Low Logic State Output	PHL(R)	- 1	20	30	ns
Propagation Delay Time Strobe Input to High Logic State Output	ሞLH(S)	- 1	_	— —	ns
Propagation Delay Time Strobe Input to Low Logic State Output	tPHL(S)		_	-	ns.
Propagation Delay Time Gate Input to High Logic State Output	tPLH(G)	-			ns
Propagation Delay Time Gate Input to Low Logic State Output	ΦHL(G)	-	-	-	ns

FIGURE 1 - RECEIVER PROPAGATION DELAY TIMES OLH(R) and OHL(R) TEST CIRCUIT AND WAVEFORMS

FIGURE 3 - TYPICAL RECEIVER HYSTERESIS CHARACTERISTIC

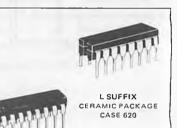
FIGURE 4 - HYSTERESIS TEST CIRCUIT

MC26S10 MC26S11

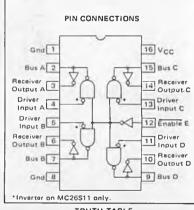

QUAD OPEN-COLLECTOR BUS TRANSCEIVERS

These quad transceivers are designed to mate Schottky TTL or NMOS logic to a low impedance bus. The Enable and Driver inputs are PNP buffered to ensure low input loading. The Driver (Bus) output is open-collector and can sink up to 100 mA at 0.8 V, thus the bus can drive impedances as low as 100 Ω . The receiver output is active pull-up and can drive ten Schottky TTL loads.

An active-low Enable controls all four drivers allowing the outputs of different device drivers to be connected together for party-line operation. The line can be terminated at both ends and still give considerable noise margin at the receiver. Typical receiver threshold is 2.0 V.


Advanced Schottky processing is utilized to assure fast propagation delay times. Two ground pins are provided to improve ground current handling and allow close decoupling between VCC and ground at the package. Both ground pins should be tied to the ground bus external to the package.

- Driver Can Sink 100 mA at 0.8 V (Max)
- PNP Inputs for Low-Logic Loading
- Typical Driver Delay = 10 ns
- Typical Receiver Delay = 10 ns
- Schottky Processing for High Speed
- Inverting Driver MC26S10 Non-Inverting – MC26S11



QUAD OPEN-COLLECTOR BUS TRANSCEIVERS

> SCHOTTKY SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 648

	Driver	B	us	Receiver
Enable	Input	26S10	26S11	Output
L	L	н	L	L
L	н	L	н	н
н	X	Y	Y	Y

H = High Logic State

X = Irrelevant

 Assumes condition controlled by other elements on the bus

5-16

MC26S10, MC26S11

MAXIMUM RATINGS (TA = 25°C unless otherwise noted.)

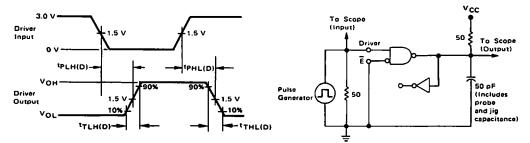
Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +7.0	Vdc
Input Voltage	VI VI	-0.5 to +5.5	Vdc
Input Current	11	-3.0 to +5.0	mA
Output Voltage - High Impedance State	Vo (Hi-z)	-0.5 to VCC	V
Output Current—Bus	lo(B)	200	mA
Output Current-Receiver	lo(R)	30	mA
Operating Ambient Temperature	TA	0 to +70	°C
Storage Temperature	Tstg	-65 to +150	°C
Junction Temperature			°C
Ceramic Package		175	
Plastic Package		150	

.

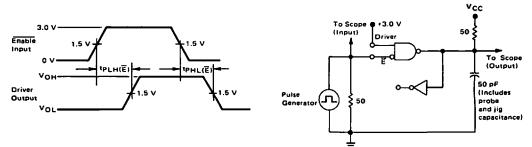
ELECTRICAL CHARACTERISTICS (Unless otherwise noted V_{CC} = 4.75 to 5.25 V and T_A = 0 to +70°C.

Characteristic	Symbol	Min	Τγρ	Max	Unit
Input Voltage – Low Logic State (Driver and Enable Inputs)	VIL	-	-	0.8	v
Input Voltage – High Logic State (Driver and Enable Inputs)	VIH	2.0		-	
Input Clamp Voltage (Driver and Enable Inputs) (1 _{IK} = -18 mA)	⊻ік	-	-	-1.2	V
Input Current — Low Logic State (V _{IL} = 0.4 V) (Enable Input) (Driver Input)	II.	-	-	-0.36	mA
Input Current – High Logic State (VIH = 2.7 V) (Enable Input) (Driver Inputs)	¹ iH	-		20 30	μA
Input Current – Maximum Voltage (VIH1 = 5.5 V) (Enable or Driver Inputs)	Чнт	-	-	100	μA
Driver Output Voltage – Low Logic State (I _{OL} = 40 mA) (I _{OL} = 70 mA) (I _{OL} = 100 mA)	VOL(D)		0.33 0.42 0.51	0.5 0.7 0.8	v
Driver (Bus) Leakage Current {VOH = 4.5 V} {VOL = 0.8 V}	(D)	· -	-	100 -50	Αų
Driver (Bus) Leakage Current (VCC = 0 V, VOH = 4.5 V)	¹ 01(D)	-	-	100	μΑ
Receiver Input High Threshold (VIH(Ē) = 2.4 V)	VTH(R)	2.25	2.0	-	V
Receiver Input Low Threshold (VIH(E) = 2.4 V)	VTL(R)	-	2.0	1.75	v
Receiver Output Voltage – Low Logic State (IOL = 20 mA)	VOL(R)	-		0.5	v
Receiver Output Voltage – High Logic State (IOH = -1.0 mA)	VOH(R)	2.7	3.4	-	v
Receiver Output Short-Circuit Current (Note 1)	IOS(R)	-18		-60	mA
Power Supply Current – Output Low State (V ₁ L(E) = 0 V) MC26S1D MC26S11	'cc	-	45	70 80	mA

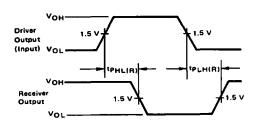
NOTE 1: One output shorted at a time. Duration not to exceed 1.0 second.


MC26S10, MC26S11

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = 25°C unless otherwise noted.)


			MC26S10)		MC26S11		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Propagation Delay Time			1					
Driver Input to Output	ው (D)	-	10	15	- 1	12	19	ns
	ሞHL(D)	- 1	10	15	-	12	19	
Propagation Delay Time								
Enable Input to Output	tPLH(E)	-	14	18	-	15	20	ns
	ΨHL(Ê)	_	13	18	-	14	20	
Propagation Delay Time								
Bus to Receiver Output	PLH(R)	-	10	15	- 1	10	15	ns
	PHL(R)	-	10	15	-	10	15	
Rise and Fall Time of Driver Output	TLH(D)	4.0	10	-	4.0	10	-	ns
	THL(D)	2.0	4.0	-	2.0	4.0	-	

SWITCHING WAVEFORMS AND CIRCUITS


FIGURE 1 - DATA INPUT TO BUS OUTPUT (DRIVER)

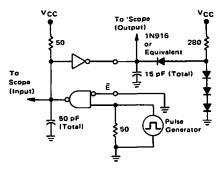
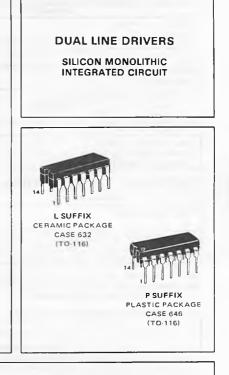
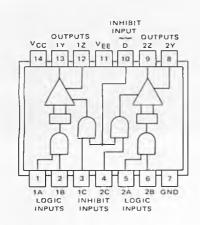


FIGURE 2 - ENABLE INPUT TO BUS OUTPUT (DRIVER)

FIGURE 3 - BUS INPUT TO RECEIVER OUTPUT

MC75S110


MONOLITHIC DUAL LINE DRIVERS


The MC75S110 dual line driver features independent channels with common voltage supply and ground terminals. Each driver circuit provides a constant output current that switches to either of two output terminals subject to the appropriate logic levels at the input terminals. Output current can be switched "off" (inhibited) by appropriate logic levels at the inhibit inputs. Output current is nominally twelve milliamperes for the MC75S110.

The inhibit feature permits use in party-line or data-bus applications. A strobe or inhibitor, common to both drivers, is included to increase driver-logic versatility. With output current in the inhibited mode, IQ(off) is specified so that minimum line loading occurs when the driver is used in a party-line system with other drivers. Output impedance of the driver in inhibited mode is very high (the output impedance of a transistor biased to cutoff).

All driver outputs have a common-mode voltage range of -3.0 volts to +10 volts, allowing common-mode voltage on the line without affecting driver performance.

- Insensitive to Supply Variations Over the Entire Operating Range
- MTTL Input Compatibility
- Current-Mode Output (12 mA Typical)
- High Output Impedance
- High Common-Mode Output Voltage Range (-3.0 V to +10 V)
- Inhibitor Available for Driver Selection

	TF	т нтоя	ABLE		
		INHIE	BITOR		
LOGIC	INPUTS	INP	UTS	Ουτι	PUTS
А	8	С	D	Y	Z
L or H	LorH	L	LorH	н	н
L or H	L or H	L or H	L	н	н
L	L or H	н	н	L L	н
LorH	L	н	н	L	н
н	н	н	н	н	L

Low output represents the "on" state. High output represents the "off" state

MAXIMUM RATINGS (T_A = 0 to +70°C unless otherwise noted.)

Ratings	Symbol	Value	Unit
Power Supply Voltages (See Note 1)	Vcc VEE	+7.0 -7.0	Volts
Logic and Inhibitor Input Voltages (See Note 1)	Vin	5.5	Volts
Common-Mode Output Voltage Range (See Note 1)	Vocr	-5.0 to +12	Volts
Power Dissipation (Package Limitation) Plastic and Ceramic Dual In-Line Packages Derate above T _A = +25 ⁰ C	PD	1000 3.85	mW mW/ºC
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range Ceramic Dual In-Line Package Plastic Dual In-Line Package	T _{stg}	-65 to +150 -35 to +150	°C

RECOMMENDED OPERATING CONDITIONS (See Notes 1 and 2.)

Characteristic	Symbol	Min	Nom	Мах	Unit
Power Supply Voltages	V _{CC} V _{EE}	+4.75 -4.75	+5.0 -5.0	+5.25 -5.25	Volts
Common-Mode Output Voltage Range	VOCR				Volts
Positive		0	-	+10	1
Negative		0	-	-3.0	

Note 1. These voltage values are in respect to the ground terminal. Note 2. When using only one channel of the line drivers, the other channel should be inhibited and/or its outputs grounded.

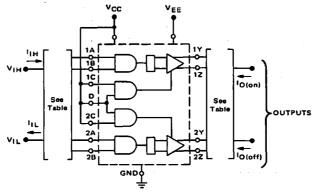
DEFINITIONS OF INPUT LOGIC LEVELS*

Characteristic	Symbol	Test Fig.	Min	Max	Unit
High-Level Input Voltage (at any input)	VIH	1,2	2.0	5.5	Volts
Low-Level Input Voltage (at any input)	VIL	1,2	0	0.8	Volts

* The algebraic convention, where the most positive limit is designated maximum, is used with Logic Level Input Voltage Levels only.

	I			MC75S110		
Characteristic # #	Symbol	Test Fig.	Min	Typ #	Max	Unit
High-Level Input Current to 1A, 1B, 2A or 2B	^I iHլ	1				
(V _{CC} = Max, V _{EE} = Max, V _{1H1} = 2.4 V)#			-	-	40	μA
(VCC = Max, VEE = Max, VIHL = VCC Max)		1	-	-	1.0	A
Low-Level Input Current to 1A, 1B, 2A or 2B	հեր	1				mA
(V _{CC} = Max, V _{EE} = Max, V _{ILL} = 0.4 V)	_		-	-	-3.0	
High-Level Input Current into 1C or 2C	Чн	2				
(VCC = Max, VEE = Max, VIHI = 2.4 V)			-		40	μA
(VCC = Max, VEE = Max, VIHI = VCC Max)			-	-	1.0	mA
Low-Level Input Current into 1C or 2C	հել	2				mA
(VCC = Max, VEE = Max, VILI = 0.4 V)	-		-	-	-3.0	
High-Level Input Current into D	ЧH	2				
(V _{CC} = Max, V _{EE} = Max, V _{IHI} = 2.4 V)			-	-	80	μA
(VCC = Max, VEE = Max, VIHI * VCC Max)			-	-	2.0	mA
Low-Level Input Current into D	HL	2				mA
(VCC = Max, VEE = Max, VIL1 = 0.4 V)			-	_	-6.0	
Output Current ("on" state)	IO(on)	3			· · · · ·	mA
(VCC = Max, VEE = Max)			-	12	15	
(V _{CC} = Min, V _{EE} = Min)			6.5	-	-	
Output Current ("off" state)	^I O(off)	3				μA
(V _{CC} = Min, V _{EE} = Min)					100	
Supply Current from VCC (with driver enabled)	^I CC(on)	4				mA
(VILL = 0.4 V, VIHI = 2.0 V)			-	28	35	
Supply Current from VEE (with driver enabled)	IEE(on)	4				mA
(VILL = 0.4 V, VIHI = 2.0 V)			-	-41	-50	
Supply Current from V _{CC} (with driver inhibited)	ICC(off)	4				mA
(VILL = 0.4 V, VILI = 0.4 V)			-	21	-	
Supply Current from VEE (with driver inhibited)	IEE (off)	4				mA
(V _{ILL} = 0.4 V, V _{ILI} = 0.4 V)			-	-41	-50	

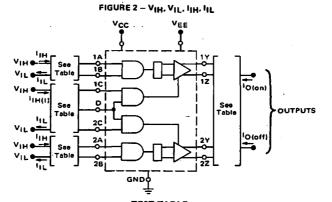
ELECTRICAL CHARACTERISTICS (TA = 0 to +70°C unless otherwise noted.)


#All typical values are at V_{CC} = +5.0 V, V_{EE} = -5.0 V. ##For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions,

SWITCHING CHARACTERISTICS (V_{CC} = +5.0 V, V_{EE} = -5.0 V, T_A = +25°C.)

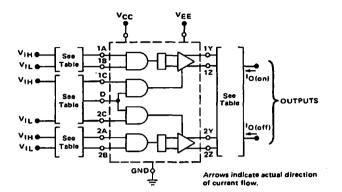
Characteristic	Symbol	Test Fig.	Min	Түр	Max	Unit
Propagation Delay Time from Logic Input A or B to Output Y or Z (R = 50 ohms, C = 40 pF)		5				ns
	1 PLHL		-	9.0	15	
•	TPHLL		-	9.0	15	
Propagation Delay Time from Inhibitor Input C or D to Output Y or Z (RL = 50 ohms, CL = 40 pF)		5				ns
	ΦLH ₁		-	16	25	
	TPHL		- 1	13	25	

TEST CIRCUITS


FIGURE 1 - VIH, VIL, IIH, and IIL

TI	EST	TΔ	R	1	F

TEST AT ANY LOGIC INPUT	LOGIC INPUTS NOT UNDER TEST	ALL INHIBITOR	OUTPUT 1Y or 2Y	OUTPUT 1Z or 2Z
VIHL	Open	ViH _E	H (See Note 1)	L (See Note 1)
VILL	, [∨] cc	VIHI	L (Ste Note 1)	H (See Note 1)
IIHL	4.5 V	VIH	Gnd	Gnd
հեր	Gnd	VIHI	Gnd	Gind


NOTES: 1. Low output represents the "on" state, high output represents the "off" state. 2. Each input is tested separately. 3. Arrows indicate actual direction of current flow.

		TEST TABLE		
TEST AT ANY	ALL LOGIC	INHIBITOR INPUTS NOT UNDER TEST	OUTPUT 1Y or 2Y	OUTPUT 1Z or 2Z
	VIHL	Open	H(See Note 1)	L(See Note 1)
VIHI	VILL	Open	L(See Note 1)	H(See Note 1)
V	VIHL	Vcc	H(See Note 1)	H(See Note 1)
VILI	VILL	Vcc	H(See Note 1)	H(See Note 1)
LIH!	Gnd	4.5 V	Gind	Gnd
Li Li	Gnd	Gnd	Gnd	Gnd

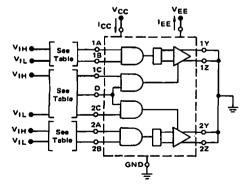
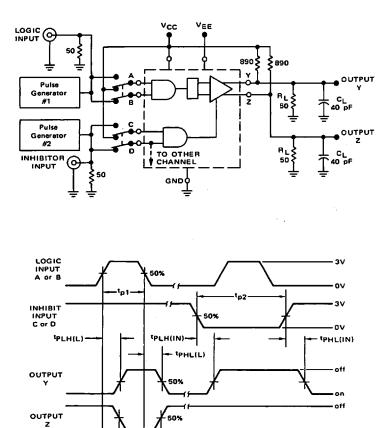

TEST CIRCUITS (continued)

FIGURE 3- IO(on) and IO(off)



Grour	TEST nd all output pins	LOGIC	INPUTS	INHIBITO	RINPUTS
	ot under test.	1A or 2A	18 or 28	1C or 2C	D
		VIL.	VIL _		
lO(on)	st output	VIL.	VIH] ∨ін	VIH
	1Y or 2Y	VIH	VIL.	1	
lO(on)	at output 1Z or 2Z	VIH	VIH	VIH	VIH
lO(off)	at output 1Y or 2Y	∨ін	VIH	v _{iH}	ViH
		VIL	VIL		
O(off)	at output 12 or 22	VIL	VIH	1 чн	VIH
	12 01 22	VIH	VIL	1	
¹ O(off) 1Y, 2Y, 1Z, or	at output	Either	Either		VIL_
		state	state	VIL	VIH
	11, 21, 12, 01 22			VIH	VIL

FIGURE 4 - ICC and IEE

TEST TABLE					
	TEST	ALL LOGIC	ALL INHIBITOR		
ICC(on)	Driver enabled	VIL.	VIH		
EE(on)	Driver enabled	VIL	VIH		
ICC(off)	Driver inhibited	VIL	VIL		
IEE (off)	Driver inhibited	VIL	VIL		

TEST CIRCUITS (continued)

FIGURE 5 - PROPAGATION DELAY TIMES TEST CIRCUIT AND WAVEFORMS

NOTES: 1. The pulse generators have the following characteristics: $z_0 = 50 \ \Omega$, $t_r = t_f = 10 \pm 5$ ns, $t_{p1} = 500$ ns, PRR = 1 MHz, $r_{D2} = 1$ ms, PRR = 500 kHz. 2. CL includes probe and jig capacitance. 3. For simplicity, only one channel and the inhibitor connections are shown.

PLH(L)

- on

¹PHL(L)

MC1411 (UEN2001A) MC1412 (ULN2002A) MC1413 (ULN2003A) MC1416 (ULN2004A)

HIGH-VOLTAGE, HIGH-CURRENT DARLINGTON TRANSISTOR ARRAYS

The seven NPN Darlington-connected transistors in these arrays are well suited for driving lamps, relays, or printer hammers in a variety of industrial and consumer applications. Their high breakdown voltage and internal suppression diodes insure freedom from problems associated with inductive loads. Peak inrush currents to 600 mA permit them to drive incandescent lamps.

The MC1411 device is a general-purpose array for use with DTL, TTL, PMOS, or CMOS Logic. The MC1412 contains a zener diode and resistor in series with the input to limit input current for use with 14 to 25 Volt PMOS Logic. The MC1413 with a 2.7 kΩ series input resistor is well suited for systems utilizing 5 Volt TTL or CMOS Logic. The MC1416 uses a series 10.5 k Ω resistor and is useful in 8-18 Volt MOS systems.

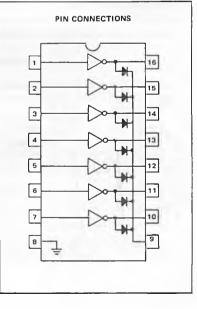
MAXIMUM RATINGS ($T_A = 25^{\circ}C$ and rating apply to any one device in the package unless otherwise noted.)

Rating	Symbol	Value	Unit	
Output Voltage	Vo	50*	v	
Input Voltage (Except MC1411)	VI	30	V	
Collector Current - Continuous	lc	500	mA	
Base Current - Continuous	IB	25	mA	
Operating Ambient Temperature Range	TA	0 to +85	°c	
Storage Temperature Range	Tstg	-55 to +150	°c	
Junction Temperature	Тј	150	°c	

ower Dissipation (See Thermal Info "Higher voltage selection available. See your local representative.

DEVICE CROSS-REFERENCE LISTING

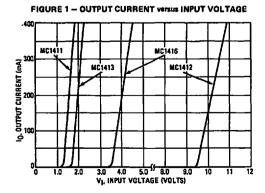
9665 - SN75476 - ULN2001A - order MC1411P 9666 - SN75477 - ULN2002A - order MC1412P 9667 - SN75478 - ULN2003A - order MC1413P 9668 - ULN2004A - order MC1416P

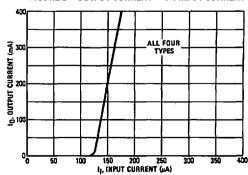

INTEGRATED CIRCUITS

P SUFFIX

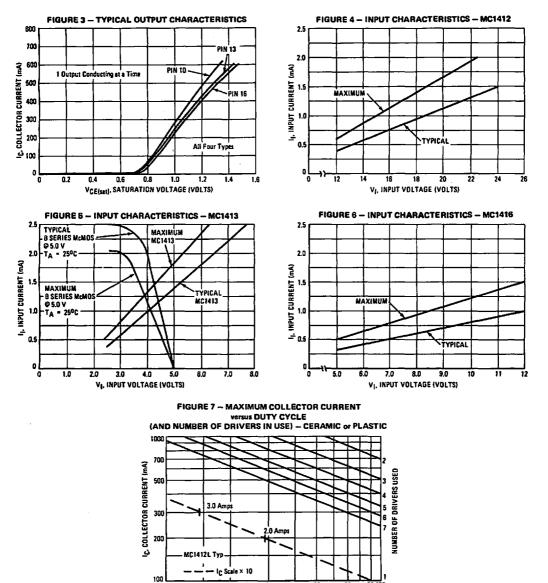
CASE 648

PLASTIC PACKAGE


1 SHEFIX CERAMIC PACKAGE CASE 620

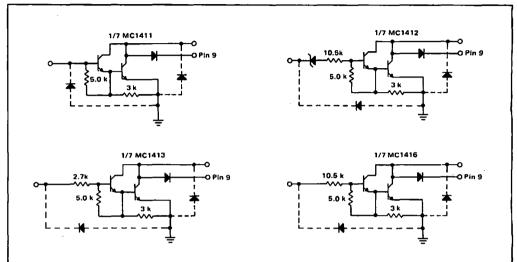

Characteristic		Symbol	Min	Тур	Max	Unit
Output Leskage Current		ICEX				μΑ
*(V _O = 50 V, T _A = +70 ^o C)	All Types		_	-	100	
*(V _O = 50 V, T _A = +25°C)	All Types		-	-	50	
$(V_0 = 50 V, T_A = +70^{\circ}C, V_1 = 6.0 V)$	MC1412		-	-	500	1
$(V_0 = 50 \text{ V}, T_A = +70^{\circ}\text{C}, V_1 = 1.0 \text{ V})$	MC1416		-	-	500	
Collector-Emitter Saturation Voltage		V _{CE(sat)}				V
(ic = 350 mA, I _B = 500 μA)			-	1.1	1.6	
(I _C = 200 mA, I _B = 350 µA)			-	0.95	1.3	1
(I _C = 100 mA, I _B = 250 μA)			-	0.85	1.1	
Input Current - On Condition		I(on)				mA
(V ₁ = 17 V)	MC1412		-	0.85	1.3	1 .
(V ₁ = 3.85 V)	MC1413		-	0.93	1,35	
(V ₁ = 5,0 V)	MC1416		-	0.35	0.5	
$(V_1 = 12 V)$	MC1416		-	1.0	1,45	
Input Voltage - On Condition		VI(on)				V
(V _{CE} = 2.0 V, I _C = 300 mA)	MC1412		-	-	13	1
(V _{CE} = 2.0 V, I _C = 200 mA)	M01413		-	1 - 1	2.4	
(VCE = 2.0 V, IC = 250 mA)	MC1413		<u> </u>	-	2.7	
(V _{CE} = 2.0 V, I _C = 300 mA)	MC1413		-	-	3.0	
(V _{CE} = 2.0 V, I _C = 125 mA)	MC1416		-	1 - 1	5.0	
(V _{CE} = 2.0 V, I _C = 200 mA)	MC1416		-	1 - 1	6.0	
(V _{CE} = 2.0 V, I _C = 275 mA)	MC1416		-	-	7.0	1
(VCE = 2.0 V, IC = 350 mA)	MC1416			1 - 1	8.0	
Input Current - Off Condition		II(off)	50	100	_	μA
$(I_{C} = 500 \ \mu A, T_{A} = +70^{\circ}C)$						
DC Current Gain		hFE	1000	1 - 1	_	-
(V _{CE} = 2.0 V, I _C = 350 mA)	MC1411					
Input Capacitance		CI		15	30	pF
Turn-On Delay Time		ton	-	0.25	1.0	μs
(50% Ej to 50% E _O)				1 1		
Turn-Off Delay Tima		toff	_	0.25	1.0	μs
(50% E) to 50% E _O)				1 1		
Clamp Diode Leskage Current	TA = +25°C	I IR	_	- 1	50	μA
(VR = 50 V)	TA = +70°C				100	
Clamp Diode Forward Voltage		VF	-	1.5	2.0	V
$(1_{\rm F} = 350 {\rm mA})$				1		1

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)


*Higher voltage selections available, contact your local representative.

TYPICAL PERFORMANCE CURVES - TA = 25°C

FIGURE 2 - OUTPUT CURRENT versus INPUT CURRENT


TYPICAL CHARACTERISTIC CURVES - TA = 25°C (continued)

30 % BUTY CYCLE 50

70

90 100

20

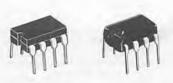
.

REPRESENTATIVE CIRCUIT SCHEMATICS

MC1472

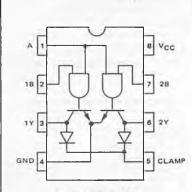
DUAL PERIPHERAL POSITIVE "NAND" DRIVER

SILICON MONOLITHIC


INTEGRATED CIRCUITS

DUAL PERIPHERAL-HIGH-VOLTAGE POSITIVE "NAND" DRIVER

The dual driver consists of a pair of PNP-buffered AND gates connected to the bases of a pair of high-voltage NPN transistors. They are similar to the MC75452 drivers but with the added advantages of: 1) 70 Volt capability 2) output suppression diodes and 3) PNP buffered inputs for MOS compatibility. These features make the MC1472 ideal for mating MOS logic or microprocessors to lamps, relays, printer hammers and incandescent displays.


- 300 mA Output Capability (each transistor)
- 70 Vdc Breakdown Voltage
- Internal Output Clamp Diodes
- Low Input Loading for MOS Compatibility (PNP buffered)

CROSS REFERENCE UDN-5712 - SN75475 - MC1472

U SUFFIX CERAMIC PACKAGE CASE 693

P1 SUFFIX PLASTIC PACKAGE CASE 626

Positive Logic: Y=AB*

TRUTH TABLE

А	в	Y				
L	L	H ("OFF" STATE)				
L	н	H ("OFF" STATE)				
н	L	H ("OFF" STATE)				
н	н	L ("ON" STATE)				
	H = Logic One					

L = Logic Zero

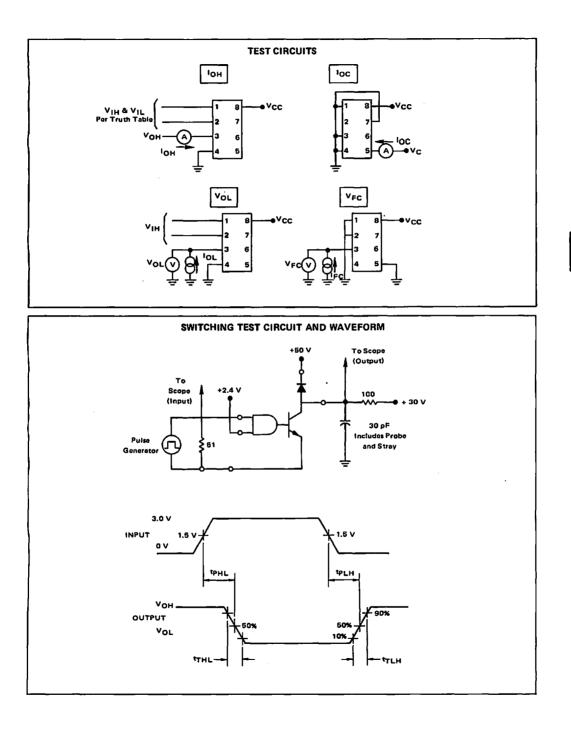
MAXIMUM RATINGS (TA = 25°C, Note 1).

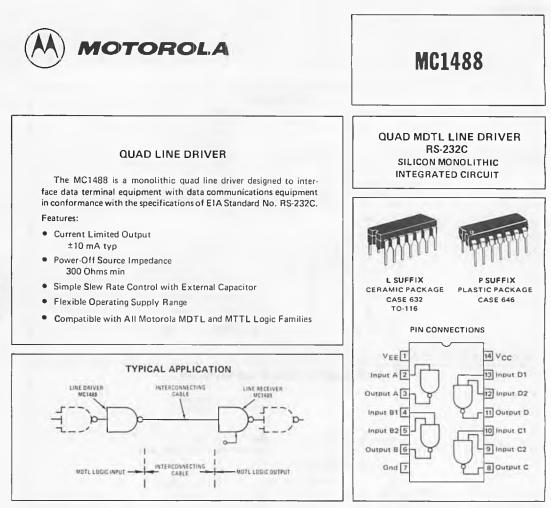
Rating	Value	Unit	
Supply Voltage	7.0	Volts	
Input Voltage	5.5	Volts	
Output Voltage	80	Volts	
Clamp Voltage	80	Volts	
Output Current (Continuous)	300	mA	
Operating Junction Temperature Ceramic Package Plastic Package	+175 +150	°C	
Storage Temperature Range	-65 to +150	°C	

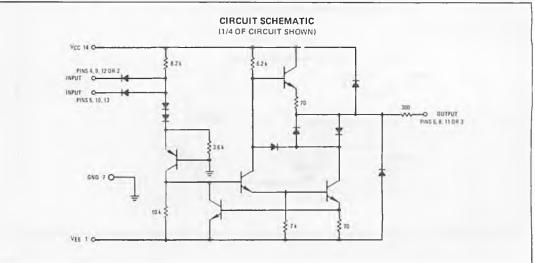
Note 1: "Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The "Table of Electrical Characteristics" provides conditions for actual device operation.

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Min	Max	Unit
Supply Voltage	Vcc	4.5	5.5	Volts
Operating Ambient Temperature	TA	0	70	°C
Output Voltage	Vo	Vcc	70	Volts
Clamp Voltage	v _c	Vo	70	Volts


Characteristic	Symbol	Min	Түр	Max	Unit
Input Voltage – High Logic State	VIH	2.0	-	5.5	Vdc
Input Voltage - Low Logic State	VIL	0	-	0.8	Vdc
Input Current – Low Logic State (VIL ≈ 0.4V) A Input 8 Input	IIL	-	-	-0.3 -0.15	mА
Input Current — High Logic State {V _{IH} = 2.4V) A input B Input (V _{IH} = 5.5V) A Input B Input	IJН			40 20 200 100	μΑ
Input Clamp Voltage (I _{IC} = -12mA)	Vic	_		-1.5	v
Output Leakage Current – High Logic State (VO = 70V, See test Figure)	юн	-	_	100	μA
Output Voltage – Low Logic State {I _{OL} = 100 mA} (I _{OL} = 300 mA)	Vol		-	0.4 0.7	v
Output Clamp Diode Leakage Current (V _C = 70V, See test Figure)	toc	_	_	100	μА
Output Clamp Forward Voltage (IFC = 300 mA See test Figure)	V _{FC}	-	-	1.7	v
Power Supply Current (All Inputs at VIH) (All Inputs at VIL)	'cc	- -	-	15 70	mA


ELECTRICAL CHARACTERISTICS Unless otherwise noted min/max limits apply accross the 0°C to 70°C temperature range with 4.5 V ± V_{CC} ± 5.5 V. All typical values are for T_A = 25°C, V_{CC} = 5 Volts.


NOTE: All currents into device pins are shown as positive, out of device pins as negative. All voltages referenced to ground unless otherwise noted.

SWITCHING CHARACTERISTICS VCC = 5.0V, TA = 25°C

Characteristic	Symbol	Min	Тур	Мах	Unit
Propagation Delay Time Output High to Low Output Low to High	tPHL tPLH	-	-	1.0 0.75	μs
Output Transition Time Output High to Low Output Low to High	tTHL tTLH	-	-	0.1 0.1	вц

MAXIMUM RATINGS (TA = +25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage		+15 -15	Vdc
Input Voltage Range	VIR	- 15 < V _{IR} < 7.0	Vdc
Output Signal Voltage	vo	±15	Vdc
Power Derating (Package Limitation, Caramic and Plastic Dual-In-Line Package) Derate above $T_A = +25^{\circ}C$	Ρ _D 1/R _{θ JA}	1000 6.7	mW mW/ ^o C
Operating Ambient Temperature Range	TA	0 to +75	°C
Storage Temperature Range	Tstg	-65 to +175	°c

ELECTRICAL CHARACTERISTICS (V_{CC} = +9.0 ± 1% Vdc, V_{EE} = -9.0 ± 1% Vdc, T_A = 0 to +75°C unless otherwise noted.)

Characteristic	Figure	Symbol	Min	Тур	Мах	Unit
Input Current - Low Logic State (VIL = 0)	1	11		1.0	1.6	mA
Input Current - High Logic State (VIH = 5.0 V)	1	⊓н	-	-	10	μA
Output Voltage - High Logic State (VIL = 0.8 Vdc, RL = 3.0 kΩ, V _{CC} = +9.0 Vdc, V _{EE} = -9.0 Vdc)	2	VOH	+6.0	+7.0	-	Vdc
(V _{IL} = 0.8 Vdc, R _L = 3.0 kΩ, V _{CC} = +13.2 Vdc, V _{EE} = -13.2 Vdc)			+9.0	+10.5	-	
Output Voltage – Low Logic State (ViH = 1.9 Vdc, RL = 3.0 kΩ, VCC = +9.0 Vdc, VEE = -9.0 Vdc)	2	VOL	-6.0	-7.0	_	Vdc
(V _{IH} = 1.9 Vdc, RL= 3.0 kΩ, V _{CC} = +13.2 Vdc, V _{EE} = -13.2 Vdc)			-9.0	-10.5		
Positive Output Short-Circuit Current (1)	3	IOS+	+6.0	+10	+12	mA
Negative Output Short-Circuit Current (1)	3	IOS-	-6.0	-10	-12	mA
Output Resistance (V _{CC} = V _{EE} = 0, V _O = ±2.0 V)	4	ro	300	_		Ohms
Positive Supply Current ($R_1 = \infty$) (V1H = 1.9 Vdc, V _{CC} = +9.0 Vdc)	5	¹ CC	_	÷15	+20	mA
(V _{IL} = 0.8 Vdc, V _{CC} = +9.0 Vdc)			-	+4.5	+6.0	
(V _{IH} = 1.9 Vdc, V _{CC} = +12 Vdc)			-	+19	+25	
(V _{IL} = 0.8 Vdc, V _{CC} = +12 Vdc)			-	+5.5	+7.0	
(V _{IH} = 1.9 Vdc, V _{CC} = +15 Vdc)			-	-	+34	
(V _{IL} = 0.8 Vdc, V _{CC} = +15 Vdc)			-	-	+12	
Negative Supply Current (RL = ∞) (VIH = 1.9 Vdc, VEE = -9.0 Vdc)	5	'EE	_	-13	-17	mA
{VIL = 0.8 Vdc, VEE = -9.0 Vdc)			-	-	-15	μА
(V _{IH} = 1.9 Vdc, V _{EE} = -12 Vdc)		1	-	-18	-23	mA
(VIL = 0.8 Vdc, VEE = -12 Vdc)			-	-	-15	μA
(VIH = 1.9 Vdc, VEE = -15 Vdc)			-	_	-34	mA
(V _{IL} = 0.8 Vdc, V _{EE} = -15 Vdc)			-		-2.5	mA
Power Consumption (V _{CC} = 9.0 Vdc, V _{EE} = -9.0 Vdc) (V _{CC} = 12 Vdc, V _{EE} = -12 Vdc)		PC	-		333 576	mW

SWITCHING CHARACTERISTICS (V_{CC} = +9.0 ± 1% Vdc, V_{EE} = -9.0 ± 1% Vdc, T_A = +25°C.)

Propagation Oelay Time	(z ₁ = 3.0 k and 15 pF)	6	tРLH	_	275	350	កន
Fall Time	(zj = 3.0 k and 15 pF)	6	tthL	-	45	75	ns
Propagation Delay Time	(zj = 3.0 k and 15 pF)	6	1PHL	-	110	175	ns
Rise Time	(z ₁ = 3.0 k and 15 pF)	6	ттен	-	55	100	ns

(1) Maximum Package Power Dissipation may be exceeded if all outputs are shorted simultaneously.

CHARACTERISTIC DEFINITIONS

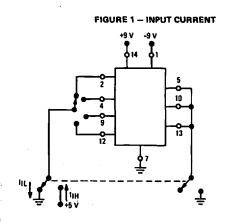


FIGURE 3 - OUTPUT SHORT-CIRCUIT CURRENT

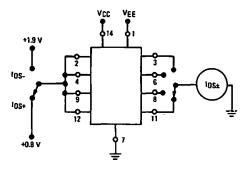


FIGURE 5 - POWER-SUPPLY CURRENTS

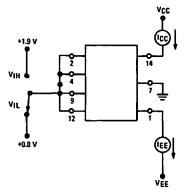


FIGURE 2 – OUTPUT VOLTAGE

FIGURE 4 - OUTPUT RESISTANCE (POWER-OFF)

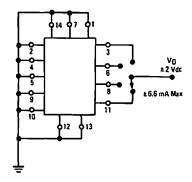
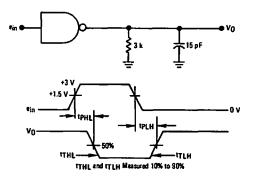
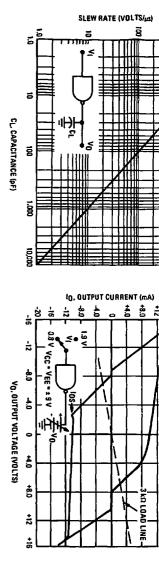




FIGURE 6 - SWITCHING RESPONSE

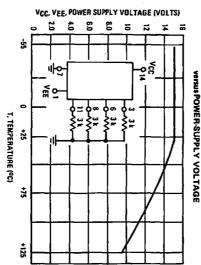
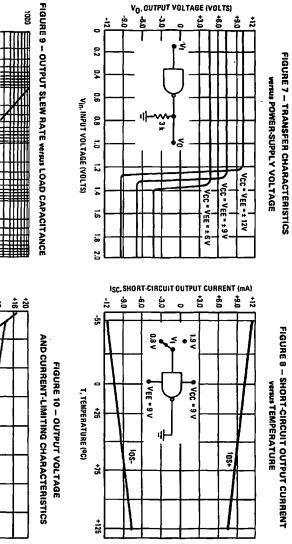



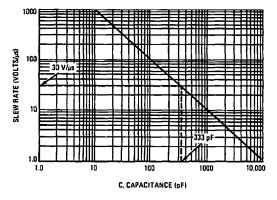
FIGURE 11 - MAXIMUM OPERATING TEMPERATURE

5-35

MC1488

 $(T_A = +25^{\circ}C \text{ unless otherwise noted.})$ TYPICAL CHARACTERISTICS

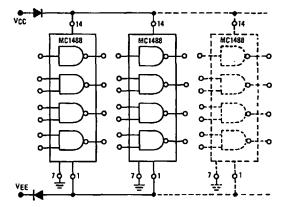
;


APPLICATIONS INFORMATION

The Electronic Industries Association (EIA) has released the RS232C specification detailing the requirements for the interface between data processing equipment and data communications equipment. This standard specifies not only the number and type of interface leads, but also the voltage levels to be used. The MC1488 quad driver and its companion circuit, the MC1489 quad receiver, provide a complete interface system between DTL or TTL logic levels and the RS232C defined levels. The RS232C requirements as applied to drivers are discussed herein.

The required driver voltages are defined as between 5 and 15volts in magnitude and are positive for a logic "0" and negative for a logic "1". These voltages are so defined when the drivers are terminated with a 3000 to 7000-ohm resistor. The MC1488 meets this voltage requirement by converting a DTL/TTL logic level into RS232C levels with one stage of inversion.

The RS232C specification further requires that during transitions, the driver output slew rate must not exceed 30 volts per microsecond. The inherent slew rate of the MC1488 is much too

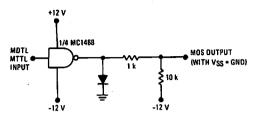

FIGURE 12 - SLEW RATE versus CAPACITANCE FOR ISC = 10 mA

fast for this requirement. The current limited output of the device can be used to control this slew rate by connecting a capacitor to each driver output. The required capacitor can be easily determined by using the relationship $C = I_{OS} \times \Delta T / \Delta V$ from which Figure 12 is derived. Accordingly, a 330-pF capacitor on each output will guarantee a worst case slew rate of 30 volts per microsecond.

The interface driver is also required to withstand an accidental short to any other conductor in an interconnecting cable. The worst possible signal on any conductor would be another driver using a plus or minus 15-volt, 500-mA source. The MC1488 is designed to indefinitely withstand such a short to all four outputs in a package as long as the power-supply voltages are greater than 9.0 volts (i.e., $V_{CC} \ge 9.0 \text{ V}$; $V_{EE} \le -9.0 \text{ V}$). In some power-supply designs, a loss of system power causes a low impedance on the power-supply outputs. When this occurs, a low impedance to ground would exist at the power inputs to the MC1488 effectively shorting the 300-ohm output resistors to ground. If <u>all four outputs</u> were then shorted to plus or minus 15 volts, the power dissipation in these resistors

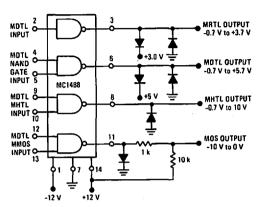
FIGURE 13 - POWER-SUPPLY PROTECTION TO MEET POWER-OFF FAULT CONDITIONS

would be excessive. Therefore, if the system is designed to permit low impedances to ground at the power-supplies of the drivers, a diode should be placed in each power-supply lead to prevent overheating in this fault condition. These two diodes, as shown in Figure 13, could be used to decouple all the driver packages in a system. (These same diodes will allow the MC1488 to withstand momentary shorts to the ± 25 -volt limits specified in the earlier Standard RS2328.) The addition of the diodes also permits the MC1488 to withstand faults with power-supplies of less than the 9.0 volts stated above.

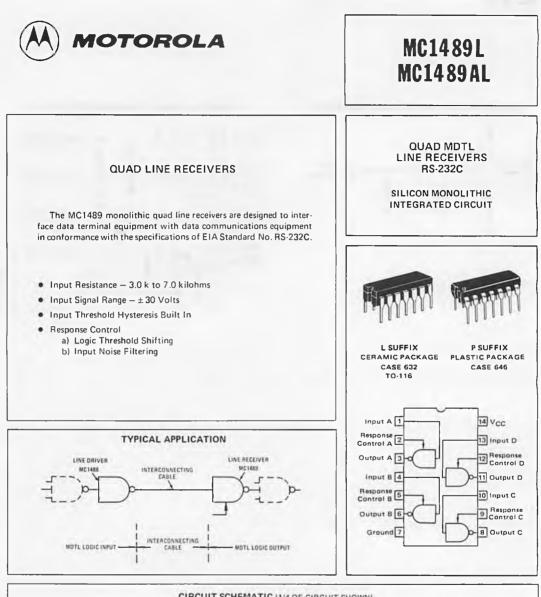

The maximum short-circuit current allowable under fault conditions is more than guaranteed by the previously mentioned 10 mA output current limiting.

Other Applications

The MC1488 is an extremely versatile line driver with a myriad of possible applications. Several features of the drivers enhance this versatility:


 Output Current Limiting - this enables the circuit designer to define the output voltage levels independent of power-supplies and can be accomplished by diode clamping of the output pins. Figure 14 shows the MC1488 used as a DTL to MOS translator where the high-level voltage output is clamped one diode above ground. The resistor divider shown is used to reduce the output voltage below the 300 mV above ground MOS input level limit.

2. Power-Supply Range – as can be seen from the schematic drawing of the drivers, the positive and negative driving elements of the device are essentially independent and do not require matching power-supplies. In fact, the positive supply can vary from a minimum seven volts (required for driving the negative pulldown section) to the maximum specified 15 volts. The negative supply can vary from approximately –2.5 volts to the minimum specified -15 volts. The MC1488 will drive the output to within 2 volts of the positive or negative supplies as long as the current output limits are not exceeded. The combination of the current-limiting and supply-voltage features allow a wide combination of possible outputs within the same quad package. Thus if only a portion of the four drivers are used for driving RS232C lines, the remainder could be used for DTL to MOS or even DTL to OTL translation. Figure 15 shows one such combination.


...

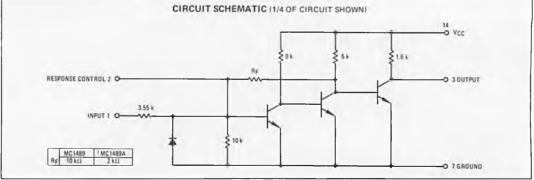

FIGURE 14 - MDTL/MTTL-TO-MOS TRANSLATOR

FIGURE 15 - LOGIC TRANSLATOR APPLICATIONS

;

Propagation Delay Time

Fall Time

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	10	Vdc
Input Voltage Range	VIR	±30	Vdc
Output Load Current	<u>ار</u>	20	mA
Power Dissipation (Package Limitation, Ceramic and Plastic Dual In-Line Package) Derate above T _A = +25 ⁰ C	PD 1/8 JA	1000 6.7	mW mW/ ^o C
Operating Amblent Temperature Range	TA	0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

ELECTRICAL CHARACTERISTICS (Response control pin is open.) ($V_{CC} = +5.0 \text{ Vdc} \pm 1\%$, $T_A = 0$ to +75^oC unless otherwise noted)

Ch	aracteristics		Figure	Symbol	Min	Тур	Max	Unit
Positive Input Current		(V _{IH} = +25 Vdc) (V _{IH} = +3.0 Vdc)	1	Чн	3.6 0.43	-	8.3 -	mA
Negative Input Current	<u></u>	(V _{IL} = -25 Vdc) (V _{IL} = -3.0 Vdc)	1	^I IL	-3.6 -0.43	-	-8.3	mA
Input Turn-On Threshold Voltage (T _A = +25 ⁰ C, V _{OL} ≤ 0.45 V)		MC1489 MC1489A	2	⊻ін∟	1.0 1.75	_ 1.95	1.5 2.25	Vđc
Input Turn-Off Threshold Voltage (T _A = +25 ^o C, V _{OH} ≥ 2.5 V, I _L	= -0.5 mA)	MC1489 MC1489A	2	VILH	0.75 0.75	_ 0.8	1.25 1.25	Vđc
Output Voltage High	(V _{IH} = 0.75 V, I (Input Open Circ	L = -0.5 mA) uit, IL = -0.5 mA)	2	∨он	2.6 2.6	4.0 4.0	5.0 5.0	Vdo
Output Voltage Low	(VIL = 3.0 V, IL	= 10 mA)	2	VOL	-	0.2	0.45	Vdo
Output Short-Circuit Current	<u> </u>		3	los	-	3.0	-	mA
Power Supply Current		(VIH= +5.0 Vdc)	4	'cc	-	20	26	mA
Power Consumption		(V _{1H} = +5.0 Vdc)	4	PC	-	100	130	mW
SWITCHING CHARACTERIS	TICS (V _{CC} = 5.0	Vdc ± 1%, T _A = +25 ^c	PC)	•				·
Propagation Delay Time		(R _L = 3.9 kΩ)	5	TPLH	-	25	85	ns
Rise Time		(R _L = 3.9 kΩ)	5	TLH	-	120	175	ns

(R_L = 390 Ω)

(R_L = 390 Ω)

5-39

5

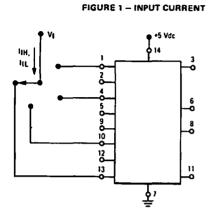
5

TPHL

THL

25

10


-

50

20

ns.

ns

TEST CIRCUITS

FIGURE 3 - OUTPUT SHORT-CIRCUIT CURRENT

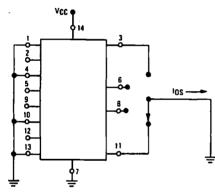
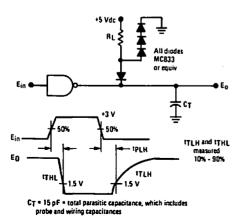



FIGURE 5 - SWITCHING RESPONSE

VIHL FIGURE 2 – OUTPUT VOLTAGE and INPUT THRESHOLD VOLTAGE VILH VIHL +5 Vdc +5 Vdc OPEN 14 ١Ľ 6 5 9 ō 10 o 12 VOL VOH 13 11 ₹,

FIGURE 4 - POWER-SUPPLY CURRENT

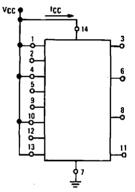
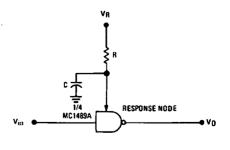
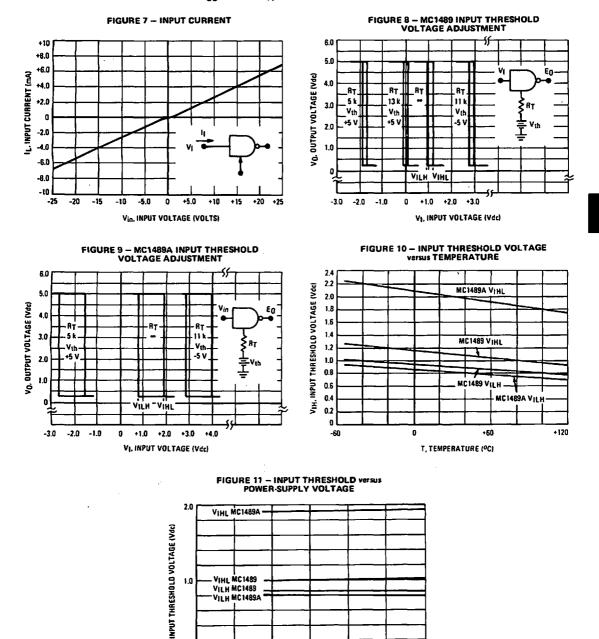




FIGURE 6 - RESPONSE CONTROL NODE

C, capacitor is for noise filtering. R, resistor is for threshold shifting.

TYPICAL CHARACTERISTICS

(V_{CC} = 5.0 Vdc, $T_A = +25^{\circ}$ C unless otherwise noted)

VCC. POWER SUPPLY VOLTAGE (Vdc)

8.0

12

4.0

VILH MC1489A

APPLICATIONS INFORMATION

General Information

The Electronic Industries Association (E1A) has released the RS-232C specification detailing the requirements for the interface between data processing equipment and data communications equipment. This standard specifies not only the number and type of interface leads, but also the voltage levels to be used. The MC1488 guad driver and its companion circuit, the MC1489 quad receiver, provide a complete interface system between DTL or TTL logic levels and the RS-232C defined levels. The RS-232C requirements as applied to receivers are discussed berein.

The required input impedance is defined as between 3000 ohms and 7000 ohms for input voltages between 3.0 and 25 volts in magnitude; and any voltage on the receiver input in an open circuit condition must be less than 2.0 volts in magnitude. The MC1489 circuits meet these requirements with a maximum open circuit voltage of one VBE (Ref. Sect. 2.4).

The receiver shall detect a voltage between -3.0 and -25 volts as a logic "1" and inputs between +3.0 and +25 volts as a logic "0" (Ref. Sect. 2.3). On some interchange leads, an open circuit or power "OFF" condition (300 ohms or more to ground) shall be decoded as an "OFF" condition or logic "1" (Ref. Sect. 2.5). For this reason, the input hysteresis thresholds of the MC1489 circuits are all above ground. Thus an open or grounded input will cause the same output as a negative or logic "1" input.

Device Characteristics

The MC1489 interface receivers have internal feedback from the second stage to the input stage providing input hysteresis for noise rejection. The MC1489 input has typical turn-on voltage of 1.25 volts and turn-off of 1.0 volt for a typical hysteresis of 250 mV. The MC1489A has typical turn-on of 1.95 volts and turn-off of 0.8 volt for typically 1.15 volts of hysteresis.

Each receiver section has an external response control node in addition to the input and output pins, thereby allowing the designer to vary the input threshold voltage levels. A resistor can be connected between this node and an external power-supply. Figures 6, 8 and 9 illustrate the input threshold voltage shift possible through this technique.

This response node can also be used for the filtering of highfrequency, high-energy noise pulses. Figures 12 and 13 show typical noise-pulse rejection for external capacitors of various sizes.

These two operations on the response node can be combined or used individually for many combinations of interfacing applications. The MC1489 circuits are particularly useful for interfacing between MOS circuits and MDTL/MTTL logic systems. In this application, the input threshold voltages are adjusted (with the appropriate supply and resistor values) to fall in the center of the MOS voltage logic levels. (See Figure 14)

The response node may also be used as the receiver input as long as the designer realizes that he may not drive this node with a fow impedance source to a voltage greater than one diode above ground or less than one diode below ground. This feature is demonstrated in Figure 15 where two receivers are slaved to the same line that must still meet the RS-232C impedance requirement.

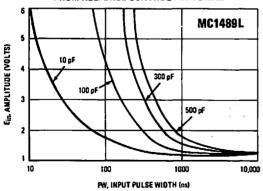
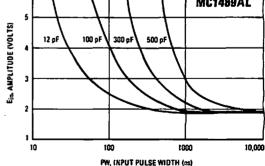



FIGURE 12 - TURN-ON THRESHOLD Versus CAPACITANCE FROM RESPONSE CONTROL PIN TO GND

FROM RESPONSE CONTROL PIN TO GND MC1489AL 12 pF 100 pF 300 el 500 pF

FIGURE 13 - TURN-ON THRESHOLD versus CAPACITANCE

APPLICATIONS INFORMATION (continued)

FIGURE 14 ~ TYPICAL TRANSLATOR APPLICATION - MOS TO DTL OR TTL

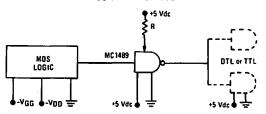
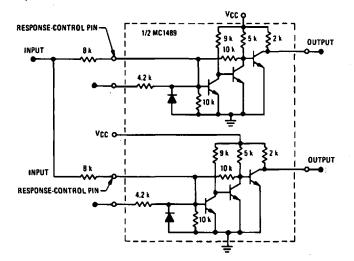
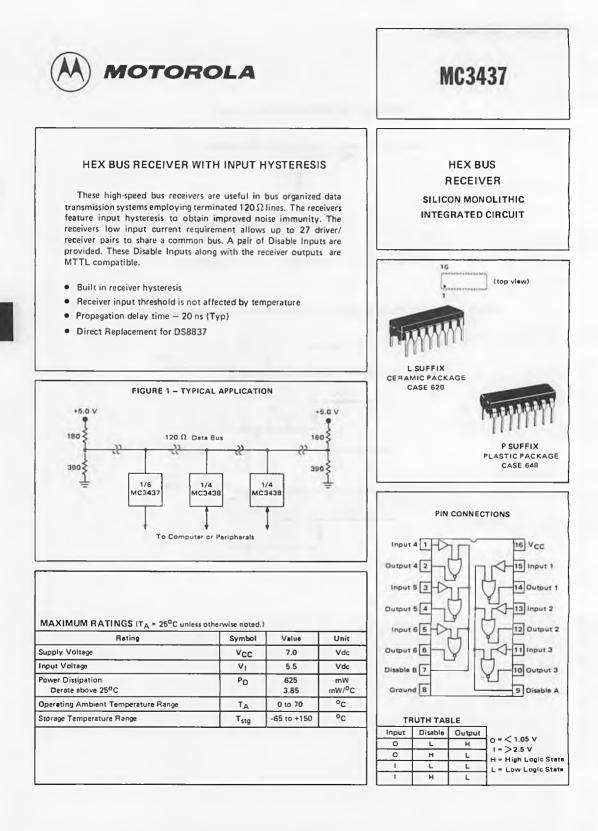




FIGURE 15 - TYPICAL PARALLELING OF TWO MC1489, A RECEIVERS TO MEET RS-232C

MC3437

Characteristic	Symbol	Min	Тур	Мах	Unit
Receiver Input Threshold Voltage – High Logic State (VIL(DA) = 0.8 V, IOL = 16 mA, VOL <0.4 V)	VILH(R)	1.80	2.25	2.50	v
Receiver Input Threshold Voltage – Low Logic State (VIL(DA) = 0.8 V, I _{OH} = -400 µA, V _{OH} ≥ 2.4 V)	VIHL(R)	1.05	1.30	1.55	v
Receiver Input Current {VI(R) = 4.0 V, V _{CC} = 5.25 V) {VI(R) = 4.0 V, V _{CC} = 0 V)	li(R)	-	15 1.0	50 50	μA
Disable Input Voltage – High Logic State (V _{I(R)} = 0.5 V, V _{OL} ≤ 0.4 V, I _{OL} = 16 mA)	VIH(DA)	2.0	-	-	v
Diseble Input Voltage – Low Logic State {V1(R} = 0.5 V, VOH ≥ 2.4 V, I _{OH} = -400 µA}	VIL(DA)	-	-	0.8	v
Output Voltage — High Logic State (VI(R) = 0.5 V, VIL(DA) = 0.8 V, IOH = -400 µA)	∨он	2.4	-	-	v
Output Voltage Low Logic State {VI(R) = 4.0 V, VIL(DA) = 0.8 V, IOL = 18 mA}	VOL	-	0.25	0.4	v
Disable Input Current — High Logic State (VIH(DA) = 2.4 V) (VIH(DA) = 5.5 V)	lih(DA)	-		80 2.0	μA mA
Disable Input Current – Low Logic State (VI(R) = 4.0 V, VIL(DA) = 0.4 V)	IL(DA)	-	-	-3.2	mA
Output Short Circuit Current {V _{I(R}} = 0.5 V, V _{IL(DA} } = 0 V, V _{CC} = 5.25 V}	los	-18	-	-55	mA
Power Supply Current {V {R} = 0.5 V, V L(DA} = 0 V}	lcc	-	45	70	mA
Input Clamp Diode Voltage (I ₁ (R) = -12 mA, I ₁ (DA) = -12 mA,	v _i	-	-1.0	-1.5	v

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply for $0 \le T_A \le 70^{\circ}C$ and $4.75 \lor \le V_{CC} \le 5.25 \lor$.)

SWITCHING CHARACTERISTICS (T_A $\simeq 25^{\circ}$ C, V_{CC} $\simeq 5.0$ V unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time from Receiver Input to High Logic State Output	^t PLH(R)	-	20	30	ns
Propagation Delay Time from Receiver Input to Low Logic State Output	tPHL(R)	-	18	30	ns
Propagation Detay Time from Disable Input to High Logic State Output	- ^{tp} LH(DA)	-	9.0	15	ns
Propagation Delay Time from Disable Input to Low Logic State Output	tPHL(DA)	-	4.0	15	ns

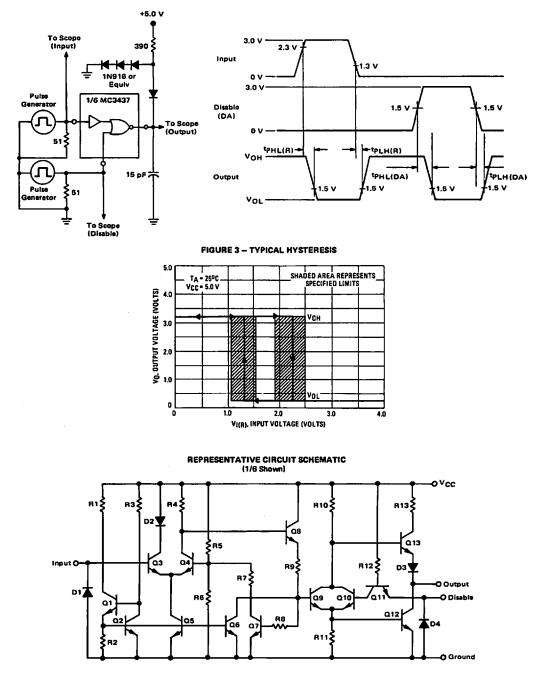
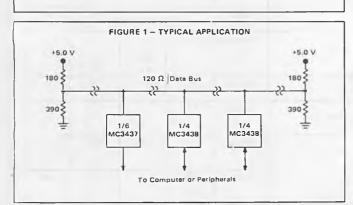


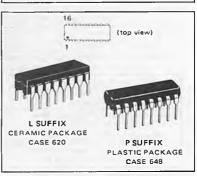
FIGURE 2 - SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

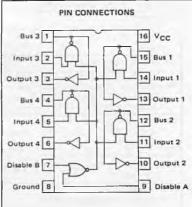


MC3438

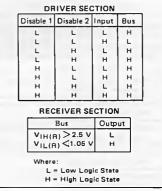
QUAD BUS TRANSCEIVER

Consists of four pair of drivers and receivers with the output of each driver connected to the input of its mating receiver. These devices are intended for use in bus organized data transmission system employing terminated 120 Ω lines. The receivers feature hysteresis to improve noise immunity. A disable function consisting of a two-input NOR gate is provided to control all four drivers.


- · Receiver input threshold is not affected by temperature
- Receiver input hysteresis 1.0 V (Typ)
- Open collector driver outputs allow wire-OR
- MTTL compatible receiver outputs and disable and driver inputs
- Driver propagation delay 20 ns
- Receiver propagation delay 20 ns
- Direct replacement for DS8838

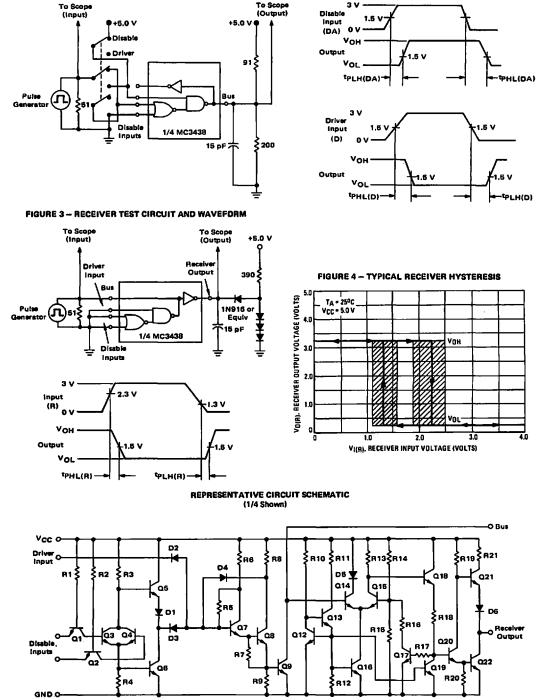


MAXIMUM RATINGS (T _A = 25 ^o C unless Rating	Symbol	Value	Unit
Supply Voltage	Vcc	7.0	Vdc
Input and Output Voltage	Vo. VI	5.5	Vdc
Power Dissipation Derate above 25°C	PD	625 3.85	mW mW/ ^o C
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	Tstq	-65 to +150	°C


QUAD BUS

SILICON MONOLITHIC

TRUTH TABLES


5

Symbol	Min	Тур	Max	Unit
VIH(DA)	2.0	-	-	v
VIL(DA)	-	-	0.8	V V
VIH(D)	2.0	-	-	v
VIL(D)	-	-	0.8	v
VILH(R)	1.80	2.25	2.50	V
VIHL(R)	1.05	1.30	1,55	v
IH(DA)	-		40 1.0	μA mA
IH(D)	-		40 1.0	μA mA
IIL(DA)	-	-	-1.6	mA
¹ IL(D)	-	-	-1.6	mA
IBUS	_	20 2.0	100 100	μA
VL(BUS)	-	0.4	0.7	v
VOH(R)	2.4	-	-	v
VOL(R)	-	0.25	0.4	v
^I OS(R)	-18	-	-55	mA
'cc	-	50	70	mΑ
VI VI	-	-1.0	-1.5	V
	VILIDA) VIH(D) VIH(D) VILID) VILID) VILID) VILID) VILID) VILID) VILID) VILID) IIH(D) IIH(D) IIH(D) IIL(DA) IIL(DA) IIL(DA) IIL(D) IIL(DA) VL(BUS) VL(BUS) VOH(R) IOS(R) ICC	VIL(DA) - VIL(D) 2.0 VIL(D) - VIL(D) - VIL(R) 1.80 VIL(R) 1.05 ¹ IH(DA) - ¹ IH(DA) - ¹ IH(DA) - ¹ IL(DA) - ¹ IL(BUS) - ¹ ICC -	$\begin{array}{ c c c c } & I & I & I & I & I & I & I & I & I & $	VIL(DA) - - 0.8 VIL(D) 2.0 - - VIL(D) - - 0.8 VIL(R) 1.80 2.25 2.50 VIHL(R) 1.05 1.30 1.55 IH(DA) - - 40 - - 1.0 1.0 IH(DA) - - 40 - - 1.0 1.0 IH(DA) - - - II(DA) - - - IBUS - 0.4 0.7 VOH(R) - 0.25

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply for 0 < TA < 70°C and 4.75 < VCC < 5.25 V.)

SWITCHING CHARACTERISTICS (TA = 25°C, VCC = 5.0 V unless otherwise noted.)

Characteristic	Symbol	Min	Түр	Max	Unit
Propagation Delay Time from Disable Input to High Logic Level Output	^t PLH(DA)	-	19	27	ns
Propagation Delay Time from Disable Input to Low Logic Level Output	tPHL(DA)	-	15	27	ns
Propagation Delay Time from Driver Input to High Logic Level Output	^t PLH(D)	-	17	25	ns
Propagation Delay Time from Driver Input to Low Logic Leval Output	(PHL(D)	-	9.0	20	ns
Propagation Delay Time from Bus Input to High Logic Level Output	^t PLH(R)	-	20	30	ns
Propagation Delay Time from Bus Input to Low Logic Level Output	华HL(R)	-	18	30	ns

FIGURE 2 - DRIVER AND DISABLE TEST CIRCUIT AND WAVEFORMS

5-49

QUAD INTERFACE

BUS TRANSCEIVERS

SILICON MONOLITHIC INTEGRATED CIRCUITS

MC3440A

MC3441A

Output and

Termination

Receiver

Output A

Driver Input A

Receiver

Output B

Logic Gnd

Output and

Termination -

Receiver

Driver

Driver Input 8

Receiver

Output B

Bus B ~

Input A

Gnd

....

Driver Input B

8us 8 🖓

Gnd

Bus A 🗖

P SUFFIX

PLASTIC PACKAGE CASE 648

≠ Vcc

a Bus C

Receiver z

Output C

Driver 5 Input C

ਤ Enable E

Driver 3

• Bus D

∎ vcc

a Bus C

1 Output C

5 Input C

õ Output D

Receiver

Oriver

a Enable E

Driver

E Juput D Receiver

ő

Input D

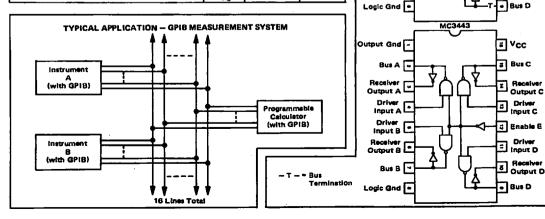
Receiver

Output D

QUAD GENERAL-PURPOSE INTERFACE BUS (GPIB) TRANSCEIVERS

The MC3440A, MC3441A, MC3443 are guad bus transceivers intended for usage in instruments and programmable calculators equipped for interconnection into complete measurement systems. These transceivers allow the bidirectional flow of digital data and commands between the various instruments. Each of the transceiver versions provides four open-collector drivers and four receivers featuring input hysteresis.

The MC3440A version consists of three drivers controlled by a common Enable input and a single driver without an Enable input. Terminations are provided in the device.

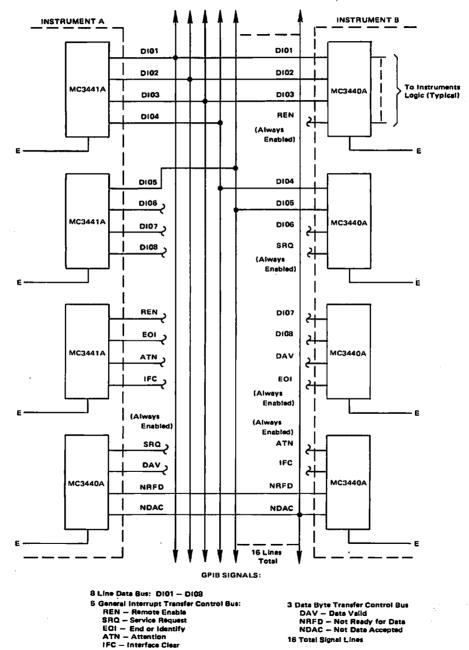

The MC3441A differs in that all four drivers are controlled by the common Enable input. Again, the terminations are provided.

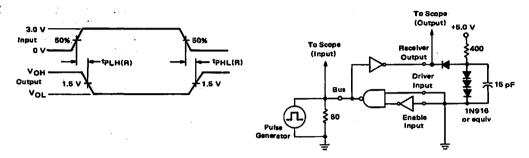
The MC3443 is identical to the MC3441A except that the terminations have been omitted. As such it is pin compatible, and functionally equivalent to the SN75138. It does offer the advantage of receiver input hysteresis.

- Receiver Input Hysteresis Provides Excellent Noise Rejection
- **Open-Collector Driver Outputs Permit Wire-OR Connection**
- Tailored to Meet the Proposed Standards Set by the IEEE and IEC Committees on Instrument Interface (488-1978)
- Terminations Provided (except MC3443 version)
- Provides Electrical Compatibility with General-Purpose Interface Bus

MAXIMUM RATINGS (TA - 25°C unless otherwise noted.)

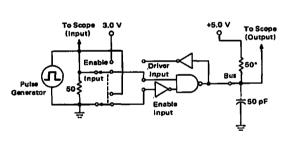
Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	7.0	Vdc
Input Voltage	V _I	5.5	Vdc
Driver Output Current	10(D)	150	mA
Power Dissipation (Package Limitation) Derate above 25°C	PD	830 6.7	mW mW/ ⁰ C
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	Tstg	-65 to +150	°C


MC3440A, MC3441A, MC3443


T _A = 25°C, V _{CC} = 5.0 V)										
Characteristic	Sym	bol	M	lin	T	YP	M	8X	U	nit
DRIVER PORTION										
Input Voltage – High Logic State	VIH	(D)	2	.0		_		-	Г ·	v
Input Voltage - Low Logic State	VIL			-	<u> </u>	-	0	.8	,	V
Input Current - High Logic State	1IH			-		-	4	0	μ	A
(V _{1H} = 2.4 V)										
Input Current - Low Logic State MC3443	116	(D)	·	-	-	-		.6	α	A
(VIL = 0.4 V, VCC = 5.0 V, TA = 25°C) MC3440A, 3441A							-0.	.26		
Input Clamp Voltage	VIK	(D)	·	-	-	-	-1	.5	· ۱	/
(I _{IK} = -12mA)		_	<u> </u>	-	Ļ		 			
Output Voltage – High Logic State (1) (MC3440A, 3441A only) (VIH(S) = 2.4 V or VIL(D) = 0.8 V) (MC3440A, 3441A only)	VOF	1(D)		.5			-	-	<u> </u>	/
Output Voltage - Low Logic State	VOL	(D)			ł				۱	/
(VIH(S) = 2.0 V, VIL(E) = 0.8 V, IOL(D) = 48 mA) MC3443			· ۱	-	- 1	-		.4		
MC3440A, 3441A			· ·	-	-	-	-	.5		
(VIH(O) = 2.0 V, VIL(E) = 0.8 V, IOL(D) = 100 mA)			ļ	-		-		80	ļ	
Output Leakage Current - MC3443 Only	юн	(D)	·	-	- 1	-	25	50	μ	A
(VIH(E) = 2.0 V or VIL(D) = 0.8 V)			I							
RECEIVER PORTION			<u> </u>						<u> </u>	
Input Hysteresis	-			00		BO		-		١V
Input Threshold Voltage - Low to High Output Logic State	VILH	1(8)	0	.8	0.	98	-	-	· ا	/
$(V_{CC} = 5.0 V, T_A = 25^{\circ}C)$										
Input Threshold Voltage - High to Low Output Logic State	⊻іні	L(R)		-	1.56		2	.0	'	v
$(V_{CC} = 5.0 V, T_A = 25^{\circ}C)$										
Output Voltage - High Logic State	∨он	I(R)	2	.4	-		- 1	-	,	/
(V _{IL(R)} = 0.8 V, I _{OH(R)} = -400 µA)										
Output Voltage - Low Logic State MC3440A, 3441A	VOL	(R)	-	-	-	-		.5	· ۱	<i>'</i>
(VIH(R) = 2.0 V, IOL(R) = 16 mA) MC3443						•	0			•
Output Short-Circuit Current (VIL (R) = 0.8 V) (Only one output may be shorted at a time)	¹ OS((R)		20	-	-	-5	10	"	A
		-			I					
BUS TERMINATION PORTION (Does not apply to MC3443)				_	·				<u> </u>	v
Bus Voltage (V _{IL(D)} = 0.8 V) (I _{BUS} = -12 mA)	VBU	JS	_	_	_	_	_1	.6		•
(No Load)			2.9	50		-		70		
Bus Current	l BU	e				-			_	A
$(V_{1L(D)} = 0.8 V, V_{BUS} > 5.0 V)$		3	o.	7	-	-		-		
(VIL(D) = 0.8 V, VBUS < 5.5 V)			-		-	-	2	.5		
(VIL(D) = 0.8 V, VBUS = 0.5 V)			-1	.3	-	-	-	3.2		
$(V_{CC} = 0, 0 \le V_{BUS} \le 2.75 V)$ (MC3440A, 3441A only)			-		-	-	+0	.04		
TOTAL DEVICE POWER CONSUMPTION										
Power Supply Current	١c	~	3	:0	5	6	7	5		A
$(V_{IH}(D) = 2.4 V, V_{IL}(E) = 0 V)$		•	-	-		-				
SWITCHING CHARACTERISTICS (VCC - 5.0 V, TA - 25°C)									I	
		_								r
Chanadaria					41A,3			AC344		Unit
Characteristic Characteristic		ອງຄ	nbol	Min	I IVP	Max	Min	<u>i iyp</u>	Max	Una
Propagation Delay Time from Driver Input to Low Logic State Bus Output					13	30		13	25	0.5
Propagation Delay Time from Driver Input to Low Logic State Bus Output Propagation Delay Time from Driver Input to High Logic State Bus Output			L(D)		13	30		17	25	
Propagation Delay Time from Driver Input to High Logic State But Dutput			H(D)		25	40	<u> </u>	25	32	ាន ៣ន
IVERAGION LIGHT TIME TIOM CHADIC INDUITO LOW LODIC STATE BUS OUTDIN			1 /61	-			- 1			

Propagation Delay Time from Enable Input to Low Logic State Bus Output	ΨHL(E)	-	25	40	-	26	32	ns
Propagation Dalay Time from Enable Input to High Logic State Bus Output		1	25	40	-	25	32	រាទ
RECEIVER PORTION			_					
Propagation Delay Time from Bus Input to High Logic State Receiver Output	ዋLH(R)	_	15	30	-	15	22	ns
Propagation Delay Time from Bus Input to Low Logic State Receiver Output	ሞHL(R)	-	15	30	Γ-	15	22	ns

(1) 12 k resistor from the bus terminal to VCC required on the MC3443 version.



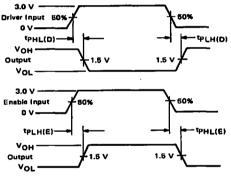
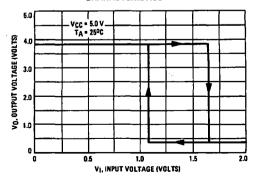

GENERAL PURPOSE INTERFACE BUS APPLICATION

FIGURE 1 – TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM RECEIVER INPUT (BUS) TO OUTPUT



*MC3443 only. MC3440A/3441A uses 100 Ω.

FIGURE 3 — TYPICAL RECEIVER HYSTERESIS CHARACTERISTICS

MC3446A

QUAD INTERFACE

BUS TRANSCEIVER SILICON MONOLITHIC

INTEGRATED CIRCUIT

a Vcc

ĩ Bus D

5

z,

ö Bus C

. Output C

Receiver ä

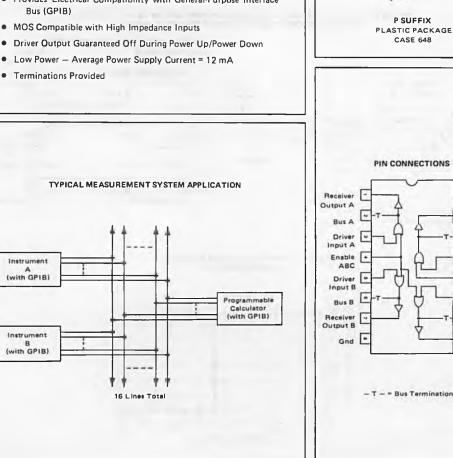
Driver

Input D

Enable D

Driver = Input C

Receiver


Output D

QUAD GENERAL-PURPOSE INTERFACE **BUS (GPIB) TRANSCEIVER**

The MC3446A is a guad bus transceiver intended for usage in instruments and programmable calculators equipped for interconnection into complete measurement systems. This transceiver allows the bidirectional flow of digital data and commands between the various instruments. The transceiver provides four open-collector drivers and four receivers featuring hysteresis.

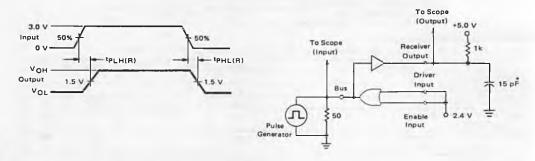
- Tailored to Meet the IEEE Standard 488-1978 (Digital Interface) for Programmable Instrumentation) and the Proposed IEC Standard on Instrument Interface
- Provides Electrical Compatibility with General-Purpose Interface Bus (GPIB)
- MOS Compatible with High Impedance Inputs

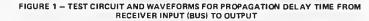
- Terminations Provided

MC3446A

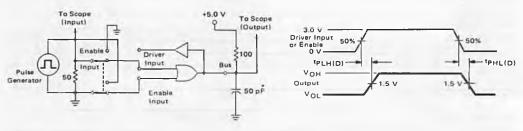
MAXIMUM RATINGS (TA = 25°C unless otherwise noted.)

Rating	Symbol	Vatue	Unit
Power Supply Voltage	Vcc	7.0	Vdc
Input Voltage	VI	5.5	Vdc
Driver Output Current	10(D)	150	mA
Junction Temperature	ΤJ	150	°¢
Operating Ambient Temperature Range	TA	0 to +70	°c
Storage Temperature Range	Tstg	-65 to +150	°C


ELECTRICAL CHARACTERISTICS


(Unless otherwise noted, 4.5 V < V_{CC} < 5.6 V and 0 < T_A < 70°C, typical values are at T_A = 25°C, V_{CC} = 5.0 V)

	sracteristic	Symbol	Min	Тур	Max	Unit
DRIVER PORTION						
Input Voltage - High Logic State		VIH(D)	2.0	-	-	V
Input Voltage - Low Logic State			_	_	0.8	V V
Input Current - High Logic State (VIH = 2.4 V)		¹ IH(D)	-	5.0	40	μA
Input Current - Low Logic State (VjL = 0.4 V, V _{CC} = 5.0 V, T	Δ = 25 ⁰ C)	liL(D)	-	-0.2	-0.25	mA
Input Clamp Voltage (I _{IK} = -12 mA)		VIK(D)	-	-	-1.5	V
Output Voltage - High Logic Stat (VIH(S) = 2.4 V or VIH(D) =		VOH(D)	2.5	3.3	3.7	v
Output Voltage – Low Logic Stat (VIL(S) = 0.8 V, VIL(D) = 0.8		VOL(D)	1	-	0.5	
Input Breakdown Current (V _{1(D)} = 5.5 V)		¹ 18(D)	~	-	1.0	mA
RECEIVER PORTION						
Input Hysteresis		-	400	625	-	۳V
Input Threshold Voltage - Low t	o High Output Logic State	VILH(R)	-	1.66	2.0	V
Input Threshold Voltage - High t	o Low Output Logic State	VIHL(R)	0.8	1.03	-	v
Output Voltage - High Logic Stat (VIH(R) = 2.0 V, IOH(R) = -4		VOH(R)	2.4	_	-	v
Output Voltage - Low Logic Stat (VIL(R) = 0.8 V, IOL(R) = 8.0		VOL(R)		-	0.5	V
Output Short-Circuit Current (V _{IH(R)} = 2.0 V) (Only one ou	tput may be shorted at a time)	IOS(R)	4.0	-	14	mA
BUS LOAD CHARACTERISTICS						
Bus Voltage	(V _{IH(E)} = 2.4 V) (I _{BUS} = -12 mA)	V(BUS)	2.5	3.3	3.7 -1.5	└
Bus Current	(V _{IH(D)} = 2.4 V, V _{BUS} >5.0 V) (V _{IH(D)} = 2.4 V, V _{BUS} = 0.5 V) (V _{BUS} <5.5 V) (V _{CC} = 0,0 V < V _{BUS} < 2.75 V)	¹ (BUS)	0.7 -1.3 -		- -3.2 2.5 0.04	mA
TOTAL DEVICE POWER CONSU						
Power Supply Current (All Drivers OFF) (All Drivers ON)	· · · · · · · · · · · · · · · · · · ·	lcc	-	12 32	19 40	mA


SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = 26°C)

Characteristic	Symbol	Min	Тур	Max	Unit
DRIVER PORTION			•		
Propagation Delay Time from Driver Input to Low Logic State Bus Output	tPHL(D)	-	1	50	ns
Propagation Delay Time from Driver Input to High Logic State Bus Output	PLH(D)	-	1	40	ns
Propagation Delay Time from Enable Input to Low Logic State Bus Output	PHL(E)	-	-	50	ns.
Propagation Delay Time from Enable Input to High Logic State Bus Output	tPLH(E)		-	50	ITS .
RECEIVER PORTION					
Propagation Delay Time from Bus Input to High Logic State Receiver Output	tPLH(R)	-	-	50	ns
Propagation Delay Time from Bus Input to Low Logic State Receiver Output	(PHL(R)	_	-	40	ns

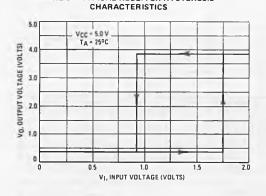
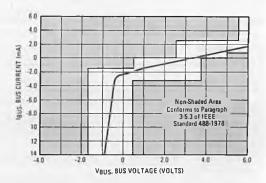



FIGURE 3 - TYPICAL RECEIVER HYSTERESIS

FIGURE 4 - TYPICAL BUS LOAD LINE

MC3447

OCTAL BIDIRECTIONAL BUS TRANSCEIVER

WITH TERMINATION NETWORKS

SILICON MONOLITHIC

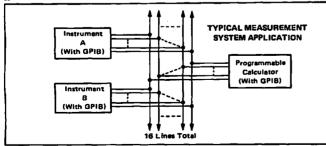
Advance Information

BIDIRECTIONAL INSTRUMENTATION BUS (GPIB) TRANSCEIVER

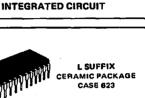
This bidirectional bus transceiver is intended as the interface between TTL or MOS logic and the IEEE Standard Instrumentation Bus (488-1975, often referred to as GPIB). The required bus termination is internally provided.

Low power consumption has been achieved by trading a minimum of speed for low current drain on non-critical channels. A fast channel is provided for critical ATN and EOI paths.

Each driver/receiver pair forms the complete interface between the bus and an instrument. Either the driver or the receiver of each channel is enabled by a Send/Receive input with the disabled output of the pair forced to a high impedance state. The receivers have input hysteresis to improve noise margin, and their input loading follows the bus standard specifications.

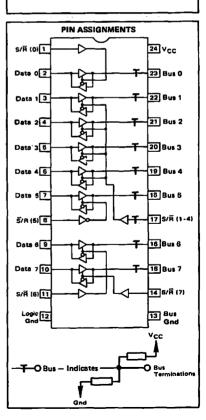

• Low Power - Average Power Supply Current = 30 mA Listening

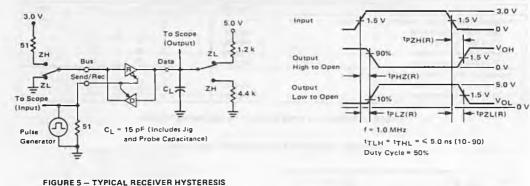
75 mA Talking

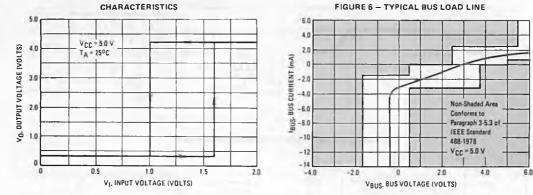

- Eight Driver/Receiver Pairs
- Three-State Outputs
- High Impedance Inputs
- Receiver Hysteresis 600 mV (Typ)
- Fast Propagation Times 15~20 ns (Typ)
- TTL Compatible Receiver Outputs
- Single +5 Volt Supply
- Open Collector Driver Output with Terminations
- Power Up/Power Down Protection (No Invalid Information Transmitted to Bus)
- No Bus Loading When Power is Removed From Device
- Required Termination Characteristics Provided

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	7.0	Vdc
Input Voltage	VI	5.5	Vdc
Driver Output Current	10(D)	150	mA
Junction Temperature	TJ	150	°ċ
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	Tstg	-65 to +150	°C




This is advance information and specifications are subject to change without notice.


P 3-SUFFIX

ASTIC PACKAGE

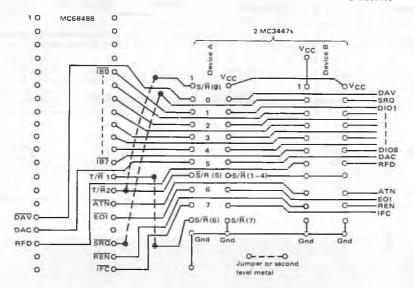


FIGURE 4 - SEND/RECEIVE INPUT TO DATA OUTPUT (RECEIVER)

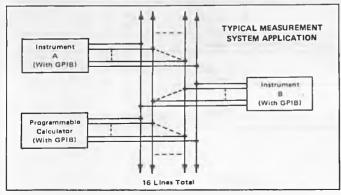
FIGURE 7 - SUGGESTED PRINTED CIRCUIT BOARD LAYOUT USING MC3447s AND MC68488

5

MC3448A

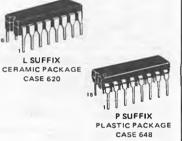
BIDIRECTIONAL INSTRUMENTATION BUS (GPIB) TRANSCEIVER

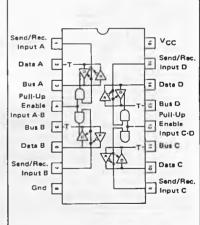
This bidirectional bus transceiver is intended as the interface between TTL or MOS logic and the IEEE Standard Instrumentation Bus (488-1978, often referred to as GPIB). The required bus termination is internally provided.


Each driver/receiver pair forms the complete interface between the bus and an instrument. Either the driver or the receiver of each channel is enabled by its corresponding Send/Receive input with the disabled output of the pair forced to a high impedance state. An additional option allows the driver outputs to be operated in an open collector⁽¹⁾ or active pull-up configuration. The receivers have input hysteresis to improve noise margin, and their input loading follows the bus standard specifications.

- Four Independent Driver/Receiver Pairs
- Three-State Outputs
- High Impedance Inputs
- Receiver Hysteresis 600 mV (Typ)
- Fast Propagation Times 15–20 ns (Typ)
- TTL Compatible Receiver Outputs
- Single +5 Volt Supply
- Open Collector Driver Output Option(1)
- Power Up/Power Down Protection
 - (No Invalid Information Transmitted to Bus)
- No Bus Loading When Power Is Removed From Device
- Required Termination Characteristics Provided

(1) Selection of the "Open Collector" configuration, in fact, selects an open collector device with a passive pull-up load/termination which conforms to Figure 7, IEEE 488-1978 Bus Standard.


MAXIMUM RATINGS (TA = 25°C unless otherwise noted)


Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	7.0	Vdc
Input Voltage	VI	5.5	Vdc
Driver Output Current	10(D)	150	mA
Junction Temperature	Тј	150	°C
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

QUAD THREE-STATE BUS TRANSCEIVER WITH TERMINATION NETWORKS

SILICON MONOLITHIC

Send/Rec.	Enable	Info. Flow	Comments
0	x	Bus - Data	-
1	1	Oata Bus	Active Pull Up
1	0	Data + Bus	Open Col.

ELECTRICAL CHARACTERISTICS

(Unless otherwise noted 4.75 V < V_{CC} < 5.25 V and 0 < T_A < 70°C; typical values are at T_A = 25°C, V_{CC} = 5.0 V)

÷

Characteristic	Symbol	Min	Түр	Max	Unit
Bus Voltage					v
(Bus Pin Open)($V_{I(S/R)} = 0.8 V$)	V(BUS)	2.75	-	3.7	
(I(BUS) = -12 mA)	VIC(BUS)	-	-	-1.5	
Bus Current	I(BUS)			1	mA
(5.0 V < V _(BUS) < 6.5 V)		0.7	- I	2.5	
$(V_{(BUS)} = 0.5 V)$		-1.3	-	-3.2	
(V _{CC} = 0 V, 0 V < V _(BUS) < 2.75 V)		-	-	+0.04	
Receiver Input Hysteresis		400	600	-	mV
(V _{I(S/R)} = 0.8 V)	1	1 .			
Receiver Input Threshold					V
(VI(S/R) = 0.8 V, Low to High)	VILH(R)	- 1	1.6	1.8	
(VI(S/R) = 0.8 V, High to Low)	VIHL(R)	0.8	1.0	- 1	
Receiver Output Voltege - High Logic State	VOH(R)	2.7	-	-	V
(VI(S/R) = 0.8 V, I _{OH(R)} = -800 µA, V _(BUS) = 2.0 V)				1	1
Receiver Output Voltage - Low Logic State	VOL(R)	_	-	0.5	V
{VI(S/R) = 0.8 V, IOL(R) = 16 mA, V(BUS) = 0.8 V)	1				
Receiver Output Short Circuit Current	IOS(R)	-15	-	-75	mÄ
(VI(S/R) = 0.8 V, V(BUS) = 2.0 V)		· · ·			
Driver Input Voltage - High Logic State		2.0			v
$(V_{1(S/R)} = 2.0 V)$	11107				
Driver Input Voltage - Low Logic State	VIL(D)	-	_	0.8	
$(V_{1}(S/R) = 2.0 V)$	10,			1	
Driver Input Current – Data Pins					μA
$(V_{I}(S/R) = V_{I}(E) = 2.0 V)$					~~
$(0.5 \le V_{1(D)} \le 2.7 V)$	1(0)	-200	_	40	Į –
$(V_{1(D)} = 5.5 V)$	IB(D)	-	-	200	
Input Current - Send/Receive					μA
$(0.5 \le V_{1(S/R)} \le 2.7 V)$	II(S/R)	-100	_	20	
$(V_{1(S/R)} = 5.5 V)$	IB(S/R)	_	-	100	
Input Current - Enable	1010/11/		·		μA
$(0.5 \le V_{1(E)} \le 2.7 V)$	11(E)	-200	_	20	
(VI(E) = 5.5 V)	I(B(E)	_	- 1	100	
Driver Input Clamp Voltage	VIC(D)			-1.5	v
$(V_{1(S/R)} = 2.0 V, i_{1C(D)} = -18 mA)$	10101			- 1.0	l ·
Driver Output Voltage – High Logic State	VOH(D)	2.5			- v
$(V_{I(S/R)} = 2.0 \text{ V}, V_{IH(D)} = 2.0 \text{ V}, V_{IH(E)} = 2.0 \text{ V}, I_{OH} = -5.2 \text{ mA})$	*OH(D)	2.0	_	_	Ť
Driver Output Voltage - Low Logic State (Note 1)	VOL(D)			0.5	v
(V1(S/R) = 2.0 V, IOL(D) = 48 mA)	*OL(D)	-	_	0.5	Ť
Output Short Circuit Current		-30		-120	mA
(VI(S/R) = 2.0 V, VIH(D) = 2.0 V, VIH(E) = 2.0 V)	03(0)				
Power Supply Current	·				mA
(Listening Mode – All Receivers On)	ICCL	_	63	85	
(Talking Mode – All Drivers On)	ICCH	_	106	125	
WITCHING CHARACTERISTICS (VCC = 5.0 V, TA = 25°C unless othe					
Propagation Delay of Driver					ns
(Output Low to High)	^t PLH(D)	-	-	15	
(Output High to Low)	tPHL(D)	-	-	17	
Propagation Delay of Receiver					ns
(Output Low to High)	^{\$PLH(R)}	-	-	25	
(Output High to Low)	tPHL(R)	_	-	23	

NOTE 1. A modification of the IEEE 488-1978 Bus Standard changes VOL(D) from 0.4 to 0.5 V maximum to permit the use of Schottky technology.

MC3448A

SWITCHING CHARACTERISTICS (continued) (VCC = 5.0 V, TA = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time - Send/Receive to Data					ns
Logic High to Third State	PHZ(R)	-		30	
Third State to Logic High	(PZH(B)	-	- 1	30	
Logic Low to Third State	^t PLZ(R)	-	- 1	30	
Third State to Logic Low	^t PZL(R)	-	-	30	
Propagation Delay Time - Send/Receive to Bus					IIS.
Logic High to Third State	(PHZ(O)		- 1	30	
Third State to Logic High	(PZH(D)	-	-	30	
Logic Low to Third State	PLZ(D)	-	- 1	30	
Third State to Logic Low	tPZL(D)	-	-	30	
Turn-On Time - Enable to Bus					ns
Puil-Up Enable to Open Collector	tPOFF(E)	-	- 1	30	
Open Collector to Pull-Up Enable	^t PON(E)	-	- 1	20	

PROPAGATION DELAY TEST CIRCUITS AND WAVEFORMS

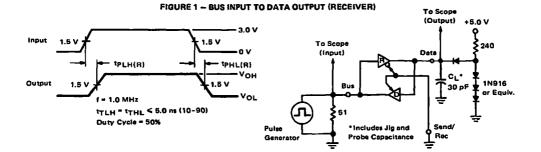
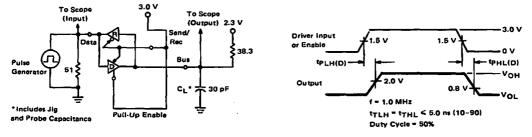
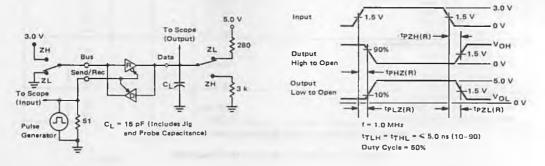
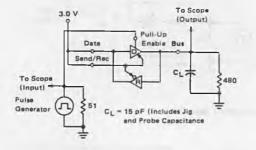
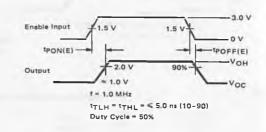
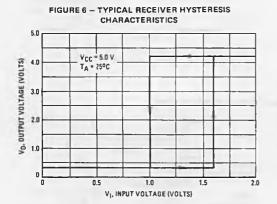
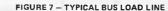


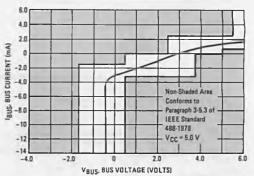
FIGURE 2 - DATA INPUT TO BUS OUTPUT (DRIVER)


FIGURE 3 - SEND/RECEIVE INPUT TO BUS OUTPUT (DRIVER) 3.0 V -3.0 V To Scope 1.5 V 1.5 V zн (Output) • ZL input ٥v Pull-Up tPZH(D) ZH zι Bus Data Enable ۷он 90% Output 2.0 V Send/Red ZH **₹13.**5 High to Oper ٦̈́ ۸v TPHZ(D) To Scope Cı 480 Output (Input) 1.1 V Low to Open 10% Vol Pulse οv 61 · PLZ(D) PZL(D) Generator 15 pF (includes Jig and CL = f = 1.0 MHz Probe Capacitance tTLH = tTHL = < 5.0 ns (10-90) Duty Cycle = 50%




FIGURE 4 - SEND/RECEIVE INPUT TO DATA OUTPUT (RECEIVER)


FIGURE 5 - ENABLE INPUT TO BUS OUTPUT (DRIVER)

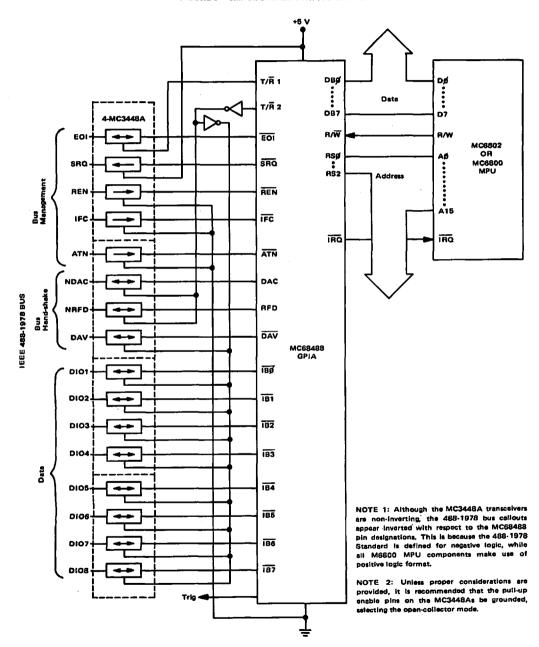


FIGURE 8 - SIMPLE SYSTEM CONFIGURATION

Specifications and Applications Information

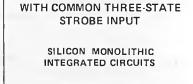
QUAD MTTL COMPATIBLE LINE RECEIVERS

The MC3450 features four MC75107 type active pullup line receivers with the addition of a common three-state strobe input, When the strobe input is at a logic zero, each receiver output state is determined by the differential voltage across its respective inputs. With the strobe high, the receiver outputs are in the high impedance state.

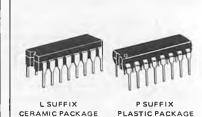
The MC3452 is the same as the MC3450 except that the outputs are open collector which permits the implied "AND" function.

The strobe input on both devices is buffered to present a strobe loading factor of only one for all four receivers and inverted to provide best compatability with standard decoder devices,

- Receiver Performance Identical to the Popular MC75107/MC75108 Series


DATA BIT OUTPUT #1

STROBE


10 + 200

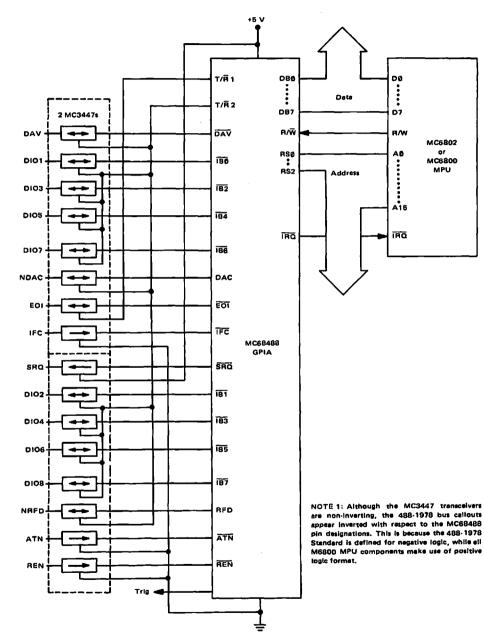
Only four MC3450 devices are required for a 4-k word by 16-bit memory system.

CASE 620 Four Independent Receivers with Common Strobe Input Implied "AND" Capability with Open Collector Outputs Useful as a Quad 1103 type Memory Sense Amplifier INPUTS FIGURE 1 - A TYPICAL MOS MEMORY SENSING APPLICATION FOR A 4-K WORD BY 4-BIT MEMORY ARRANGEMENT EMPLOYING 1103 TYPE MEMORY DEVICES OUTPUT C INPUTS 1.K WORD 1.K WORD 1 K WORD 1.K WORD c AOS MEMOR MOS MEMORY MOS MEMOR MOS MEMOR 1.6 WORD WORD 1 K WORD WORD OS MEMOR MOS MEMOR OS MEMOR 1 K WORD 1 K WORD 1.K WORD 1 K WORD IDS MEMOR IOS MEMOR MC3450 1 K WORD 1 K WORD 1-K WORD 1-K WORD OS MEMOR OS MEMOR OS MEMOR 200 ATA BIT OUTPUT ODATA BIT #3 DATA BIT OUTPUT

QUAD LINE RECEIVERS

CASE 648

CONNECTION DIAGRAM 16 Vcc 1 2 INPUTS в OUTPUT A 3 14 13 OUTPUT B STROBE 4 12 VEE 6 11 OUTPUT D 7 10 INPUTS D GND B


		OUT	PUT			
INPUT	STROBE	MC3450	MC3452			
VID≥	L	н	Off			
+25 mV	н	z	Off			
-25 mV ≤	L	1	I			
V _{ID} ≤+25 mV	н	z	Off			
VID≤	L	L	Ļ			
-25 mV	н	z	Off			
L = Low Logic State H = High Logic State Z = Third (High Impedance) State I = Indeterminate State						

5-68

BIT #2

DATA BIT #1

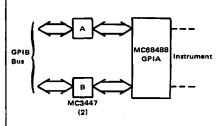

1EEE 488-1978 BUS

FIGURE 8 - SIMPLE SYSTEM CONFIGURATION

	38489 ections	N	MC86488 Connections					
A	B		A	В				
A T/R 2 DAV 180 182 184 186 DAC T/R 2 E01	8 VCC SRO 181 183 185 185 185 187 RFO T/R 2	S/R (0) Data 0 0 Data 1 Data 2 Data 3 Data 3 Data 4 Data 5 S/R (5) Data 6	1 2 3 4 5 6 7 8 9	Octal GPIB Transceiver	24 23 22 21 20 19 18 17	V _C C Bus 0 Bus 1 Bus 2 Bus 3 Bus 4 Bus 5 S/R (1-4) Bus 6	A V _{CC} DAV DIO 1 DIO 3 DIO 5 DIO 7 NDAC T/Ĥ 2 EQI	B VCC SRQ DIO 2 DIO 4 DIO 6 DIO 8 NRFD T/Ř 2 ATN
IFC	REN	Data 7	10		18	Bus 7	IFC	REN
T/Ħ 1	Gnd	S/A (6)	11		14	S/R (7)	Gnd	Gnd
Gnd	Gnd	Logic Gnd	12		13	Bus Gnd	Gnd	Gnd

FIGURE 9 - SUGGESTED PIN DESIGNATIONS FOR USE WITH MC68488

• • ••

MC3450, MC3452

MAXIMUM RATINGS (TA = 0 to +70°C unless otherwise noted.)

Rating	Symbol	Vatue	Unit
Power Supply Voltages	VCC, VEE	±7.0	Vdc
Differential-Mode Input Signal Voltage Range	VIDR	±6.0	Vdc
Common-Mode Input Voltage Range	VICR	±5.0	Vdc
Strobe Input Voltage	VI(S)	5.5	Vdc
Power Dissipation (Package Limitation) Ceramic Dual In-Lina Package Derate above T _A = +25 ⁰ C	Po	1000 6.6	m₩ m₩/ºC
Plastic Dual In-Line Package Derate above T _A = +25 ⁰ C		1000 6.6	mW mW/ ⁰ C
Operating Temperature Range	TA	0 to +70	- °c
Storage Temperature Range	T _{stg}	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS (TA = 0 to +70°C unless otherwise noted.)

Characteristic	Symbo!	Mio	Тур	Max	Unit
Power Supply Voltages	Vcc	+4.75	+5.0	+5.25	Vdc
	VEE	-4.75	-5.0	-5.25	
Output Load Current	IOL		_	16	mA
Differential-Mode Input Voltage Range	VIDR	-5.0		+5.0	Vdc
Common-Mode Input Voltage Range	VICR	-3.0	-	+3.0	Vdc
Input Voltage Range (any input to Ground)	VIR	-5.0		+3.0	Vđc

ELECTRICAL CHARACTERISTICS (V_{CC} = +5.0 Vdc, V_{EE} = -5.0 Vdc, T_A = 0 to +70^oC unless otherwise noted.)

	<u> </u>			MC3450			MC3452		
Characteristic	Symbol	Fig.	Min	Тур	Max	Min	Тур	Max	Unit
High Level Input Current to Receiver Input	¹ (H(I)	7	-	-	75		-	75	μA
Low Level Input Current to Receiver Input	111(0)	8	+	-	-10	-		-10	μA
High Level Input Current to Strobe Input VIH{S} = +2.4 V VIH{S} = +5.25 V	I'IH(S)	5		-	40 1.0	-	-	40 1.0	μA mA
Low Level Input Current to Strobe Input VIH(S) = +0.4 V	¹ IL(S)	5	-	-	-1.6	-	-	-1.6	mА
High Level Output Voltage	VOH	3	2.4	-		-	-	-	Vdc
High Level Output Leakage Current	CEX	3	-	- 1	- 1	-	- 1	250	μA
Low Level Output Voltage	VOL	3		-	0.4		-	0.4	Vdc
Short-Circuit Output Current	los	6	-18	- 1	-70	- 1	-	-	mA
Output Disable Leakage Current	off	9	-		40	-			μA
High Logic Level Supply Current from VCC	1ссн	4	-	45	60	-	45	60	mA
High Logic Level Supply Current from $V_{\mbox{\scriptsize EE}}$	IEEH	4	-	-17	-30	-	-17	-30	mА

SWITCHING CHARACTERISTICS (V_{CC} = +5.0 Vdc, V_{EE} = -5.0 Vdc, T_A = +25^oC unless otherwise noted.)

				MC3450			MC3452		
Characteristic	Symbol	Fig.	Min	Тур	Max	Min	Тур	Max	Unit
High to Low Logic Level Propagation Delay Time (Differential Inputs)	^t PHL(D)	10	-	-	25	-	-	25	ns
Low to High Logic Level Propagation Delay Time (Differential Inputs)	^t PLH(D)	10	-	-	25	-	-	25	ns
Open State to High Logic Level Propagation Detay Time (Strobe)	^t PZH(S)	11	-	-	21	-	-	-	ns
High Logic Level to Open State Propagation Delay Time (Strobe)	tPHZ(S)	11	-	-	18	-	-	-	ns
Open State to Low Logic Level Propagation Delay Time (Strobe)	የጀር(S)	11	-	-	27	-	-	-	ns
Low Logic Level to Open State Propagation Delay Time (Strobe)	tPLZ(S)	11	-	-	29	-	-	-	ns
High Logic to Low Logic Level Propagation Delay Time (Strobe)	tPHL(S)	12	-	-	-	-	-	25	ns
Low Logic to High Logic Level Propagation Delay Time (Strobe)	^t PLH(S)	12	-	-	-	-	- 1	25	ាន

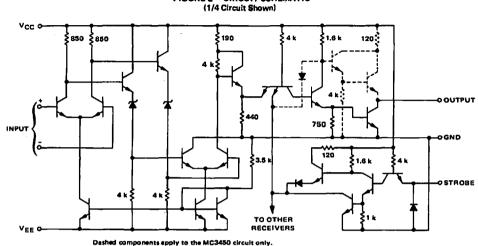
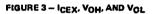



FIGURE 2 - CIRCUIT SCHEMATIC

TEST CIRCUITS

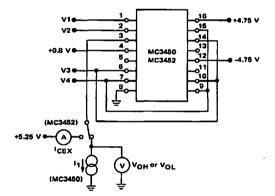
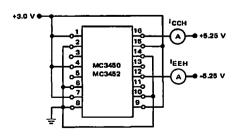
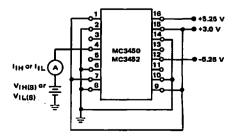



FIGURE 4 - ICCH AND IEEH

٠.


TEST TABLE

۰.

		1	\ \	12		/3		/4	
	MC3450	MC3452	MC3450	MC3452	MC3450	MC3452	MC3450	MC3452	11
	+2.975 V	-	+3.0 V	-	43.0 V	-	GND	-	+0.4 mA
VOH	~3.0 V		-2.976 V	-	GND	-	-3.0 V	-	10.4 mA
		+2.975 V	-	+3.0 V	-	+3.0 V	-	OND	-
CEX	•	-3.0 V	-	-2.975 V	1	GND	-	-30 V	
	+3.0 V	+3.0 V	+2.975 V	+2.975 V	GNO	OND	+3.0 V	+3.0 V	
VOL	-2.975 V	-2.976 V	-3.0 V	-3.0 V	-3.0 V	-3.0 V	GND	GNO	-16 mA

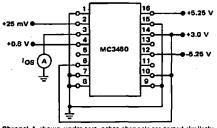

Chennel A shown under test. Other chennels are tested similarly.

FIGURE 5 - IIH(S) AND IIL(S)

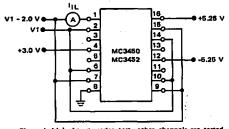

TEST CIRCUITS (continued)

FIGURE 6 - IOS

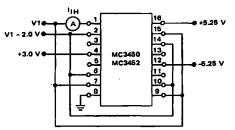

Channel A shown under test, other channels are tested similarly. Only one output shorted at a time.

FIGURE 8 - IIL

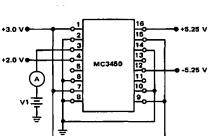
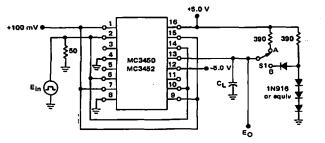
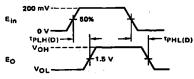

Channel A(-) shown under tett, other channels are tasted similarly. Devices are tested with V1 from +3.0 V to -3.0 V.

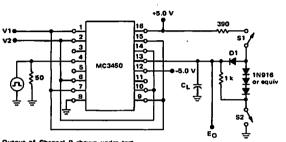
FIGURE 7 - IIH



Channel A(-) shown under test, other channels are tested similarly. Devices are tested with V1 from +3.0 V to -3.0 V.

FIGURE 9 - Ioff


Output of Channel A shown under test, other outputs are tested similarly for V1 = 0.4 V and +2.4 V.



Output of Channel B shown under test, other channels are tested similarly.

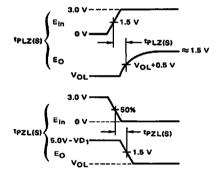
S1 at "A" for MC3482 S1 at "B" for MC3450 CL = 15 pF total for MC3452 CL = 50 pF total for MC3450

Ein waveform characteristics: TLH and THL 10 ns measured 10% to 90% PRR = 1.0 MHz Duty Cycle = 500 ns

TEST	CIRCUITS	(continued)
		(contract)

FIGURE 11 - STROBE PROPAGATION DELAY TIMES TPLZ(S) TPZL(S) TPHZ(S) and TPZH(S)

	V1	V2	S1	S2	CL
PLZ(S)	100 mV	GND	Closed	Closed	15 pF
tPZL(S)	100 mV	GND	Closed	Open	50 pF
tPHZ(S)	GND	100 m V	Closed	Closed	15 pF
^t PZH(S)	GND	100 mV	Open	Closed	50 pF


CL includes jig and probe capacitance.

Ein waveform characteristics:

tTLH and tTHL \$10 ns measured 10% to 90%. PRR = 1.0 MHz

Duty Cycle = 50%

.

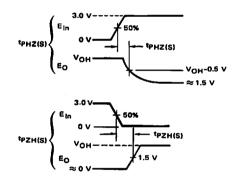
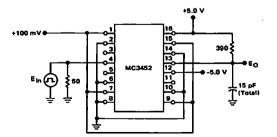
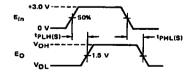
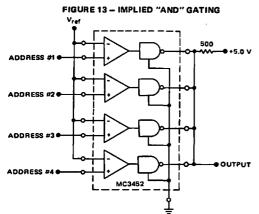
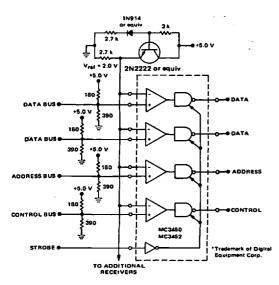




FIGURE 12 - STROBE PROPAGATION DELAY TPLH(S) AND TPHL(S)


$$\label{eq:Ein} \begin{split} E_{in} \text{ waveform characteristics:} \\ t_{TLH} \text{ end } t_{THL} \leqslant 10 \text{ ns measured 10% to 90%} \\ \text{PRR} = 1.0 \text{ MHz} \\ \text{Duty Cycle = 500 ns} \end{split}$$

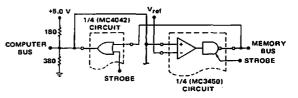
Output of Channel B shown under test, other channels are tested similarly.

5


Output of Channel B shown under test, other channels are tested similarly.

MC3450, MC3452

The MC3452 can be used for address decoding as illustrated above. All outputs of the MC3452 are tied together through a common resistor to +5.0 volts. In this configuration the MC3452 provides the "AND" function. All addresses have to be true before the output will go high. This scheme eliminates the need for an "AND" gate and enhances speed throughput for address decoding.


FIGURE 15 - SINGLE-ENDED UNI-BUS* LINE RECEIVER APPLICATION FOR MINICOMPUTERS

The MC3450/3452 can be used for single-ended is well as differential line receiving. For single-ended line receiver applications, such as are ancountered in minicomputers, the configuration shown in Figure 15 can be used. The voltage source, which generates V_{ref} , should be designed so that the V_{ref} voltage is halfway between $V_{OH}(min)$ and $V_{OL}(mex)$. The maximum input overdrive required to guarantee a given logic state is extremely small, 25 mV maximum. This low-input overdrive regulates the high-input Impedance of the line receiver parmits many receivers to be placed on a single line with minimum load effects.

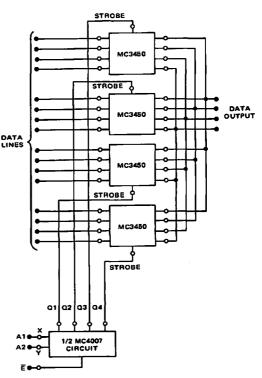
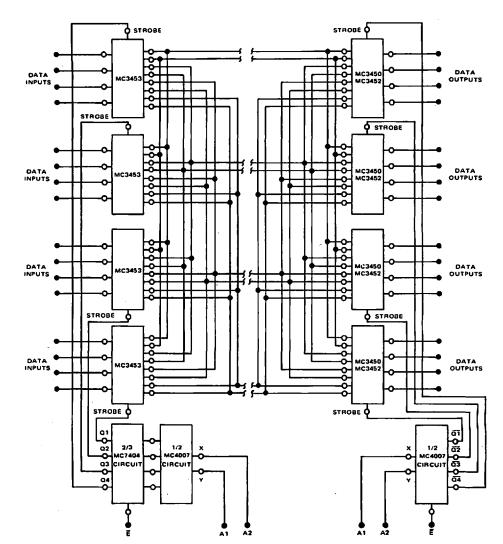
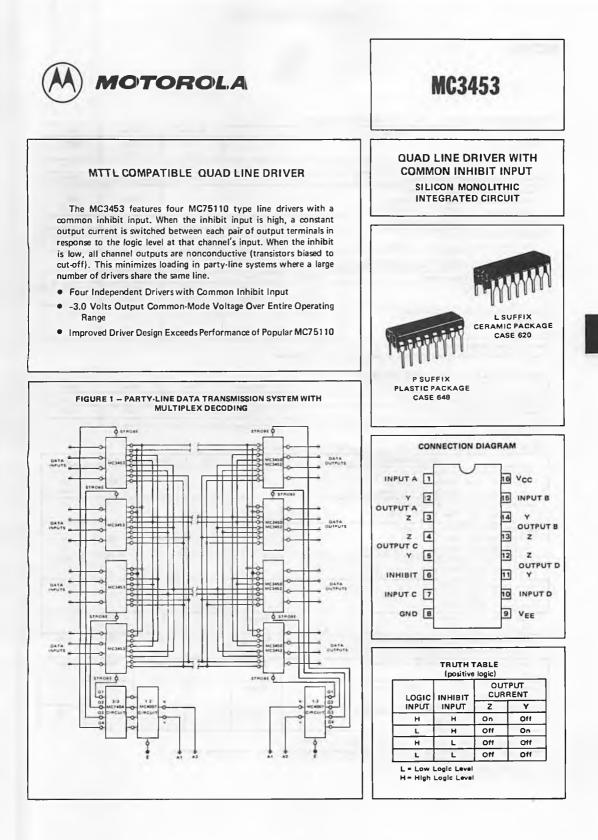

APPLICATIONS INFORMATION

FIGURE 14 - BIDIRECTIONAL DATA TRANSMISSION

The three-state capability of the MC3450 permits bidirectional date transmission as illustrated.




APPLICATIONS INFORMATION (continued)

.

.

FIGURE 17 - PARTY-LINE DATA TRANSMISSION SYSTEM WITH MULTIPLEX DECODING

MAXIMUM RATINGS (TA = 0 to +70°C unless otherwise noted.)

Ratings	Symbol	Value	Unit
Power Supply Voltage	V _{CC} V _{EE}	+7.0 -7.0	Volts
Logic and Inhibitor Input Voltages	Vin	5.5	Volts
Common-Mode Output Voltage Range	VOCR	-5.0 to +12	Volts
Power Dissipation (Package Limitation) Plastic and Ceramic Dual In-Line Packages Derate above T _A = +25 ^o C	PD	1000 6.6	Wm ⊃⁰\Wm
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range Plastic and Ceramic Dual In-Line Packages	T _{stg}	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS (See Notes 1 and 2.)

Cheracteristic	Symbol	Min	Nom	Max	Unit
Power Supply Voltages	VCC VEE	+4.75 -4.75	+5.0 -5.0	+6.25 -5.25	Volts
Common-Mode Output Voltage Range	VOCR				Volts
Positive	· ·	0	-	+10]
Negative		0		-3.0	1

Note 1. These voltage values are in respect to the ground terminal.

Note 2. When not using all four channels, unused outputs must be grounded.

DEFINITIONS OF INPUT LOGIC LEVELS*

Characteristic	Symbol	Min	Max	Unit
High-Level Input Voltage (at any input)	VIH	2.0	5.5	Volts
Low-Level Input Voltage (at any input)	VIL	0	0.8	Voits

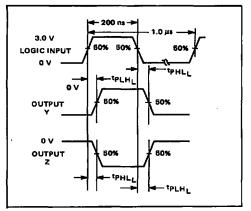
*The algebraic convention, where the most positive limit is designated maximum, is used with Logic Level Input Voltage Levels only.

ELECTRICAL CHARACTERISTICS (TA = 0 to +70°C unless otherwise noted.)

Characteristic##	Symbol	Min	Тур#	Max	Unit
High-Level Input Current (Logic Inputs)	Чн				
(V _{CC} = Max, V _{EE} = Max, V _{IH1} = 2.4 V)		-	-	40	μA
(VCC - Max, VEE - Max, VIHL - VCC Max)		-	-	1.0	mA
Low-Level Input Current (Logic Inputs)	116	-	-	-1.6	mA
(VCC = Max, VEE = Max, VILL = 0.4 V)					1
High-Level Input Current (Inhibit Input)	Чн				
(V _{CC} = Max, V _{EE} = Max, V _{IH1} = 2.4 V)	•	- ·	-	40	μA
(VCC = Max, VEE = Max, VIHI = VCC Max)		-	-	1.0	mA
Low-Level Input Current (Inhibit Input)		-		-1.6	mA
(V _{CC} • Max, V _{EE} • Max, V _{IL1} = 0.4 V)					
Output Current ("on" state)	lO(on)				mA
(V _{CC} = Max, V _{EE} = Max)		-	11	15	
(V _{CC} = Min, V _{EE} = Min)		6.5	11	-	
Output Current ("off" state)	IO{off)	-	5.0	100	μA
(V _{CC} = Min, V _{EE} = Min)					
Supply Current from V _{CC} (with driver enabled)	CC(on)	-	35	50	mA
(V _{ILL} = 0.4 V, V _{iHi} = 2.0 V)					
Supply Current from VEE (with driver enabled)	⁽ EE(on)	-	65	90	mA
(V _{ILL} = 0.4 V, V _{IH1} = 2.0 V)					
Supply Current from VCC (with driver inhibited)	ICC(off)	-	35	50	mA
(V _{ILL} = 0.4 V, V _{ILI} = 0.4 V)					1
Supply Current from VEE (with driver inhibited)	IEE(off)	-	25	40	mA
(VILL = 0.4 V, VILI = 0.4 V)					

#All typical values are at V_{CC} = +5.0 V, V_{EE} = -5.0 V, T_A = +25°C.

##For conditions shown as Minor Max, use the appropriate value specified under recommended operating conditions for the applicable device type.


Ground unused inputs and outputs.

5


SWITCHING CHARACTERISTICS (VCC = +5.0 V, VEE = -5.0 V, TA = +25°C.)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time from Logic Input to	tΡLΗL	-	9.0	15	01
Output Y or Z (RL = 50 ohms, CL = 40 pF)	tPHLL	-	9.0	15	
Propagation Delay Time from Inhibit Input	tPLH ₁	-	16	25	ns
to Output Y or Z (RL = 50 ohms, CL = 40 pF)	4PHL		20	25	

FIGURE 2 – LOGIC INPUT TO OUTPUTS PROPAGATION DELAY TIME WAVEFORMS

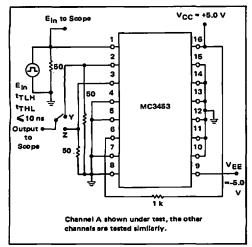
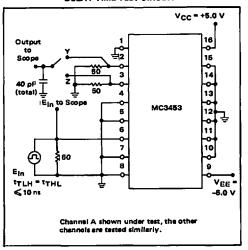


FIGURE 3 – INHIBIT INPUT TO OUTPUTS PROPAGATION DELAY TIME WAVEFORMS



TEST CIRCUITS

FIGURE 4 – LOGIC INPUT TO OUTPUT PROPAGATION DELAY TIME TEST CIRCUIT

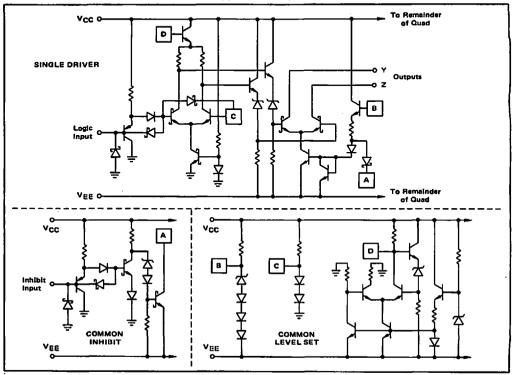
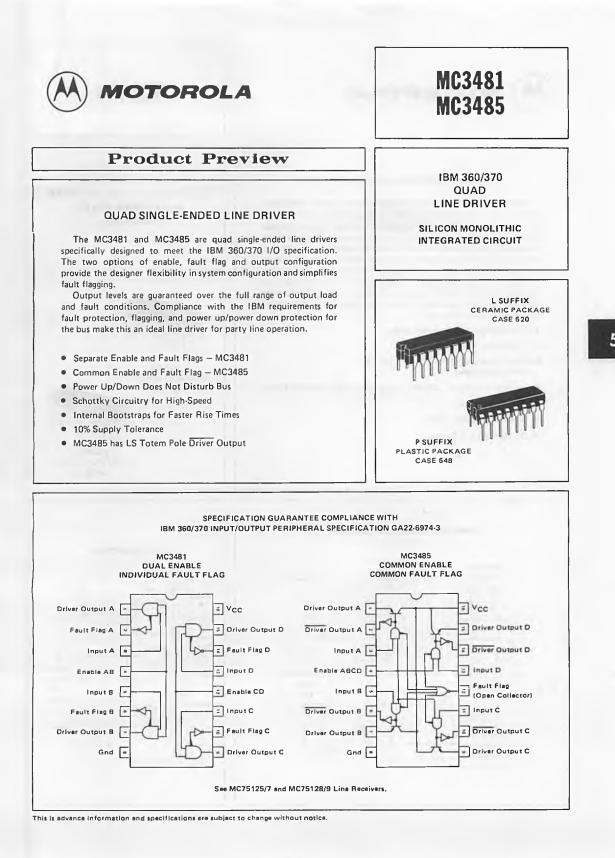
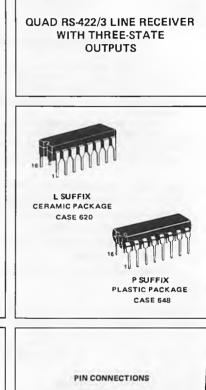
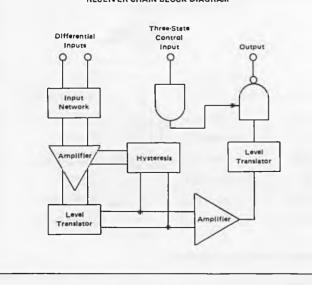
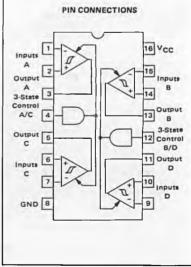



FIGURE 6 - CIRCUIT SCHEMATIC (1/4 Circuit Shown)

5-79




MC3486


QUAD RS-422/423 LINE RECEIVER

Motorola's Quad RS-422/3 Receiver features four independent receiver chains which comply with EIA Standards for the Electrical Characteristics of Balanced/Unbalanced Voltage Digital Interface Circuits. Receiver outputs are 74LS compatible, three-state structures which are forced to a high impedance state when the appropriate output control pin reaches a logic zero condition. A PNP device buffers each output control pin to assure minimum loading for either logic one or logic zero inputs. In addition, each receiver chain has internal hysteresis circuitry to improve noise margin and discourage output instability for slowly changing input waveforms. A summary of MC3486 features include:

- Four Independent Receiver Chains
- Three-State Outputs
- High Impedance Output Control Inputs (PIA Compatible)
- Internal Hysteresis 30 mV (Typ) @ Zero Volts Common Mode
- TTL Compatible
- Single 5 V Supply Voltage
- DS 3486 Second Source

RECEIVER CHAIN BLOCK DIAGRAM

MC3486

ABSOLUTE MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	8.0	Vdc
Input Common Mode Voltage	VICM	±15	Vdc
Input Differential Voltage	VID	± 26	Vdc
Three-State Control Input Voltage	V ₁	8.0	Vdc
Output Sink Current	10	50	mA
Storage Temperature	Tstg	-65 to +150	oc
Operating Junction Temperature	Τj		°C
Ceramic Package		+175	
Plastic Package	1	+150	

Note 1: "Absolute Maximum Ratings" are those values beyond which the selety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The "Table of Electrical Characteristics" provides conditions for actual device operation.

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	4.75 to 5.25	Vdc
Operating Ambient Temperature	TA	0 to +70	°C
Input Common Mode Voltage Range	VICR	-7.0 to +7.0	Vdc
Input Differential Voltage Range	VIDR	6.0	Vdc

ELECTRICAL CHARACTERISTICS (Unless otherwise noted minimum and maximum limits apply over recommended temperature and power supply voltage ranges. Typical values are for $T_A = 25^{\circ}C$, $V_{CC} = 5.0$ V and $V_{IK} = 0$ V. See block of the second second

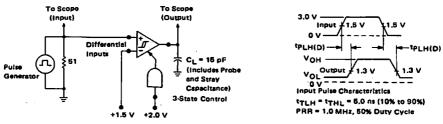
Note 1.)							
Characteristic	Symbol	Min	Тур	Max	Unit		
Input Voltage – High Logic State (Three-State Control)	VIH	2.0	-		v		
Input Voltage – Low Logic State (Three-State Control)	VIL		-	0.8	v		
Differential Input Threshold Voltage (Note 4)	VTH(D)				v		
(-7.0 V < V _{IC} < 7.0 V, V _{IH} = 2.0 V) (I _O = 0.4 mA, V _{OH} > 2.7 V) (I _O = 8.0 mA, V _{OL} > 0.5 V)		-	-	0.2 -0.2			
Input Bias Current (VCC = 0 V or 5.25) (Other Inputs at 0 V)	¹)B(D)				mA		
$(V_1 = -10 V)$		-	- (-3.25			
$\{V_{1} = -3.0 V\}$ $\{V_{1} = +3.0 V\}$		-	-	-1.50 +1.50			
$(V_1 = +10 V)$		-	- 1	+3.25	í .		
Input Balance and Output Level {-7.0 V < V _{IC} < 7.0 V, V _{IH} = 2.0 V, See Note 3)					v		
(I _O = 0.4 mA, V _{ID} = 0.4 V) (I _O = 8.0 mA, V _{ID} = 0.4 V)	VOH VOL	2.7	-	0.5	1		
Output Third State Leakage Current (VI(D) = +3.0 V, VIL = 0.8 V, VOL = 0.5 V) (VI(D) = -3.0 V, VIL = 0.8 V, VOL = 2.7 V)	^I OZ	-	_	-40 40	μA		
Output Short-Circult Current	los	-15		-100	mA		
(V _{I(D)} = 3.0 V, V _{IH} = 2.0 V, V _O - 0 V) See Note 2)		1	1				
Input Current — Low Logic State (Three-State Control) (VIH = 0.5 V)	μL		-	-100	μA		
nput Current — High Logic State (Three-State Control)	114				μA		
(V _{IH} = 2.7 V) (V _{IH} = 5.25 V)		_	_	20 100			
nput Clamp Diode Voltage (Three-State Control) (IIK = -10 mA)	VIK	-	-	-1,5	v		
Power Supply Current (VIL = 0 V)	lcc	-	-	85	mA		

ELECTRICAL CHARACTERISTICS (continued)

SWITCHING CHARACTERISTICS (Unless otherwise noted, V_{CC} = 5.0 V and T_A = 26°C.)

Characteristic	Symbol	Min	Түр	Max	Unit
Propagation Delay Time - Differential					ns
Inputs to Output					1
(Output High to Low)	ΨHL(D)	-	-	35	
(Output Low to High)	tPLH(D)	-	- 1	30]
Propagation Delay time - Three-State					TIS .
Control to Output			-		
(Output Low to Third State)	^t PLZ	_	-	35	
(Output High to Third State)	^t PHZ	-		35	
(Output Third State to High)	^t PZH	-	1 -	30	ł
(Output Third State to Low)	tPZL	-	- 1	30	{

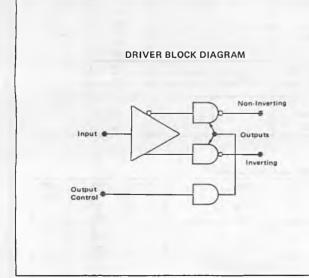
NOTES:


 All currents into device pins are shown as positive, out of device pins are negative. All voltages referenced to ground unless otherwise noted.

- 3. Refer to EIA RS422/3 for exact conditions, input balance and guaranteed output levels are done simultaneously for worst case.
- 4. Differential input threshold voltage and guaranteed output levels are done simultaneously for worst case.

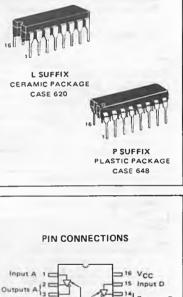
2. Only one output at a time should be shorted.

5



MC3487

QUAD LINE DRIVER WITH THREE-STATE OUTPUTS


Motorola's Quad RS-422 Driver features four independent driver chains which comply with EIA Standards for the Electrical Characteristics of Balanced Voltage Digital Interface Circuits. The outputs are three-state structures which are forced to a high impedance state when the appropriate output control pin reaches a logic zero condition. All input pins are PNP buffered to minimize input loading for either logic one or logic zero inputs. In addition, internal circuitry assures a high impedance output state during the transition between power up and power down. A summary of MC3487 features include:

- Four Independent Driver Chains
- Three-State Outputs
- PNP High Impedance Inputs (PIA Compatible)
- Fast Propagation Times (Typ 15 ns)
- TTL Compatible
- Single 5 V Supply Voltage
- Output Rise and Fall Times Less Than 20 ns
- DS 3487 Second Source

QUAD RS-422 LINE DRIVER WITH THREE-STATE OUTPUTS

SILICON MONOLITHIC INTEGRATED CIRCUIT

Outputs A 1 Outputs A 1 A/B Control 4 Outputs B 1 Outputs B 6 Gnd 8 Input C

	TRUT	TH TABLE				
Input	Control Input					
н	н	н	L			
L	н	L	н			
×	L	z	z			
	L = Low Logi					
	H = High Logi					
	X = Irrelevant					
	Z = Third-Star	te (High Impedanc	:e)			

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	8.0	Vdc
Input Voltage	VI VI	5.5	Vdc
Operating Ambient Temperature Range	TA	0 to +70	°c
Operating Junction Temperature Range Ceramic Package Plastic Package	LL	175 150	
Storage Temperature Range	T _{stg}	-65 to +150	°c

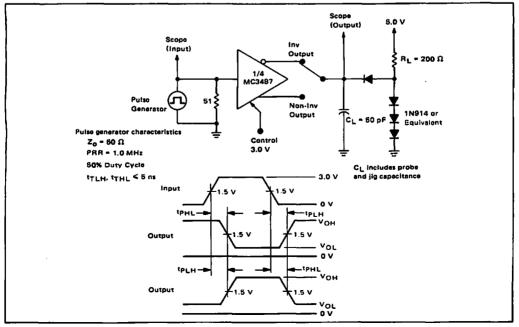
"Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The "Table of Electrical Characteristics" provides conditions for actual device operation.

ELECTRICAL CHARACTERISTICS (Unless otherwise noted specifications apply 4.75 V < V_{CC} < 5.25 V and 0°C < T_A < 70°C. Typical values measured at V_{CC} = 5.0 V, and T_A = 25°C.)


Cheracteristic	Symbol	Min	Тур	Max	Unit
Input Voltage - Low Logic State	VIL			0.8	Vdc
Input Voltage - High Logic State	VIH	2.0		-	Vdc
Input Current Low Logic State (VIL = 0.5 V)	¹ IL	-	-	-400	μA
Input Current – High Logic State (VIH = 2.7 V) (VIH = 5.5 V)	HI,	-	-	+50 +100	μA
Input Clemp Voltage (IIK= -18 mA)	VIK	-		-1.5	v
Output Voltage - Low Logic State (IOL = 48 mA)	VOL	-	-	0.5	v
Output Voltage – High Logic State (IOH = -20 mA)	∨он	2.5	-	-	v
Output Short-Circuit Current (VIH = 2.0 V) 2	los	-40	-	- 140	mA
Output Leakege Current Hi-Z State {VIL = 0.5 V, VIL(2) = 0.8 V) {VIH = 2.7 V, VIL(2) = 0.8 V)	IOL(Z)	-		±100 ±100	Aц
Output Leskage Current - Power OFF {VOH = 6.0 V, VCC = 0 V} (VOL = -0.25 V, VCC = 0 V)	¹ OL(off)		-	+100 -100	μA
Output Offset Voltage Difference1	Vos-Vos	-	-	±0.4	V
Output Differential Voltage 1	VT	2.0	-	-	v
Output Differential Voltage Difference 1	$V_{T} - \overline{V}_{T}$	_		±0.4	v
Power Supply Current					mA
(Control Pins = Gnd) ³	I ICCX] –	-	105	
(Control Pins = 2.0 V)	1cc	- 1	· -	85	

1. See EIA Specification RS-422 for exact test conditions.

Only one output may be shorted at a time.
 Circuit in three-state condition.


SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Times					ns
High to Low Output	1PHL	-		20	
Law to High Output	TPLH	-	1 - 1	20	
Output Transition Times - Differential					ns
High to Low Output	т нс	-	-	20	i
Low to High Output	1TLH	-	-	20	
Propagation Delay - Control to Output					ns
$(R_{L} = 200 \Omega, C_{L} = 50 pF)$	TPHZ(E)	-	-	25	i
(R_ = 200 Ω, C_ = 50 pF)	TPLZ(E)	-	1 - 1	25	
(R _ = ∞, C _ = 50 pF)	TPZH(E)	-	-	30	
(RL = 200 Ω, CL = 50 pF)	PZL(E)	-	- 1	30	

FIGURE 1 – THREE-STATE ENABLE TEST CIRCUIT AND WAVEFORMS

FIGURE 2 - PROPAGATION DELAY TIMES INPUT TO OUTPUT WAVEFORMS AND TEST CIRCUIT

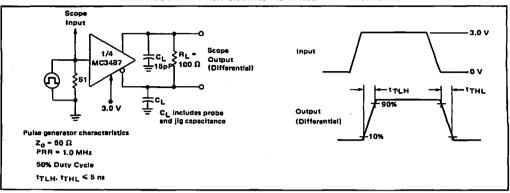
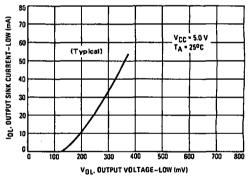
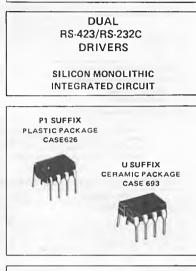



FIGURE 3 - OUTPUT TRANSITION TIMES TEST CIRCUIT AND WAVEFORMS

FIGURE 5 - OUTPUT SINK CURRENT versus OUTPUT VOLTAGE

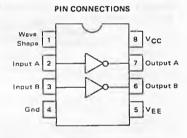
.

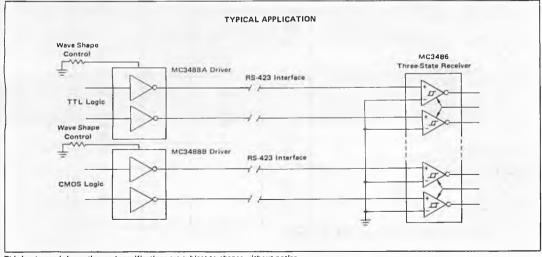
1


Product Preview

DUAL RS-423/RS-232C LINE DRIVERS

The MC3488A and MC3488B dual single-ended line drivers have been designed to satisfy the requirements of EIA standards RS-423 and RS-232C, as well as CCITT X.26, X.28 and Federal Standard FIDS1030. They are suitable for use where signal wave shaping is desired and the output load resistance is greater than 450 ohms. Output slew rates are adjustable from 1.0 μ s to 100 μ s by a single external resistor. Output level and slew rate are independent of power supply variations or matching. Input undershoot diodes limit transients below ground; output current limiting is provided in both output states. They can be operated with supply voltages from ± 9.0 to ± 15 V.


The MC3488A has a standard 1.5 V input logic threshold for TTL or NMOS compatibility. The MC3488B input logic threshold is set at $V_{CC}/2$ for use with CMOS logic systems.


- PNP Buffered Inputs to Minimize Input Loading
- Wide Power Supply Operating Range
- Adjustable Slew Rate Limiting
- Option of Either 1.5 V or VCC/2 Input Threshold
- MC3488A Equivalent to 9636A
- Logic Levels and Slew Rate Independent of Power Supply Voltages or Matching

MC3488A

MC3488B

This is edvance information and specifications are subject to change without notice.

ABSOLUTE MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
Power Supply Voltages	VCC VEE	+15 -15	v
Output Current			mA
Source	t ₀₊	+150	
Sink	10-	-150	
Operating Ambient Temperature	TA	0 to +70	°C
Junction Temperature Range	T.		°c
Ceramic Package		175	
Plastic Package		150	
Storage Temperature Range	Tstgi	-65 to +150	°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The "Table of Electrical Characteristics" provides conditions for setual device operation.

RECOMMENDED OPERATING CONDITION

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltages	V _{CC} . V _{EE}	10.8 10.8	12 -12	13.2 -13.2	_
Operating Temperature Range	TA	0	25	70	°C
Wave Shaping Resistor	Rw	10	-	500	kΩ

TARGET ELECTRICAL CHARACTERISTICS (Unless otherwise noted specifications apply over $0^{\circ}C < T_A < 70^{\circ}C$, 9.0 V $< V_{CC}$, V_{EE}| < 15 V and 2.0 k $< R_w < 400$ k)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage - Low Logic State	VIL				v
MC3488A		-	- 1	0.8	
MC3488B		-	l –	V _{CC} /2 -2.0	
Input Voltage - High Logic State	VIH				v
MC3488A ·		2.0	-	- 1	
MC3488B		V _{CC} /2 + 2.0	-		
Input Current - Low Logic State	<u> </u>				μA
(V _{IL} = 0,4 V)		- 1	-	-80	1
Input Current - High Logic State	Чн				μA
(VIH = 2.4 V) MC3488A		-	-	10	
(VIH = 5.5 V) MC3488A		-	-	100	
(VIH = VCC) MC34888			. –	100	
Input Clamp Diode Voltage	VIK			†	1 v
(I _{IK} = −15 mA)		-	-	-1.5	
Output Voltage - Low Logic State	VOL			i	V V
(RL =) RS-423	02	-5.0	-	-6.0	
(R1 = 3.0 kΩ) RS-232C		-5.0	- 1	-6.0	1
(R 🗋 = 450 ມ) RS-423		-4.0	-	-6.0	1
Output Voltage - High Logic State	VOH				v
(R _L = ∞) RS-423	0	5.0	-	6.0	
(R_ = 3.0 kΩ) RS-232C		5.0	· _	6.0	1
(R _L ≈ 450 Ω) RS-423		4.0	-	6.0	1
Output Short-Circuit Current	ISC+	+15		150	mA
	ISC-	-15	-	-150	
Output Leakage Current	lox	-100	_	100	μA
(V _{CC} = V _{EE} = 0 V, -6.0 V < V ₀ < 6.0 V)					[
Power Supply Current		· · · ·		·	
rower supply current (R _w = 2.0 kΩ)	1 100		L _	+18	m A
	icc	-	-	_	
(R _w = 2.0 kΩ)	tEE		_	-18	
Output Resistance	RO			1	ຄ
(RL≥450 Ω)		-	25	50	

Note: A diode is connected in series with $\mathsf{V}_{\mathsf{E}\mathsf{E}}$ for all test conditions.

TRANSITION TIMES (Unless otherwise noted, CL = 30 pF, f = 1.0 kHz, V_{CC} = 12 V, V_{EE} = -12 V, T_A = 25°C, RL = 450 Ω . Transition times measure 10% to 90% and 90% to 10%)

Characteristic	Symbol	Min	Тур	Max	Unit
Transition Time, Low to High State Output	TLH T				μs
(R _w = 10 kΩ)	1 1	0.8	-	1.4	
(R _w = 100 kΩ)	1 1	8.0	-	14	
$(R_W = 500 k\Omega)$		40	- 1	70	1
(R _w = 1000 kΩ)		80	-	140	
Transition Time, High to Low State Output	THL THL				μs
(R _w = 10 kΩ)		0.8	-	1.4	
(R _w = 100 kΩ)		8.0	-	14	
(R _W = 500 kΩ)		40		70	
(R _W = 1000 kΩ)		80	-	140	1

FIGURE 1 - TEST CIRCUIT & WAVEFORMS FOR TRANSITION TIMES

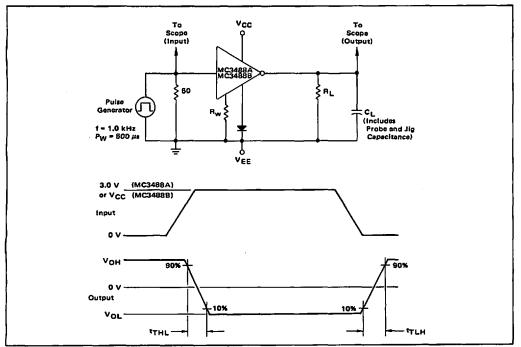
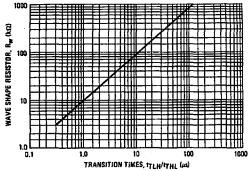
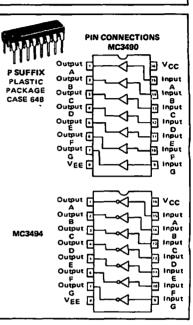



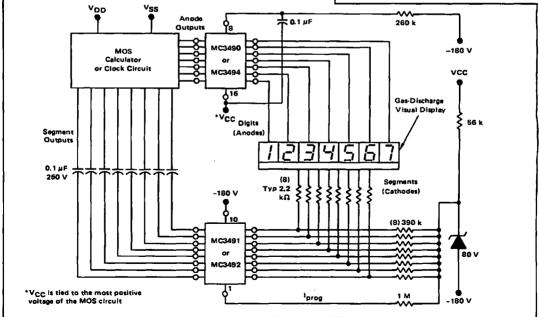
FIGURE 2 - OUTPUT TRANSISTION TIMES versus WAVE SHAPE RESISTOR VALUE

ANODE (DIGIT) DRIVERS FOR GAS-DISCHARGE DISPLAYS SILICON MONOLITHIC INTEGRATED CIRCUIT

SEVEN-DIGIT GAS-DISCHARGE DISPLAY DRIVERS


Seven channel digit (anode) drivers, the MC3490 and MC3494 are specifically conceived to be used with high-voltage, gas-discharge numeric displays such as the Burroughs' Panaplex[®], Beckman (Sperry) Cherry, or Diacon displays.

The MC3490 version is configured such that a high logic level input causes the driver to turn on while the MC3494 requires a low logic level to turn the drivers on. Both devices are designed to mate with the MC3491 cathode (segment) driver.


With a low input current requirement of only 300 μ A typically, these devices are compatible with popular MOS chips.

Minimum breakdown voltage is specified at 48 V and output drive current capability is typically 30 mA per channel.

- High Breakdown Voltage 55 V Typical
- Low Input Current for MOS Compatibility
- Available with Either Active High or Active Low Inputs
- Operable from Either Positive or Negative Supply Voltages
- Input Clamp Diodes on MC3494 Version for DC Restoration
- Internal Pull-down Resistors

TYPICAL APPLICATION WITH CAPACITIVE LEVEL SHIFT TO CATHODE DRIVER

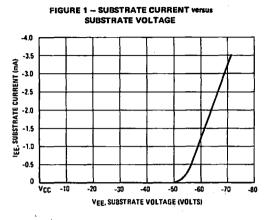
[®]Registered Trademark of Burroughs Corporation

Same.

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Negative Supply Voltage {Current Limited to -5 mA}	VEE	-60	Vde
Negative Supply Current	I EE	-5.0	mAdc
Input Voltage	- Vi	Vcc-20,Vcc	Vdc
Output Current (Vo = -5 V)	10	-50	mAdc
Package Power Dissipation Derate above 25°C	PD	830 6.7	mW mW/°C
Junction Temperature	TJ	150	°C
Operating Ambient Temperature Range	TA	0 to +70	°c
Storage Temperature Range	Tstg	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C, V_{CC} = Gnd V_{EE} = -60 V thru 5.0 kΩ, unless otherwise noted.)


Charactoristic			MC3490	_	MC3494			
	Symbol	Min	Тур	Ma×	Min	Тур	Max	Unit
Substrate Breakdown Voltage	VS(BR)	-48	-55		-48	-66	-	Vdc
Input Current – On State V1 = 0.0 V (See Figure 4) V1 = -7.0 V (See Figure 3)	l (on)	-	250 -	700 -	-	-200	-350	μA
Input Current — Off State VI = -15 V VI = 0.0 V	li(off)	-	<-1.0 -	-45 -	-	_ <1.0	50	μA
Input Voltage – Off State VO≈VEE (See Figures 3 and 4)	Vi(off)		-	-5.0	-2.0	-	-	Vdc
Input Voltage - On State Vo = Vcc-5.0 V (See Figures 3 and 4)	Vi(on)	-2.0	-	-		_	~5.0	Vdc
Output Voltage – Off State VI = 0.0 V VI = -7.0 V	Volofi)	- -48	-	_	-48 -		-	Vdc
Output Voltage – On State IO = -20 mA, VI = 0.0 V IO = -20 mA, VI = -7.0 V	VO{onI	-	-	-3.5 -	-		-5.0	Vdc

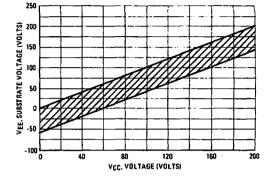
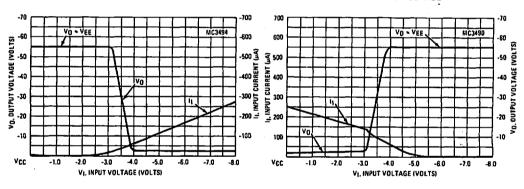
NOTE: Minimums and maximums are relative to absolute values.

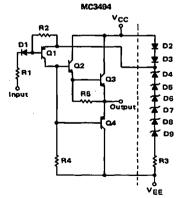
SYSTEM DISCUSSION

The MC3491 and MC3490/MC3494 high voltage driver system is designed such that it can be floated and any point in the system may be tied to circuit ground. In a MOS system, normally either the ground pin on the MC3491 is tied to the most negative MOS voltage; or the V_{CC} pin on the MC3490/MC3494 is connected to the most positive MOS voltage. In the electrical characteristics table, this V_{CC} voltage is assumed to be 0.0 volts.

The MC3490/MC3494 provides its own internal voltage reference when a current (-100 μ A to -5 mA) is drawn at the V_{EE} pin (Pin 8). This can be provided by connecting a resistor from Pin 8 to the high voltage reference on the cathode driver or any other voltage more negative than V_{CC} -60 V. This voltage (Pin 8) is approximately -55 V and provides a reference for the pull-down function for each channel.

TYPICAL PERFORMANCE CHARACTERISTICS


FIGURE 2 - PERMISSIBLE OPERATING RANGE

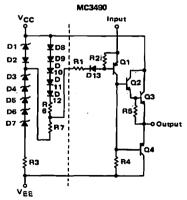


FIGURE 4 - INPUT CURRENT and OUTPUT VOLTAGE versus INPUT VOLTAGE

REPRESENTATIVE CIRCUIT SCHEMATIC (1/7 Shown)

12-DIGIT CMOS GAS DISCHARGE DISPLAY

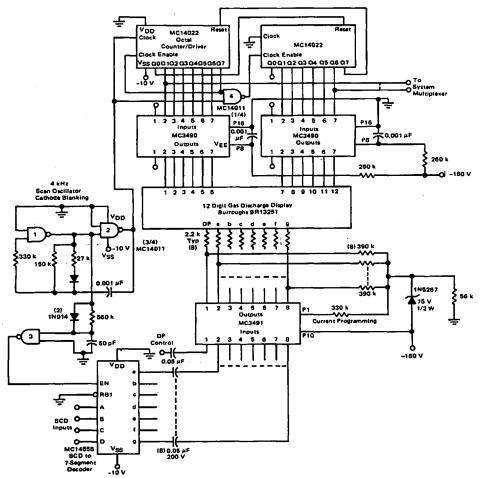
When the number of digits for a gas discharge display system is greater than the number of segment drivers, it is generally more economical to level translate down to the cathode segments than to translate up to the digit anodes. An example of this technique is shown in the 12 digit display system where the display anodes and cathodes are referenced to ground and -180 V respectively.

The positive logic CMOS address circuits are powered by -10 V (VDD = 0, VSS = -10 V) with the MC14558 decoder outputs capacitor-coupled to the MC3491 Segment Drivers and the scan circuit directly-coupled to the MC3490 Anode Drivers. Thus, only eight capacitors (seven segments, one decimal point) are required as compared to 12 capacitors, if the strobed digit drivers were ac coupled.

The MC3491 has input clamp diodes allowing for dc restoration of the segment address pulse. This high voltage driver (80 V) also features programmable segment current by the selection of a single external resistor.

The MC3490 Anode Drivers are selected by the positive going output of the digit scan circuit. (If the scan circuit outputs were negative going, the low logic level input MC3494 Anode Driver should be used.) The internal zener diode string of the MC3480 references the off drivers (and display anodes) to -50 V without the need of pull-down resistors.

Digit scanning for this example is derived from two cascaded MC14022 Octal Counter/Drivers. The 12 sequenced output pulses are achieved by resetting the counters with the second counter Q7 output. In addition to driving the two MC3490s, the counter output should also control the system multiplexer (not shown) to properly synchronize the entire display system.


The MC14558 BCD to Seven Segment Decoder has an Enable input which readily provides for display cathode blanking. For the illustrated display, the cathode drivers should be turned off prior to anode switching and maintained off for some period after the next anode is strobed.

This cathode blanking overlap is derived by trailing edge time delaying the Gate 1 output of the non-symmetric 4 kHz scan oscillator with the integrated network and inverter Gate 3.

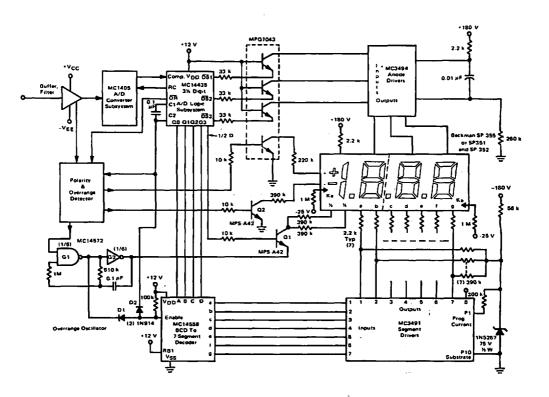
The high voltage power supply rise and fall times should be greater than the charge time of the coupling capacitors to prevent large transients from possible degrading the interface electronics.

For this example, power supply rise and fall time of 50 ms minimum will suffice.

3-1/2 DIGIT VOLTMETER

This specific application provides a 3-1/2 digit DVM utilizing the MC1505 dual ramp subsystem and CMOS MC14435 digital subsystem. Interfacing between low voltage logic ICs and the higher voltage gas discharge displays requires level translation or shifting. The method described for the 3-1/2 Digit DVM uses directly coupled high voltage (200 V) transistors to translate upward to the MC3494¹ Anode Drivers. Three of the transistors comprising the MPQ7042 high voltage quad transistor are used for this function. These transistors, connected in a compon-base, constant-current configuration, are turned on by the negative going digit select output pulses of the MC14435. The current of approximately 330 μ A is compatible with 200 μ A typical input current of the MC3494 and the sink current capability of the MC14435.

The CMOS MC14558 BCD-to-Seven Segment Decoder has the capability of directly driving the MC3491 Segment Driver. Cathode blanking is accomplished by taking the clock signal from Pin 4 of the MC14435 (approximately 50% duty cycle) and tying it to the Enable input of the MC14458. The display segment current is increased accordingly to 1.1 mA (manufacturers maximum specified current equals 1.25 mA) for this relatively large cathode blanking period.


The positive and negative polarity signs are direct driven by the fourth transistor of the MPQ7043 and MPSA42 transistor, Q2, respectively. Their dc segment currents are scaled to produce the same brightness as the multiplexed digits.

The 1/2 digit segments are driven by transistor Q1. Its emitter is normally referenced to ground through MC14572 Inverter G2, the output inverter of the Overrange Oscillator.

When an overrange situation occurs, the oscillator is enabled, thus causing the display to flash at the oscillator rate (approximately 8 Hz). This is accomptished by blanking the 1/2 digit through Q1 and the multiplexed digits through diode D1 to the decoder enable input.

See the MC1405 and MC14435 data sheets for more details of DVM system.

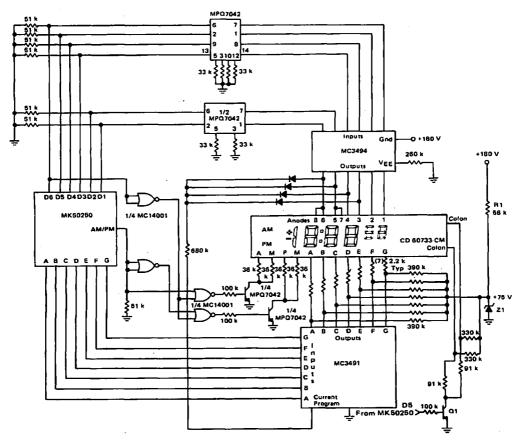
FIGURE 6 - 3-% DIGIT DIGITAL VOLTMETER

12-HOUR CLOCK WITH GAS DISCHARGE DISPLAYS

The MC3491 cathode driver and MC3494 anode driver, greatly simplify the interfacing of a clock chip (MOSTEK MK50250) to a gas discharge clock display (Burroughs CD60733-CM).

The MK50250 has a 6 digit clock display with multiplexed 7 segment outputs. The MC3491 cathode drivers switch each display cathode between ground (on condition) and 475 Volts (off condition) with current limiting for the display provided via the current programming pin on the MC3491. The +75 Volt reference. is obtained from a 75-Volt zener diode, Z1. R1, and a 50-Volt zener diode internel to the MC3494 anode driver.

The programming current is reduced during the time when the "two seconds" indicator digits are ON, to reduce the current through these smaller digits of the display. Four diodes attached to each of the "hours" and "minutes" digits, provide a voltage of +180 Volts across the 680 kΩ resistor. During the "seconds" digits display time, the voltage is reduced to +130 Volts, thus reducing the programming current.

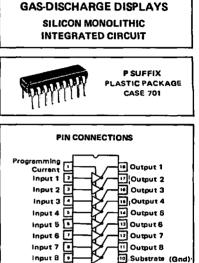

The anodes for each of the six digits are switched between the +180 Volt positive supply and +130 Volts via the MC3494 anode drivers. Inter-digit blanking is provided in the anode circuits. Level translation from the clock chip output to the input to the MC3494 uses two MPQ7042 quad high voltage transistor packages operating in an emitter follower current source mode. Each current source turns on one of the MC3494 drivers by sinking 300 μ A to ground for the proper "on" digit.

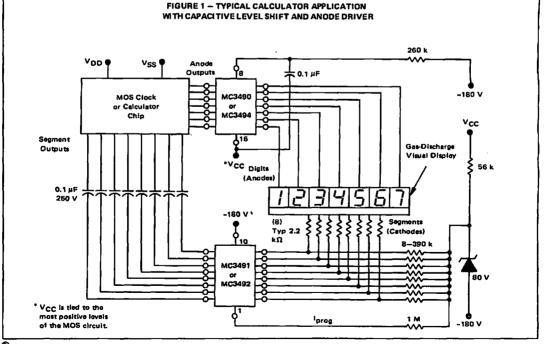
The AM/PM clock output is in the high state when PM is indicated and has a 85% duty cycle corresponding to each anode on time. A MC14001 Quad NOR Gate decodes this output to turn on the appropriate AM or PM indicator during the D6 digit. These Gates control the AM/PM display indicators with the remaining MPQ7042 high voltage transistors which were not used in anode selection.

The colon separating hours and minutes is switched on during the units of hours digit on time. The colon cathodes are switched from +75 Volts to ground via T1 during the D5 digit time while the anodes are switched between +180 and +130 Volts.

Further information concerning operation or technical specifications on the MOSTEK clock chip, MK50250, and the Burroughs clock display, CD60733-CM is obtainable from the manufacturers.

FIGURE 7 - 12 HOUR CLOCK WITH GAS DISCHARGE DISPLAY SYSTEM


SEGMENT DRIVERS FOR

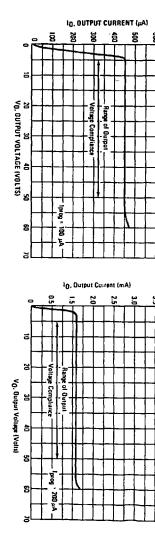

The MC3491 and MC3492 are eight-segment cathode drivers for use with gas-discharge displays, such as the Burroughs' Panaplex®, Beckman, Cherry or Diacon types. Both devices are directly compatible with MOS logic outputs due to their low 300 μA input current requirement. All eight driver output currents are simultaneously programmable by selection of a single external resistor. As programmed, all eight currents match to within typically 1% of each other. Both devices provide dc restoration. The units are specified for a minimum breakdown voltage of 80 V. The MC3492 device is made for larger and higher intensity displays requiring higher segment current. • High Breakdown Voltage – 80 V Min^{*} • Drives Seven Cathode Segments plus Decimal Point • All Currents Simultaneously Programmable with One Resistor

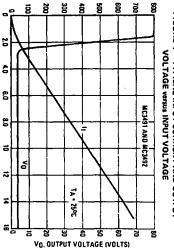
MC3491 is Pin-for-Pin and Functionally Equivalent to DM8889

EIGHT-SEGMENT VISUAL DISPLAY DRIVERS

- Output Current/Programming Current Ratio -
 - Typically 4.5:1 for MC3491
 - 9:1 for MC3492
- Companion with MC3490 and MC3494 Anode Drivers
- MC3492 Provides Increased Output Current for High Intensity Displays
- *Higher Voltage Selection Available

[®]Registered Tredemark of Burroughs Corporation

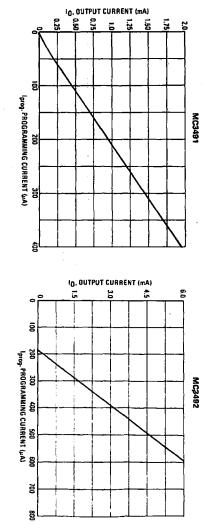

MAXIMUM RATINGS (Unless otherwise noted, TA = 25°C)


Rating		Symbol	Value	Unit
Output OFF Voltage (Current Limited to 0.5 mA)		VO(off)	95	v
Output ON Voltage (Current Limtied to 2.0 mA)		VO(on)	50	v
Input Voltage			20	v
Programming Current	MC3491 MC3492	Iprog	400 2500	μA
Junction Temperature		Τj	150	°c
Operating Ambient Temperature Range		TA	0 to 70	°c
Storage Temperature Range		T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, V_{CC} < 80 V, T_A = 25^oC, Pin 10 = Gnd, All voltages with respect to Gnd.)

			MC3491			MC3492		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Current (V1H = 7.0 V)	ЧН	200	300	400	200	300	400	μA
Input Clamp Voltage (I _{IK} = -1.0 mA)	VIK	-	-	-1.0	-	_	-1.0	V
Input OFF Voltage	VIL	1.0	1.5	-	1.0	1.5	-	V
Input ON Voltage	VIH	- 1	2.4	3.5	-	2,4	3.5	v
Output OFF Current (VIL = 0 V, VO = VCC)	lO(off)	-	-	5.0	-	-	5.0	μA
Output ON Current (at V _{IH} = 7.0 V)* (f _{prog} = 100 μA) (l _{prog} = 350 μA) (l _{prog} = 200 μA) (l _{prog} = 500 μA)	IO(on)	400 1450 	450 1650 -	500 1850 	- - 1.3 3.75	- 1.6 4.5	- - 1.9 5.25	μA mA
Output Current Matching (All eight outputs)	Δ ¹ Ο	-	< 1	< 10	_	< 1	< 10	*
Output OFF Voltage (I _{prog} = 100 μΑ, R _L = 1.0 ΜΩ, VI _L = 0 V) (I _{prog} = 200 μΑ, R _L = 1.0 ΜΩ, VI _L = 0 V)	VOloff)	V _{CC} -5.0	v <u>c</u> c	-	- V _{CC} -5.0	 ∨cc		V
Output Saturation Voltage (I _{prog} = 100 µA, RL = 1.0 M\$2, VIH = 7.0 V) (I _{prog} = 200 µA, RL = 1.0 M\$2, VIH = 7.0 V)	VQ(sat)	-	3.0	5.0 -	-	- 3.0	- 5.0	V
Output Voltage Compliance Range (Iprog = 100 µA, IO(on) = 450 µA, VIH = 7.0 V) (See Figure 3)	VOR(on)	5.0	_	50	-	_	-	V
(I _{prog} = 200 µA, I _{O(on)} = 1.6 mA, V _{IH} = 7.0 V) [.] (See Figure 3)		-	-		- 5.0	-	50	

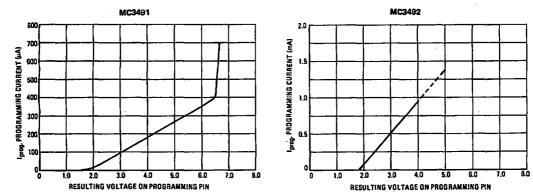
*Measured one channel at a time.



II, INPUT CURRENT (مر)

FIGURE 4 - TYPICAL INPUT CURRENT AND OUTPUT

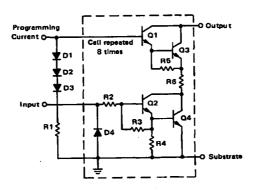
VI, INPUT VOLTAGE (VOLTS)



U

MC3491, MC3492

۰.



TYPICAL PERFORMANCE CHARACTERISTICS

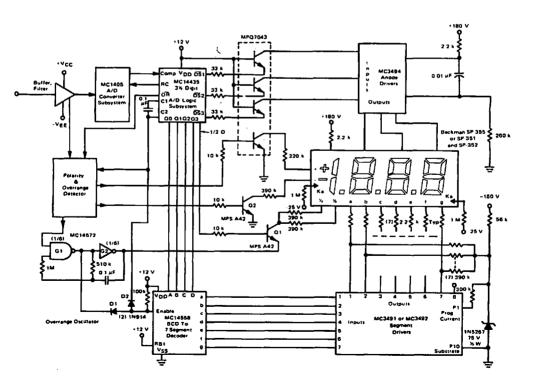
FIGURE 5 – TYPICAL PROGRAMMING CURRENT versus VOLTAGE ON PROGRAMMING PIN $(T_{\rm A}=25^{\circ}{\rm C})$

REPRESENTATIVE CIRCUIT SCHEMATIC

.

3-1/2-DIGIT VOLTMETER

This specific application provides a 3-1/2-digit DVM utilizing the MC1505 dual ramp subsystem and CMOS MC14435 digital subsystem. Interfacing between low voltage logic ICs and the higher voltage gas discharge displays requires level translation or shifting. The method described for the 3-1/2-digit DVM uses directly coupled high voltage (200 V) transistors to translate upward to the MC3494 Anode Drivers. Three of the transistors comprising the MPO7042 high voltage quad transistors are used for this function. These transistors connected in a common-base, constant-current configuration are turned on by the negative-going digit select output pulses of the MC3494 and the sink current capability of the MC14435.


The CMOS MC14558 BCD-to-Seven Segment Decoder has the capability of directly driving the MC3491 or MC3492 Segment Drivers. Cathode blanking is accomplished by taking the clock signal from Pin 4 of the MC14435 (approximately 50% duty cycle) and tying it to the Enable input of the MC14458. The display segment current is increased accordingly to 1.1 mA (manufacturers maximum specified current equals 1.25 mA) for this relatively large cathode blanking period.

The positive and negative polarity signs are direct driven by the fourth transistor of the MPQ7043 and MPS-A42 transistor, Q2, respectively. Their dc segment currents are scaled to produce the same brightness as the multiplexed digits.

The 1/2-digit segments are driven by transistor Q1. Its emitter is normally referenced to ground through MC14572 Inverter G2, the output inverter of the Overrance Oscillator.

When an overrange situation occurs, the oscillator is enabled, thus causing the display to flash at the oscillator rate (approximately 8 Hz). This is accomplished by blanking the 1/2 digit through Q1 and the multiplexed digits through diode D1 to the decoder enable input.

See the MC1405 and MC14435 data sheets for more details of DVM system.

FIGURE 6 - 3-% DIGIT DIGITAL VOLTMETER

12-DIGIT CMOS GAS DISCHARGE DISPLAY

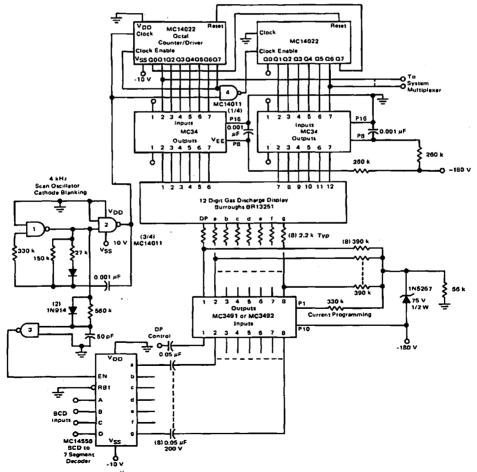
When the number of digits for a gas discharge display system is greater than the number of segment drivers, it is generally more economical to level translate down to the cathode segments than to translate up to the digit anodes. An example of this technique is shown in the 12 digit display system where the display anodes and cathodes are referenced to ground and -180 V respectively.

The positive logic CMOS address circuits are powered by $-10 \vee (V_{DD} = 0, V_{SS} = -10 \vee)$ with the MC14558 decoder outputs capacitor coupled to the MC3491 Segment Drivers and the scan circuit directly-coupled to the MC3490 Anode Drivers. Thus, only eight capacitors (seven segments, one decimal point) are required as compared to 12 capacitors, if the strobed digit drivers were ac coupled.

The MC3491 and MC3492 have input clamp diodes allowing for dc restoration of the segment address pulse. These high voltage drivers (80 V) also feature programmable segment current by the selection of a single external resistor.

The MC3490 Anode Drivers are selected by the positive going output of the digit scan circuit. (If the scan circuit outputs were negative going, the low logic level input MC3494 Anode Driver should be used.) The internal zener diode string of the MC3490 references the off drivers (and display anodes) to -50 V without the need of pull-down resistors.

Digit scanning for this example is derived from two cascaded MC14022 Octal Counter/Drivers. The 12 soquenced output pulses are achieved by resetting the counters with the second counter Q7 output. In addition to driving the two MC3490's, the counter output should also control the system multiplexer (not shown) to properly synchronize the entire display system.


The MC14558 BCD-to Seven Segment Decoder has an Enable input which readily provides for display cathode blanking. For the illustrated display, the cathode drivers should be turned off prior to anode switching and maintained off for some period after the next anode is strobed.

This cathode blanking overlap is derived by trailing edge time delaying the Gate 1 output of the non-symmetric 4 kHz scan oscillator with the integrated network and inverter Gate 3.

The high voltage power supply rise and fall times should be greater than the charge time of the coupling capacitors to prevent large transients from possible degrading the interface electronics.

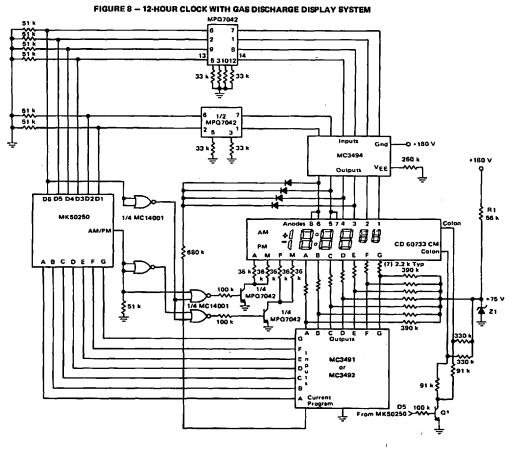
For this example, power supply rise and fall time of 50 ms minimum will suffice.

12 HOUR CLOCK WITH GAS DISCHARGE DISPLAYS

The MC3491 or MC3492 cathode drivers and MC3494 anode driver, greatly simplify the interfacing of a clock chip (MOSTEK MK50250) to a gas discharge clock display (Burroughs CD60733-CM).

The MK50250 has a 6-digit clock display with multiplexed 7-segment outputs. The MC3491 cathode drivers switch each display cathode between ground (on condition) and +75 Volts (off condition) with current limiting for the display provided via the current programming pin on the MC3491 or MC3492. The +75 Volt reference is obtained from a 75-Volt zener diode, 21, R1, and a 50-Volt zener diode internal to the MC3494 anode driver.

The programming current is reduced during the time when the "two seconds" indicator digits are ON, to reduce the current through these smaller digits of the display. Four diodes attached to each of the "hours" and "minutes" digits, provide a voltage of +180 Volts across the 680 kΩ resistor. During the "seconds" digits display time, the voltage is reduced to +130 Volts, thus reducing the programming current.


The anodes for each of the six digits are switched between the +180 Volt positive supply and +130 Volts via the MC3494 anode drivers. Inter-digit blanking is

provided in the anode circuits. Level translation from the clock chip output to the input to the MC3494 uses two MPQ7042 quad high voltage transistor packages operating in an emitter-follower current source mode. Each current source turns on one of the MC3494 drivers by sinking 300 μ A to ground for the proper "on" digit.

The AM/PM clock output is in the high state when PM is indicated and has an 85% duty cycle corresponding to each anode on time. A MC14001 Quad NOR Gate decodes this output to turn on the appropriate AM or PM indicator during the D6 digit. These Gates control the AM/PM display indicators with the remaining MPQ7042 high voltage transistors which were not used in anode selection.

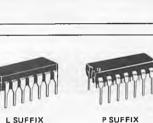
The colon separating hours and minutes is switched on during the units of hours digit on time. The colon cathodes are switched from +75 Volts to ground via T1 during the D5 digit time while the anodes are switched between +180 and +130 Volts.

Further information concerning operation or technical specifications on the MOSTEK clock chip, MK50250, and the Burroughs clock display, CD60733-CM is obtainable from the manufacturers.

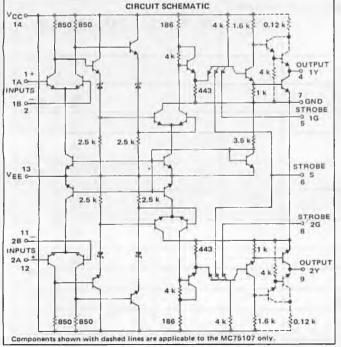
MC75107 MC75108

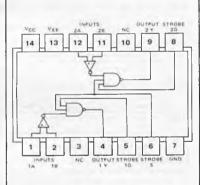
DUAL LINE RECEIVERS

SILICON MONOLITHIC


INTEGRATED CIRCUITS

DUAL LINE RECEIVERS


The MC75107 and MC75108 are MTTL compatible dual line receivers featuring independent channels with common voltage supply and ground terminals. The MC75107 circuit features an active pull-up (totem-pole) output. The MC75108 circuit features an open-collector output configuration that permits the Wired-OR logic connection with similar outputs (such as the MC5401/MC7401 MTTL gate or additional MC75108 receivers). Thus a level of logic is implemented without extra delay.


The MC75107 and MC75108 circuits are designed to detect input signals of greater than 25 millivolts amplitude and convert the polarity of the signal into appropriate MTTL compatible output logic levels.

- · High Common-Mode Rejection Ratio
- · High Input Impedance
- High Input Sensitivity
- Differential Input Common-Mode Voltage Range of ±3.0 V
- Differential Input Common-Mode Voltage of More Than ± 15 V Using External Attenuator
- Strobe Inputs for Receiver Selection
- Gate Inputs for Logic Versatility
- MTTL or MDTL Drive Capability
- High DC Noise Margins
- MC55107 Available as JM38510/10401

L SUFFIX CERAMIC PACKAGE CASE 632 TO-116 P SUFFIX PLASTIC PACKAGE CASE 646

TI	RUTH 1	ABLE	
DIFFERENTIAL	STROBES		OUTPUT
A B	G	S	Y
V10≥25 mV	L or H	LorH	н
	L or H	L	н
25 mV + V10 < 25 mV	L	LorH	н
	н	н	INDETERMINATE
	LorH	L	н
V1D ≤ - 25 mV	L	L or H	н
	н	н	L

MAXIMUM RATINGS (TA = 0°C to +70°C unless otherwise nated)

Rating	Symbol	Value	Unit
Power Supply Voltages	VCC VEE	+7.0 -7.0	Vdc
Differential-Mode Input Signal Voltage Range	VID	<u>+</u> 6.0	Vdc
Common-Mode Input Voltage Range	VICR	<u>+</u> 5.0	Vdc
Strobe Input Voltage	VI(S)	5.5	Vdc
Power Dissipation (Package Limitation)	PD PD		
Plastic and Ceramic Dual-In-Line Packages Derate above TA = +25 ^G C		625 3.85	mW _mW/ºC
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	Tstg	-65 to +150	°c

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltages	VCC VEE	+4.75 -4.75	+5.0 -5.0	+5.25 -5.25	Vdc
Output Sink Current	IDS	••	-	- 16	mΑ
Differential-Mode Input Voltage Range	VIDR	-5.0	-	+5.0	Vdc
Common-Mode Input Voltage Range	VICR	-3.0	-	+3.0	Vdc
Input Voltage Range, any differential input to ground	VIR	-5.0		+3.0	Vdc
Operating Temperature Range	TA	0	-	+70	°C

DEFINITIONS OF INPUT LOGIC LEVELS

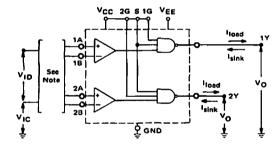
Characteristic	Symbol	Test Fig.	Min	Max	Unit
High-Level Input Voltage (between differential inputs)	VIDH	1	0.025	5.0	Vdc
Low-Level Input Voltage (between differential inputs)	VIDL	1	-5.01	-0.025	Vdc
High-Level Input Voltage (at strobe inputs)	VIH(S)	3	2.0	5.5	Vdc
Low-Level Input Voltage (at strobe inputs)	VIL(S)	3	0	0.8	Vdc

The algebraic convention, where the most positive limit is designated maximum, is used with Low-Level Input Voltage Level (VIDL)

ELECTRICAL CHARACTERISTICS (TA = 0°C to +70°C unless otherwise noted)

Characteristic	Symbol	Test Fig.	Min	Typ #	Max	Unit
High-Level Input Current to 1A or 2A Input (VCC = Max, VEE = Max, VID = 0.5 V, VIC = -3.0 V to +3.0 V) ‡	Чн	2	-	30	75	μA
Low-Level Input Current to 1A or 2A Input (V _{CC} = Max, V _{EC} = Max, V _{ID} = -2.0 V, V _{IC} = -3.0 V to +3.0 V) ‡	112	2	-	-	- 10	μA
High-Level Input Current to 1G or 2G Input (VCC = Max, VEE = Max, VIH(S) = 2.4 V)‡ (VCC = Max, VEE = Max, VIH(S) = VCC Max)‡	ŧн	4		-	40 1.0	μA mA
Low-Level Input Current to 1G or 2G Input (V _{CC} = Max, V _{EE} = Max, V _{IL(S)} = 0.4 V)‡	μr	4	-		- 1.6	mA
High-Level Input Current to S Input (VCC = Max, VEE = Max, VIH(S) = 2.4 V)‡ (VCC = Max, VEE = Max, VIH(S) = VCC Max1‡	Чн	4			80 2.0	μA mA
Low-Level Input Current to S Input (VCC = Max, VEE = Max, VIL(S) = 0.4 V)‡	հե	4		-	-3.2	mA
High-Level Output Voltage (V _{CC} = Min, V _{EE} = Min, I_{load} = -400 μ A, V _{IC} = -3.0 V to +3.0 V)‡	∨он	3	-	-	-	v
Low-Level Output Voltage (V _{CC} = Min, V _{EE} = Min, I _{sink} = 16 mA V _{IC} = -3.0 V to +3.0 V)‡	Vol	3	-	-	0.4	v
High-Level Leskage Current (VCC = Min, VEE = Min, VOH = VCC Max)‡	ICEX	3	_	-	250	μA
Short-Circuit Output Current # # (V _{CC} = Max, V _{EE} = Max) ‡	losc	5	_	_	-	mA ·
High Logic Level Supply Current from V _{CC} {V _{CC} = Max, V _{EE} = Max, V _{ID} = 25 mV, T _A = +25 ^o C} ‡	ICCH+	6	-	18	30	mA
High Logic Level Supply Current from VEE {V _{CC} = Max, V _{EE} = Max, V _{ID} = 25 mV, T _A = +25 ^o C)‡	·ссн-	6	0	8.4	-15	, mA

\$ For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable device type. #All typical values are at V_{CC} = +5.0 V. V_{EC} = -5.0 V. T_A = +25⁰C. # #Not more than one output should be shorted at a time.


MC75107, MC75108

SWITCHING CHARACTERISTICS (V_{CC} = +5.0 V, V_{EE} = -5.0 V, T_A = +25°C)

Characteristic	Symbol	Test Fig.	Min	Тур	Мак	Unit
Propagation Delay Time, low-to-high level from differential inputs A and B to output	PLH(D)	7				ns
(R _L = 390 Ω, C _L = 50 pF)			-	1	25	
(R _L = 390 Ω, C _L = 15 pF)		L	_	19	20	
Propagation Delay Time, high-to-low level from differential inputs A and B to output	tPHL(D)	7				ns
$(R_1 = 390 \Omega, C_1 = 50 pF)$			-	- 1	-	
(RL = 390 Ω, CL = 15 pF)			- 1	19	25	
Propagation Delay Time, low-to-high level, from strobe input G or S to output	tPLH(S)	7				ns
$(R_1 = 390 \Omega, C_1 = 50 pF)$			-	- 1	-	
(RL = 390 Ω, CL = 15 pF)		[-	13	20	1
Propagation Delay Time, high-to-low level, from strobe input G or S to output	tPHL(S)	7				ns
(R ₁ = 390 Ω, C _L = 50 pF)			- 1	- 1	-	
(R _L = 390 Ω, C _L = 15 pF)			- 1	13	20	J

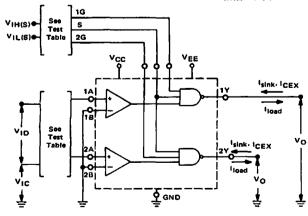

TEST CIRCUITS

FIGURE 1 - VIDH and VIDL

NOTE: When testing one channel, the inputs of the other channel are grounded.

TEST TABLE

MC75107	MC75108	VID	STROBE 1G or 2G	STROBE S
TE	ST		APPLY	
VOH	'CEX	+25 mV	VIH(S)	VIH(S)
VOH	ICEX	-25 mV	VIL(S)	VIH(S)
VOH	CEX	-26 mV	VIH(S)	VIL(S)
VOL	VOL	-25 mV	VIH(S)	VIH(S)

NOTES: 1. VIC = -3.0 V to +3.0 V.

When testing one channel, the inputs of the other channel should be grounded.

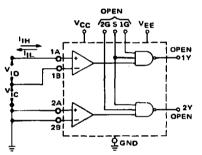
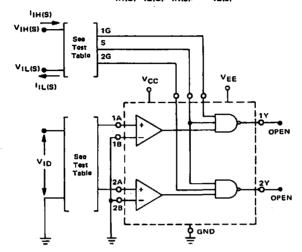



FIGURE 2 - IIH and IIL

NOTE: Each pair of differential inputs is tested separately. The inputs of the other pair are grounded

TEST CIRCUITS (continued)

FIGURE 4 - IIH(G), IIL(G), IIH(S), and IIL(S)

TEST	INPUT 1A	INPUT 2A	STROBE 1G	STROBE S	STROBE 2G
IIH at Strobe 1G	+25 mV	Gnd	VIH(S)	Gnd	Gnd
IIH at Strobe 2G	Gnd	+25 mV	Gnd	Gnd	VIH(S)
IIH at Strobe S	+26 mV	+26 mV	Gnd	VIH(S)	Gnd
IL at Strobe 1G	-25 mV	Gnd	VIL(S)	4.5 V	Gnd
IL at Strobe 2G	Gnd	-25 mV	Gnd	4.5 V	VIL(S)
IL at Strobe S	-25 mV	-25 mV	4.5 V	VIL(S)	4.5 V

FIGURE 5 - IOS

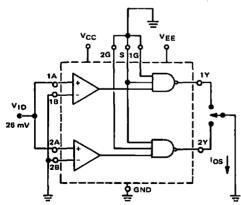
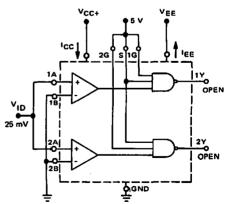
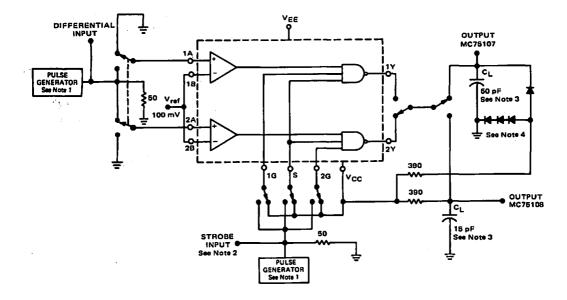
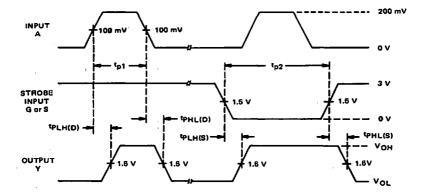




FIGURE 6 - ICC and IEE



NOTES: 1. Each channel is tasted separately. 2. Not more than one output should be tested at one time.

5-106

TEST CIRCUITS (continued) FIGURE 7 - PROPAGATION DELAY TIME TEST CIRCUIT AND WAVEFORMS

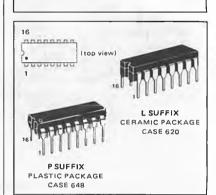
NOTES: 1. The pulse generators have the following characteristics: $z_0 = 50 \Omega$, $t_r = t_f = 10 \pm 5$ ns, $t_{p1} = 500$ ns, PRR = 1 MHz $t_{p2} = 1$ ms, PRR = 500 kHz.

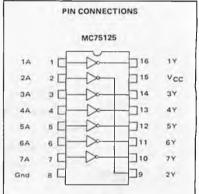
2. Strobe input pulse is applied to Strobe 1G when inputs 1A-1B are being tested, to Strobe S when inputs 1A-1B or 2A-2B are being tested, and to Strobe 2G when inputs 2A-2B are being tested.

3. CL includes probe and Jig capacitance.

4. All diodes are 1N916 or equivalent.

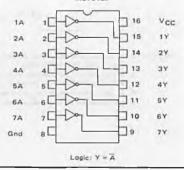
MC75125 MC75127

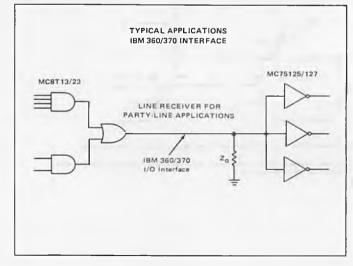

SEVEN CHANNEL


SEVEN CHANNEL LINE RECEIVERS

The MC75125 and MC75127 are seven-channel line receivers designed to satisfy the requirements of the input/output interface specification for IBM 360/370.

Special low-power design and Schottky-diode-clamped transistors allow low supply-current requirements while maintaining fast switching speeds and high-current TTL outputs. The MC75125 and MC75127 are characterized for operation from 0 to 70°C.


- Meets IBM 360/370 I/O Specification
- Input Resistance 7 k Ω to 20 k Ω
- Output Compatible with DTL or TTL
- Schottky-Clamped Transistors
- Operates from a Single 5 Volt Supply
- High-Speed Low Propagation Delay
- Ratio Specification tPLH/tPHL
- Seven Channels in One 16-Pin Package
- Standard VCC and Ground Positioning on MC75127



MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	+7.0	V
Input Voltage	V ₁	-2.0 to +7.0	V
Power Dissipation (Package Limitation) Ceramic Package Plastic Package	PD	1150 960	mW
Derate Above T _A = 25°C	1/R _{0JA}	7.7	mW/°C
Operating Ambient Temperature Range	TA	0 to +70	°C
Junction Temperature Ceramic Package Plastic Package	Ţj	+ 175 + 150	°c
Storage Temperature Range	Tstg	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltage	Vcc	4.5	5.0	5.5	Vdc
High Level Output Current	юн		-	-0.4	mA
Low Level Output Current	IOL			16	mA
Operating Ambient Temperature Range	TA	0	-	+70	°C

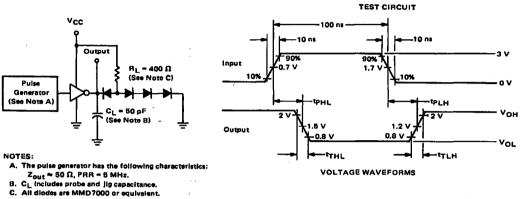
ELECTRICAL CHARACTERISTICS

(Unless otherwise noted, these specifications apply over recommended power supply and temperature ratings. Typical values measured at $T_A = 25^{\circ}C$ and $V_{CC} = +5.0 \text{ V}$

Characteristic	Symbol	Min	Тур	Max	Unit
High-Level Input Voltage	ViH	1.7	-	-	V
Low-Level Input Voltage	VIL	-	-	0.7	v
High-Level Output Voltage (VCC = 4.5 V, VIL = 0.7 V, IOH = -0.4 mA)	V _{OH}	2.4	3.1	-	V
Low-Level Output Voltage (VCC = 4.5 V, VIH = 1.7 V, IOL = 16 mA)	VOL	-	0.4	0.5	v
High-Level Input Current (V _{CC} = 5.5 V, V _I = 3.11 V)	Цин	0.2	0.3	0.42	mA
Low-Level Input Current (VCC = 5.5 V, VI = 0.15 V)	11	_	-	-0.24	mA
Short Circuit Output Current* (VCC = 5.5 V, VO = 0)	los	-18		-60	mA
Input Resistance (VCC = 4.5 V, 0 V, or Open, 4VI = 0.15 V to 4.15 V)	ri	7.4	-	20	kΩ
Power Supply Current Outputs High-Logic State (V _{CC} = 5.5 V, IOH = -0.4 mA, all inputs at 0.7 V)	ССН	_	15	25	mA
Power Supply Current Outputs Low-Logic State (VCC = 5.5 V, IOL = 16 mA, all inputs at 4.0 V)	ICCL	-	28	47	mA

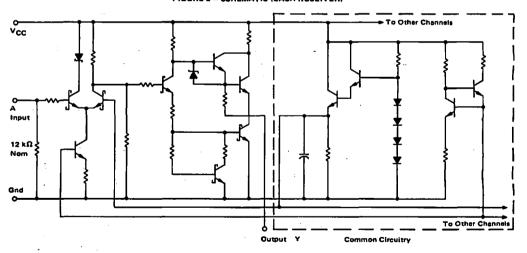
SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = 25°C, R_L = 400 Ω, C_L = 50 pF, unless otherwise noted. See Figure 1)

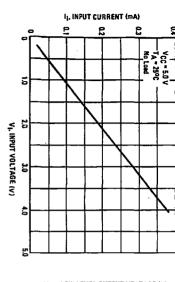
Characteristic	Symbol	MC75125			MC75127			
		Min	Тур	Max	Min	Тур	Max	Unit
Propagation Delay Time Low-to-High-Level Output High-to-Low-Level Output	tPLH tPHL	7.0 10	14	. 25	7.0 10	14	25 30	ns.
Ratio of Propagation Delay Times	TPLH/TPHL	0.5	0.8	1.3	0.5	0.8	1.3	
Transition Tima, Low-to-High-Level Output	TLH	1.0	7.0	12	1.0	7.0	12	ns
Transition Time, High-to-Low Level Output	1THL	1.0	3.0	12	1.0	3.0	12	ns

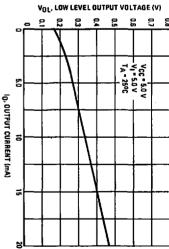

"No more than one output should be shorted at a time.

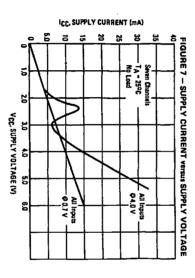
.

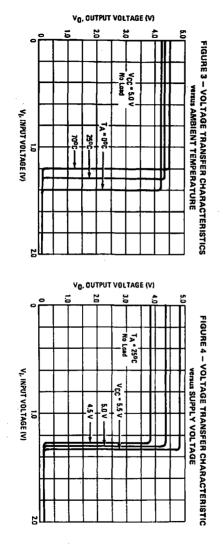
.


.


r.




FIGURE 1 - PARAMETER MEASUREMENT INFORMATION



5-111

MC75125, MC75127

TYPICAL CHARACTERISTICS

ŝ

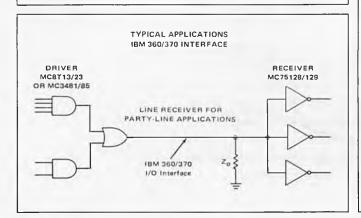
FIGURE 5 - INPUT CURRENT versus INPUT VOLTAGE

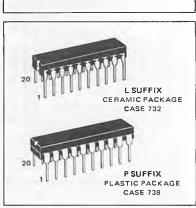
FIGURE 6 - LOW-LEVEL OUTPUT VOLTAGE

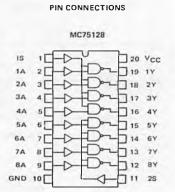
Versus OUTPUT CURRENT

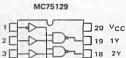
MC75128 MC75129

EIGHT-CHANNEL

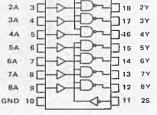

LINE RECEIVERS


The MC75128 and MC75129 are eight-channel line receivers designed to satisfy the requirements of the input/output interface specification for IBM 360/370. Both devices feature common strobes for each group of four receivers. The MC75128 has an active-


EIGHT-CHANNEL LINE RECEIVERS


high strobe; the MC75129 has an active-low strobe. Special low-power design and Schottky-diode-clamped transistors allow low supply-current requirements while maintaining fast switching speeds and high-current TTL outputs. Both devices are characterized for operation from 0 to 70°C.

- Meets IBM 360/370 I/O Specification
- Input Resistance 7 kΩ to 20 kΩ-
- Output Compatible with DTL or TTL
- Schottky-Clamped Transistors
- Operates from a Single 5 Volt Supply
- High-Speed Low Propagation Delay
- Ratio Specification tpLH/tpHL
- Common Strobe for Each Group of Four Receivers
- MC75128 Strobe Active-High MC75129 Strobe – Active-Low



IS

1.4

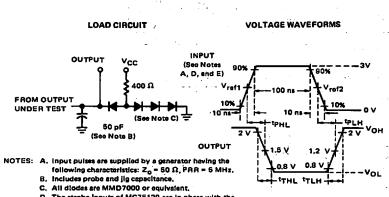
MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	Vatue	Unit
Power Supply Voltage	Vcc	+7.0	v
A Input Voltage	Via	-0.15 to +7.0	v
Strobe Input Voltage	VIS	+7.0	v
Power Dissipation (Package Limitation) Ceramic Package Plastic Package Derate Above T _A = 25 ^o C	PD 1/R _{ØJA}	1150 960 -7.7	mW mW/ ^o C
Operating Ambient Temperature Range	TA	0 to +70	°C
Junction Temperature Ceramic Package Plastic Package	LL	+175 +150	°C
Storage Temperature Range	Tstg	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

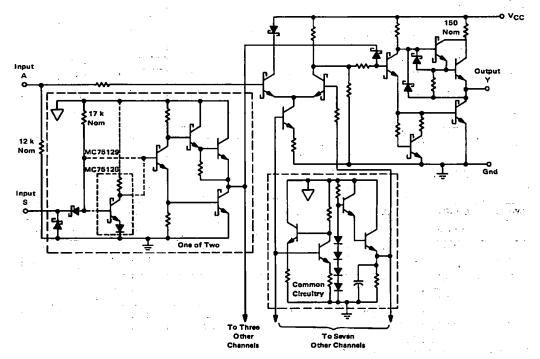
Characteristic	Symbol	Min	Тур	Мах	Unit
Power Supply Voltage	· v _{cc}	4.5	5.0	5.5	Vdc
High Level Output Current	юн	-	-	-0.4	mΑ
Low Level Output Current	IOL	-	-	16	mA
Operating Ambient Temperature Range	TA	0	1	+70	°C

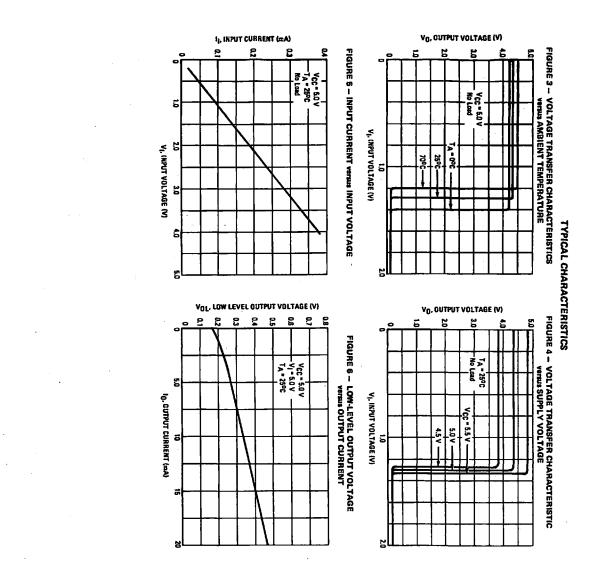
ELECTRICAL CHARACTERISTICS

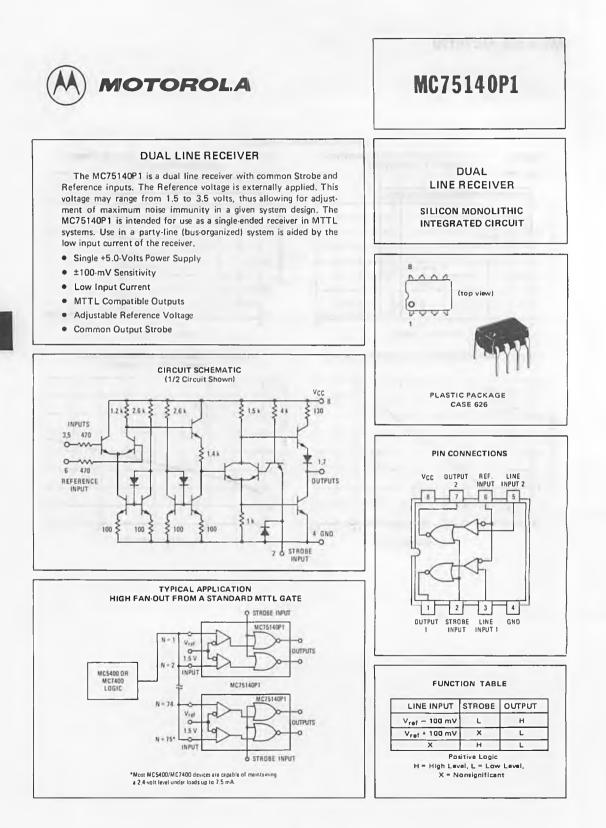

(Unless otherwise noted, these specifications apply over recommended power supply and temperature ratings. Typical values measured at $T_A = 25^{\circ}C$ and $V_{CC} = +5.0 \text{ V}$)

Characteristic	Symbol	Min	Тур	Max	Unit
High-Level Input Voltage	VIH				V
A Inputs		1.7	-	- 1	
S Inputs		2.0			
Low-Level Input Voltage	ViL				v
A Inputs		-	- 1	0.7	
S Inputs		-		0.7	
High-Level Output Voltage (VCC = 4.5 V, VIL = 0.7 V, IOH = -0.4 mA)	Voн	2.4	3.1	-	V
Low-Level Output Voltage (VCC = 4.5 V, VIH = 1.7 V, IOL = 16 mA)	VoL	-	0.4	0.5	V
Input Clamp Voltage (VCC = 4.5 V, II = -18 mA, S Inputs)	VIK	-	-	-1.5	V
High-Level Input Current (V _{CC} = 5.5 V, V ₁ = 3.11 V, A Inputs)	Тин	-	0.3	0.42	mA
(V _{CC} = 5.5 V, V ₁ = 2.7 V, S Inputs)		-	·	20	μA
Low-Level Input Current (VCC = 5.5 V, VI = 0.15 V, A Inputs)	կլ	. –		-0.24	mA
(V _{CC} = 5.5 V, V ₁ = 0.4 V, S Inputs)		-	- 1	-0.4	
Short Circuit Output Current * (VCC = 5.5 V, VO = 0)	los	-18		60	mA
Input Resistance (V _{CC} = 4.5 V, 0 V, or Open, ΔV_{\parallel} = 0.15 V to 4.15 V)	ri I	7.0	-	20	kΩ
Power Supply Current - Outputs High-Logic State, all inputs at 0.7 V	ССН				mA
(V _{CC} = 5.5 V, Strobe st 2.4 V − MC75128)		- ,	19	31	
(V _{CC} = 5.5 V, Strobe at 0.4 V - MC75129)		- ´	19	31	1
Power Supply Current - Outputs Low-Logic State, all Inputs at 4.0 V	ICCL.				mA
(V _{CC} = 5.5 V, Strobe at 2.4 V – MC75128)		_	32	53	
(V _{CC} = 5.5 V, Strobe at 0.4 V – MC75129)		-	32	53	

SWITCHING CHARACTERISTICS (VCC = 5.0 V, TA = 25°C, RL = 400 Ω, CL = 50 pF, unless otherwise noted, See Figures 1 and 2)


Characteristic	Symbol	MC75128			MC75129			1
		Min	Тур	Max	Min	Тур	Max	Unit
Propagation Delay Time - From A Inputs					1			ns
Low-to-High-Level Output	tPLH(A)	7.0	14	25	7.0	14	25	
High-to-Low-Level Output	tPHL(A)	· 10	18	30	10	18	30	
Propagation Delay Time - From S Inputs								ns
Low-to-High-Level Output	tPLH(S)	-	26	40	-	20	35	
High-to-Low-Level Output	tpHL(S)	- 1	22	35	- 1	16	30	
Ratio of Propagation Delay Times - A Inputs	tPLH(A)/tPHL(A)	0.5	0.8	1.3	0.5	0.8	1.3	
Transition Time, Low-to-High-Level Output	TLH	1.0	7.0	12	1.0	7.0	12	ns
Transition Time, High-to-Low-Level Output	tτhl	1.0	3.0	12	1.0	3.0	12	ns


"No more than one output should be shorted at a time.


FIGURE 1 - PARAMETER MEASUREMENT INFORMATION

- D. The strobe inputs of MC78129 are in-phase with the output,
- E. V_{ref1} = 0.7 V and V_{ref2} = 1.7 V for tosting data (A) Inputs, V_{ref1} = V_{ref2} = 1.3 V for strobe inputs.
 - FIGURE 2 SCHEMATIC (EACH RECEIVER)

С

MAXIMUM RATINGS (TA = 0 to +70°C unless otherwise noted.)

Reting	T	Symbol	Val	ue T	Uni	it
Supply Voltage		Vcc	7.	0	Vol	ts
Reference Voltage		Vref	5.	5	Vol	
Line Input Voltage (with respect to Ground)		VILL	-2.0 to	- +5.5	Vol	
Line Input Voltage (with respect to Vref)		VI(L)-Vref			Vol	
Strobe Input Voltage		VI(S)	5.		Vol	
Power Dissipation (Package Limitation)		PD				
Plastic Dual In-Line Package			83	0	mV	N
Derate above TA = +25°C			6.	6	mW/	°C
Operating Temperature Range (Ambient)		TA	0 to	+70	°C	:
Storage Temperature Range		T _{stg}	-65 to	+150	°C	
RECOMMENDED OPERATING CONDITIONS						_
Rating	Sym	bol Min	Nom	Max	K	Unit
Power Supply Voltage	Vc	C 4.5	5.0	5.5		Volts
Reference Voltage Range	Vref		-	3.5		Volts
Input Voltage Range (Line or Strobe)	VI			5.5		Volts
Operating Ambient Temperature Range	Τį	<u> </u>		+70	5	°C
ELECTRICAL CHARACTERISTICS (VCC = 5.0 V ±10%, Vref =	1.5 to 3.5	/, TA = 0 to +	70 ⁰ C unless oth	erwise note	d.)	
Characteristic	Sym			Max		Unit
High-Level Line Input Voltage	VIH	L) V _{ref} +	100 -			mV
Low-Level Line Input Voltage	VIL			V _{ref} -	100	mV
High-Level Strobe Input Voltage	VIH		-			Volts
Low-Level Strobe Input Voltage	VIL			0,8		Volt
High-Level Output Voltage	Vo					Volts
VIL(L) = Vref - 100 mV, VIL(S) = 0.8 V, IOH = -400 #A	-	2.4	-	-		
Low-Level Output Voltage	Vo	L				Volt
$V_{1H(L)} = V_{ref} + 100 \text{ mV}, V_{1L(S)} = 0.8 \text{ V}, I_{OL} = 16 \text{ mA}$] -] -	0.4		
VIL(L) = Vref - 100 mV, VIH(S) = 2.0 V, IOL = 16 mA				0.4		
Strobe Input Clamp Voltage	Vit	S)		-1.		Volts
1((S) = -12 mA	-					mA
Strobe Input Current (at max Input Voltage) V((s) = 5.5 V	46	5) _	_	2.0		
High-Level Input Currents	-			<u> </u>	-+-	μA
Strobe (V _{I(S)} = 2.4 V)	Чн	s) –	- 1	80		
Line (VI(L) = VCC, Vref = 1.5 V)	<u> </u>		35	100		
Reference (Vref = 3.5 V, VI(L) = 1.5 V)	Чна	ef) —	70	200		
Low-Level Input Currents					_	
Strobe (VI(S) = 0.4 V)	111		-	-3.	-	mA
Line $(V_{1(L)} = 0 V, V_{ref} = 1.5 V)$	իլ		-	-10		μA
Reference (Vref = 0 V, VI(L) = 1.5 V)	<u> L(r</u>		<u> </u>			μA = 0
Short-Circuit Output Current** Vcc = 5.5 V	1 '0	S - 18	. _	-5		mΑ
Supply Current (output high)				- *		mA
$V_{I(S)} = 0 V, V_{I(L)} = V_{ref} - 100 mV$	100	H -	18	30		
Supply Current (output low)						mA
V _{I(S)} = 0 V, V _{I(L)} = V _{ref} + 100 mV	1 ~	· -	20	35		

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, V_{ref} = 2.5 V, C_L = 15 pF, R_L = 400 Ω , T_A = +25^oC unless otherwise noted.) See Figure 1.

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time (low-to-high level output from Line input)	ΨLH(L)	_	22	35	ns
Propagation Delay Time (high-to-low level output from Line input)	TPHL(L)	-	22	30	n\$
Propagation Delay Time (low-to-high level output from Strobe input)	tPLH(S)	-	12	22	ns
Propagation Delay Time (high-to-low level output from Strobe input)	tPHL(S)	-	8.0	16	ns

*All typical values are at $V_{CC} = 5.0 \text{ V}$, $T_A = +25^{\circ}C$. **Only one output should be shorted at a time.

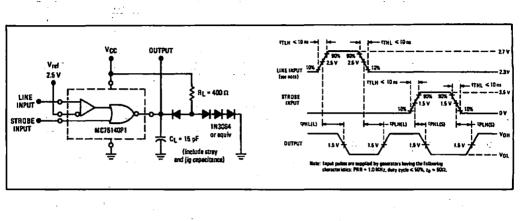


FIGURE 1 - SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

FIGURE 2 - OUTPUT VOLTAGE Versus

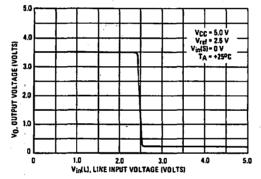
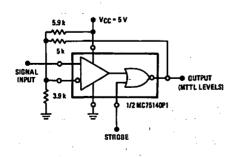
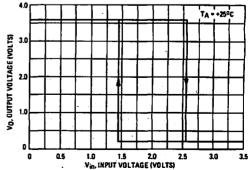




FIGURE 3 - SCHMITT TRIGGER

••

24.

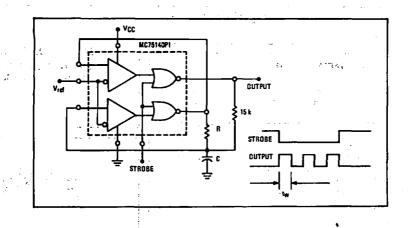


FIGURE 5 - GATED OSCILLATOR

FIGURE 6 – GATE OSCILLATOR FREQUENCY

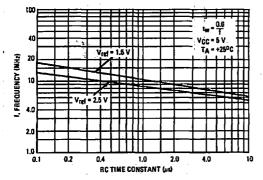
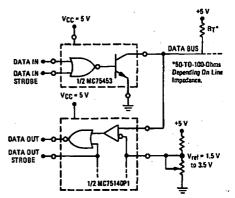
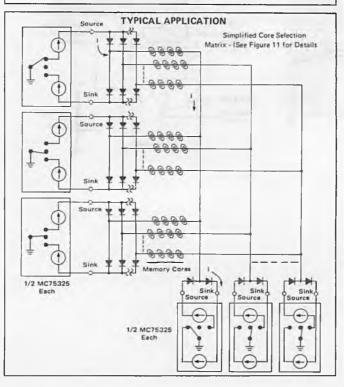
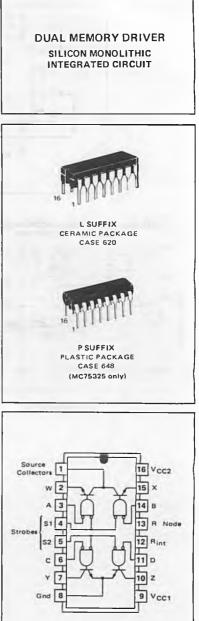



FIGURE 7 - DUAL BUS TRANSCEIVER

MC55325 MC75325


Specifications and Applications Information


DUAL MEMORY DRIVER

The MC55325/75325 is a monolithic integrated circuit memory driver with logic inputs, and is designed for use with magnetic memories.

The device contains two 600-mA source-switch pairs and two 600-mA sink-switch pairs. Source selection is determined by one of two logic inputs, and source turn-on is determined by one of two logic inputs, and sink turn-on is determined by the sink strobe. With this arrangement selection of one of the four switches provides turn-on with minimum time skew of the output current rise.

- 600-mA Output Capability
- Fast Switching Times
- Input Clamp Diodes
- Dual Sink and Dual Source Outputs
- MDTL and MTTL Compatibility
- 24-Volt Output Capability

MAXIMUM RATINGS (TA = 25° unless otherwise noted)

Rating	Symbol	Value	Unit
Supply Voltage (Note 1)	VCC1 VCC2	7.0 25	Vdc Vdc
Input Voltage	VI ·	6.5	Vdc
Power Dissipation (Package Limitation) Ceramic and Plastic Packages Derate above T _A = +25°C	PD	1.0 6.6	W mW/ ^o C
Operating Ambient Temperature Range MC55325 MC75325	- ^T A	-55 to +125 0 to +70	°C
Storage Temperature Range	Tstg	-65 to +150	°C

TRUTH TABLE

· .

ADDRESS INPUTS			/TS	STROBE INPUTS OUTPUT			UTS		
SOURCE		81	NK	SOURCE	SINK	SOU	SOURCE		×
A	B	C	Ð	- 81	\$2	•	x	۲.	z
L	н	x	x	ιι	н	01	011	011 0	34
н	L	X.	×	L	н	1011	On	011 0	Dł
x	×	IL.	н	н	Fι	1071	011	0 0 0	Df
x	×	H I	L	-++	L L	011	011	Off 6	01
×	×	x	x	н	Iн I	011	011	011 0	D†
Ĥ.	Ĥ	Ьń	Ĥ	l x	l x	011	Off	011	Dr

H = high level, L = low level, X = irrelevant NOTE: Not more than one output is to be an at any one time.

Note 1. Voltage values are with respect to the network ground terminal.

ELECTRICAL CHARACTERISTICS (TA = Tiow to Thigh unless otherwise noted⁽¹⁾)

·····	1		AC663		MC75325			_	
Characteristic	Symbol	Min	Typ(2) Max	Min	Typ(2	Max	Unit	
Input Voltage - High Logic State	ViH	2.0	-	· •	2.0	-	-	V	
Input Voltage - Low Logic Stats	VIL	-	-	0.8	-	-	0.8	v	
Input Clamp Voltage (VCC1 = 4.5 V, VCC2 = 24 V, I ₁ = -10 mA, T _A = 25°C)	VI	-	-1.3	-1.7	-	-1.3	-1.7	V	
Output Current - Off State {VCC1 = 4.5 V, VCC2 = 24 V} TA = Tiow to Thigh TA = 25°C	loff		3.0	500 150	-		200 200	μA	
Output Voltage - High Logic State (VCC1 = 4.5 V, VCC2 = 24 V, IO = 0)	VOH	19	23	-	19	23	-	v	
Seurce Outputs {VCC1 = 4.5 V, VCC2 = 15 V, I _{source} ≈ -600 mA, R _L = 24 chms, Note 4) T _A = T _{low} to T _{high}	V _{sat}	_	-	0.9	_	_	0.9	v	
T _A = 25 ^o C Sink Outputs (V _{CC1} = 4.5 V, V _{CC2} = 15 V, I _{sink} ≈ 600 mA, R _L = 24 ohms, Nots 4) T _A = 71ow to Thigh T _A = 25 ^o C		1 1 1	0.43 0.43	0.7 0.9 0.7	-	0.43 _ 0.43	0.75 0.9 0.75		
Input Current at Maximum Input Voltage (VCC1 = 5.5 V, VCC2 = 24 V, VI = 5.5 V) Address Inputs Strobe Inputs	h.	-		1.0 2.0	-	-	1.0 2.0	mA	
Input Current — High Logic State {V _{CC1} = 5.5 V, V _{CC2} = 24 V, V ₁ = 2.4 V) Address Inputs	Тін	-	3.0	40	-	3.0	40	μΑ	
Strobe Inputs		-	6.0	80	-	6.0	80		
Input Current – Low Logic State (VCC1 = 5.5 V, VCC2 = 24 V, V1 = 0.4 V) Address Inputs Strobe Inputs	lır.	-	-1.0	-1.6 -3.2	-	-1.0 -2.0	-1.6 -3.2	mΑ	
Supply Current – Output Condition Off (VCC1 = 5.5 V, VCC2 = 24 V, T _A = 25 ^o C) From VCC1 From VCC2	CC(off)	-	14 7.5	22 20		14 7.5	22 20	mA	
Supply Current from V _{CC1} , Either Sink "On" (V _{CC1} = 5.5 V, V _{CC2} = 24 V, I _{sink} = 50 mA, T _A = 25 ^o C)	ICC1	_	56	70	-	55	70	mA	
Supply Current from V _{CC2} , Either Source "On" (V _{CC1} = 5.5 V, V _{CC2} = 24 V, I _{source} = -50 mA, T _A = 25 ^o C)	1002	-	32	60	-	32	50	mA	

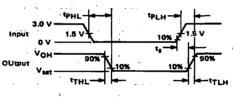
(1) T_{1ow} = -55°C for MC55325, 0°C for MC75325 Thigh = +125°C for MC55325, +70°C for MC75325

(2) All typical values are at TA = 25°C

(3) Not more than one output is to be "on" at any one time.

(4) Seturation voltage must be measured using pulse techniques: Pulse Width = 200 μ s, Duty Cycle < 2%

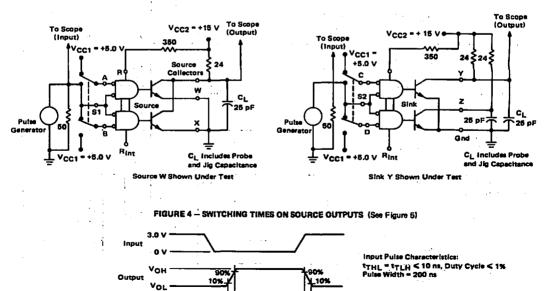
5


 ± 1 .

. . .

Sec. Sec. 14

• · · •		1	M	325		
Characte	ristics	Symbol	Min	Тур	Mex	Unit
Propagation Delay Time to Source (Collectors		1			
(V _{CC2} = 15 V, R _L = 24 ohms)		PLH	- 1	25	50	កទ
·	High-to-Low Level	PHL	- ·	25	50	ាន
Transition Time	· · · · · · · · · · · · · · · · · · ·	1	1	1		1
(V _{CC2} = 20 V _F R _L = 1 k ohims)	Low-to-High Level	TTLH	1 -	55		ns
	High-to-Low Level	THL		7.0	1 - .	. ns
Propagation Delay Time to Sink Ou	tputs	1	1	· · · ·		
(V _{CC2} = 15 V, R _L = 24 ohms)	Low-to-High Level	1 TPLH	-	20	45	កន
	High-to-Low Level	TPHL	· -	20	45	ns
Transition Time			-		·	
(V _{CC2} = 15 V, R _L = 24 ohms)	Low-to-High Level Output	TTLH	l – '	7.0	15	ាន
_	High-to-Low Level Output	THL	-	9.0	20	ns
Storage Time to Sink Outputs		4	1	15	30	ns -
(V _{CC2} = 15 V, R _L = 24 ohms)			. .			


FIGURE 1 - SWITCHING TIMES TO SOURCE COLLECTORS AND SINK OUTPUTS

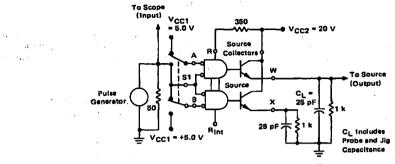
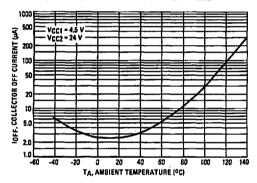
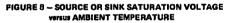
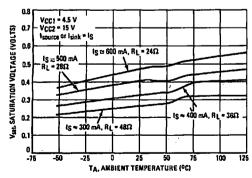

Input Pulse Characteristics: $z_0 = 50\Omega$, Pulse Width = 200 ns, $t_{TLH} = t_{THL} \le 10$ ns, Duty Cycle $\le 1\%$

FIGURE 3 – PROPAGATION TIME, TRANSITION TIME AND STORAGE TIME TO SINK OUTPUTS

ካርዝ ተዘር እ




FIGURE 5 - TRANSITION TIME ON SOURCE OUTPUTS


Source W Shown Under Test

TYPICAL PERFORMANCE CURVES

FIGURE 6 - SOURCE COLLECTOR CURRENT (Off-State) WIRSUS AMBIENT TEMPERATURE

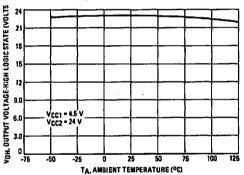
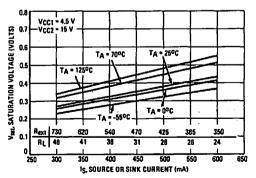



FIGURE 9 – SOURCE OR SINK SATURATION VOLTAGE

APPLICATIONS INFORMATION BASE DRIVE RESISTOR

An internal 575 Ω resistor connected between the V_{CC2} and the R_{int} terminals is provided in the MC55325/ 75325 to supply sufficient base drive for source currents to 375 mA at V_{CC2} of 15 Volts or 600 mA at V_{CC2} of 24 Volts. Connecting the R node to the R_{int} node selects this internal resistor. If source currents greater than 375 mA are required, the R_{int} node should be left open and an appropriate resistor connected between V_{CC2} and the R node. This method allows source base drive currents regulated to typically within ± 5%. This has an added advantage of removing the power dissipated in the resistor from the IC package, allowing the device to source greater currents at a given junction temperature.

The value of the required external resistor in a particular memory application may be computed using the following equation:

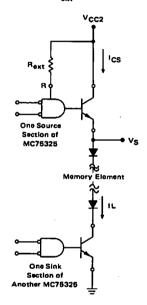
$$R_{ext} = \frac{16 (V_{CC2 min} V_{S} 2.2)}{I_{L} \cdot 1.6 (V_{CC2 min} V_{S} 2.9)}$$
(1)

Where: $\mathbf{R}_{ext} = \mathbf{k}\Omega$.

VS = the source output voltage referred to ground.

۱<u>ـ</u> = mA.

During the load current pulse the power dissipated in the resistor, Rext is


$$P_{\text{Rext}} \approx \frac{I_{\text{L}} (V_{\text{CC2 min}} - V_{\text{S}} - 2)}{16}$$
 (2)

Where: PRext = mW.

The source collector current I_{CS} is approximately 94% of total load current, I_L. The remaining current flows in the base of the source transistor through the external resistor R_{ext} or the source gate. See Figure 10 for added details.

An internal pull-up resistor in parallel with a clamping diode to V_{CC2} is provided at each sind-output collector to protect against voltage surges generated by switching reduction loads.

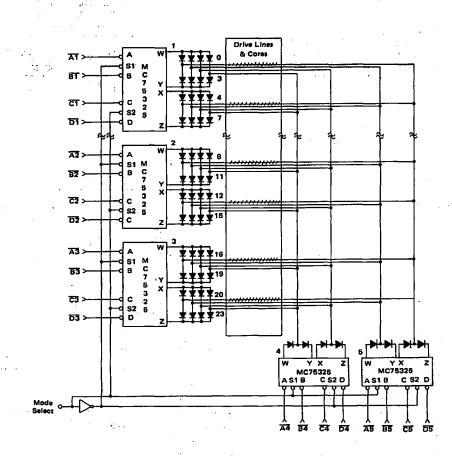
FIGURE 10 - TYPICAL CIRCUIT USED FOR Rest CALCULATION

SELECTION MATRIX

The combination of current source and sink pairs within the MC75325 is often utilized to implement a selection matrix for core memory systems. A typical, simplified system is shown in Figure 11.

The selection of any particular line (line 7, for example) is made by activating a particular, unique combination of two source/sink pairs. For an example, with the Mode Select input high and $\overline{B1}$ low, current source X of #1 MC75325 will be activated. This selects lines 4-7. When input C4 goes low, on #4 MC75325, current will

flow through line 7 from source X (of device #1) to sink Y of device #4.


Changing the logic state of device #1 to input $\overline{D1}$ low, device #4 to input $\overline{A4}$ low, and applying a low to the Mode Select input, reverses the direction of the current in line 7 with the #1 MC75325 sinking the current and the #4 device sourcing it.

Drive line inductance and capacitance only limits the number of drive lines a source/sink pair can drive and thus the size of a matrix possible.

FIGURE 11 - TYPICAL

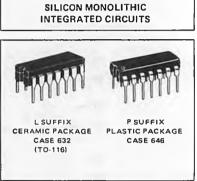
APPLICATION - CORE MEMORY

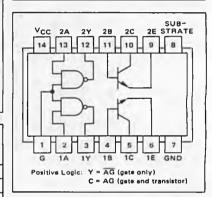
SELECTION MATRIX

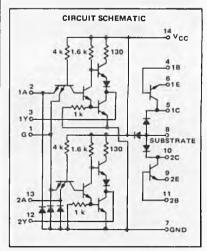
MC75450

DUAL PERIPHERAL

POSITIVE "AND" DRIVER


DUAL PERIPHERAL POSITIVE "AND" DRIVER


The MC75450 is a versatile device designed for use as a generalpurpose dual interface circuit in MDTL and MTTL type systems. This device features two standard MTTL gates and two noncommitted, high-current, high-voltage NPN transistors. Typical applications include relay and lamp drivers, power drivers, MOS and memory drivers.


MDTL and MTTL Compatibility

5

- 300 mA Output Current Drive Capability (each transistor)
- Separate Gate and Output Transistor for Maximum Design Flexibility
- High Output Breakdown Voltage:
 VCER = 30 Volts minimum

MAXIMUM RATINGS (T_A = 0 to +70°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage (See Note 1)	Vcc	+7.0	Vdc
Input Voltage (See Note 1)	Vin	5.5	Vdc
VCC-to-Substrate Voltage		35	Vdc
Collector-to-Substrate Voltage		35	Vdc
Collector-Base Voltage	VCB	35	Vdc
Collector-Emitter Voltege (See Note 2)	VCE	30	Vdc
Emitter-Base Voltage	VEB	5.0	Vdc
Collector Current (continuous) (See Note 3)		300	mA
Power Dissipation (Package Limitation) Plastic and Ceramic Dual In-Line Packages Derate above TA = +25°C	PD	830 6.6	mW mW/ ⁰ C
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	Tstg	-65 to +150	°C

NOTES: 1. Voltage values are with respect to network ground terminal.

- 2. This value applies when the base-emlitter resistance $\{R_{BE}\}$ is equal to or less than 500 ohms.
- Both halves of these dual circuits may conduct the rated current simultaneously.

RECOMMENDED OPERATING CONDITIONS (See Note 4)

1	Characteristic	Symbol	Min	Nom	Max	Unit
	Supply Voltage	Vcc	4,75	5.0	5.25	Vdc

Note 4. The substrate, pin 8, must always be at the most negative device voltage for proper operation.

ELECTRICAL CHARACTERISTICS (TA = 0 to +70°C unless otherwise noted.)

Characteristic	Symbol	Test Fig.	Min	Typ*	Max	Uni
NTTL GATES						
High-Level Input Voltage	VIH	1	2.0		-	Vd
Low-Level Input Voltage	VIL	2		1	0.8	Vd
High-Level Output Voltage (V _{CC} = 4.5 V, V _{IL} = 0.8 V, I _{OH} = -400 μA)	∨он	2	2.4	3.3	-	Vd
Low-Level Output Voltage (V _{CC} = 4.75 V, V _{IH} = 2.0 V, 1 _{OL} = 18 mA)	VOL	1	-	0.22	0.4	Vd
High-Level Input Current Input A (V _{CC} = 5.25 V, V _{in} = 2.4 V) Input A (V _{CC} = 5.25 V, V _{in} = 5.5 V) Input A Input A Input G	Чн	3			40 80 1.0 2.0	μA m/
Low-Level Input Current (V _{CC} = 5.26 V, V _{In} = 0.4 V) Input A Input G	112	4	-	-	-1.6 -3.2	m4
Short-Circuit Output Current** {Vcc = 5.25 V}	los	5	-18	-	-55	mA
Supply Current High-Level Output (V _{CC} = 5.25 V, V _{in} = 0) Low-Level Output (V _{CC} = 5.25 V, V _{in} = 5.0 V)	ICCH	6	- 2.0 - 6.0		4.0 11	m/
Input Clamp Voltage (V _{CC} = 4.75 V, I _{in} = -12 mA)	Vin	4	-	-	-1.5	V
DUTPUT TRANSISTORS						
Characteristic	Symbol	Min	Тур	N	tax	Unit
Collector-Base Breakdown Voltage (IC = 100 µA, IE = 0)	VCBO	35	-		-	Vdc
Collector-Emitter Breakdown Voltage (I _C = 100 μA, R _{BE} = 500 ohms)	VCER	30	-		-	Vdc
Emitter-Bess Breakdown Voltage ($I_E = 100 \ \mu A$, $I_C = 0$)	VEBO	5.0	-		-	Vdc
Static Forward Transfer Ratio (See Note 5) (V _{CE} = 3.0 V, I _C = 100 mA, T _A = +25 ^o C) (V _{CE} = 3.0 V, I _C = 300 mA, T _A = +25 ^o C) (V _{CE} = 3.0 V, I _C = 100 mA, T _A = 0 ^o C) (V _{CE} = 3.0 V, I _C = 300 mA, T _A = 0 ^o C)	hFE	25 30 20 25	-		-	
Basa-Emitter Voltage (See Note 5) (I _B = 10 mA, I _C = 100 mA) (I _B = 30 mA, I _C = 300 mA)	VBE	-	0.85 1.05		.0 .2	Vdc
Collector-Emitter Saturation Voltage (See Note 5) (I _B = 10 mA, I _C = 100 mA) (I _B = 30 mA, I _C = 300 mA)	VCE(sat)		0.25 0.5		.4	Vdc

Note 5. These parameters must be massured using pulse techniques; $t_W = 300 \,\mu$ s, duty cycle $\leq 2\%$. *All typical values at V_{CC} = 5.0 V, T_A = +25°C. **Not more than one output should be shorted at a time.

.

.

Characteristic	Symbol	Test Fig.	Min	Тур	Max	Unit
MTTL GATES		-				
Propagation Delay Time (CL = 15 pF, RL = 400 ohms)		7				ns
Low-to-High-Level Output	ΨLH		-	14	-	
High-to-Low-Level Output	ΨHL	· · ·	-	6.0	-	l
DUTPUT TRANSISTORS #						
Switching Times (ic = 200 mA, Ig(1) = 20 mA, Ig(2) = -40 mA, VBE(off) = -1.0 V, CL = 15 pF, RL = 50 chms)		8				ns
Delay Time	িধ	10 A.	-	9.0	· _	
Rise Time	4		-	11	-	
Storage Time	t s	1	-	14		
Fail Time	tr	· · · · ·	-	8.0	-	
GATES AND TRANSISTORS COMBINED #		•			L	
Propagation Delay Time (IC = 200 mA, CL = 15 pF, RL = 50 ohms)		9				ns
Low-to-High-Level Output	ΨLH		-	21	-	
High-to-Low Level Output	^t PHL		-	16	-	
Transition Time# (Ic = 200 mA, CL = 15 pF, RL = 50 ohms)		9				ns
Low-to-High-Level Output	TLH		- 1	7.0	-	ľ
High-to-Low-Level Output	THL		-	8.0	_	

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = +25°C unless otherwise noted.)

"Voltage and current values are nominal; exact values vary slightly with transistors parameters.

DC TEST CIRCUITS FOR MTTL GATES

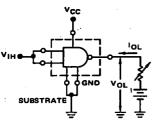
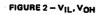
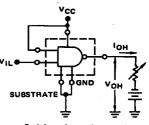




FIGURE 1 - VIH, VOL

Both inputs are tested simultaneously.

Each input is tested separately.

(Arrows indicate actual direction of current flow. Current into a terminal is a positive value.)

FIGURE 3 - IIH

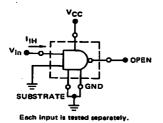
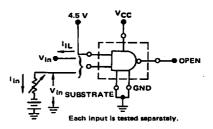



FIGURE 4 – I_{IL} , V_{in}

DC TEST CIRCUITS FOR MTTL GATES (continued)

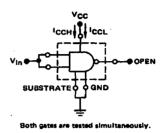
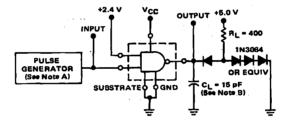



FIGURE 6 - ICCH, ICCL

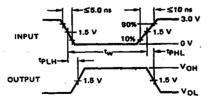
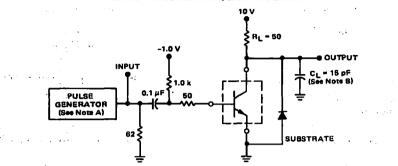
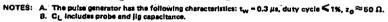

(Arrows indicate actual direction of current flow. Current into a terminal is a positive value.)

FIGURE 7 - PROPAGATION DELAY TIMES, EACH GATE

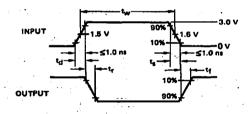
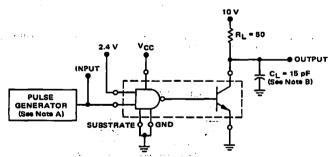
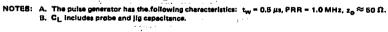
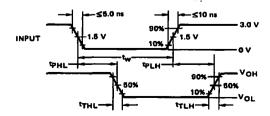

NOTES: A. The pulse generator has the following characteristics: $t_W = 0.5 \ \mu s$, PRR = 1.0 MHz, $z_0 \approx 50 \ \Omega$. B. CL includes probe and jig capacitance.

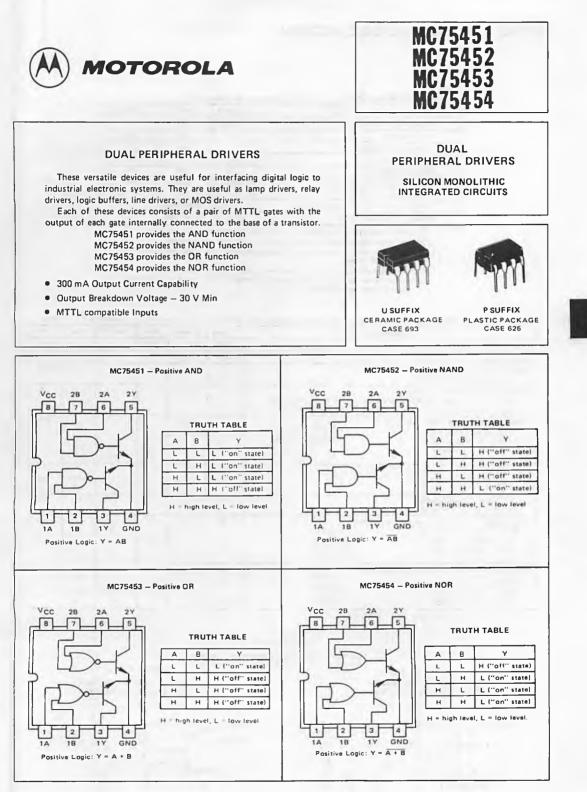

VOLTAGE WAVEFORMS

TEST CIRCUITS (continued)

FIGURE 8 - SWITCHING TIMES, EACH TRANSISTOR

VOLTAGE WAVEFORMS


FIGURE 9 - SWITCHING TIMES, GATE AND TRANSISTOR

VOLTAGE WAVEFORMS

5-131

5

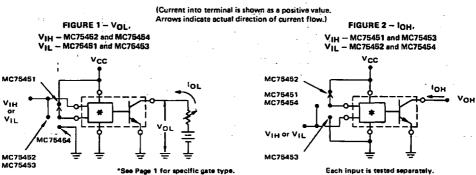
MAXIMUM RATINGS (TA = 0°C to 70°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage(1)	Vcc	7.0	Vdc
Input Voltage	VI	5.5	Vdc
Interemitter Voltage(2)	-	5.5	Vdc
Output Voltage(3)	Vo	30	Vdc
Output Current(4)	10	300	mА
Power Dissipation @T _A = 25 ^o C Derate above T _A = +25 ^o C	PD	830 6.6	m₩ 「m₩/ºC
Operating Ambient Temperature Range	TA	0 to +70	°C.
Storage Temperature Range	Tstg	-65 to +150	°C

.

(1) Voltage values are with respect to network ground terminal.

(2) This is the voltage between two emitters of a multiple-emitter transistor.


(3) This is the maximum voltage which should be applied to any output when it is in the "off" state.

(4) Both halves of these dual circuits may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the continuous dissipation rating.

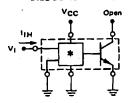
ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply for 4.75 > V_{CC} > 5.25 V and 0°C < T_A < 70°C)

Characteristic		Figure	Symbol	Min	Typ (1)	Max	Unit
Input Voltage - High Logic State		1,2	VIH	2.0		-	Vdc
Input Voltage - Low Logic State		1,2	VIL	·· _	-	0.8	Vdc
Input Clamp Voltage (V _{CC} = 4.75 V, I ₁ = -12 mA)		4	Vi	-	-1.2	-1.5	Vdc
Output Current — High Lagic State (V _{CC} = 4.75 V, V _{OH} = 30 V, V _{IH} = 2.0 V) (V _{CC} = 4.75 V, V _{OH} = 30 V, V _{IL} = 0.8 V)	MC75451, MC75453 MC75452, MC75454	2	юн	-		100	μA
Output Voltage – Law Logic State (V _{CC} = 4.75 V, V _{IL} = 0.8 V) (V _{CC} = 4.75 V, V _{IH} = 2.0 V) (V _{CC} = 100 mA) (I _{OL} = 100 mA)	MC75451, MC75453 MC75452, MC75454	1	Vol	- :	0.25 0.5	0.4 0.7	Vdc
Input Current – High Logic State (V _{CC} = 5.25 V, V _I = 2.4 V) (V _{CC} = 5.25 V, V _I = 5.5 V)	· · · · · · · · · · · · ·	3	ιΗ		-	40 1.0	μA mA
Input Current – Low Logic State (VCC = 5.25 V, V) = 0.4 V):		4	μ		-1.0	-1.6	mA
Power Supply Current - Output High Logic State (V _{CC} = 5.25 V, V ₁ = 5.0 V) (V _{CC} = 5.25 V, V ₁ = 0) (V _{CC} = 5.25 V, V ₁ = 0) (V _{CC} = 5.25 V, V ₁ = 0)	MC75451 MC75452 MC75453 MC75454	5	ICCH		7.0 11 8.0 13	11 14 11 17	mA
Power Supply Current – Output Law Logic State (V _{CC} = 5.25 V, V ₁ = 0) (V _{CC} = 5.25 V, V ₁ = 5.0 V) (V _{CC} = 5.25 V, V ₁ = 0) (V _{CC} = 5.25 V, V ₁ = 5.0 V)	MC75451 MC75452 MC75453 MC75454	5	ICCF.		52 56 54 61	65 71 6B 79	mA

(1) Typical Values Measured with VCC = 5.0 V, TA = 25°C.

TEST CIRCUITS

5


MC75451, MC75452, MC75453, MC75454

Cheracteristic	Symbol	Test Fig.	Min	Түр	Max	Unit
Propegation Delay Time						
(IO ≈ 200 mA, CL = 16 pF, RL = 50 oh <i>ms</i>)						
MC76451		1.1				
Low-to-High-Level Output	ΨLH	6	-	17	-	ns
High-to-Low-Level Output	1PHL		-	18	- 1	
MC75462						
Low-to-High-Level Output	[ΨLΗ]	6	-	18	-	ាទ
High-to-Low-Level Output	19HL		-	16	-	
MC75453						
Low-to-High-Level Output	ԳԼ Н	6	- 1	15	- .	ាទ
High-to-Low-Level Output	1PHL		-	17 5	-	
MC75454						
Low-to-High-Level Output	Խ ԼΗ	6	-	25	-	ាន
High-to-Low-Level Output	ΨHL		-	19	-	
Transition Time						
(10 ≈ 200 mA, CL = 15 pF, RL = 50 ohms)						
MC76461		- 14 T.	í l			
Low-to-High-Level Output	TLH	6	-	6.0	-	ns
High-to-Low-Level Output	1THL		-	11	-	
MC76452						
Low-to-High-Level Output	TTLH '	6	-	8.0	- 1	ns
High-to-Low-Level Output	ΤHL		-	9.0	-	
MC76463						
Low-to-High-Level Output	TLH	6	-	5.0	-	ns
High-to-Low-Level Output	17HL		-	8.0	-	
MC75454						
Low-to-High-Level Output	ΨLH	6	- 1	5.0	-	ns
High-to-Low-Level Output	THL		-	8.0	-	

SWITCHING CHARACTERISTICS (VCC = 5.0 V, TA = +25°C unless otherwise noted.)

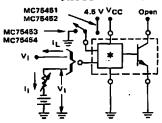

TEST CIRCUITS (Continued) (Current into terminal is shown as a positive value. Arrows indicate actual direction of current flow.)

FIGURE 3 - I_{IH} (ALL DEVICE TYPES)

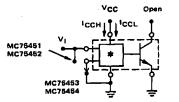

Each input is tested separately.

FIGURE 4 - IIL.VI (ALL DEVICE TYPES)

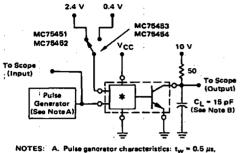
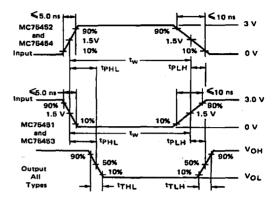
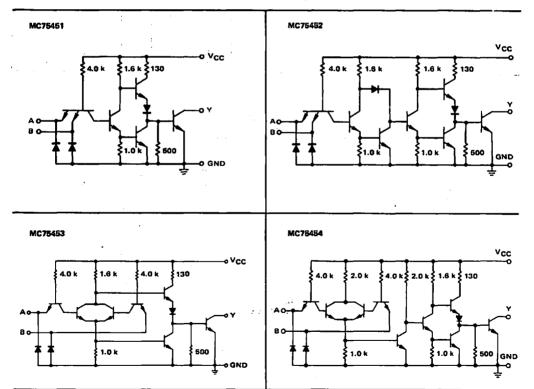
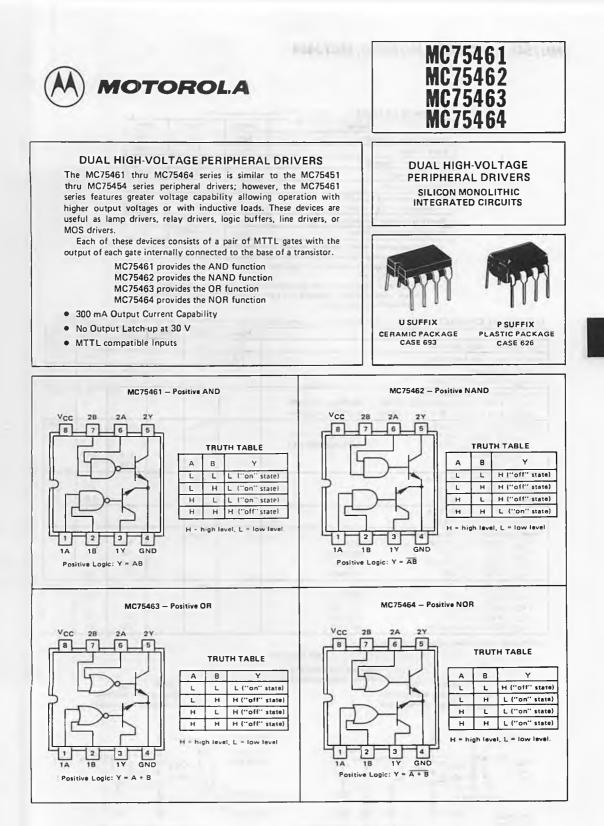

Each input is tested separately.

FIGURE 5 - ICCH. ICCL (ALL DEVICE TYPES)


*See page 1 for specific gate type.

Both gates are tested simultaneously.




NOTES: A. Pulse generator characteristics: $t_W = 0.5 \ \mu s$, PRR = 1.0 MHz, $z_0 \approx 50 \ \Omega$ B. CL includes probe and test fixture capacitance.

.

REPRESENTATIVE SCHEMATIC DIAGRAMS (1/2 Circuits Shown)

5-135

MAXIMUM RATINGS (TA = 0°C to 70°C unless otherwise noted.)

tille Rating	Symbol	Value	Unit
Power Supply Voltage(1)	Vcc	7.0	Vdc
Input Voltage	Vi Vi	5.5	Vdc
Interemitter Voltage(2)	· -	5.5	Vdc
Output Voltage(3)	Vo	35	Vdc
Output Current(4)	10	300	mA
Power Dissipation $@T_A = 25^{\circ}C$ Derate above $T_A = +25^{\circ}C$	PD	830 6.6	mW mW/ºC
Operating Ambient Temperature Range	TA	0 to +70	°C .
Storage Temperature Range	Tstg	-65 to +150	°C

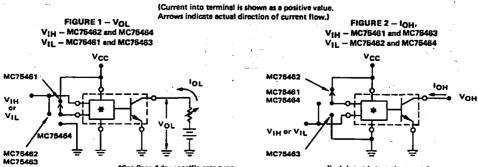
•

1.1

(1) Voltage values are with respect to network ground terminal.

(2) This is the voltage between two emitters of a multiple-emitter transistor.

(3) This is the maximum voltage which should be applied to any output when it is in the "off" state.


(4) Both halves of these dual circuits may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the continuous dissipation rating.

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply for 4.75 > V_{CC} > 5.25 V and 0°C <T_A < 70°C)

1,2 1,2 4 2	VIH VIL VI	2.0	-1.2		Vdc Vdc Vdc
4	VI	-			
		-	-1.2	-1.5	Vdc
2	юн				1
			-	100	μA
i	Vol	-	0.15	0.4	Vdc
<u> </u>	Tun		0.35	0.7	
	''H	-		40 ∲ 1.0	μA mA
4	٩L	-	-1.0	-1.6	mA
5	ІССН	-	8.0 13 8.0 14	11 17 11 19	mA
5	ICCL	-	61 65 63	76 76 76	mA
	5	3 і _{ін} 4 і _{іL} 5 іссн		- 0.15 - 0.35 3 I ^I IH -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

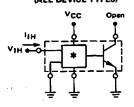
(1) Typical Values Measured with VCC = 5.0 V, TA = 25°C

TEST CIRCUITS

*See Page 1 for specific gats type.

.

.


MC75461, MC75462, MC75463, MC75464

SWITCHING CH/	ARACTERISTICS (VC	<u>:C = 5.0 V, TA = +25</u>	^o C unless otherwise noted.)
---------------	-------------------	-----------------------------	---

Characteristic	Symbol	Test Fig.	Min	Тур	Max	Unit
Propagation Delay Time						
(IQ ≈ 200 mA, CL = 15 pF, RL = 50 ohms)						
MC75461	1					
Low-to-High-Level Output	ԳԼՈ	6 -	-	45	55	ns
High-to-Low-Level Output	tPHL			30	40	
MC75462						
Low-to-High-Level Output	ար հեր	<u>്</u> 6	- 1	50	65	ns
High-to-Low-Level Output	TPHL		-	40	50	
MC75463						
Low-to-High-Level Output	1 PLH	6	-	45	55	ាទ់
High-to-Low-Level Output	^t PHL		_	30	40	
MC75464						
Low-to-High-Level Output	ΦLH	6	-	50	65	ns
High-to-Low-Level Output	ΨHL	· ·	-	40	50	
Transition Time						
(IO ≈ 200 mA, CL = 15 pF, RL = 50 ohms)						3
MC75461						
Low-to-High-Level Output	TLH	6	-	8.0	20	ns
High-to-Low-Level Output	1THL		-	10	20	
MC75462						
Low-to-High-Level Output	tτ LH	6	-	12	25	ns
High-to-Low-Level Output	THL		-	15	20	
MC75463					1	
Low-to-High Level Output	ЧТLH	6	-	8.0	26	ាន
High-to-Low-Level Output	THL.		-	10 '	25	
MC75484			1			
Low-to-High-Level Output	TTLH	6	-	12	20	
High-to-Low-Level Output	THL		-	15	20	
Output Voltage - High Logic Level after Switching (Latch-up Test)	VOH	7	Vs-10	÷	- 1	mV
$(V_S = 30 V_{10} \approx 300 \text{ mA})$			1		1	

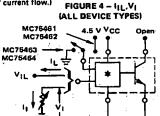
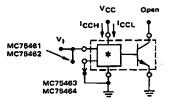

TEST CIRCUITS (Continued) (Current into terminel is shown as a positive value. Arrows indicate actual direction of current flow.)

FIGURE 3 - IIH (ALL DEVICE TYPES)


Each input is tested separately.

з.

Each input is tested separately.

FIGURE 6 - ICCH. ICCL (ALL DEVICE TYPES)

.

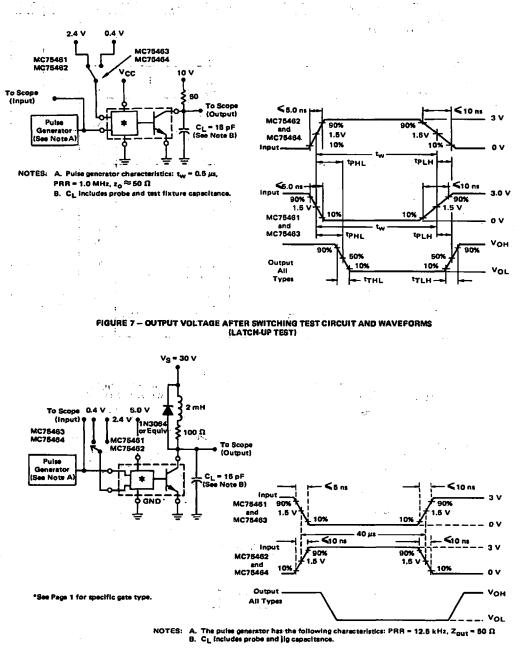
*See page 1 for specific gate type.

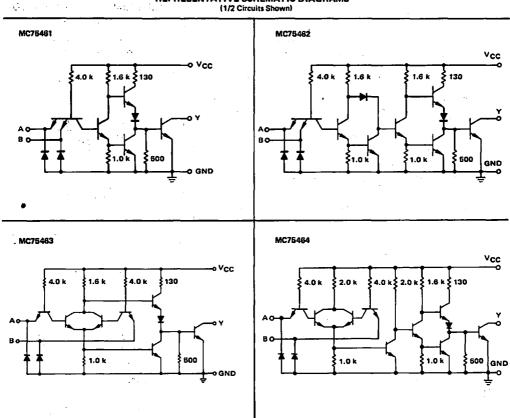
-

Both getes are tested simultaneously.

5-137

MC75461, MC75462, MC75463, MC75464




FIGURE 6 - SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

ŝ

.

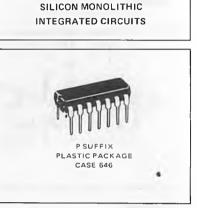
· · · · ·

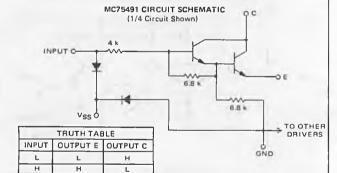
.

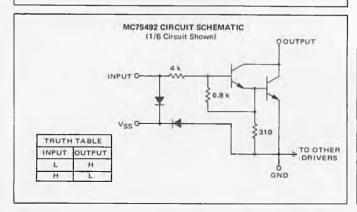
REPRESENTATIVE SCHEMATIC DIAGRAMS (1/2 Circuits Shown)

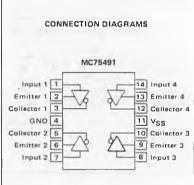
MC75491 MC75492

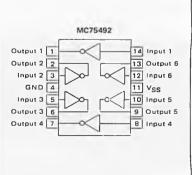
MULTIPLE


LIGHT-EMITTING DIODE (LED) DRIVERS


Specifications and Applications Information


QUAD LED SEGMENT DRIVER – MC75491 HEX LED DIGIT DRIVER – MC75492


The MC75491 and MC75492 are designed to interface MOS logic to common cathode light-emitting diode readouts in serially addressed multi-digit displays. Using a segment address and digit scan LED drive method in a time multiplexing system results in a minimizing of the number of required drivers.


- Low Input Current Requirement for MOS Compatibility
- Low Standby Power Drain
- Source or Sink Current Capability of 50 mA for MC75491
- Sink Current Capability of 250 mA for MC75492
- Four High-Gain Darlington Drivers in a Single Package MC75491
- Six High-Gain Darlington Drivers in a Single Package MC75492

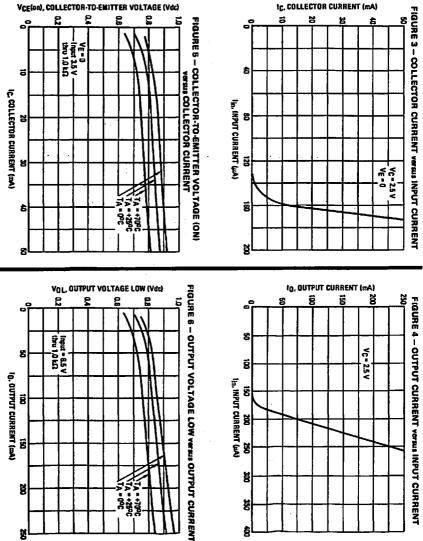
MAXIMUM RATINGS (T_A = 0 to +70°C unless otherwise noted.)

		Va	Value	
Rating	Symbol	MC75491	MC76492	Unit
Bias Supply Voltage (See Note 1)	∨ _{SS}	10	10	Vdc
Input Voltage (See Note 2)	V _{ln}	-5.0 to V _{SS}	-5.0 to V _{SS}	Vdc
Collector Voltage (See Note 3)	Vc	10	10	Vdc
Collector-to-Emitter Voltage	VCE	10		Vdc
Collector-to-Input Voltage	VCI	10	. 10	Vdc
Emitter Voltage (Vin ≥ 5.0 Vdc)	VE	10	-	Vdc
Emitter-to-Input Voltage	VEI	5.0	-	Vdc
Continuous Collector Current (Each Collector) (All Collectors)	^I C	50 200	250 600	mA mA
Power Dissipation (Package Limitation) Caramic and Plastic Dual In-Line Packages Derate above T _A = +25 ⁰ C	PD	8	mW mW/ ^o C	
Operating Temperature Range	TA	0 to +70		°c
Storage Temperature Range	Tstg	-65 to	+150	°c

Note 1. VSS terminal voltage is with respect to any other device terminal.

Note 2. With the exception of the inputs, the GND terminal must always be the most negative device voltage for proper operation.

Note 3. Voltage values are with respect to GND terminal unless otherwise noted.


ELECTRICAL CHARACTERISTICS (V_{SS} = 10 Vdc, T_A = 0 to +70°C unless otherwise noted.)

		MC75491						
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Low-Level Collector-to-Emitter Voltage (Vin = 8.5 V thru 1.0 kΩ, IOL = 50 mA, VE = 5.0 V)	VCEL							Vdc
$T_A = +26^{\circ}C$ $T_A = 0 \text{ to } +70^{\circ}C$	-		0.9 —	1.2 1.5		-	-	
High-Level Collector Current V _{CH} = 10 V, V _E = 0, l _{in} = 40 μA V _{CH} = 10 V, V _E = 0, V _{in} = 0.7 V	існ	-		100 100	-	·		μA
Low-Level Output Voltage (V _{in} = 6.5 V thru 1.0 kΩ, I _{OL} = 250 mA) T _A = +25 ^o C T _A = 0 to +70 ^o C	VOL	-	-	1 1		0. 9 -	1.2 1.5	Vdc
High-Level Output Current V _{OH} = 10 V, I in = 40 μA V _{OH} = 10 V, V in = 0.5 V	юн	-	: 	1.1	2 - 1 - 1	-	200 200	Αщ
Input Current at Maximum Input Voltage Vin = 10 V, IOL = 20 mA	lin	-	2.2	3.3	1	2.2	3.3	mA
Emitter Current – Reverse Biss IC = 0, Vin = 0, VE = 5.0 V	[†] ER	-	· .	100		-		Aц
Bias Supply Current (V _{SS} = 10 V)	Iss		·	1.0		_	1.0	mΑ

SWITCHING CHARACTERISTICS (VSS = 7.5 V, TA = +25°C unless otherwise noted.)

Propagation Delay Time, High-to-Low Level $R_L = 200 \ \Omega$, $V_{IH} = 4.5 \ V$, $C_L = 15 \ pF$, $V_E = 0$ $R_L = 39 \ \Omega$, $V_{IH} = 7.5 \ V$, $C_L = 15 \ pF$	19HL	-	20* 		-	_ 40	 n
Propagation Delay Time, Low-to-High Level $C_L = 15 \text{ pF}, V_E = 0, R_L = 200 \Omega, V_{1H} = 4.5 \text{ Vdc}$ $C_L = 15 \text{ pF}, R_L = 39 \Omega, V_{1H} = 7.5 \text{ Vdc}$	^t PLH	-	40* 	-		- 80	 ns

*To collector output.

뛿

g ŝ

TA +70°C

ğ

롎

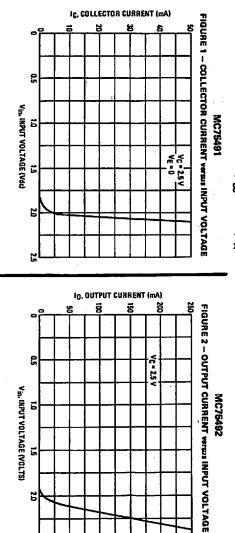
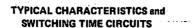
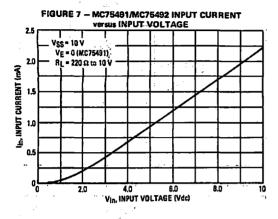


FIGURE 4 - OUTPUT CURRENT versus INPUT CURRENT

MC75491, MC75492


TYPICAL CHARACTERISTICS

(V_{SS} = +10 Vdc, T_A = +25^oC unless otherwise noted.)



C

.

.

, let Miner (a) transform Ministration (a) tiller and an an Ministration (a) tiller and an an

FIGURE 9 - SWITCHING WAVEFORM DEFINITIONS

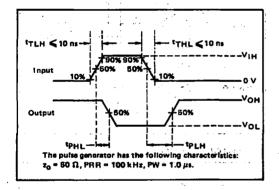


FIGURE 11 - QUAD-OR HEX RELAY DRIVER

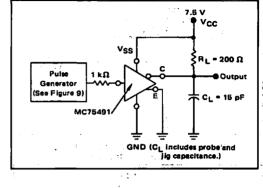
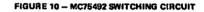
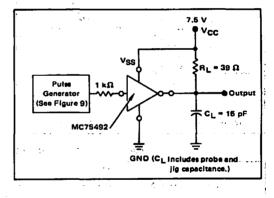
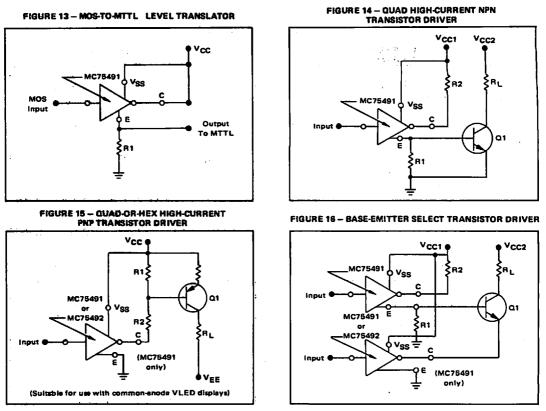




FIGURE 8 - MC75491 SWITCHING CIRCUIT

· · · ·

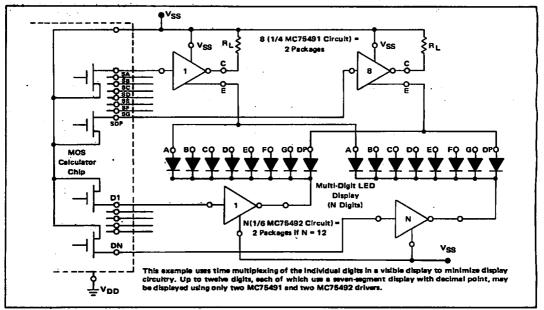
TYPICAL APPLICATIONS

Vcc Reisv MC75491 or MC75491 MC76492 or Vac MC75492 Input Input (E (MC75491 only) (MC75491 only)



Vcc

...


a second and a second

.....

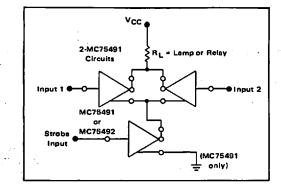
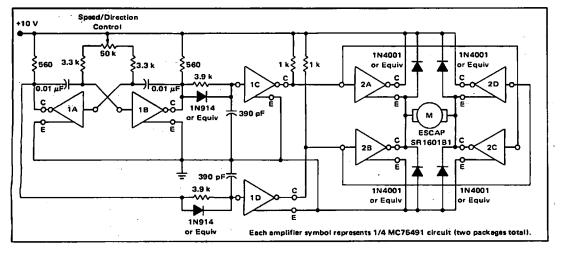

TYPICAL APPLICATIONS (continued)

FIGURE 17 - MOS CALCULATOR CHIP-TO-LED INTERFACE CIRCUIT



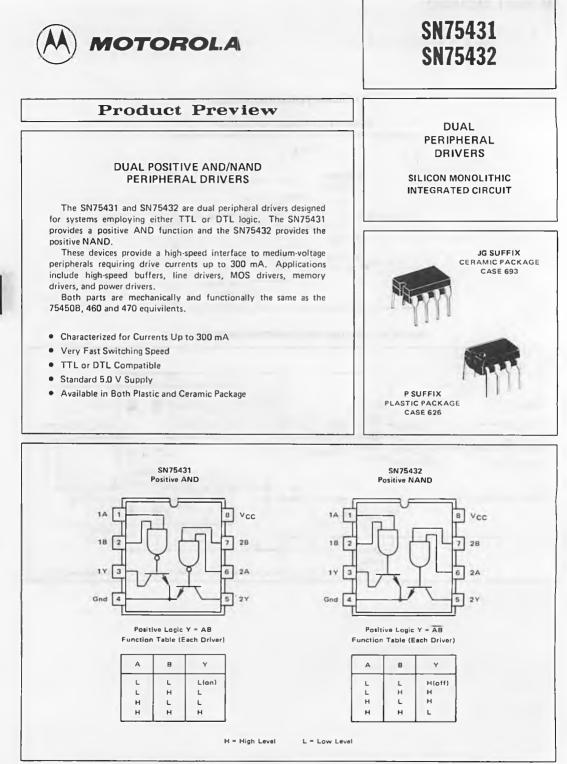

TYPICAL APPLICATIONS (continued)

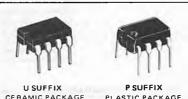
FIGURE 18 - STROBED "NOR" DRIVER

This is advance information and specifications are subject to change without notice.

DUAL PERIPHERAL DRIVERS

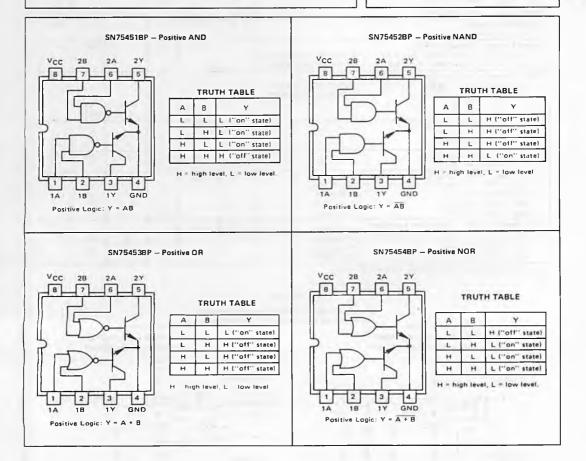
SILICON MONOLITHIC

INTEGRATED CIRCUITS


DUAL PERIPHERAL DRIVERS

These versatile devices are useful for interfacing digital logic to industrial electronic systems. They are useful as lamp drivers, relay drivers, logic buffers, line drivers, or MOS drivers.

Each of these devices consists of a pair of MTTL gates with the output of each gate internally connected to the base of a transistor.


> SN75451BP provides the AND function SN75452BP provides the NAND function SN75453BP provides the OR function SN75454BP provides the NOR function

- 300 mA Output Current Capability
- Output Breakdown Voltage 30 V Min
- MTTL compatible Inputs
- Guaranteed AC Limits

CASE 693

PLASTIC PACKAGE CASE 626

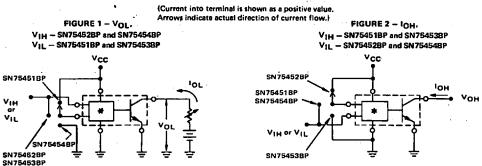
SN75451BP, SN75452BP, SN75453BP, SN75454BP

MAXIMUM RATINGS (TA = 0°C to 70°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage(1)	Vcc	7.0	Vdc
Input Voltage	V _I	5.5	Vdc
Interemitter Voltage(2)	-	5.5	Vdç
Output Voltage(3)	Vo	30	Vdc
Output Current(4)	10	300	mA
Power Dissipation @ T _A = 25 ^o C Derate above T _A = +25 ^o C	PD	830 6.6	mW mW/ ⁰ C
Operating Ambient Temperature Range	ТА	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

(1) Voltage values are with respect to network ground terminal.

(2) This is the voltage between two emitters of a multiple-emitter transistor.


(3) This is the maximum voltage which should be applied to any output when it is in the "off" state.

(4) Both halves of these dual circuits may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the continuous dissipation rating.

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply for 4.75 > V_{CC} > 5.25 V and 0°C < T _A < 70 ⁶	PC)

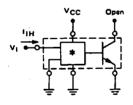
Characteristic		Figure	Symbol	Min	Typ (1)	Max	Unit
Input Voltage - High Logic State		1,2	VIH	2.0	-	-	Vdc
Input Voltage - Low Logic State		1,2	VIL	-	-	0.8	Vdc
Input Clamp Voltage (V _{CC} = 4.75 V, I _I = -12 mA)		4	VI.	-	-1.2	-1.5	Vdc
Output Current – High Logic State (V _{CC} = 4.75 V, V _{OH} = 30 V, V _{IH} = 2.0 V) (V _{CC} = 4.75 V, V _{OH} = 30 V, V _{IL} = 0.8 V)	SN75451BP, SN75453BP SN75452BP, SN75454BP	2	юн	-	-	100	μA
Output Voltage – Low Logic State (V _{CC} = 4.75 V, V _I = 0.8 V) (V _{CC} = 4.75 V, V _I H = 2.0 V) (I _{OL} = 100 mA) (I _{OL} = 300 mA)	SN75451BP, SN75453BP SN75452BP, SN75454BP	1	VOL		0.25 0.5	0.4 0.7	Vdc
Input Current — High Logic State (V _{CC} = 5.25 V, V ₁ = 2.4 V) (V _{CC} = 5.25 V, V ₁ = 5.5 V)		3	ЧН	-	-	40 1.0	μA mA
Input Current – Low Logic State (VCC = 5.25 V, V) = 0.4 V)		4	HL.	,	-1.0	-1.6	mA
Power Supply Current – Output High Logic State (V _{CC} = 5.25 V, V ₁ = 5.0 V) (V _{CC} = 5.25 V, V ₁ = 0) (V _{CC} = 5.25 V, V ₁ = 0) (V _{CC} = 5.25 V, V ₁ = 0)	SN754518P SN754528P SN754538P SN754548P	5	ССН	- - -	7.0 11 8.0 13	11 14 11 17	mA
Power Supply Current – Output Low Logic State $(V_{CC} = 5.25 V, V_1 = 0)$ $(V_{CC} = 5.25 V, V_1 = 5.0 V)$ $(V_{CC} = 5.25 V, V_1 = 0)$ $(V_{CC} = 5.25 V, V_1 = 5.0 V)$	SN75451BP SN75452BP SN75453BP SN754545BP	5	ICCL		52 56 54 61	65 71 68 79	mA

(1) Typical Values Measured with V_{CC} = 5.0 V, T_A = 25^oC.

TEST CIRCUITS

*See Page 1 for specific gate type.

SN75451BP, SN75452BP, SN75453BP, SN75454BP


Characteristic	Symbol	Test Fig.	Min	Тур	Max	Unit
Propagation Delay Time						
(10 ≈ 200 mA, CL = 15 pF, RL = 50 ohms)						
SN75451BP						
Low-to-High-Level Output	ΨLH	6	-	17	25	ាន
High-to-Low-Level Output	1PHL		-	18	25	
SN75452BP						
Low-to-High-Level Output	ԳԼՅ	6	-	18	35	ns
High-to-Low-Level Output	ΨHL		-	16	35	
SN75453BP						
Low-to-High-Level Output	ΨLH	6	-	15	25	ns
High-to-Low-Level Output	^t PHL		-	17	25	
SN75454BP	_					
Low-to-High-Level Output	ΨLH	6	-	25	35	ns
High-to-Low-Level Output	^t PHL		-	19	35	
Transition Time						
(IO ≈ 200 mA, CL = 15 pF, RL = 50 ohms)						
SN75451BP						
Low-to-High-Level Output	ΥLH	6	-	6.0	8.0	ns
High-to-Low-Level Output	tthi.		-	8.0	12	
SN75452BP						
Low-to-High-Level Ou tput	ΨLH	6	-	6.0	8.0	ns
High-to-Low-Level Output	тн∟		-	9.0	12	
SN 75453BP						
Low-to-High-Level Output	τιμ	6	-	5.0	8.0	ns
High-to-Low-Level Output	THL		-	8.0	12	
SN75454BP					1	
Low-to-High-Level Output	тιн	6	-	5.0	8.0	ns
High-to-Low-Level Output	THL	`	-	8.0	12	

SWITCHING CHARACTERISTICS (VCC = 5.0 V, TA = +25°C unless otherwise noted.)

TEST CIRCUITS (Continued) (Current into terminal is shown as a positive value.

Arrows indicate actual direction of current flow.)

FIGURE 3 - IIH (ALL DEVICE TYPES)

Each input is tested separately.

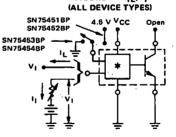
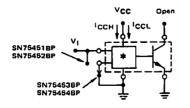
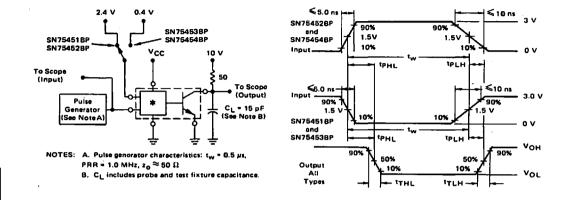



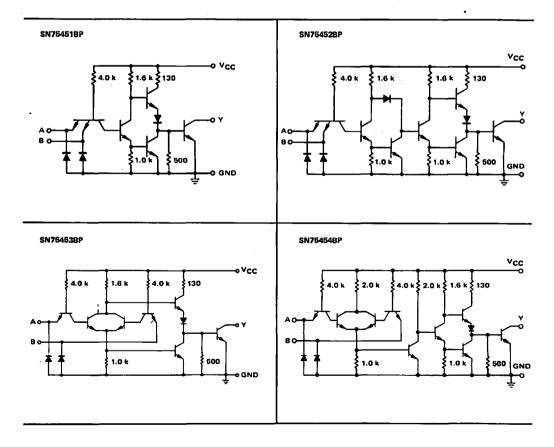
FIGURE 4 - IIL,VI

Each input is tested separately.


FIGURE 5 - ICCH, ICCL (ALL DEVICE TYPES)

*See page 1 for specific gate type.

Both gates are tested simultaneously.


5

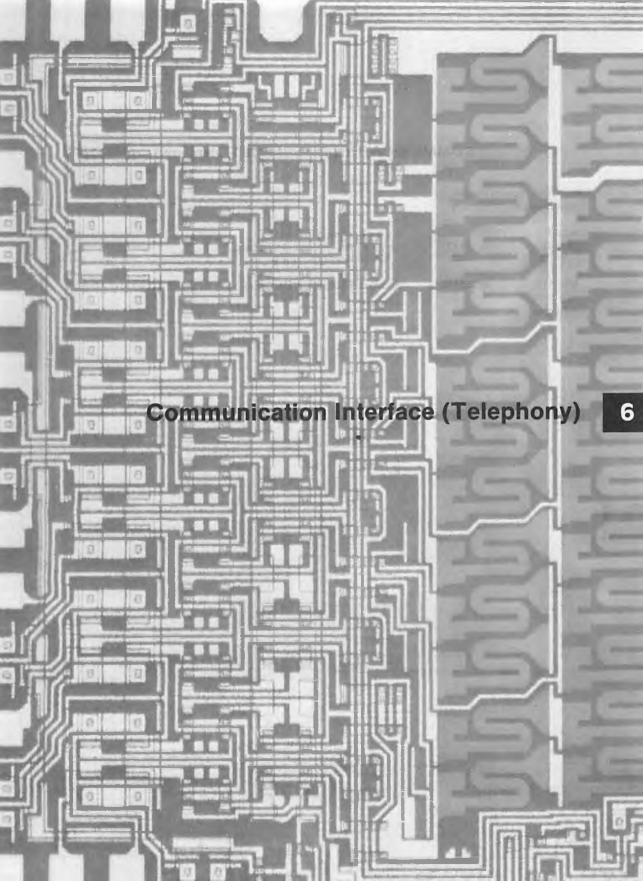
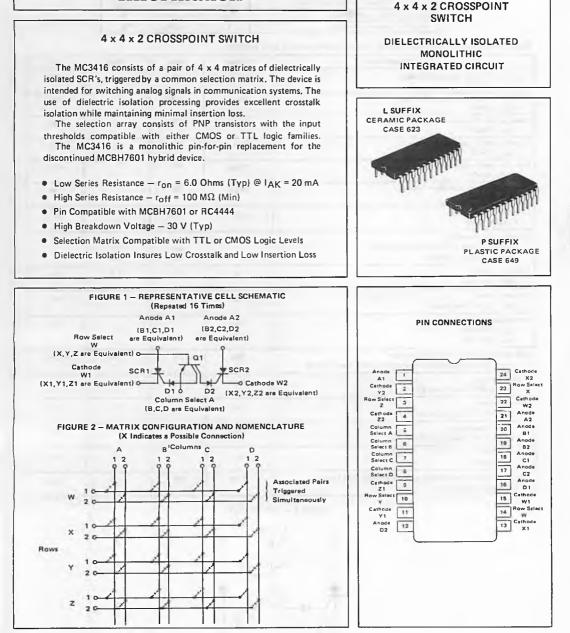


FIGURE 6 - SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

. . .

REPRESENTATIVE SCHEMATIC DIAGRAMS (1/2 Circuits Shown)

COMMUNICATION INTERFACE (Telephony)

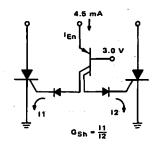

Temperatu	re Range	•	
Commercial	Military		Page
MC3416	[`]	4 x 4 x 2 Crosspoint Switch	6-3
MC3417/ 3418	MC3517/ 3518	Continuously-Variable-Slope Delta Modulator/Demodulator	6-12
MC3419	MC3519*	Subscriber Loop Interface Circuit	6-30

*industrial

MC3416

Specifications and Applications Information

-


MAXIMUM RATINGS (Unless otherwise noted, T_A = 25°C)

Rating	Symbol	Value	Unit
Anode-Cathode Current - Continuous (only one SCR at a time)	^I AK	150	ΞmA.
Enable Current	IEn	10	mA
Operating Ambient Temperature Range	TA	0 to +70	- <u>0</u> C
Storage Temperature Range	Tstg	-65 to +150	°C
Junction Temperature Range	ΤJ	150°C	°C
· · · · · · · · · · · · · · · · · · ·		بمرد	

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, T_A = 0 to 70°C)

Characteristic	Symbol	Min	Max	Unit
Anode Cathoda Breakdown Voltage (IAK = 25µA)	BVAK	25	atur — I	Vde
Cathode-Anode Breakdown Voltage	BVKA	25		Vde
Basa-Cathode Breakdown Voltage (IBK = 25μΑ)	BVBK	25	-	Vdc
Cathode Base Breakdown Voltage (IKB = 25µA)	BVKB	25.	. –	Vdc
Base-Emitter Breakdown Voltaga (IBE = 25µA)	BVBE	25	-	Vdc
Emifter-Cathoda Breakdown Voltage (IEK = 25µÅ)	BVEK	25	-	Vdc
OFF State Resistance (VAK = 10 V)	roff	100	-	MΩ
Dynamic ON Resistance (Center Current = 10 mA) (See Figure 8) (Center Current = 20 mA)	fon	4.0 2.0	12 10	ß
Holding Current (See Figure 10)	. ^I H	0.7	3.0	mA
Enable Current (VB = 1.5 V) (See Figure 7)	^I En	4.0		mА
Anode-Cathode ON Voltage {I _{AK} = 10 mA} {I _{AK} = 20 mA}	VAK	2	1.0	v
Gate Sharing Current Ratio @ Cathodes (Under Select Conditions with Anodes Open) (See Figure 3)	GSh	0.8	1.25	mA/mA
Inhibit Voltage (Vg = 3.0 V) (See Figure 9)	Vinh		0.3	v
Inhibit Current (Vg = 3.0 V) (See Figure 9)	linh	_	0.1	mA
OFF State Capacitance {V _{AK} = 0 V) (See Figure 6)	Coff		2.0	pF
Turn-ON Time (See Figure 4)	ton		1.0	μ\$
Minimum Voltage Ramp (Which Could Fire the SCR Under Transient Conditions)	dv/dt	800	-	V/µs

FIGURE 3 - TEST CIRCUIT

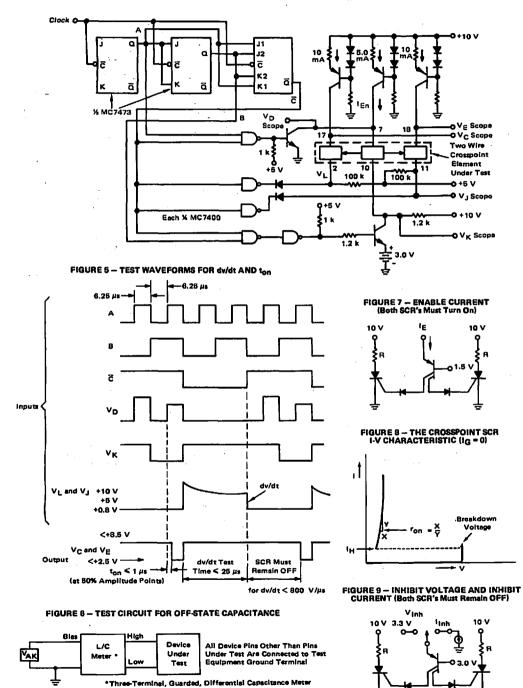
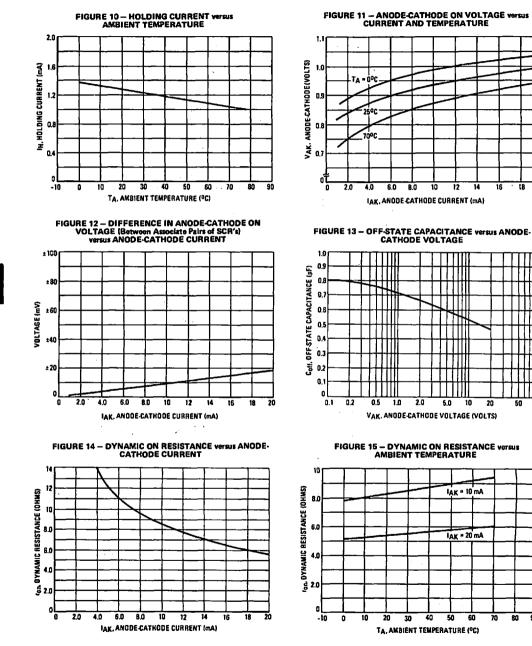
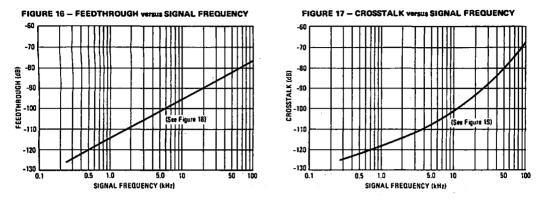




FIGURE 4 - TEST CIRCUIT FOR dv/dt AND ton

TYPICAL CHARACTERISTICS

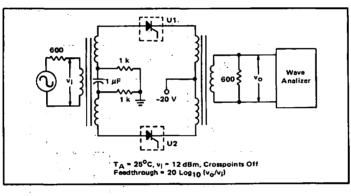
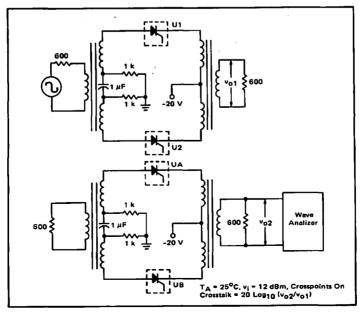
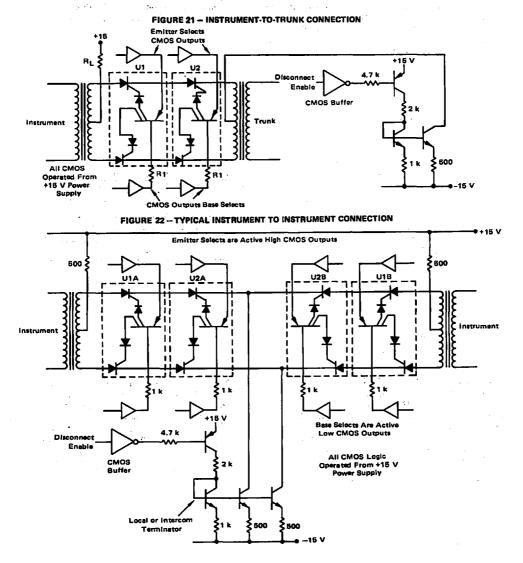



FIGURE 19 - TEST CIRCUIT FOR CROSSTALK versus FREQUENCY

Anode A1 Anode Anode A2 B1 Anode Anode B2 C1 Anode Anode C2 D1 Anode D2 12 21 19 18 16 20 17 14 Row Select W Cathode W2 22 15 Cathode W1 23 Row Select X Cethode X2 24 13 Cathode X1 10 Row Select Y 11 Cathode Y1 Cathode Y2 2 3 Row Select Z Cathode Z2 9 Cethode Z1 8 Column Select D 6 6 7 Column Select A Column Seloct B Column Select C

MC3416

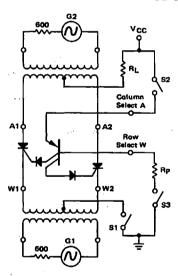

TELEPHONE APPLICATION OF THE CROSSPOINT SWITCH

The MC3416 crosspoint switch is designed to provide a low-loss analog switching element for telephony signals. It can be addressed and controlled from standard binary decoders and is CMOS compatible. With proper system organization the MC3418 can significantly reduce the size and cost of existing crosspoint matrices.

SIGNAL PATH CONSIDERATIONS

The MC3416 is a balanced 4 x 4 2-wire crosspoint array. It is ideal for balanced transmission systems, but may be applied effectively in a number of single ended applications. Multiple chips may be interconnected to form larger crosspoint arrays. The major design constraint in using SCR crosspoints is that a forward dc current must be mainteined through the SCR to retain an ac signal path. This requires that each subscriber-input to the array be capable of sourcing dc current as well as its ac signal. With each subscriber acting as a dc source, each trunk output then acts as a current sink. The instrument-to-trunk connection in Figure 21 shows this configuration. However, with each subscriber acting as a dc source, some method of interconnecting them without a trunk must be provided. Such a local or intercom termination is shown in Figure 22. Here both subscribers source dc current and exchange ac signals. The central current sink accepts current from both subscribers while the high output impedance of the current sink does not disturb the system.

These configurations are system compatible. The dc



current restriction is not a restriction in the design of an efficient crosspoint array. Because of the current sink terminations, a signal path may use differing numbers of crosspoints in any connection or in two sides of the same connection further relaxing restrictions in array design.

Figure 23 demonstrates circuit operation. S1, S2, and S3 are open. The Crosspoint SCR's are off as they have no gate drive or dc current path through S1. By closing S2 and S3, gate drive is provided, but the SCR's still remain off as there is no dc current path to hold them on. Close S1 and the circuit is enabled, but with S2 and S3 off there is still no signal path. Closing S2 and S3 with S1 closed - current is injected into both gates and they switch on. DC current through RL splits around the center-tapped winding and flows through each SCR, back through the lower winding and through S1 to ground. If S2 and S3 are opened, that current path still remains and the SCRs remain on. If an acsignal is injected at either G1 or G2, it will be transmitted to the other signal port with negligible loss in the SCR's. To disconnect the ac signal path the SCR's must be commutated off. By opening S1 the dc current path is interrupted and the SCR's switch off. The ac signal path is disconnected. With S1 closed the circuit is enabled and may be addressed again from S2 and S3. This circuit demonstrates a balanced transmission configuration. The transmission characteristics of the SCR's simulate a relay contact in that the ac signal does not incur a contact voltage drop across the crosspoint. The memory characteristics of the crosspoint are demonstrated by the selective application of S1. S2, and S3.

The selection of R_L is governed by the power supply voltage and the desired dc current. If 10 mA is to flow through each SCR then R_L must pass 20 mA. Thus, $(V_{CC} - V_{AK})/R_L = 20$ mA. The selection of Rp is governed by the characteristics for crosspoint turn on. Adequate enable current must be injected into the column select and Rp should drop at least 1.5 Volts. The PNP transistor has a typical gain of one. Thus, Rp should pass at least 2 mA to provide 4 mA column select current.

FIGURE 23- CROSSPOINT OPERATION DEMONSTRATION CIRCUIT

S1	\$2	S3	LINE CONDITION
ON	X	OFF	Enabled, Not Connected
ON	OFF	х	Enabled, Not Connected
ON	ON	ON	Addressed and Connected
ON	X	X	G1 Connected to G2
OFF	X	x	Disconnected.
		x	= irrelevant

ADDRESSING CONSIDERATIONS

The MC3416 crosspoint switch is addressed by selecting and turning on the PNP transistor that controls the SCR pair desired. The drive requirements of the MC3416 can be met with standard CMOS outputs. A particular crosspoint is addressed by putting a logical "1" on the emitter and a logical "0" on the base of the appropriate transistor. A resistor in the base circuit of the transistor is required to limit the current and must also drop 1.5 Volts to assure forward bias of the two diodes in the collector circuits. The gate current required for SCR turn on is 1 mA typically. The CMOS one-of-n decoders listed in Table 1 provide both active high and active low outputs and are well suited for standard addressing organizations. The major design constraint in organizing the addressing structure is that any signal path which is to be addressed must create a dc path from a source to a sink. If that path requires two crosspoints they must be addressed simultaneously. Of course, once the path is selected, the addressing hardware is free to initiate other signal paths. To meet the dc path

APPLICATIONS INFORMATION (continued)

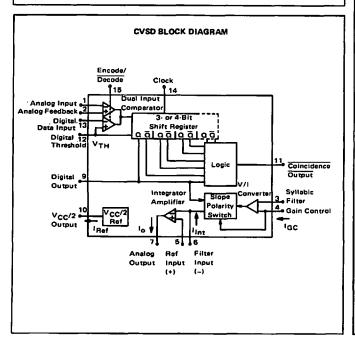
blocks DISCONNECT TECHNIQUES spoint Since the crosspoint switch

requirement, crosspoint arrays should be designed in blocks such that any given dc path requires only one crosspoint per block. A signal path, however, may still use two crosspoints in the same block by sequentially addressing two dc paths to the same terminator. For example, the left or right pairs of crosspoints in Figure 22 must be addressed simultaneously but the left pair may be addressed in sequence after addressing the right pair. This is not a difficult constraint to meet and it does not require unnecessary addressing hardware.

	Active High Outputs	Active Low Outputs
Dual Binary to 1 of 4	MC14655	MC14556
4-bit latch/4 to 18	MC14514	MC14515
BCD to Decimal Decode	MC14028	

Since the crosspoint switch maintains signal paths by keeping dc currents through active SCR's, disconnects are easily accomplished by interrupting the dc current path. This can be done anywhere in the circuit, but if the disconnect is done at the terminator then all signal paths established to that terminator are broken simultaneously. In both Figures 21 and 22 this is done by turning off the current sink circuit with a CMOS buffer gate. MC14049 or MC14050 buffers will drive the transistor switch. Once a disconnect is completed, the terminator may be re-enabled and used for another call. Usage of the terminators may be easily monitored with optoelectronic couplers in the collectors of the current sinks without disturbing transmission characteristics.

See Application Note AN-760 for additional applications suggestions.

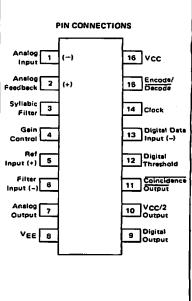

MC3417, MC3517 MC3418, MC3518

Specifications and Applications Information

CONTINUOUSLY VARIABLE SLOPE DELTA MODULATOR/DEMODULATOR

Providing a simplified approach to digital speech encoding/ decoding, the MC3517/18 series of CVSDs is designed for military secure communication and commercial telephone applications. A single IC provides both encoding and decoding functions.

- Encode and Decode Functions on the Same Chip with a Digital Input for Selection
- Utilization of Compatible I²L Linear Bipolar Technology
- CMOS Compatible Digital Output
- Digital Input Threshold Selectable (V_{CC}/2 reference provided on chip)
- MC3417/MC3517 has a 3-Bit Algorithm (General Communications)
- MC3418/MC3518 has a 4-Bit Algorithm (Commercial Telephone)



CONTINUOUSLY VARIABLE

L SUFFIX CERAMIC PACKAGE CASE 620

MC3417, MC3418, MC3517, MC3518

MAXIMUM RATINGS

(All voltages referenced to VEE, TA = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit	
Power Supply Voltage	Vcc	-0.4 to +18	Vdc	
Differential Analog Input Voltage	VID	±5.0	Vdc	
Digital Threshold Voltage	∨тн	-0.4 to V _{CC}	Vdc	
Logic Input Voltage (Clock, Digital Data, Encode/Decode)	VLogic	-0.4 to +18	Vdc	
Coincidence Output Voltage	VO(Con)	-0.4 to +18	Vdc	
Syllabic Filter Input Voltage	VI(Syl)	-0.4 to V _{CC}	Vdc	
Gain Control Input Voltage	VI(GC)	-0.4 to V _{CC}	Vdc	
Reference Input Voltage	VI(Ref)	V _{CC} /2 - 1.0 to V _{CC}	Vdc	
V _{CC} /2 Output Current	Ref	-25	mA	

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 12 V, V_{EE} = Gnd, T_A = 0^{\circ}C$ to +70°C for MC3417/18, $T_A = -55^{\circ}C$ to +125°C for MC3517/18 unless otherwise noted.)

		MC	3417/MC3	517	M	C3418/MC3	518	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Power Supply Voltage Range (Figure 1)	VCCR	4.75	12	16.5	4.75	12	16.5	Vdc
Power Supply Current (Figure 1) (Idle Channel)	1CC							тĂ
(V _{CC} = 5.0 V) (V _{CC} = 15 V)		-	3.7 6.0	5.0 10	11	3.7 6.0	5.0 10	
Clock Rate	\$R	-	16 k	-	1	32 k		Samples
Gain Control Current Range (Figure 2)	IGCR	0.001		3.0	0.001	-	3.0	mA
Analog Comparator Input Range (Pins 1 and 2) (4.75 V < V _{CC} < 16.5 V)	VI	1.3	-	V _{CC} - 1.3	1.3		V _{CC} - 1.3	Vdc
Analog Output Range (Pin 7) (4.75 V < V _{CC} < 18.8 V, 1 _O = ± 5.0 mA)	۷o	1.3	-	V _{CC} - 1.3	1.3	-	V _{CC} - 1.3	Vdc
input Bias Currents (Figure 3) (Comparator in Active Region)	118							μA
Analog Input (11) Analog Feedback (12) Syllabic Filter Input (13)		-	0.5 0.5 0.06	1.5 1.5 0.5		0.25 0.25 0.06 -0.06	1.0 1.0 0.3 -0.3	
Reference Input (15)			-0.06	-0.5		-0.00	-0.3	Αų
Input Offset Current (Comparator in Active Region) Analog Input/Analog Feedback J1-12] - Figure 3	110	-	0.15	0.6	-	0.05	0.4	-
Integrator Amplifier 115-161 - Figure 4		-	0.02	-0.2	-	0.01	0.1	
Input Offset Voltage V/I Converter (Pins 3 and 4) - Figure 5	VIO	-	2.0	6.0	-	2.0	6.0	۳V
Transconductance V/I Converter, 0 to 3.0 mA Integrator Amplifier, 0 to ± 5.0 mA Load	gm	0.1 1.0	0.3 10	11	0.1 1.0	0.3 10	-	mA/m∖
Propagation Delay Times (Note 1) Clock Trigger to Digital Output (CL = 25 pF to Gnd)	^Ն ԲԼℍ ՆԲℍԼ	-	1.0 0.8	2.5 2.5	1 1	1.0 0.8	2.5 2.5	μs
Ctock Trigger to Coincidence Output (CL = 25 pF to Gnd) (RL = 4 kΩ to VCC)	^t PLH ^t PHL	-	1.0 0.9	3.0 2.0	-	1.0 0.8	3.0 2.0	
Coincidence Output Voltage — Low Logic State (IOL(Con) = 3.0 mA)	VOL(Con)	-	0.12	0.25	-	0.12	0.25	Vdc
Colncidence Output Leakage Current – High Logic State (V _{OH} = 15.0 V, 0 ^o C < T _A < 70 ^o C)	lOH(Con)		0.01	0.5	-	0.01	0.5	μA

NOTE 1. All propagation delay times measured 50% to 50% from the negative going (from V_{CC} to +0.4 V) edge of the clock.

		MC	3417/MC35	17	MC	8418/MC35	18	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Applied Digital Threshold Voltage Range (Pin 12)	∨тн	+1.2	-	V _{CC} – 2.0	+1.2	-	V _{CC} - 2.0	Vdc
Digital Threshold Input Current	4(th)						· ·	μA
$(1.2 V \le V_{th} \le V_{CC} - 2.0 V)$								
(VIL applied to Pins 13, 14 and 15)		-	- 10	5,0 -50	_ `	-10	5.0	
(V _{IH} applied to Pins 13, 14 and 15) Maximum Integrator Amplifier Output Current			- 10	-50	±5.0	-10	50	mA
V _{CC} /2 Generator Maximum Output Current	10	+10		··	+ 10	·		mA
(Source only)	l Ref	+10	_		+10	_	_	mA
V _{CC} /2 Generator Output Impedance (0 to +10 mA)	ZRef	_	3.0	6.0	-	3.0	6.0	ŋ
V _{CC} /2 Generator Tolerance	er	-	-	± 3.5		-	±3.5	%
$(4.75 V \le V_{CC} \le 16.5 V)$								
Logic Input Voltage (Pins 13, 14 and 15)							ابر ما	Vdc
Low Logic State High Logic State	VIL VIH	Gnd V _{th} + 0.4		V _{th} - 0.4 18.0	Gnd V _{th} + 0.4	-	V _{th} - 0.4 18.0	
Dynamic Total Loop Offset Voltage		• tn + 0.4			*th + 0.4		10,0	mV
(Note 2) - Figures 3, 4 and 5	EVoffset					1		mv
IGC = 12.0 µA, VCC = 12 V						1		
T _A = 25°C		-	-	· _	-	± 0.5	: 1.5	
0°C < TA < +70°C MC3417/18	•	-	-	· _	-	: 0.75	± 2.3	
-55°C < T _A < +125°C MC3517/18	1	-	-	-	-	± 1.5	± 4.0	
IGC = 33.0 μA, VCC = 12 V								
$T_A = 25^{\circ}C$ $0^{\circ}C < T_A < +70^{\circ}C$ MC3417/18		-	1 2.5	± 5.0	-	- 1	-	
$0^{\circ}C \le T_A \le +70^{\circ}C$ MC3417/18 -55°C $\le T_A \le +125^{\circ}C$ MC3517/18		_	± 3.0	± 7.5	-	-	-	
		· -	±4.5	± 10	-	-	-	
l _{GC} = 12.0 μA, V _{CC} = 5.0 V T _A = 25 ^o C							1	
0°C < TA < +70°C MC3417/18		-	-	-	-	± 1.0	± 2.0 ± 2.8	
-55°C < TA < +125°C MC3517/18			_	-	-	± 1.3 ± 2.5	± 2,8 ± 5,0	
IGC = 33.0 µA, VCC = 5.0 V			-	_	. –	12.5	1 0.0	
T _A = 25°C		_	± 4.0	± 6.0	_	-	_	
0°C < TA < +70°C MC3417/18		-	± 4.5	± 8.0	-	-	-	
-55°C < T _A < +125°C MC3517/18		-	± 5.5	± 10	-	-	-	
Digital Output Voltage								Vdc
(IOL = 3.6 mA)	VOL	-	0.1	0.4	-	0.1	0.4	
(I _{OH} = -0.35 mA)	Voн	V _{CC} - 1.0	V _{CC} - 0.2	_	V _{CC} ~ 1.0	V _{CC} - 0.2		
Syllabic Filter Applied Voltage (Pin 3) (Figure 2)	VI(Syl)	+3.2	-	Vcc	+3.2	-	Vcc	Vdc
Integrating Current (Figure 2)	Int							
$(I_{GC} = 12.0 \mu A)$		8.0	10 -	12	8.0	10	12	μA
$(I_{GC} = 1.5 \text{ mA})$		1.45	1.50	1.55	1.45	1.50	1.55	mA
(IGC = 3.0 mA)		2.75	3.0	3.25	2.75	3.0	3.25	mA
Dynamic Integrating Current Match (IGC = 1.5 mA) Figure 6	VO(Ave)	-	± 100	± 250	-	± 100	± 250	mν
Input Current - High Logic State	Чн		· · · · · · · · · · · · · · · · · · ·					μÄ
(VIH = 18 V)							1	<u>нн</u>
Digital Data Input		-	-	+5.0	-	_	+5.0	
Clock Input		-	- 1	+5.0	· -	-	+5.0	
Encode/Decode Input				+5.0	-	-	+5.0	
Input Current - Low Logic State	կլ							μA
(VIL = 0 V)								
Digital Data Input		. –	- 1	- 10	- 1	-	-10	
			-	- 10 - 360 - 36	-	-	-10 -360 -36	

NOTE 2. Dynamic total loop offset (ΣV_{Offset}) equals V₁₀ (comparator) (Figure 3) minus V_{10X} (Figure 5). The input offset voltages of the analog comparator and of the integrator amplifier include the effects of input offset current through the input resistors. The slope polarity switch current mismatch appears as an average voltage across the 10 k integrator resistor. For the MC3417/MC3517, the clock frequency is 16.0 kHz. For the MC3418/MC3518, the clock frequency is 32.0 kHz. Idle channel performance is guaranteed if this dynamic total loop offset is less than one-half of the change in integrator output voltage during one clock cycle (ramp step size). Laser trimming is used to insure good idle channel performance.

DEFINITIONS AND FUNCTION OF PINS

Pin 1 - Analog Input

This is the analog comparator inverting input where the voice signal is applied. It may be ac or dc coupled depending on the application. If the voice signal is to be level shifted to the internal reference voltage, then a bias resistor between pins 1 and 10 is used. The resistor is used to establish the reference as the new dc average of the ac coupled signal. The analog comparator was designed for low hysteresis (typically less than 0.1 mV) and high gain (typically 70 dB).

Pin 2 - Analog Feedback

This is the non-inverting input to the analog signal comparator within the IC. In an encoder application it should be connected to the analog output of the encoder circuit. This may be pin 7 or a low pass filter output connected to pin 7. In a decode circuit pin 2 is not used and may be tied to $V_{CC}/2$ on pin 10, ground or left open.

The analog input comparator has bias currents of 1.5 μ A max, thus the driving impedances of pins 1 and 2 should be equal to avoid disturbing the idle channel characteristics of the encoder.

Pin 3 – Syllabic Filter

This is the point at which the syllabic filter voltage is returned to the IC in order to control the integrator step size. It is an NPN input to an op amp. The syllabic filter consists of an RC network between pins 11 and 3. Typical time constant values of 6 ms to 50 ms are used in voice codecs.

Pin 4 - Gain Control Input

The syllabic filter voltage appears across CS of the syllabic filter and is the voltage between V_{CC} and pin 3. The active voltage to current (V-1) converter drives pin 4 to the same voltage at a slew rate of typically 0.5 V/µs. Thus the current injected into pin 4 (I_{GC}) is the syllabic filter voltage divided by the R_X resistance. Figure 6 shows the relationship between I_{GC} (x-axis) and the integrating current, I_{Int} (y-axis). The discrepancy, which is most significant at very low currents, is due to circuitry within the slope polarity switch which enables trimming to a low total loop offset. The R_X resistor is should be no larger than 5.0 k Ω to maintain stability.

Pin 5 – Reference Input

This pin is the non-inverting input of the integrator amplifier. It is used to reference the dc level of the output signal. In an encoder circuit it must reference the same voltage as pin 1 and is tied to pin 10.

Pin 6 – Filter Input

This inverting op amp input is used to connect the integrator external components. The integrating current

(I_{Int}) flows into pin 6 when the analog input (pin 1) is high with respect to the analog feedback (pin 2) in the encode mode or when the digital data input (pin 13) is high in the decode mode. For the opposite states, I_{Int} flows out of Pin 6. Single integration systems require a capacitor and resistor between pins 6 and 7. Multipole configurations will have different circuitry. The resistance between pins 6 and 7 should always be between 8 k Ω and 13 k Ω to maintain good idle channel characteristics.

Pin 7 - Analog Output

This is the integrator op amp output. It is capable of driving a 600-ohm load referenced to V_{CC}/2 to +6 dBm and can otherwise be treated as an op amp output. Pins 5, 6, and 7 provide full access to the integrator op amp for designing integration filter networks. The slew rate of the internally compensated integrator. op amp is typically 0.5 V/ μ s. Pin 7 output is current limited for both polarities of current flow at typically 30 mA.

Pin 8 - VEE

The circuit is designed to work in either single or dual power supply applications. Pin 8 is always connected to the most negative supply.

Pin 9 - Digital Output

The digital output provides the results of the delta modulator's conversion. It swings between V_{CC} and V_{EE} and is CMOS or TTL compatible. Pin 9 is inverting with respect to pin 1 and non-inverting with respect to pin 2. It is clocked on the falling edge of pin 14. The typical 10% to 90% rise and fall times are 250 ns and 50 ns respectively for V_{CC} = 12 V and C_L = 25 pF to ground.

Pin 10 - V_{CC}/2 Output

An internal low impedance mid-supply reference is provided for use of the MC3417/18 in single supply applications. The internal regulator is a current source and must be loaded with a resistor to insure its sinking capability. If a +6 dBmo signal is expected across a 600 ohm input bias resistor, then pin 10 must sink 2.2 V/600 Ω = 3.66 mA. This is only possible if pin 10 sources 3.66 mA into a resistor normally and will source only the difference under peak load. The reference load resistor is chosen accordingly. A 0.1 μ F bypass capacitor from pin 10 to VEE is also recommended. The V_{CC}/2 reference is capable of sourcing 10 mA and can be used as a reference elsewhere in the system circuitry.

Pin 11 - Coincidence Output

The duty cycle of this pin is proportional to the voltage across CS. The coincidence output will be low whenever the content of the internal shift register is all 1s or all 0s. In the MC3417 the register is 3 bits long

DEFINITIONS AND FUNCTIONS OF PINS (continued)

while the MC3418 contains a 4 bit register. Pin 11 is an open collector of an NPN device and requires a pull-up resistor. If the syllabic filter is to have equal charge and discharge time constants, the value of Rp should be much less than Rs. In systems requiring different charge and discharge constants, the charging constant is RsCs while the decaying constant is (Rs + Rp)Cs. Thus longer decays are easily achievable. The NPN device should not be required to sink more than 3 mA in any configuration. The typical 10% to 90% rise and fall times are 200 ns and 100 ns respectively for RL = 4 k Ω to +12 V and CL = 25 pF to ground.

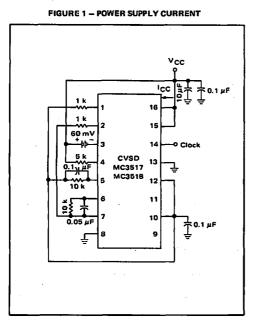
Pin 12 - Digital Threshold

This input sets the switching threshold for pins 13, 14, and 15. It is intended to aid in interfacing different logic families without external parts. Often it is connected to the V_{CC}/2 reference for CMOS interface or can be biased two diode drops above V_{EE} for TTL interface.

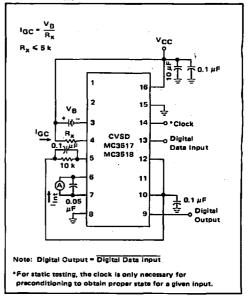
Pin 13 - Digital Data Input

In a decode application, the digital data stream is applied to pin 13. In an encoder it may be unused or may be used to transmit signaling message under the control of pin 15. It is an inverting input with respect to pin 9. When pins 9 and 13 are connected, a toggle flip-flop is formed and a forced idle channel pattern can be transmitted. The digital data input level should be maintained for 0.5 μ s before and after the clock trigger for proper clocking.

Pin 14 - Clock Input


The clock input determines the data rate of the codec circuit. A 32K bit rate requires a 32 kHz clock. The switching threshold of the clock input is set by pin 12. The shift register circuit toggles on the falling edge of the clock input. The minimum width for a positive-going pulse on the clock input is 300 ns, whereas for a negativegoing pulse, it is 900 ns.

Pin 15 - Encode/Decode


This pin controls the connection of the analog input comparator and the digital input comparator to the internal shift register. If high, the result of the analog comparison will be clocked into the register on the falling edge at pin 14. If low, the digital input state will be entered. This allows use of the IC as an encoder/decoder or simplex codec without external parts. Furthermore, it allows non-voice patterns to be forced onto the transmission line through pin 13 in an encoder.

Pin 16 - VCC

The power supply range is from 4.75 to 16.5 volts between pin V_{CC} and V_{EE} .

FIGURE 2 - IGCR, GAIN CONTROL RANGE and Int - INTEGRATING CURRENT

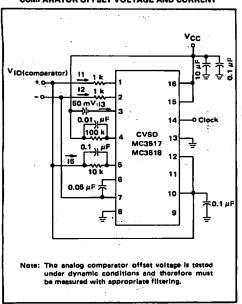
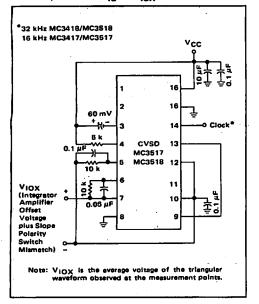



FIGURE 3 – INPUT BIAS CURRENTS, ANALOG COMPARATOR OFFSET VOLTAGE AND CURRENT

FIGURE 5 – V/I CONVERTER OFFSET VOLTAGE, VIO and VIOX

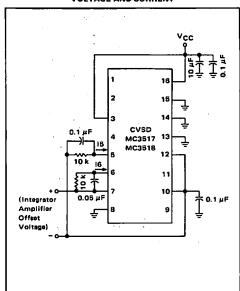
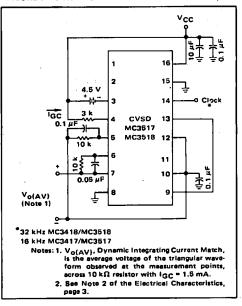
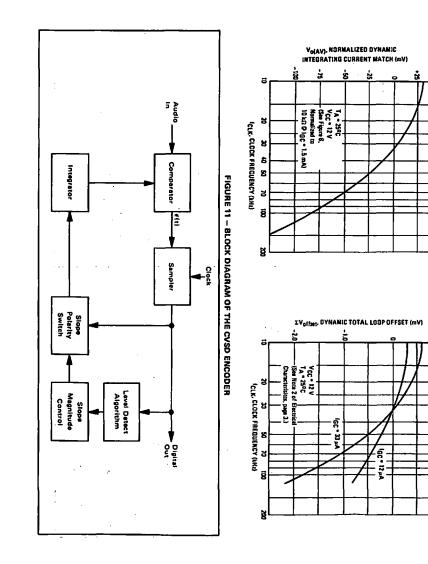




FIGURE 6 - DYNAMIC INTEGRATING CURRENT MATCH

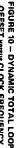



FIGURE 4 - INTEGRATOR AMPLIFIER OFFSET VOLTAGE AND CURRENT

ŝ

; . ;••

TYPICAL PERFORMANCE CURVES

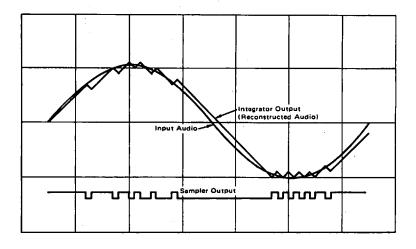
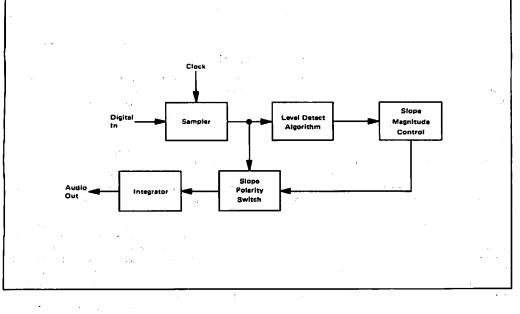



FIGURE 12 - CVSD WAVEFORMS

FIGURE 13 - BLOCK DIAGRAM OF THE CVSD DECODER

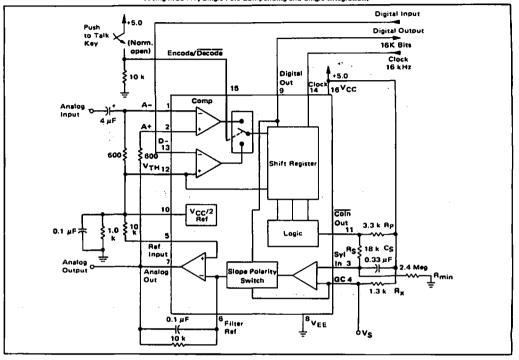


FIGURE 14 -- 16 kHz SIMPLEX VOICE CODEC (Using MC3417, Single Pole Companding and Single Integration)

CIRCUIT DESCRIPTION

The continuously variable slope delta modulator (CVSD) is a simple alternative to more complex conventional conversion techniques in systems requiring digital communication of analog signals. The human voice is analog, but digital transmission of any signal over great distance is attractive. Signal/noise ratios do not vary with distance in digital transmission and multiplexing, switching and repeating hardware is more economical and easier to design. However, instrumentation A to D converters do not meet the communications requirements. The CVSD A to D is well suited to the requirements of digital communications and is an economically efficient means of digitizing analog inputs for transmission.

The Delta Modulator

The innermost control loop of a CVSD converter is a simple delta modulator. A block diagram CVSD Encoder is shown in Figure 11. A delta modulator consists of a comparator in the forward path and an integrator in the feedback path of a simple control loop. The inputs to the comparator are the input analog signal and the integrator output. The comparator output reflects the sign of the difference between the input voltage and the integrator output. That sign bit is the digital output and also controls the direction of ramp in the integrator. The comparator is normally clocked so as to produce a synchronous and band limited digital bit stream.

If the clocked serial bit stream is transmitted, received, and delivered to a similar integrator at a remote point, the remote integrator output is a copy of the transmitting control loop integrator output. To the extent that the integrator at the transmitting locations tracks the input signal, the remote receiver reproduces the input signal. Low pass filtering at the receiver output will eliminate most of the quantizing noise, if the clock rate of the bit stream is an octave or more above the bandwidth of the input signal. Voice bandwidth is 4 kHz and clock rates from 8 k and up are possible. Thus the delta modulator digitizes and transmits the analog input to a remote receiver. The serial, unframed nature of the data is ideal for communications networks. With no input at the transmitter, a continuous one zero alternation is transmitted. If the two integrators are made leaky, then during any loss of contact the receiver output decays to

CIRCUIT DESCRIPTION (continued)

zero and receive restart begins without framing when the receiver reacquires. Similarly a delta modulator is tolerant of sporadic bit errors. Figure 12 shows the delta modulator waveforms while Figure 13 shows the corresponding CVSD decoder block diagram.

The Companding Algorithm

The fundamental advantages of the delta modulator are its simplicity and the serial format of its output. Its limitations are its ability to accurately convert the input within a limited digital bit rate. The analog input must be band limited and amplitude limited. The frequency limitations are governed by the nyquist rate while the amplitude capabilities are set by the gain of the integrator.

The frequency limits are bounded on the upper end; that is, for any input bandwidth there exists a clock frequency larger than that bandwidth which will transmit the signal with a specific noise level. However, the amplitude limits are bounded on both upper and lower ends. For a signal level, one specific gain will achieve an optimum noise level. Unfortunately, the basic delta modulator has a small dynamic range over which the noise level is constant.

The continuously variable slope circuitry provides increased dynamic range by adjusting the gain of the integrator. For a given clock frequency and input bandwidth the additional circuitry increases the delta modulator's dynamic range. External to the basic delta modulator is an algorithm which monitors the past few outputs of the delta modulator in a simple shift register. The register is 3 or 4 bits long depending on the application. The accepted CVSD algorithm simply monitors the contents of the shift register and indicates if it contains all 1s or 0s. This condition is called coincidence. When it occurs, it indicates that the gain of the integrator is too small. The coincidence output charges a single pole low pass filter. The voltage output of this syllabic filter controls the integrator gain through a pulse amplitude modulator whose other input is the sign bit or up/down control.

The simplicity of the all ones, all zeros algorithm should not be taken lightly. Many other control algorithms using the shift register have been tried. The key to the accepted algorithm is that it provides a measure of the average power or level of the input signal. Other techniques provide more instantaneous information about the shape of the input curve. The purpose of the algorithm is to control the gain of the integrator and to increase the dynamic range. Thus a measure of the average input level is what is needed.

The algorithm is repeated in the receiver and thus the level data is recovered in the receiver. Because the algorithm only operates on the past serial data, it changes the nature of the bit stream without changing the channel bit rate.

The effect of the algorithm is to compand the input signal. If a CVSD encoder is played into a basic delta modulator, the output of the delta modulator will reflect the shape of the input signal but all of the output will be at an equal level. Thus the algorithm at the output is needed to restore the level variations. The bit stream in the channel is as if it were from a standard delta modulator with a constant level input.

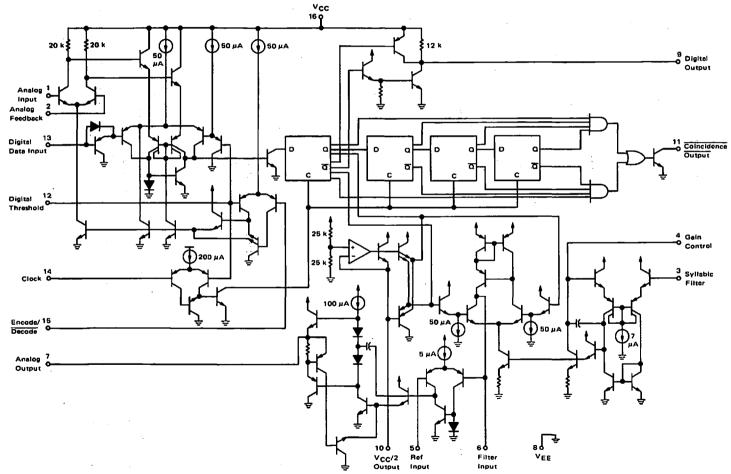
The delta modulator encoder with the CVSD algorithm provides an efficient method for digitizing a voice input in a manner which is especially convenient for digital communciations requirements.

APPLICATIONS INFORMATION CVSD DESIGN CONSIDERATIONS

A simple CVSD encoder using the MC3417 or MC3418 is shown in Figure 14. These ICs are general purpose CVSD building blocks which allow the system designer to tailor the encoder's transmission characteristics to the application. Thus, the achievable transmission capabilities are constrained by the fundamental limitations of delta modulation and the design of encoder parameters. The performance is not dictated by the internal configuration of the MC3417 and MC3418. There are seven design considerations involved in designing these basic CVSD building blocks into a specific codec application.

These are listed below:

1. Selection of clock rate

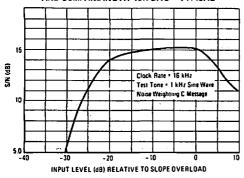

- 2. Required number of shift register bits
- 3. Selection of loop gain
- 4. Selection of minimum step size
- 5. Design of integration filter transfer function
- 6. Design of syllabic filter transfer function
- 7. Design of low pass filter at the receiver

The circuit in Figure 14 is the most basic CVSD circuit possible. For many applications in secure radio or other intelligible voice channel requirements, it is entirely sufficient. In this circuit, items 5 and 6 are reduced to their simplest form. The syllabic and integration filters are both single pole networks. The selection of items 1 through 4 govern the codec performance. 6

MC3417, MC3418, MC3517, MC3518

6-22

CVSD DESIGN CONSIDERATIONS (continued)


Layout Considerations

Care should be exercised to isolate all digital signal paths (pins 9, 11, 13, and 14) from analog signal paths (pins 1-7 and 10) in order to achieve proper idle channel performance.

Clock Rate

With minor modifications the circuit in Figure 14 may be operated anywhere from 9.6 kHz to 64 kHz clock rates. Obviously the higher the clock rate the higher the S/N performance. The circuit in Figure 14 typically produces the S/N performance shown in Figure 15. The selection of clock rate is usually dictated by the bandwidth of the transmission medium. Voice bandwidth systems will require no higher than 9600 Hz. Some radio systems will allow 12 kHz. Private 4-wire telephone systems are often operated at 16 kHz and commercial telephone performance can be achieved at 32K bits and above. Other codecs may use bit rates up to 200K bits/sec.

FIGURE 15 – SIGNAL-TO-NOISE PERFORMANCE OF MC3417 WITH SINGLE INTEGRATION, SINGLE-POLE AND COMPANDING AT 16K BITS – TYPICAL

Shift Register Length (Algorithm)

The MC3417 has a three-bit algorithm and the MC3418 has a four-bit algorithm. For clock rates of 16 kHz and below, the 3-bit algorithm is well suited. For 32 kHz and higher clock rates, the 4-bit system is preferred. Since the algorithm records a fixed past history of the input signal, a longer shift register is required to obtain the same internal hsitory. At 16 bits and below, the 4-bit algorithm will produce a slightly wider dynamic range at the expense of level change response. Basically the MC3417 is designed for low bit rate systems and the MC3418 is intended for high performance, high bit rate system. At bit rates above 64K bits either part will work well.

Selection of Loop Gain

The gain of the circuit in Figure 14 is set by resistor R_X . R_X must be selected to provide the proper integrator step size for high level signals such that the companding ratio does not exceed about 25%. The companding ratio is the active low duty cycle of the coincidence output on pin 11 of the codec circuit. Thus the system gain is dependent on:

- 1. The maximum level and frequency of the input signal.
- 2. The transfer function of the integration filter.

For voice codecs the typical input signal is taken to be a sine wave at 1 kHz of 0 dBmo level. In practice, the useful dynamic range extends about 6 dB above the design level. In any system the companding ratio should not exceed 30%.

To calculate the required step size current, we must describe the transfer characteristics of the integration filter. In the basic circuit of Figure 14, a single pole of 160 Hz is used.

$$R = 10 k\Omega, C = 0.1 \mu F$$

$$\frac{V_0}{I_i} = \frac{1}{C(S + 1/RC)} \equiv \frac{K}{S + \omega_0}$$

$$\omega_0 = 2\pi f$$

$$10^3 = \omega_0 = 2\pi f$$

$$f = 159.2 Hz$$

Note that the integration filter produces a single-pole response from 300 to 3 kHz. The current required to move the integrator output a specific voltage from zero is simply:

$$I_i = \frac{V_o}{R} + \frac{C_d V_o}{dt}$$

Now a 0 dBmo sine wave has a peak value of 1.0954 volts. In 1/8 of a cycle of a sine wave centered around the zero crossing, the sine wave changes by approximately its peak value. The CVSD step should trace that change. The required current for a 0 dBm 1 kHz sine wave is:

$$l_{j} = \frac{1.1 \text{ V}}{*2(10 \text{ k}\Omega)} + \frac{0.1 \mu\text{F}(1.1)}{0.125 \text{ ms}} = 0.935 \text{ mA}$$

*The maximum voltage across R1 when maximum slew is required is:

Now the voltage range of the syllabic filter is the power supply voltage, thus:

$$R_x = 0.25(V_{CC}) \frac{1}{0.935 \text{ mA}}$$

A similar procedure can be followed to establish the proper gain for any input level and integration filter type.

CVSD DESIGN CONSIDERATIONS (continued)

Minimum Step Size

The final parameter to be selected for the simple codec in Figure 14 is idle channel step size. With no input signal, the digital output becomes a one-zero alternating pattern and the analog output becomes a small triangle wave. Mismatches of internal currents and offsets limit the minimum step size which will produce a perfect idle channel pattern. The MC3417 is tested to ensure that a 20 mVp-p minimum step size at 16 kHz will attain a proper idle channel. The idle channel step size must be twice the specified total loop offset if a one-zero idle pattern is desired. In some applications a much smaller minimum step size (e.g., 0.1 mV) can produce quiet performance without providing a 1-0 pattern.

To set the idle channel step size, the value of R_{min} must be selected. With no input signal, the slope control algorithm is inactive. A long series of ones or zeros never occurs. Thus, the voltage across the syllabic filter capacitor (CS) would decay to zero. However, the voltage divider of RS and R_{min} (see Figure 14) sets the minimum allowed voltage across the syllabic filter capacitor. That voltage must produce the desired ramps at the analog output. Again we write the filter input current equation:

$$I_i = \frac{V_o}{R} + C\frac{dV_o}{dt}$$

For values of V_0 near $V_{CC}/2$ the V_0/R term is negligible; thus

$$i_i = C_S \frac{\Delta V_0}{\Delta T}$$

where ΔT is the clock period and ΔV_0 is the desired peak-to-peak value of the idle output. For a 16K-bit system using the circuit in Figure 14

$$I_i = \frac{0.1 \,\mu\text{F} \, 20 \,\text{mV}}{62.5 \,\mu\text{s}} = 33 \,\mu\text{A}$$

The voltage on Cs which produces a 33 μ A current is determined by the value of R_x.

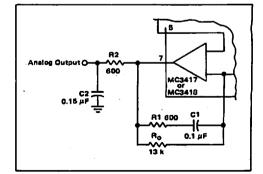
l; Rx = Vsmin; for 33 μA, Vsmin = 41.6 mV

In Figure 14 RS is 18 k Ω . That selection is discussed with the syllabic filter considerations. The voltage divider of RS and R_{min} must produce an output of 41.6 mV.

$$V_{CC} = \frac{R_S}{R_S + R_{min}} = V_{Smin} = R_{min} \simeq 2.4 M\Omega$$

Having established these four parameters – clock rate, number of shift register bits, loop gain and minimum step size – the encoder circuit in Figure 14 will function at near optimum performance for input levels around 0 dBm.

INCREASING CVSD PERFORMANCE


Integration Filter Design

The circuit in Figure 14 uses a single-pole integration network formed with a 0.1 μ F capacitor and a 10 k Ω resistor. It is possible to improve the performance of the circuit in Figure 14 by 1 or 2 dB by using a two-pole integration network. The improved circuit is shown.

The first pole is still placed below 300 Hz to provide the 1/S voice content curve and a second pole is placed somewhere above the 1 kHz frequency. For telephony circuits, the second pole can be placed above 1.8 kHz to exceed the 1633 touchtone frequency. In other communication systems, values as low as 1 kHz may be selected. In general, the lower in frequency the second pole is placed, the greater the noise improvement. Then, to ensure the encoder loop stability, a zero is added to keep the phase shift less than 180°. This zero should be placed slightly above the low-pass output filter break frequency so as not to reduce the effectiveness of the second pole. A network of 235 Hz, 2 kHz and 5.2 kHz is typical for telephone applications while 160 Hz, 1.2 kHz and 2.8 kHz might be used in voice only channels. (Voice only channels can use an output low-pass filter which breaks at about 2.5 kHz.) The two-pole network in Figure 16 has a transfer function of:

$$\frac{V_{0}}{V_{1}} = \frac{R_{0}R_{1}\left(S + \frac{1}{R_{1}C_{1}}\right)}{R_{2}C_{2}(R_{0} + R_{1})\left(S + \frac{1}{(R_{0} + R_{1})C_{1}}\right)S + \left(\frac{1}{R_{2}C_{2}}\right)}$$

FIGURE 16 - IMPROVED FILTER CONFIGURATION

These component values are for the telephone channel circuit poles described in the text. The R2, C2 product can be provided with different values of R and C. R2 should be chosen to be equal to the termination resistor on pin 1.

INCREASING CVSD PERFORMANCE (continued) .

Thus the two poles and the zero can be selected arbitrarily as long as the zero is at a higher frequency than the first pole. The values in Figure 16 represent one implementation of the telephony filter requirement.

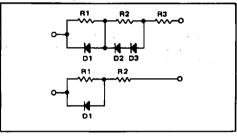
The selection of the two-pole filter network effects the selection of the loop gain value and the minimum step size resistor. The required integrator current for a given change in voltage now becomes:

$$I_{i} = \frac{V_{0}}{R_{0}} + \left(\frac{R_{2}C_{2}}{R_{0}} + \frac{R_{1}C_{1}}{R_{0}} + C_{1}\right)\frac{\Delta V_{0}}{\Delta T} + \left(\frac{R_{2}C_{2}C_{1}}{R_{0}} + \frac{R_{1}C_{1}R_{2}C_{2}}{R_{0}}\right)\frac{\Delta V_{0}^{2}}{\Delta T^{2}}$$

The calculation of desired gain resistor $\mathbf{R}_{\mathbf{X}}$ then proceeds exactly as previously described.

Syllabic Filter Design

The syllabic filter in Figure 14 is a simple single-pole network of 18 k Ω and 0.33 μ F. This produces a 6.0 ms time constant for the averaging of the coincidence output signal. The voltage across the capacitor determines the integrator current which in turn establishes the step size. The integrator current and the resulting step size determine the companding ratio and the S/N performance. The companding ratio is defined as the voltage across Cs/V_{CC}.


The S/N performance may be improved by modifying the voltage to current transformation produced by R_X . If different portions of the total R_X are shunted by diodes, the integrator current can be other than $(V_{CC} - V_S)/R_X$. These breakpoint curves must be designed experimentally for the particular system application. In general, one would wish that, the current would double with input level. To design the desired curve, supply current to pin 4 of the codec from an external source. Input a signal level and adjust the current until the S/N performance is optimum. Then record the syllabic filter voltage and the current. Repeat this for all desired signal levels. Then derive the resistor diode network which produces that curve on a curve tracer.

Once the network is designed with the curve tracer, it is then inserted in place of R_x in the circuit and the forced optimum noise performance will be achieved from the active syllabic algorithm.

Diode breakpoint networks may be very simple or moderately complex and can improve the usable dynamic range of any codec. In the past they have been used in high performance telephone codecs.

Typical resistor-diode networks are shown in Figure 17.

FIGURE 17 - RESISTOR-DIODE NETWORKS

If the performance of more complex diode networks is desired, the circuit in Figure 18 should be used. It simulates the companding characteristics of nonlinear R_x elements in a different manner.

Output Low Pass Filter

A low pass filter is required at the receiving circuit output to eliminate quantizing noise. In general, the lower the bit rate, the better the filter must be. The filter in Figure 20 provides excellent performance for 12 kHz to 40 kHz systems.

TELEPHONE CARRIER QUALITY CODEC USING MC3418

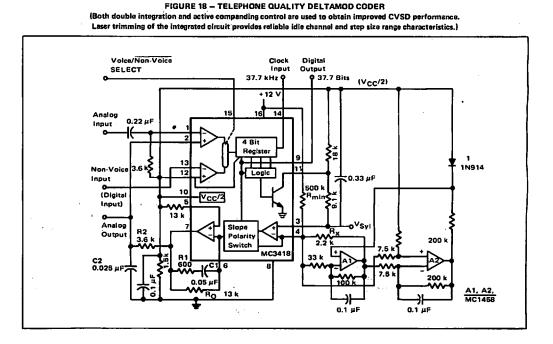
Two specifications of the integrated circuit are specifically intended to meet the performance requirements of commercial telephone systems. First, slope polarity switch current matching is laser trimmed to guarantee proper idle channel performance with 5 mV minimum step size and a typical 1% current match from 15 μ A to 3 mA. Thus a 300 to 1 range of step size varlation is possible. Second, the MC3418 provides the four-bit algorithm currently used in subscriber loop telephone systems. With these specifications and the circuit of Figure 18, a telephone quality codec can be mass produced.

The circuit in Figure 18 provides a 30 dB S/Nc ratio over 50 dB of dynamic range for a 1 kHz test tone at a 37.7K bit rate. At 37.7K bits, 40 voice channels may be multiplexed on a standard 1.544 megabit T1 facility. This codec has also been tested for 10^{-7} error rates with asynchronous and synchronous data up to 2400 baud and for reliable performance with DTMF signaling. Thus, the design is applicable in telephone quality subscriber loop carrier systems, subscriber loop concentrators and small PABX installations.

TELEPHONE CARRIER QUALITY CODEC USING MC3418 (continued)

The Active Companding Network

The unique feature of the codec in Figure 18 is the step size control circuit which uses a companding ratio reference, the present step size, and the present syllabic filter output to establish the optimum companding ratios and step sizes for any given input level. The companding ratio of a CVSD codec is defined as the duty cycle of the coincidence output. It is the parameter measured by the syllabic filter and is the voltage across Co divided by the voltage swing of the coincidence output. In Figure 18, the voltage swing of pin 11 is 6 volts. The operating companding ratio is analoged by the voltage between pins 10 and 4 by means of the virtual short across pins 3 and 4 of the V to 1 op amp within the integrated circuit. Thus, the instantaneous companding ratio of the codec is always available at the negative input of A1.


The diode D1 and the gain of A1 and A2 provide a companding ratio reference for any input level. If the output of A2 is more than 0.7 volts below $V_{CC}/2$, then the positive input of A1 is ($V_{CC}/2 - 0.7$). The on diode drop at the input of A1 represents a 12% companding ratio (12% = 0.7 V/6 V).

The present step size of the operating codec is directly

related to the voltage across R_X , which established the integrator current. In Figure 18, the voltage across R_X is amplified by the differential amplifier A2 whose output is single ended with respect to pin 10 of the IC.

For large signal inputs, the step size is large and the output of A2 is lower than 0.7 volts. Thus D1 is fully on. The present step size is not a factor in the step size control. However, the difference between 12% companding ratio and the instantaneous companding ratio at pin 4 is amplified by A1. The output of A1 changes the voltage across R_X in a direction which reduces the difference between the companding reference and the operating ratio by changing the step size. The ratio of R4 and R3 determines how closely the voltage at pin 4 will be forced to 12%. The selection of R3 and R4 is initially experimental. However, the resulting companding control is dependent on R_X , R3, R4, and the full diode drop D1. These values are easy to reproduce from codect.


For small input levels, the companding ratio reference becomes the output of A2 rather than the diode drop. The operating companding ratio on pin 4 is then compared to a companding ratio smaller than 12% which is determined by the voltage drop across R_x and the gain of A2

MC3417, MC3418, MC3517, MC3518

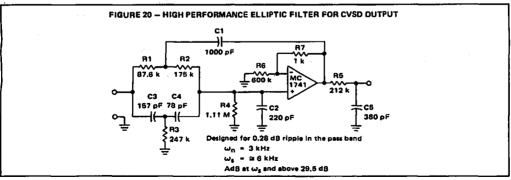
FIGURE 19 - SIGNAL-TO-NOISE PERFORMANCE

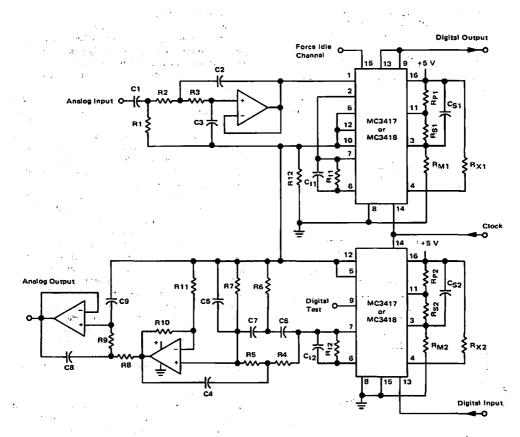
TELEPHONE CARRIER QUALITY CODEC USING MC3418 (continued)

and A1. The gain of A2 is also experimentally determined, but once determined, the circuitry is easily repeated.

With no input signal, the companding ratio at pin 4 goes to zero and the voltage across $R_{\rm X}$ goes to zero. The voltage at the output of A2 becomes zero since there is no drop across $R_{\rm X}$. With no signal input, the actively controlled step size vanished.

The minimum step size is established by the 500 k resistor between V_{CC} and $V_{CC}/2$ and is therefore independently selectable.


The signal to noise results of the active companding network are shown in Figure 19. A smooth 2 dB drop is realized from \pm 12 dBm to -24 under the control of A1. At -24 dBm, A2 begins to degenerate the companding reference and the resulting step size is reduced so as to extend the dynamic range of the codec by 20 dBm.


The slope overload characteristic is also shown. The active companding network produces improved performance with frequency. The 0 dBm slope overload point is raised to 4.8 kHz because of the gain available in controlling the voltage across R_X . The curves demonstrate that the level linearity has been maintained or improved.*

The codec in Figure 18 is designed specifically for 37.7K bit systems. However, the benefits of the active companding network are not limited to high bit rate systems. By modifying the crossover region (changing the gain of A2), the active technique may be used to improve the performance of lower bit rate systems.

The performance and repeatability of the codec in Figure 18 represents a significant step forward in the art and cost of CVSD codec designs.

*A larger value for C2 is required in the decoder circuit than in the encoder to adjust the level linearity with frequency. In Figure 18, 0.050 μ F would work well.

FIGURE 21 - FULL DUPLEX/32K BIT CVSD VOICE CODEC USING MC3517/18 AND MC3503/6 OP AMP

Codec Components
R _{X1} , R _{X2} - 3.3 kΩ
Rp1, Rp2 - 3.3 kΩ
R _{S1} , R _{S2} - 100 kΩ
R ₁₁ , R ₁₂ - 20 kΩ
$R_{12} = 1 k\Omega$
RM1, RM2 -5 MΩ (MC3417)
Minimum step size = 20 mV
R _{M1} , R _{M2} – 15 MΩ (MC3418)
Minimum step size = 6 mV
C _{S1} , C _{S2} - 0.05 µF
CI1. CI2 - 0.05 #F

.

2 MC3417 (or MC3418) 1 MC3403 (or MC3406)

Note: All Res. 5% Ali Cap, 5%

i

t

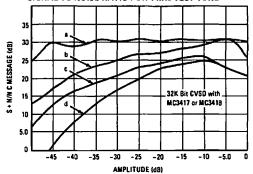
Input Filter Specifications 12 dB/Octave Rolloff above 3.3 kHz 11 6 dB/Octeve Rolloff below 50 Hz

Output Filter Specifications Break Frequency - 3.3 kHz Stop Band - 9 kHz Stop Band Atten. - 50 dB Rolloff - > 40 dB/Octave

...

Filter Components	
R1 - 965 Ω	C1 – 3.3 µF
R2 – 72 kΩ	C2 - 837 pF
R3 – 72 kΩ	C3 – 536 pF
R4 – 63.46 kΩ	C4 – 1000 pF
R5 127 kΩ	C5 – 222 pF
R6 – 365.5 kΩ	C6 – 77 pF
R7 – 1.645 MΩ	C7 – 38 pF
R8 – 72 kΩ	C8 – 837 pF
R9 – 72 kΩ	C9 – 636 pF
R10 – 29.5 kΩ	
R11 – 72 kΩ	

Note: All Res. 0.1% to 1%. All Cep. 1.0%


. .

COMPARATIVE CODEC PERFORMANCE

The salient feature of CVSD codecs using the MC3517 and MC3518 family is versatility. The range of codec complexity tradeoffs and bit rate is so wide that one cannot grasp the interdependency of parameters for voice applications in a few pages.

Design of a specific codec must be tailored to the digital channel bandwidth, the analog bandwidth, the quality of signal transmission required and the cost objectives. To illustrate the choices available, the data in Figure 22 compares the signal-to-noise ratios and dynamic range of various codec design options at 32K bits. Generally, the relative merits of each design feature will remain intact in any application. Lowering the bit rate will reduce the dynamic range and noise performance of all techniques. As the bit rate is increased, the overall performance of each technique will improve and the need for more complex designs diminishes.

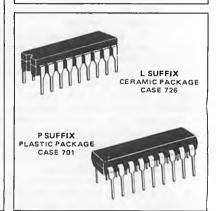
Non-voice applications of the MC3517 and MC3518 are also possible. In those cases, the signal bandwidth and amplitude characteristics must be defined before the specification of codec parameters can begin. However, in general, the design can proceed along the lines of the voice applications shown here, taking into account the different signal bandwidth requirements. FIGURE 22 – COMPARATIVE CODEC PERFORMANCE – SIGNAL-TO-NOISE RATIO FOR 1 kHz TEST TONE

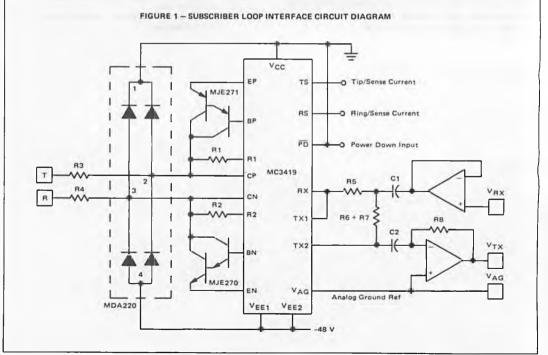
These curves demonstrate the improved performance obtained with several codec designs of varying complexity.

- Curve a Complex companding and double integration (Figure 18 — MC3418)
- Curve b Double integration (Figure 21 using Figure 6 MC3418)
- Curve c Single integration (Figure 21 MC3418) with 6 mV step size
- Curve d Single integration (Figure 21 MC3417) with 25 mV step size

MC3419 MC3519

Advance Information


TELEPHONE LINE FEED AND 2- TO 4-WIRE CONVERSION CIRCUIT


. . . designed to replace the hybrid transformer circuit in Class 5, PABX and Subscriber carrier equipment, providing signal separation for two-wire differential to four-wire single-ended conversions and suppression of longitudinal signals at the two-wire input. It provides dc line current for powering the telset, operating from up to a 60 V supply.

- Transmit and Receive Gain is Externally Selected
- On-Hook Power Below 5.0 mW
- Current Sensing Outputs Provided for Off-Hook Status from Both Tip and Ring Leads
- Size and Weight Reduction Over Present Approaches
- Compatible with IEEE and REA Specifications
- The sale of this product is licensed under patent No. 4,004,109. All royalties related to this patent are included in the unit price.

BIPOLAR LASER-TRIMMED INTEGRATED CIRCUIT

This is advance information and specifications are subject to change without notice.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Maximum Rated Voltage	VEE1, VEE2	60	Vdc	
Maximum Power Dissipation T _A = 25°C Derate above +25°C	PD	1.5	Watts	
Operating Ambient Temperature Range MC3419 MC3519	TA TA	0 to +70 -40 to +85	°C	
Storage Temperature Range	T _{stg}	-65 to +150	°C	
Operating Junction Temperature	Tj	150	°C	

ELECTRICAL CHARACTERISTICS (VEE1 = VEE2 = -48 V. VCC = 0, VAG = -6.0 V, TA = 25°C)

Characteristic	Symbol	Min	Тур	Max	Unit
Loop Current Range (R _{Loop} = 0 - 1900 Ω)	ι _{Lp}	20		120	mА
Transhybrid Reception Ratio – Figure 2 (R _L = 900 Ω,V _{RX} , = 0.775 V _{RMS} , V _G = 0)	VRL/VRX	-0.1	0	+0.1	dB
Transhybrid Transmission Ratio - Figure 2 (R _L = 900 Ω, V _{RX} = 0, V _G ≈ 0.775 V _{RMS})	VTX/VRL	-0.1	· 0	+0.1	dB
Transhybrid Rejection Ratio — Figure 2 (R _L = 900 Ω, V _{RX} = 0.775 V _{RMS} , V _G = 0)	V _{TX} /V _{RX}	-	-46		dB
Input Resistance (@R and T)-Figure 2	Rin	1	900		ß
In-Band Longitudinal Suppression Ratio Figure 3 (e _{Lon} = 0.775 V RMS, f = 1 kHz, RL = 900 Ω)	V _{TX} /e _{Lon}	-	-66	-	dB
60 Cycle Longitudinal Suppression Ratio — Figure 3 (e _{Lon} = 30 V _{RMS} , f = 60 Hz, RL = 1900 Ω)	VTX/eLon	_	-66	-	dB
Longitudinal Capacity – Figure 3 (60 Hz)	Lon	-	35	-	mARMS
Level Linearity (f = 300 Hz to 3400 Hz, Reception V _{RX} = 0.775 V _{RMS} , Transmission V _{RL} = 0.775 V _{RMS} }	V _{RX} /V _{RL} V _{RL} /V _{TX}	-0.1 -0.1		+0.1 +0.1	dB dB
Idle Noise			0		dBrnCo_
Off-Hook Power Dissipation (IC) (I _{Loop} = 120 mA)	PD(Off)	-	0.6	-	Watts
On-Hook Power Dissipation	PD(On)	-	5.0	-	mW
Tip Status Current (I _{Loop} = 0 to 120 mA)	ITS/IT	_	0.0104	_	mA/mA
Ring Status Current (ILoop = 0 to 120 mA)	IRS/IR	-	0.0104	-	_mA/mA
Voltage Range of Analog Ground	V _R	0	_	-12	Volts
Analog Ground Input Current	Gnd	-	1.0		μA
Fault Currents					
(Tip to V_{CC} – Figure 2) (Ring to V_{CC} – Figure 2)	iT IR	-	0 5.0	-	mA mA
(Ring and Tip to V _{CC} – Figure 2)	11111111111111111111111111111111111111		5.0	_	mA
(Tip to Ring Short - Figure 2)	IT + IB	.	120	_	mA
Power Down Input Levels					Vdc
Logic High	V _{IH}	Vcc-1.0	_	_	
	VIL	<u> </u>	_	Vcc-2.0	1

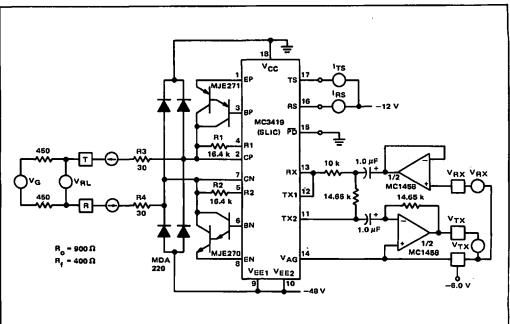
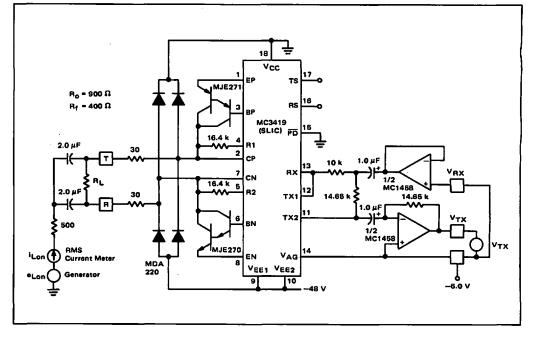
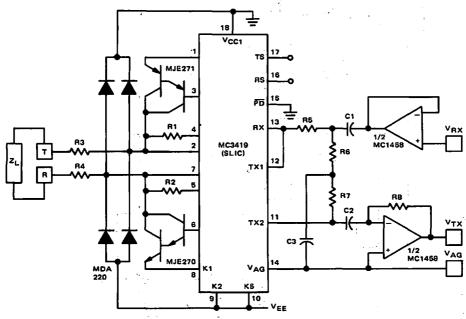
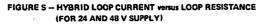



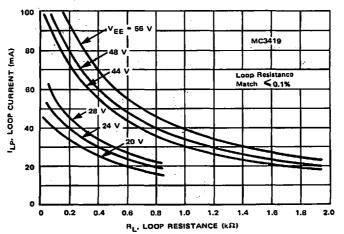
FIGURE 2 - AC TRANSMISSION TESTS OF MC3419 AT BALANCE

FIGURE 3 - LONGITUDINAL TEST

.



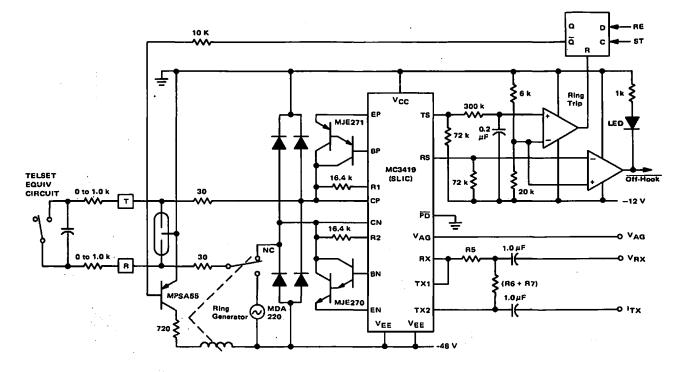
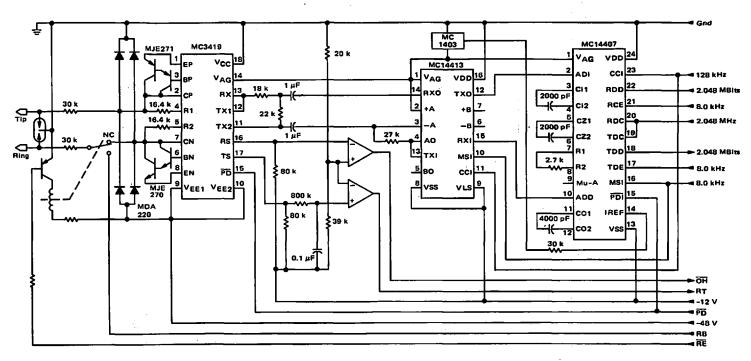

FIGURE 4 - DESIGN EQUATIONS


Internal to the MC3419 are three precise gain constants

K1 = 4 K2 = 23.75 K5 = 0.4 .K5' = 0.6

K5 and K5' are selected by connecting TX1 or TX2 to RX respectively. The remaining TX pin is connected to R6 and R7.

1. The dc feed resistance is R_f R_f = $\frac{R1 + R2}{1 + K1K2} + R3 + R4$ 2. The termination resistance is R_o R_o = $\frac{R1 + R2}{1 + K1K2K5} + R3 + R4$

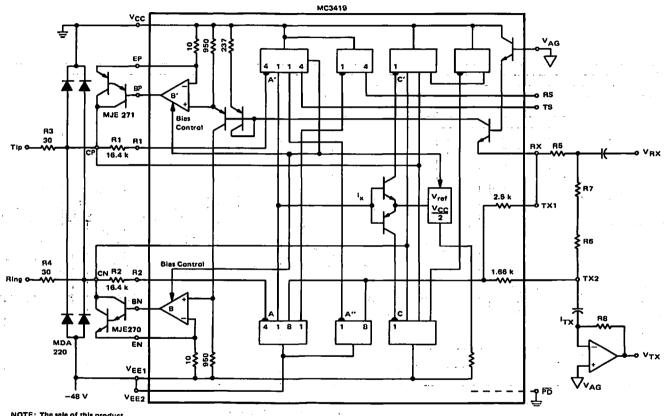

FIGURE 6 - RING TRIP USING MC3419

FIGURE 7 - MOTOROLA 3-CHIP SUBSCRIBER CHANNEL UNIT

6

NOTE: The sale of this product is licensed under patent No. 4,004,109. All royalties related to this patent are included in the unit price,

DESCRIPTION OF MC3419 SUBSCRIBER LOOP INTERFACE CIRCUIT

Figure 8 depicts a complete subscriber loop interface circuit for standard end-office telephone loop connections. The circuit consists of an 18 pin dual in-line MC3419, MJE271 PNP and MJE270 NPN power darlington transistors, an MDA220 bridge rectifier and six resistors. This composite circuit provided the following line interface functions:

- 1. 2-wire balanced to 4-wire single-ended signal conversion.
- 2. Independent Receive Gain selection (R5).
- 3. Independent Transmit Gain selection (R8).
- 4. Independent Transhybrid null selection (R6 + R7)*
- 5. 600 to 900 Ω resistance as loop termination (R1, R2, R3, R4)*.
- 6. Resistive dc power-feed from 400 to 800 Ω (R1, R2, R3, R4).
- 7. Ring to ground, Tip to ground, Ring and Tip to ground fault current limiting (10 mA).
- 8. Rejection of longitudinal or common mode interference from 50 to 3400 Hz (30 mA RMS).
- 9. 1500 volt secondary lightning protection.
- 10. Temporary power line fault protection.
- 11. Proportional ring current sense indication in RS.
- 12. Proportional tip current sense indication in TS.
- 13. Suppression of longitudinal component in RS and TS normal connections.
- Independent 4-wire common input for noise isolation.
- Independent quiet battery supply input for battery noise rejection.
- Near zero power dissipation in normal on-hook condition.
- 17. Level linearity of better than 0.1 dB over the entire level and frequency range.

*Reflected complex impedances may also be provided with an additional capacitor.

DC CHARACTERISTICS

The first function the SLIC must perform is to enable and disable itself on the basis of the switch-hook condition in the attached instrument. With the station on-hook, the Ring and Tip terminals are open. No metallic current can flow in resistors R1 and R2, thus the input and various outputs of circuit A and A' are zero. The control outputs of A and A' are off, causing the op amps B and B' and the voltage reference to have no bias. The reference pull down resistor pulls the reference voltage to V_{EE}. No current flows in any part of the circuit if the Tip and Ring terminals are open. The power dissipation in this state is back bias leakage only. When a load resistance (R_L) is connected to Tip and Ring, the dc current flows in R1, R2, and circuits A and A', The control outputs, op amps B, B', and the voltage reference are now on. The current gain of circuit A and A' to the TX outputs is K2 = 4. The current gain of circuits B and B' is K1 = 23.75. For a current in R1 and R2 of I_N, the current in the collector of circuits B and B' is K1K2I_N. The total current in the load is (1+K1K2)I_N. The dc feed resistance at the Tip and Ring terminals is

$$R_f = \frac{(R1 + R2)}{1 + K1K2} + R3 + R4$$

The current which flows in the load will be:

$$I_{\text{Loop}} = \frac{V_{\text{CC}} - V_{\text{EE2}}}{R_1 + R_f}$$

The dc feed current is thus determined by the loop resistance.

The dc component of i_X is a measure of the mismatch between the source and the sink current of the various differential stages. Circuit C and C' source or sink current through CN and CP until the dc component of $i_X = 0$. C and C' also keep the mid-point voltage of the load at $V_{CC}/2$. Thus, with a metallic current in the load, the SLIC supplies current to the load with impedance R_f .

Various fault dc conditions must be accounted for in practice. The Tip and Ring leads can be shorted to ground in the field in any combination. The SLIC limits these fault currents by the arrangement of the control outputs of circuit A and A'. If the Ring lead is tied to ground, a current through R2 will turn on the control output of circuit A. This enables op amp B' and provides a sinking path for the voltage reference. If the Tip lead is open or connected to ground, the current in R1 is zero. The i_x control lead is sinking current but cannot turn on circuit C' because the voltage reference is V_{EE}. Circuit B is also off since the control output of circuit A' is off. The Ring lead is now [(V_{CC}-V_{EE})/(R4 + R2)]. The Ring fault current in the SLIC is less than 10 mA.

SMALL SIGNAL AC CHARACTERISTICS

With a load R_L applied across Tip and Ring, the flow of metallic current in R_L enables and biases the SLIC circuit. Now consider an ac generator in series with R_L causing differential signal across Ring and Tip at a frequency between 300 and 3400 Hz. The impedance presented to the generator is R_L + R₀ where R₀ is the ac input impedance of the SLIC at the two-wire part. R₀ is derived by a method similar to R_f.

The gain of circuits A, A', B, and B' is K1 = 4 and K2 = 23.75 as before. However, the TX2 path to i_{TX} is an

added load for ac signals and the current returned to R_X is divided by the current divider of 2.5 k Ω and 1.66 k Ω . As connected, the ratio of these resistors creates another constant K5 = 0.4. (TX1 and TX2 connection can be reversed to produce K5' = 0.6).

The ac termination is thus:

$$R_{f} = \frac{R1 + R2}{1 + K1K2K5} + R3 + R4$$

The ac current in SLIC is then

$$i_g = \frac{v_g}{R_L + R_o}$$
 where v_g is the generator voltage.

The current in R1 and R2 is given by 1+K1K2KE

and the output signal current is

$$i_{TX} = \frac{K1(1-K5)}{i_{g}(1+K1K2K5)}$$
 thus
 $\frac{V_{TX}}{v_{g}} = \frac{K1(1-K5)}{1+K1K2K5} \left(\frac{R8}{R_{L}+R_{O}}\right)$

The differential signal in the load is input, as two out of phase signals, into circuits A' and A. The A' signal is inverted and summed in phase with the output of A in A". The transmit gain voltage of the SLIC can be set at any arbitrary value by selecting R8.

Now assume a two-wire load R_L and a generator v_g at V_{RX} . The generator sees a low impedance at R_X , assuming V_{AG} is connected to a dc potential. The current into R_X is simply $i_{RX} = v_0/R5$.

This current is multiplied by K1 in circuits B and B'. The output transistors drive a load R_{L} + R3 + R4 in parallel with (R1+R2)/(1+K1K2K5) so that the voltage gain from V_{RX} to Tip and Ring is

$$\frac{V_{RL}}{V_{RX}} = -K2 \frac{R_L}{R5} \times C_1 \text{ where}$$

$$C_1 = \left[\frac{R1 + R2}{(R1 + R2) + (R_L + R3 + R4)(1 + K1 K2 K5)}\right]$$

The signal current across the load is in phase with V_{RX} and out of phase with the termination R_0 . The current in R_0 causes a signal at i_{TX} .

This current may be cancelled for any load R_{L} by selecting the sum of (R6 + R7).

Balance is achieved for a load RL by designing

$$(R6 + R7) = \frac{R5(1+K1K2K5)}{K1K2(1-K5)} \times C_2 \text{ where}$$

$$C_2 = \left[\frac{(R1+R2) + (R_L+R3+R4)(1+K1K2K5)}{R1+R2}\right]$$

The current amplifiers within the SLIC are all wide-band amplifiers such that essentially no group delay occurs for 4 kHz band limited signals and resistive loads. Thus, the SLIC functions as a near ideal transimpedance converter for ports V_{RX} , V_{RL} , and V_{TX} . Complex loads Z_L may be balanced by replacing (R6 + R7) with a complex balance network z.

LONGITUDINAL SIGNAL SUPPRESSION

Both low frequency and voice-band longitudinal rejection are produced by the same mechanisms within this SLIC.

A longitudinal interference from 0 to 3400 Hz in the loop produces a common mode voltage at Ring and Tip. Circuit A and A' sense these in phase currents in R1 and R2 and cause an ac signal i_X . Circuit C and C' are driven by the Class B transistor pair to produce currents which will reduce the common mode component at nodes CN and CP by the open loop ac gain of the circuit C and C'. The high compliance of the i_X output and a large current gain in circuit C and C' allow the open loop gain to be quite large.

Constants K1, K2 are held in close tolerance within the integrated circuit. If R1 + R3 = R2 + R4, then the longitudinal balance at Tip and Ring will be good. Thus, the remaining component of common mode signal at CP and CN will be equal. The phase inversion in A" will cause the common mode remainder to sum out of phase at TX2 and thus will contribute little output at V_{TX} . The overall performance of this common mode rejection loop is determined by the matching of R1 + R3 and R4 + R2, as well as the matching of constants within the chip. 60 dB appears readily achievable.

The circuit C and C' outputs are limited to 30 mA to insure longitudinal capacity for both the IEEE and REA standards.

LOOP CONDITION SENSING

Three analog sensing outputs are provided for detecting the condition of the subscriber loop. Each output consists of the open collector of a current sourcing device. The RS and TS outputs are derived from the sense currents in circuits A and A'. Thus, in a normal metallic connection the TS and RS currents are related to Ring and Tip currents by constants.

DC Metallic

$$I_{RS} = \frac{I_R}{1+K1K2} = \frac{V_{CC}-V_{EE}}{(R_L + R_f)(1+K1K2)}$$

$$I_{TS} = \frac{I_T}{1+K1K2} = \frac{V_{CC}-V_{EE}}{(R_L+R_f)(1+K1K2)}$$

AC Metallic

$$i_{RS} = \frac{V_{RL}}{(R_L + R_0)(1 + K1K2K5)}$$

$$i_{TS} = \frac{V_{RL}}{(R_L + R_0)(1 + K1K2K5)}$$

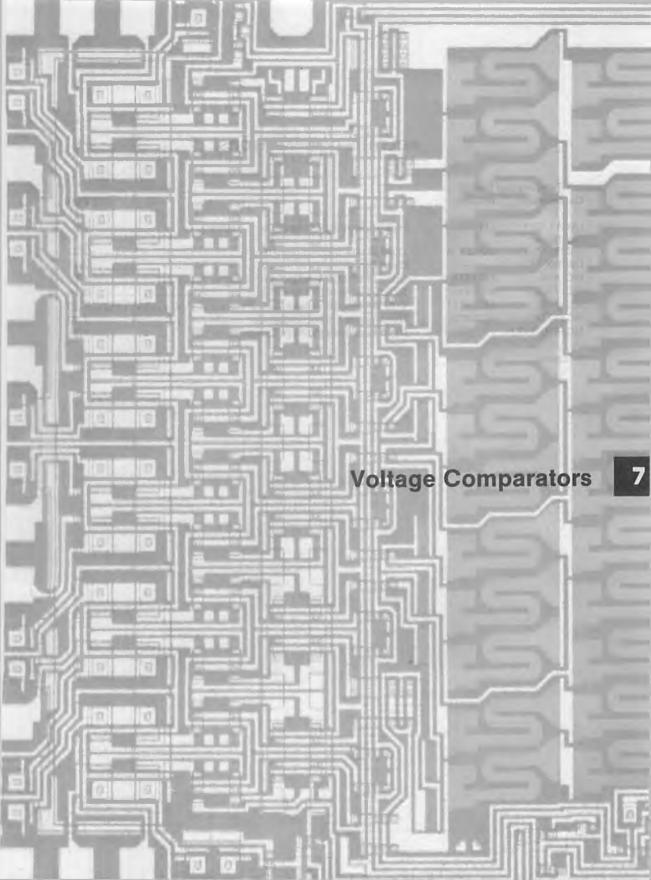
Note that if the current has a metallic path from Tip to Ring, but also an unbalanced load to ground in Ring or Tip, that the RS current will be proportional to the Ring current and the TS current will be proportional to the Tip current. Second party detection and ground start detection can be handled using this feature. Providing a metallic path does exist, the longitudinal component in RS and TS will be suppressed in RS and TS by circuit C and C'. With no metallic connection, circuit B and B' are off such that the longitudinal impedance is R1 + R3 and the induced current from a given source will be decreased by 1 + K1K2. In this case, the longitudinal current will produce peak outputs at RS and TS which are less than the average output of a long-loop metallic current.

The longitudinal sense output provides a full-wave rectified current proportional to the longitudinal loop current once metallic connection has been established. Simple filtering of this lead can produce a dc measure of the longitudinal status of an operating loop. Excessive longitudinal current can produce a fault indication.

NOISE AND POWER SUPPLY REJECTION

The main 48-volt battery in a large office can supply considerable power but is often quite noisy and difficult to filter. Without a means of rejecting supply noise, the channel to channel crosstalk can also become excessive. In this SLIC, two V_{EE} pins are provided to allow for quiet battery and power battery connection. Circuits A and A'

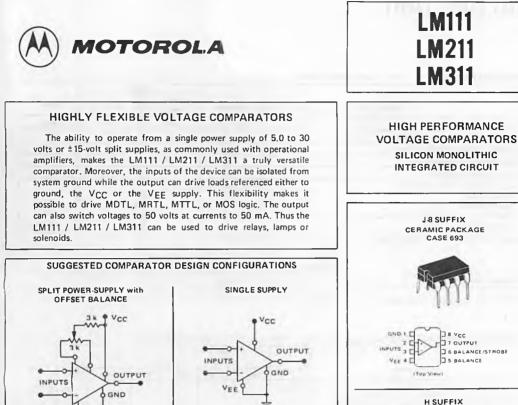
support the sensing resistors and control all other current in the SLIC. If the voltage across V_{CC} and V_{EE2} is filtered, noise at V_{CC} will not effect the performance of the loop. In a short circuit condition, the V_{EE} current will be about 130 mA while the V_{EE2} current is 3 mA. It is, therefore, possible to supply V_{EE2} from a far quieter supply.


Furthermore, an analog ground input (V_{AG}) is provided to allow for proper noise grounding for the V_{RX} and V_{TX} terminals. The true input signal is the ac voltage between V_{AG} and V_{RX} . The true output voltage should be taken between V_{AG} and V_{TX} .

PROTECTION

Two types of electrical hazards can be expected at the Ring and Tip terminals of the SLIC. Transient currents caused by electrical storms and power line cross connects during installation and maintenance. The diode bridge, coupled with R3 and R4, provide this protection. Ring and Tip are normally protected by a gas tube or carbon blocks against the primary effects of a near lightning strike. The SLIC itself must provide secondary protection for 1500-volt transients. A transient voltage at Ring or Tip will turn on one of the four diodes. The resistors limit the maximum current to 50 amps, which is the rated surge current of the diodes. A typical turn on time of 200 ns is readily achievable with silicon rectifiers.

Power line faults from 120-volt lines will be half-wave rectified by the upper and lower pair resulting in a current of 2 amp RMS in each with 30 ohm source resistors.


Extended short circuit conditions will cause R3 and R4 to burn open, eliminating the fault and causing no further damage. The externalization of the R3 and R4 resistors from the SLIC's feedback loop is a critical step in providing sufficient electrical hazard protection.

VOLTAGE COMPARATORS

Temperatur	re Range		
Commercial	Military		Page
LM311/211*	LM111	High-Performance Voltage Comparators	7-3
LM339, A/ 239, A*	LM139, A	Quad Single-Supply Comparators	7-7
LM2901*	-	Quad Comparator	7-11
MC1414	MC1514	Dual Differential Voltage Comparator	7-15
MC1710C	MC1710	Differential Voltage Comparators	7-19
MC1711C	MC1711	Dual Differential Voltage Comparators	7-23
MC3302P*	MC3302L	Quad Single-Supply Comparator	7-27
MC3430-3433	-	Quad High-Speed Voltage Comparators	

Industriai

LOAD REFERRED to

NEGATIVE SUPPLY

VEE

Input polarity is reversed when

GND pin is used as an output.

STROBE CAPABILITY

-0

INPUTS

INPUTS

Vcc

OUTPUT

OUTPUT

MTTL

STROBE

ERL

GROUND-REFERRED LOAD

-

0 O

VEE

VEE

Input polarity is reversed when

GND pin is used as an output.

LOAD REFERRED to

POSITIVE SUPPLY

Vcc

ŚRL

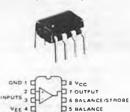
OUTPUT

GND

INPUTS

Vcc

RL


GND

OUTPUT

VEE ITOP View1

ITop Viewi

.

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted.)

			Va	lue	
Rating		Symbol	LM111 LM211 LM311		Unit
Total Supply Voltage		VCC + VEE	[′] 36	36	Vdc
Output to Negative Supply Vojtage:		VO -VEE	50	40	Vdc
Ground to Negative Supply Voltage		VEE	30	30	Vdc
Input Differential Voltage		VID	±30	±30	Vdc
Input Voltage (See Note 1)	· · ·	Vin	±15	±15	Vđc
Power Dissipation (Pkg. Limitation) Metal Package Derate above T _A = +25 ^o C Plastic [*] and Caramic Dual In-Line Packages Derate above T _A = +25 ^o C		PD	4	80 .6 25 .0	mW mW/ ^O C mW mW/ ^O C
Operating Ambient Temperatures Range LM11 LM21 LM31	11	TA	-55 to +125 -25 to +85 -	 - 0 to +70	°C
Storage Temperature Range		T _{stg}	-65 to +150	-65 to +150	°C

*LM311N only is available in the plastic dual in-line package.

ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = -15 V, TA = +25°C unless otherwise noted.)

.

3

			LM111 LM211			Unit		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unst
Input Offect Voltage (5ee Note 2.) R _S ≤50 kΩ, T _A = +25 ⁰ C R _S ≤50 kΩ, T _{Iow} * ≤T _A ≤Thigh*	l∿iol	-	0.7	3.0 4.0	-	2.0	7.5 10	mV
Input Offset Current (See Note 2.) $T_A = +25^{\circ}C$ $T_{low} \leq T_A \leq T_{high}$	i0	-	4.0	10 20		6.0	50 70	nA
Input Bias Current $T_A = +25^{\circ}C$ $T_{tow} \leq T_A \leq T_{high}$	118	-	60 -	100 150		100 -	250 300	nA
Voltage Gain	Av	-	200			200	-	V/mV
Response Time (See Note 3.)	L TLH		200	-	+	200	-	, ns
Saturation Voltage T _A = +25 ^o C, V _{ID} < -5.0 mV, I _O = 50 mA V _{IO} < -10 mV, I _O = 50 mA	Vol	 	0.75	1.5 -	I - 1	0.75	- 1.5	V
T _{low} ≤T _A ≤T _{high} , V _{CC} ≥4.5 V, V _{EE} = 0 V _{1D} ≤-6.0 mV, I _{sink} ≤8.0 mA V _{1D} ≤-10 mV, I _{sink} ≤8.0 mA		-	0.23	0.4	'	0.23	_ 0.4	1
Strobe "On" Current	's	-	3.0	-	-	3.0		mA
Output Leakage Current T _A = +25 ^o C, V _{ID} ≥ 5.0 mV, V _O ≈ 35 V V _{ID} ≥ 10 mV, V _O = 35 V	IOL		0.2	10 -	-	_ 0.2	- 50	nA nA
T _{low} <t<sub>A <t<sub>high, V_{ID} ≥ 5.0 mV, V_O = 35 V</t<sub></t<sub>		-	0.1	0.5	-	·· _ ·		μA
Input Voltage Range Tiow <ta <thigh<="" td=""><td>VIR</td><td>-</td><td>±14</td><td></td><td>-</td><td>±14</td><td>-</td><td>v</td></ta>	VIR	-	±14		-	±14	-	v
Positive Supply Current	100	-	+5.1	+6.0	-	+5.1	+7.5	mA
Negative Supply Current	IEE	-	-4.1	-5.0	+	-4.1	-5.0	mA

*Tlow = -55°C for LM111 Thigh = +125°C for LM111 = -25°C for LM211 = +185°C for LM211 = 0 for LM311 = +70°C for LM311

Note 1. This rating applies for ±15-volt supplies. The positive input voltage limit is 30 volts above the negative supply. The negative input voltage timit is equal to the negative supply voltage or 30 volts below the positive supply, whichever is less.

1.1.1.1

Note 2. The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1.0-mA load. Thus, these parameters define an error band and take into account the "worst case" effects of voltage gain and input impedance.

Note 3. The response time specified is for a 100-mV input step with 5.0-mV overdrive.

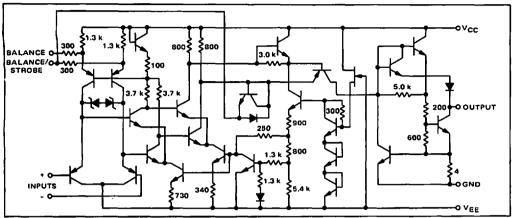
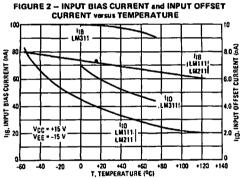
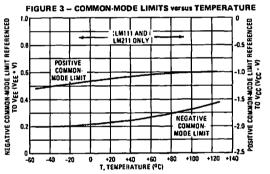
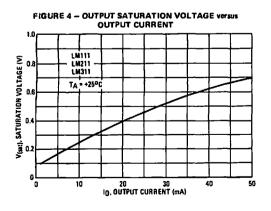
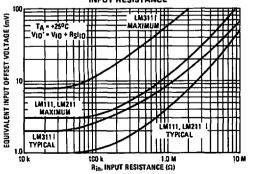
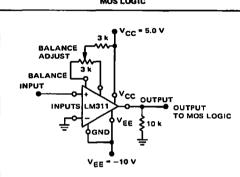
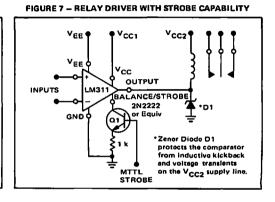
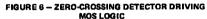





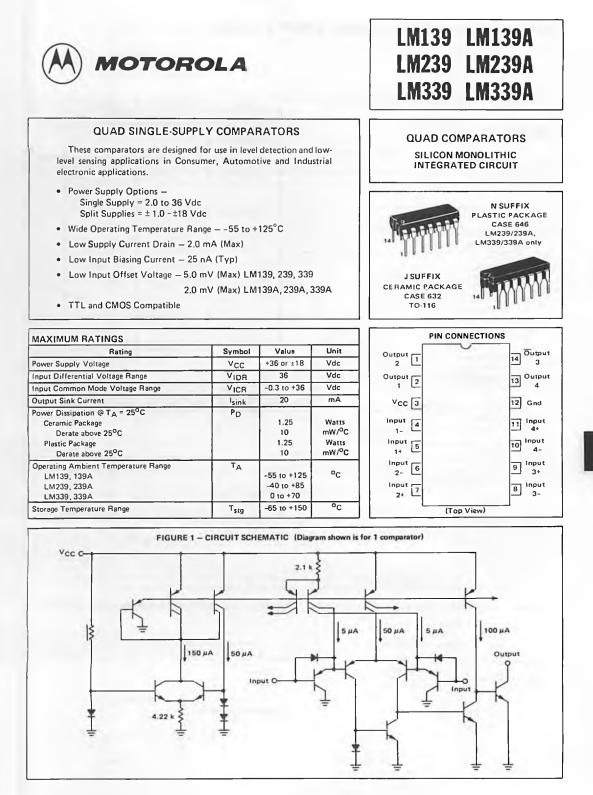
FIGURE 1 - CIRCUIT SCHEMATIC


TYPICAL CHARACTERISTICS



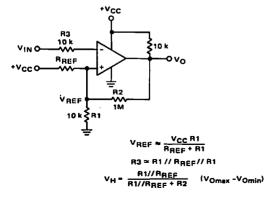



7-5

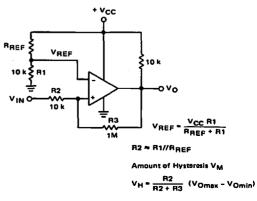

APPLICATIONS INFORMATION

.

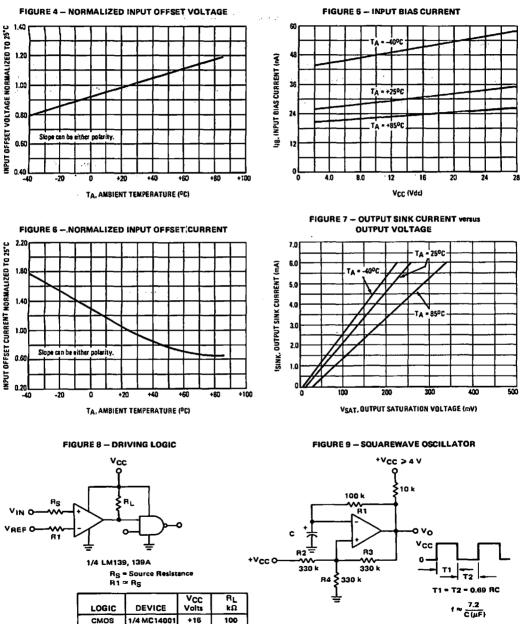
.

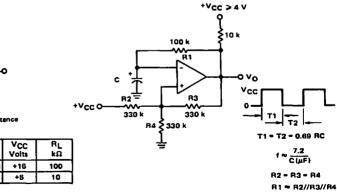

7

		3	M139, A LM239, A				A	LM339, A			
Characteristic	Symbol	Min	Түр	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (V _{ref} = 1.4 Vdc, V _O = 1.4 Vdc, R _S = 0) LM139, 239, 339 LM139A, 239A, 339A	ViO		±2.0 ±1.0	±5.0 ±2.0	11	±2.0 ±1.0	±5.0 ±2.0		±2.0 ±1.0	±5.0 ±2.0	mVd
Input Offset Current	40	1	±3.0	±25	-	±5.0	±50	-	±5.0	±50	nA
Input Blas Current	t _{IB}	1	25	100	-	25	250	-	25	250	nA
Input Common Mode Voltage Range (Note 1)	VICR	0	-	V _{CC} -1.5	0	1	V _{CC} -1.5	0	-	Vcc -1.5	v
Supply Current (RL = ∞)	ICC EE	-	0.8	2.0	-	0.8	2.0	-	0.8	2.0	mA
Response Time (Note 2) (V _{RL} = 5.0 Vdc, R _L = 5.1 kΩ)	-	-	1.3	-	-	1.3	-	-	1.3	-	μs
Output Sink Current {V1{-} > +1.0 Vdc, V1{+} = 0, V0 < +1.5 Vdc} {V1{-} > +1.0 Vdc, V1{+} = 0, V0 < 500 mVdc}	l <mark>s</mark> ink	6.0 6.0	16 -	-	6.0 6.0	16 -	-	6.0 6.0	16	=	mA
Saturation Voltage (V ₁ {_} > +1.0 Vdc, V ₁ {+} = 0, I _{sink} < 4.0 mAdc) (V ₁ {_} > +1.0 Vdc, V ₁ {+} = 0, I _{sink} < 6.0 mAdc)	V _{sat}	-		400 500	-	-	400 500	-	-	400 500	mν
Voltage Gain (V _{CC} = 15 V) LM139, 239, 339 (R _L > 15 k Ω) LM139A, 239A, 339A	Av	- 50	200 200	-	- 50	200 200		- 50	200 200	-	k
Output Leskage Current (V _{1{+}} > +1.0 Vdc, V _{1{-}} = 0, V _O = 5.0 Vdc)	IOL	-	0.1	-	-	0.1	-	-	0.1	-	μA
PERFORMANCE CHARACTERISTICS - Guaranteed C	ver Tem	peratu	re Rai	nge (V		5.0 Vd	c)		<u> </u>	·	
		-66	to +12	25°C	-40	² C to +	85°C	0	^o to 70	°C	
Characteristic	Symbol	Min	Түр	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (V _{ref} = +1.4 Vdc, V _O = 1.4 Vdc, R _S = 0) LM139, 239, 339 LM139A, 239A, 339A	VIO	-	-	±9.0 ±4.0	-	-	±9.0 ±4.0	-	-	±9.0 ±4.0	۳V
Input Offset Current	10	-	-	±100	-	-	±150	-	- 1	±150	лA
Input Bias Current	IIB	- 1	-	300	-	-	400	-	-	400	nA
Input Common Mode Voltage Range	VICR	0	-	V _{CC} -2.0	0	-	V _{CC} -2.0	0	-	V _{CC} -2.0	Vdc
Saturation Voltage ($V_{1(-)} \ge 1.0$ Vdc, $V_{1(+)} = 0$, $I_{sink} \le 4.0$ mAdc)	∨ _{sat}	-	-	700	-	-	700	-	-	700	mŲ
Output Leakage Current (V ₁ (+) > 1.0 Vdc, V ₁ (-) = 0, V _O = 30 Vdc)	IOL	-	-	1.0	1	-	1.0	-	-	1.0	μA
Input Differential Voltage (All V ₁ > 0 Vdc)	VID	-	-	36	-	-	36	-	-	36	Vdc


FLECTRICAL CHARACTERISTICS (Voc = +5.0 Vdc T = = 25°C unless otherwise noted.)

Notes 1. The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 300 mV. The upper end of the common-mode voltage range is V_{CC} -1.5 V, but either or both inputs can go to +30 Vdc without damage.
 The response time specified is for a 100 mV input step with 5 mV overdrive. For larger signals, 300 ns is typical.




FIGURE 3 - NON-INVERTING COMPARATOR WITH HYSTERESIS

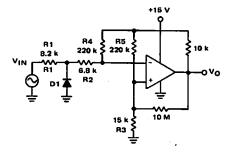
LM139, LM139A, LM239, LM239A, LM339, LM339A

TYPICAL CHARACTERISTICS (V_{CC} = +15 Vdc, T_A = +25^oC (each comparator) unless otherwise noted.)

1/4 MC7400

TTL

APPLICATIONS INFORMATION

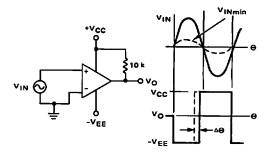

These quad comparators feature high gain, wide bandwidth characteristics. This gives the device oscillation tendencies if the outputs are capacitively coupled to the inputs via stray capacitance. This oscillation manifests itself during output transitions (VOL to VOH). To alleviate this situation input resistors <10 k Ω should be used. The

addition of positive feedback (<10 mV) is also recommended.

It is good design practive to ground all unused pins.

Differential input voltages may be larger than supply voltage without damaging the comparator's input voltages. More negative than -300 mV should not be used.

FIGURE 10 - ZERO CROSSING DETECTOR (Single Supply)


D1 prevents input from going negative by more than 0.6 V.

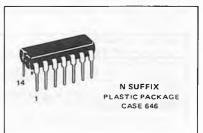
R1 + R2 = R3

 $R3 < \frac{R6}{10}$ for small error in zero crossing

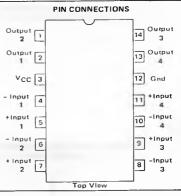
FIGURE 11 - ZERO CROSSING DETECTOR (Split Supplies)

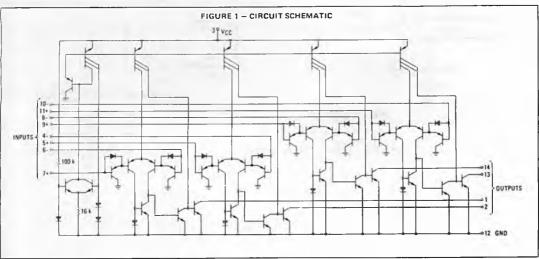
VINmin ≈0.4 V peak for 1% phase distortion (△Θ).

LM2901N


QUAD SINGLE-SUPPLY COMPARATOR

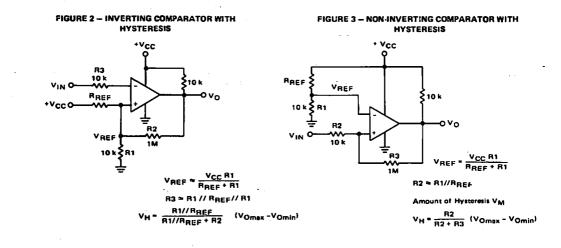
This comparator is designed for use in level detection and lowlevel sensing applications in Consumer, Automotive and Industrial electronic applications.


- Power Supply Options Single Supply = 2.0 to 36 Vdc Split Supplies = ±1.0 to ±18 Vdc
- Wide Operating Temperature Range -40 to +85°C
- Low Supply Current Drain 2.0 mA (Max)
- Low Input Biasing Current 25 nA (Typ)
- Low Input Offset Voltage 2.0 mV (Max)
- TTL and CMOS Compatible


SILICON MONOLITHIC

QUAD COMPARATOR

Rating	Symbol	Value	Unit
Power Supply Voltage	VCC	+36 or •18	Vdc
Input Differential Voltage Range	VIDR	36	Vdc
Input Common Mode Voltage Range	VICR	-0 3 to +36	Vdc
Output Sink Current	lsink	20	mА
Power Dissipatron @ T _A = 25 ^o C Plastic Package Derate above 25 ^o C	PD	1.25 10	Watts mW/ ⁰ 0
Operating Ambient Temperature Range	TA	-40 to +85	°C
Storage Temperature Range	Tsig	-65 to +150	°C



ELECTRICAL CHARACTERISTICS (VCC = +5.0 Vdc, TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Offset Voltage (Vref = 1.4 Vdc, Vo = 1.4 Vdc, Rs = 0)	VIO	_	2.0	7.0	mVdc
Input Offset Current	10	-	±5.0	±50	nA
Input Bias Current	IIB		25	250	nA
Input Common Mode Voltage Range (Note 1)	VICR	0	- '	V _{CC} -1.5	V
Supply Current (RL = = =)	ICC IEE	-	0.8	2.0	mA
Response Time (Note 2) (V _{RL} = 5.0 Vdc, R _L = 5.1 kΩ)	-		1.3	-	μs
Output Sink Current (V ₁₍₋₎ > +1.0 Vdc, V ₁₍₊₎ = 0, V _O < +1.5 Vdc)	lsink	6.0	16	-	mA
Saturation Voltage (VI(-) > +1.0 Vdc, VI(+) = 0, Isink = 4.0 mAdc)	V _{sat}	_	_	400	mV
Output Leakage Current (V {+} > +1.0 Vdc, V {-} = 0, VO = 5.0 Vdc)	IOL		0.1	-	μA

Notes 1. The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 300 mV. The upper end of the common-mode voltage range is V_{CC} -1.5 V, but either or both inputs can go to +30 Vdc without damage.
 The response time specified is for a 100 mV input step with 5 mV overdrive. For large signals, 300 ns is typical.

.

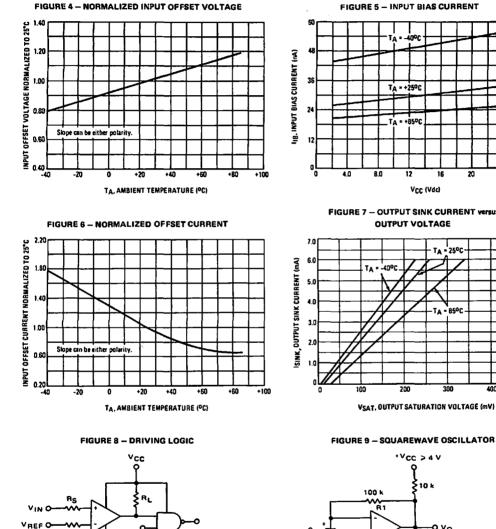
B1

1/4 LM2901 N

LOGIC

CMOS

TTL


R1 = RS

RS = Source Resistance

DEVICE

1/4 MC14001

1/4 MC7400

TYPICAL CHARACTERISTICS $(V_{CC} = +15 \text{ Vdc}, T_A = +25^{\circ}C \text{ unless otherwise noted.})$

FIGURE 7 - OUTPUT SINK CURRENT versus

20

24

28

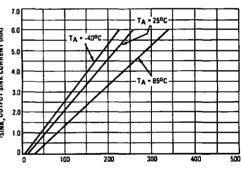
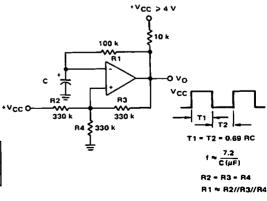



FIGURE 9 - SQUAREWAVE OSCILLATOR

RL kΩ

100 10

Vcc

Volts

+15

+6

APPLICATIONS INFORMATION

The LM2901N is a quad comparator having high gain, wide bandwidth characteristics. This gives the device oscillator tendencies if the outputs capacitively couple to the inputs via stray capacitance. This oscillation manifests itself during output transitions (VoL to VoH). To alleviate this situation input resistors <10 k Ω should

not be used. The addition of positive feedback (<10 mV) is also recommended

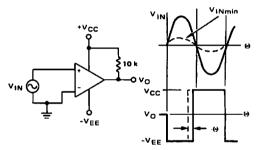
It is good design practice to ground all unused pins. Differential input voltages may be larger than supply voltage without damaging the comparator's input voltages. More negative than -300 mV should not be used.

(Single Supply) +15 V +1

FIGURE 10 - ZERO CROSSING DETECTOR

D1 prevents input from going negative by more than 0.6 V.

10 M

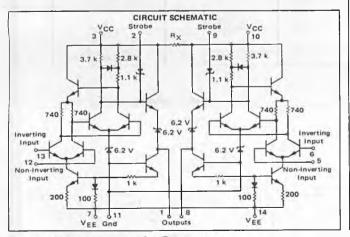

R1 + R2 - R3

15 k R3

 $R3 < \frac{R5}{10}$ for small error in zero crossing

FIGURE 11 – ZERO CROSSING DETECTOR (Split Supplies)

VINmin ≈0.4 V peak for 1% phase distortion (NO).


DUAL DIFFERENTIAL VOLTAGE COMPARATOR

... designed for use in level detection, low-level sensing, and memory applications.

- Two Separate Outputs
- Strobe Capability
- High Output Sink Current
 2.8 mA Minimum (Each Comparator) for MC1514
 1.6 mA minimum (Each Comparator) for MC1414
- Differential Input Characteristics
 Input Offset Voltage = 1.0 mV for MC1514
 = 1.5 mV for MC1414
 Offset Voltage Drift = 3.0 µV/⁰C for MC1514
 = 5.0 µV/⁰C for MC1414
- Short Propagation Delay Time 40 ns typical
- Output Compatible with All Saturating Logic Forms VO = +3.2 V to -0.5 V typical

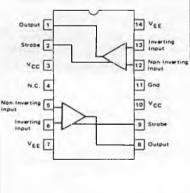
MAXIMUM RATINGS (T_A = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltages	V _{CC} V _{EE}	+14 -7.0	Vdc
Differential Mode Input Voltage Range	VIDR	±5.0	Vdc
Common Mode Input Voltage Range	VICR	±7.0	Vdc
Peak Load Current	IL.	10	mA
Power Dissipation (Package Limitation) Ceramic Dual In-Line Package Derate above T _A = 25 ^o C Plastic Dual In-Line Package Derate above T _A = 25 ^o C	PD	1000 6.0 625 5.0	mW mW/ ⁰ C mW mW/ ⁰ C
Operating Temperature Range MC1514 MC1414	TA	-55 to +125 0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

MC1414 MC1514

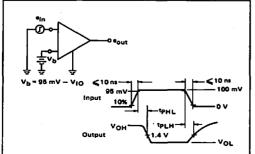
DUAL DIFFERENTIAL COMPARATOR

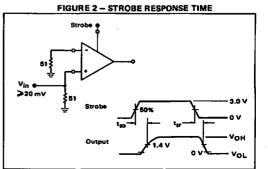
(DUAL MC1710)


SILICON MONOLITHIC INTEGRATED CIRCUIT

L SUFFIX CERAMIC PACKAGE CASE 632 TO-116

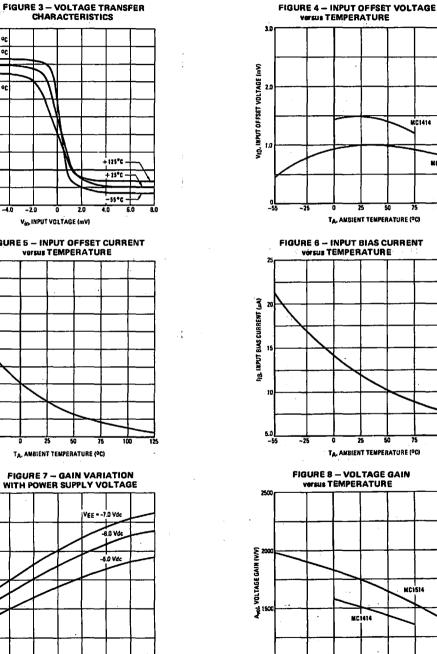
P SUFFIX PLASTIC PACKAGE CASE 646 (MC1414 only)


 R_X = Low Resistance Value, usually < 100 Ω , not specified.


ELECTRICAL CHARACTERISTICS (VCC = +12 Vdc, VFF = -6 Vdc, TA = 25°C unless otherwise noted.) (Each Competative	(ro
ELECTRICAL CHARACTERISTICS ($T(T) = 112$ And, $A = 10$ And the moment (Free composition of the set	

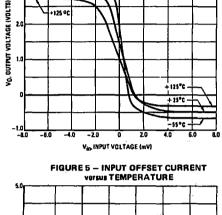
		MC1514				1		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	VIO [,]							mVdc
$(V_0 = 1.4 \text{ Vdc}, T_A = 25^{\circ}\text{C})$		-	1.0	2.0	-	1.5	5.0	
(V _O = 1.8 Vdc, T _A = T _{low} *)		-	-	3.0	-	-	6.5	
(Vo = 1.0 Vdc, TA = Thigh*)		-	-	3.0	-	-	6.5	
Temperature Coefficient of Input Offset Voltage	$\Delta V_{10} / \Delta T$		3.0	-	1	5.0	-	μ ν/⁰ C
Input Offset Current	10							µAdc
(V _O = 1.4 Vdc, T _A = 25 ⁰ C)		-	1.0	3.0	-	1.0	5.0	l
(V _O = 1.8 Vdc, T _A = T _{low})		-	-	7.0	- 1	-	7.5	
(Vo = 1.0 Vdc, T _A = T _{high})		-	—	3.0	-	-	7.5	
Input Bias Current	۱ <mark>8</mark>							μAdc
(V _O = 1.4 Vdc, T _A = 25 ⁰ C)		-	12	20	-	15	25	ļ
(V _O = 1.8 Vdc, T _A = T _{low})		-	. –	45	-	18	40	
(Vo = 1.0 Vdc, TA = Thigh)		-	-	20	-	-	40	
Open Loop Voltage Gain	Avol							VN
(T _A = 25°C)		1250	1700	-	1000	1500	- 1	i
(TA = Tlow to Thigh)		1000			800		-	
Output Resistance	Ro_	-	200	-	~	200	-	ohms
Differential Voltage Range	VIDR	±5.0	-	_	±5.0	-	-	Vdc
High Level Output Voltage	VOH	2.5	3.2	4.0	2.5	3.2	4.0	Vdc
(VID ≥ 5.0 mV, 0 ≤ 10 ≤ 5.0 mA)			ł					
Low Level Output Voltage	VOL							Vdc
(V _{ID} ≥-5.0 mV, I _{OS} = 2.8 mA)		-1.0	-0.5	0	-	-	- 1	1
(V _{ID} ≥ -5.0 mV, I _{OS} = 1.6 mA)		-	-	-	-1.0	-0.5	0	
Output Sink Current	los	2.8	3.4	-	1.6	2.5	-	mAdo
$(V_{ID} \ge -5.0 \text{ mV}, V_{OL} \le 0.4 \text{ V}, T_A = T_{low} \text{ to } T_{high})$								
Input Common Mode Voltage Range	VICR	±5.0	-	-	±5.0	-	-	Vdc
(VEE = -7.0 Vdc)								
Common-Mode Rejection Ratio	CMRR	80	100	-	70	100	-	dB
(V _{EE} = -7.0 Vdc, R _S ≤ 200 Ω)								ļ
Strobe Low Level Current	41	_	-	2.5	-	_	2.5	mA
(V _{I ≟} = 0)								
Strobe High Level Current	ЧН	-	-	1.0	-	-	1.0	μA
(VIH = 5.0 Vdc)								
Strobe Disable Voltage	VIL	-	-	0.4	~	-	0.4	Vdc
(V _{OL} ≤0.4 Vdc)	, "°							
Strobe Enable Voltage	VIH	3.5	-	6.0	3.5	_	6.0	Vdc
(V _{OH} ≥ 2.4 Vdc)			1					
Propagation Delay Time (Figure 1)	1PLH	-	20	-	-	20	-	ns
· - · -	TPHL	-	40	_	-	40	-	
Strobe Response Time (Figure 2)	t ₅₀	-	15			15	<u> </u>	- ns
• • • • • • • • • • • • • • • • • • •	150 151	-	6.0	- 1	 _	6.0	-	
Total Power Supply Current, Both Comparators		-	12.8	18		12.8	18	mAdc
(V ₀ ≤ 0)	IEE	-	11	14	_	11	14	
Total Power Consumption, Both Comparators	PD		230	300		230	300	mW

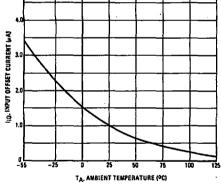
*T_{low} = -55^oC for MC1514, 0^oC for MC1414 Thigh⁼ +125^oC for MC1514, +75^oC for MC1414

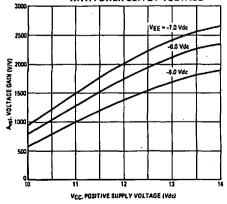

-55 °C +25 °C

125 %

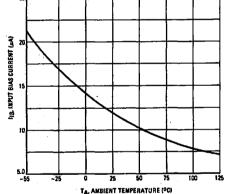
40

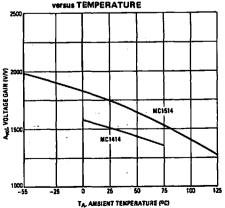

3.1

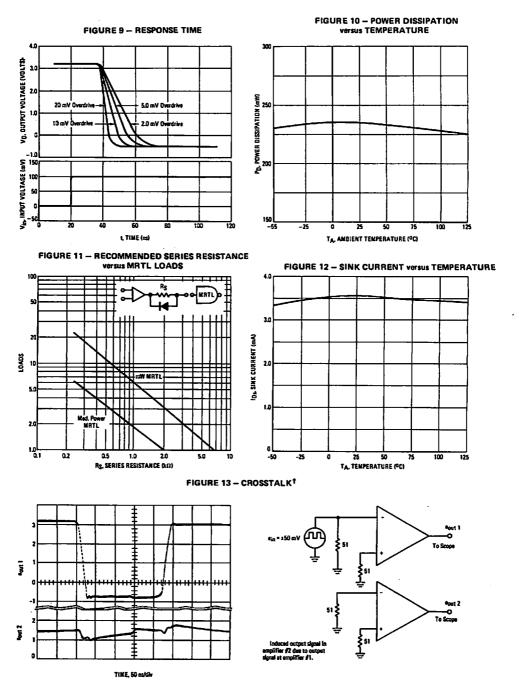

2.0


TYPICAL CHARACTERISTICS

(Each Comparator)

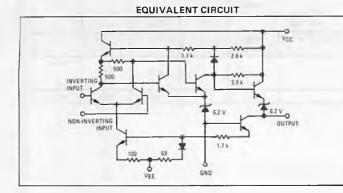


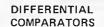




MC1414 MC1514 ī2s 100

¹Worst case condition shown - so load.

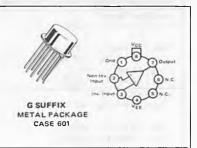

DIFFERENTIAL VOLTAGE COMPARATORS


 \ldots designed for use in level detection, low-level sensing, and memory applications.

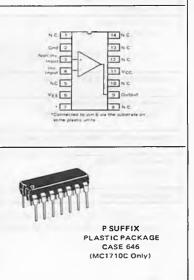
- Differential Input Characteristics Input Offset Voltage = 1.0 mV – MC1710 = 1.5 mV – MC1710C Offset Voltage Drift = $3.0 \,\mu$ V/°C – MC1710C = $5.0 \,\mu$ V/°C – MC1710C
- Fast Response Time 40 ns
- Output Compatible with all Saturating Logic Forms V_O = +3.2 V to -0.5 V (Typ)
- Low Output Impedance 200 Ohms

MAXIMUM RATINGS (TA = +25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC(max)} V _{EE(max)}	+14 -7.0	Vdc Vdc
Differential Input Signal Voltage	VID	±5.0	Volts
Common Mode Input Swing Voltage	VICR	±7.0	Volts
Peak Load Current	1	10	mA
Power Dissipation (Package Limitations)	PD		
Metal Package Derate above T _A = +25 ⁰ C		680 4.6	mW mW/ ⁰ C
Ceramic Dual In-Line Package Derate above T _A = +25 ^o C		625 5.0	mW mW/ ⁰ C
Operating Temperature Range MC1710 MC1710C	TA	-55 to +125 0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C



MC1710


MC1710C

SILICON MONOLITHIC

L SUFFIX

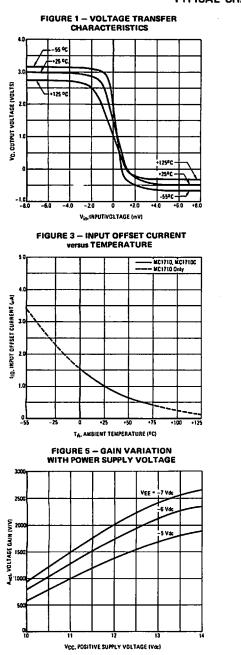
CERAMIC PACKAGE CASE 632-02 TO-116

MC1710, MC1710C

ELECTRICAL CHARACTERISTICS (VCC = +12 Vdc, VFF = -8.0 Vdc, TA = +25°C unless otherwise noted.)

- Characteristic	· · · · · ·	Symbol	·· Mîn ··	Тур	Max	Unit
Input Offset Voltage		Vio				mVdc
(Vo = 1.4 Vdc, TA = +25°C), (-	MC1710		-	1.0	2.0	
and the second	MC1710C	1.15125	21 . - 21	1.0	5.0	
(Vo = 1.8 Vdc, T _A = -55 ⁰ C)	MC1710		-	-	3.0	
(Vo = 1.0 Vdc, T A(+ +125°C)	MC1710		. - et a	· - ·	3.0	
(Vo = 1.5 Vdc, TA = 0°C)	MC1710C		-	-	8.5	
(VO = 1.2 Vdc, TA = +75°C)	MC1710C		-	–	6.5	
Temperature Coefficient of Input Offset Voltage		Δνιο/Δτ		3.0	-	µV/⁰C
Input Offset Current		110				μAdc
(V _O = 1.4 Vdc, T _A = +25 ^o C)	MC1710		-	1.0	3.0	
	MC1710C			1.0	5.0	
(V _O = 1.8 Vdc, T _A = -55 ⁰ C)	MC1710		-		7.0	
(VO = 1.0 Vdc, TA = +125°C)	MC1710		-	- <u>-</u>	3.0	
$(V_0 = 1.5 \text{ Vdc}, T_A = 0^{\circ}\text{C})$	MC1710C		_	<u> </u>	7.5	1.11
(Vo = 1.2 Vdc, TA = +75°C)	MC1710C		-	<u> </u>	7.5	
Input Bias Current	··· · -	1 _{IB}	<u> </u>	N		μAdc
(Vo = 1.4 Vdc, T _A = +25 ^o C)	MC1710		-	12	20	· · ··
	MC1710C		-	12	25	
(V _O = 1.8 Vdc, T _A = -55 ^o C)	MC1710	1	i '		45	
(Vo = 1.0 Vdc, TA = +125°C)	MC1710			- 1	20	
$(V_0 = 1.5 \text{ Vdc}, T_A = 0^{\circ} \text{C})^{-1}$	MC1710C		_	_	40	
$(V_0 = 1.2 Vdc, T_A = +75^{\circ}C)$	MC1710C		_	. <u> </u>	40 14.01	
Voltage Gain			<u> </u>			V/V
(T _A = +25 ^o C)	MC1710	HV Avol	1250			
11A - 125 07	MC1710C		1000	1700		5
(TA = Tlow to Thigh) (1)			1000	1700	-	
TA - Tow to Thight Th	MC1710C		800		<u> </u>	1997 - 19
Output Resistance		ra	-	200	· · · · · · · · · · ·	Ohms
Differential Voltage Range			±5.0	-		Vdc
Positive Output Voltage		VOH	2.5	3.2	4.0	Vdc
(V10≥5.0 mV, 0≤10≤5.0 mA)						
Negative Output Voltage		VOL	-1.0	-0.5	0	Vdc
(V _{ID} >-5:0 mV)		VOL	-1.0	-0.0		, vuc
Output Sink Current		10	├			mAdc
$(V_{1D} \ge -5.0 \text{ mV}, V_O \le 0)$	MC1710	- IOs	2.0	2.5		mAUC
		1	1.6	2.5	1 2	
	MC1710		1.0	2.0		·. ,
$(V_{ID} \ge -5.0 \text{ mV}, V_O \ge 0, T_A = T_{Iow})$	MC1710C	1 A A	0.5		-	· ·
					· · · · · ·	
Input Common-Mode Voltage Range (VEE = -7.0 Vdc)	· · ·	VICR	±5.0			Volts
Common-Mode Rejection Ratio		CMRR	<u> </u>		<u> </u>	dB
(VEE = -7.0 Vdc, Rs < 200 Ohms)		-wintri -	80	100	[_	
	MC1710C		70	100		
Propagation Delay Time for Positive and Negative Go		10.11		40		
(VID* 5.0 mV + VIO)	ing input rund	ምርዝ ምክኒላላ		40		ns
Power Supply Current		l '	1 i			mAdc
(V _O ≤0)		D+	 . − .	L 6.4	9.0	
		10-		5.5	7.0	
Power Consumption		۴D	4	115	150	тW

(1) $T_{low} = -55^{\circ}C$ for MC1710, 0°C for MC1710C $T_{high} = +125^{\circ}C$ for MC1710, +75°C for MC1710C


•

ļ

......

٠ ۲

TYPICAL CHARACTERISTICS

FIGURE 2 - INPUT OFFSET VOLTAGE

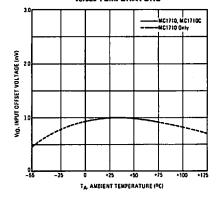


FIGURE 4 - INPUT BIAS CURRENT versus TEMPERATURE

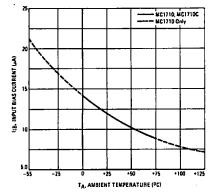
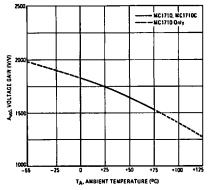
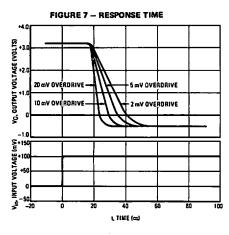




FIGURE 6 - VOLTAGE GAIN versus TEMPERATURE

TYPICAL CHARACTERISTICS (Continued)

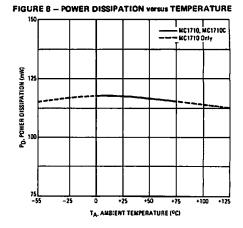


FIGURE 9 - RECOMMENDED SERIES RESISTANCE versus MRTL LOADS

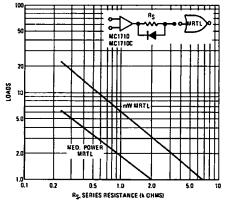
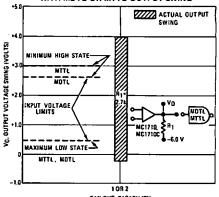
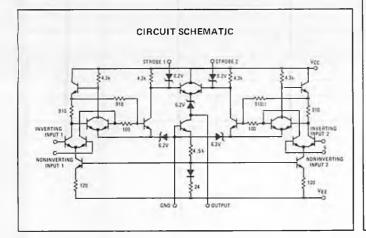



FIGURE 10 - FAN-OUT CAPABILITY WITH MOTL OR MTTL OUTPUT SWING

FAN-OUT CAPABILITY

MC1711 MC1711C

DUAL DIFFERENTIAL VOLTAGE COMPARATOR


 \ldots designed for use in level detection, low-level sensing, and memory applications.

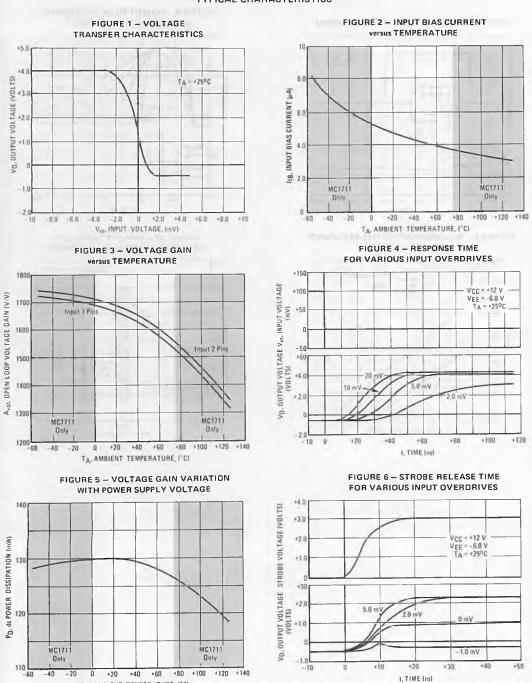
Typical Characteristics:

- Differential Input Input Offset Voltage = 1.0 mV
 - Offset Voltage Drift = $5.0 \,\mu V/^{0}C$
- Fast Response Time 40 ns
- Output Compatible with All Saturating Logic Forms
 Vout = +4.5 V to -0.5 V typical
- Low Output Impedance 200 ohms

MAXIMUM RATINGS (T _A = +25°C unless otherwise noted.)								
Rating	Symbol	Value	Unit					

Power Supply Voltage		VCC VEE	+14 -7.0	Vdc
Differential Input Signal Voltage		VIDR	±5.0	Volts
Common-Mode Input Swing Volt	tage	VICR	±7.0	Volts
Peak Load Current		IL.	50	mA
Power Dissipation (package limit: Metal Package Derate above T _A = +25°C Ceramic and Plastic Dual In-Lit Derate above T _A = +25°C		PD	680 4.6 625 5.0	mW mW/ ^o C mW mW/ ^o C
Operating Temperature Range	MC1711 MC1711C	TA	-55 to +125 0 to +75	°C
Storage Temperature Range		Tstg	-65 to +150	°C

DUAL DIFFERENTIAL COMPARATOR SILICON MONOLITHIC INTEGRATED CIRCUIT G SUFFIX METAL PACKAGE CASE 603 TO-100 VEE top L SUFFIX CERAMIC PACKAGE CASE 632 TO-116 P SUFFIX PLASTIC PACKAGE CASE 646 (MC1711C only) NC 14 NC 13 Strobe 1 12 Gnd VEETA 11 Vcc 5 Distant 6 Spope 2 8 NC NC. ITOD VI


*Connected to pin 4 via the substrate on some plastic units. 7

ELECTRICAL CHARACTERISTICS (each comparator) (V_{CC} = +12 Vdc, V_{EE} = -6.0 Vdc, T_A = +25°C unless otherwise noted.)

		MC1	711	11		MC1711C		
Characteristic	Symbol	Min	Тур	Max	Min	Түр	Max	Uni
Input Offset Voltage	ViO							mVd
(VICR = 0 Vdc, TA = +25°C)		-	1.0	3.5	-	1.0	5.0	
$(V_{ICR} \neq 0 Vdc, T_A = +25^{\circ}C)$		-	1.0	5.0	-	1.0	7.5	
(VICR = 0 Vdc, TA = Tlow to Thigh*)	4	-	-	4.5	-	- 1	6.0	ł
(VICR # 0 Vdc, TA = Tlow to Thigh)		-	-	6.0	-		10	
Temperature Coefficient of Input Offset Voltage	ΔV _{IO} /ΔΤ	-	5.0	-	-	5.0	1	<i>μ</i> ∨/⁰
Input Offset Current	10							μAd
(V _O = 1.4 Vdc, T _A = +25 ^o C)		-	0.5	10	-	0.5	15	
(V _O = 1.8 Vdc, T _A = -55 ^o C)		-	-	20	-	-	-	
$(V_0 = 1.5 \text{ Vdc}, T_A = 0^{\circ} \text{C})$		-	-	-	-	-	25	
(V _O = 1.0 Vdc, T _A = +125 ^o C)		-	-	20	-	-	-	
$(V_0 = 1.2 \text{ Vdc}, T_A = +75^{\circ}\text{C})$		-	-	-	-	-	25	
Input Bias Current	I _{IB}							μAd
(V _O = 1.4 Vdc, T _A = +25 ^o C)	1 1	-	25	75	-	25	. 100	
$(V_0 = 1.8 \text{ Vdc}, T_A = -55^{\circ}\text{C})$		-	-	150	-	-	-	
(V _O = 1.5 Vdc, T _A = 0 ⁰ C)		-	-	-	-	-	150	
(V _O = 1.0 Vdc, T _A = +125 ^o C)		-	-	150	-	-	-	
(V _O = 1.2 Vdc, T _A = +75 ^o C)		-	-	-	-	-	150	
Voltage Gain	Avol							V/\
(T _A = +25 ^o C)		700	1500	-	700	1500	-	
(TA = Tlow to Thigh)		500		_	500	-	-	
Output Resistance	RO	-	200		-	200		ohrr
Differential Voltage Range	VIDR	±5.0	-		±5.0	-	-	Vd
High Level Output Voltage $(V_{ID} \ge 10 \text{ mVdc}, 0 \le I_0 \le 5.0 \text{ mA})$	∨он	2.5	3.2	5.0	2.5	3.2	5.0	Vde
Low Level Output Voltage	Vol	-1.0	-0.5	0	-1.0	-0.5	0	Vd
(V _{ID} ≥-10 mVdc)								
Strobed Output Level	VOL(st)	-1.0	-	0	-1.0	-	0	Vd
(V _{strobe} ≤ 0.3 Vdc)								
Output Sink Current	1 0s	0.5	0.8	-	0.5	0.8	-	mAd
$(V_{in} \ge -10 \text{ mV}, V_0 \ge 0)$								
Strobe Current	l l _{st}	-	1.2	2.5	· -	1.2	2.5	mAd
(V _{strobe} = 100 mVdc)								
Input Common-Mode Range {VEE = -7.0 Vdc}	VICR	±5.0	-	-	±5.0	-	-	Vol
Response Time $(V_{D} = 5.0 \text{ mV} + V_{10})$	^t R	-	40		-	40	-	ns
Strobe Release Time	^t SR	_	12		_	12	_	ns
Power Supply Current			8.6		_			
($V_0 \leq 0$ Vdc)		-	8.6 3.9	_	_	8.6 3.9	-	mAd
	IEE						-	
Power Consumption		-	130	200	-	130	200	mW

*T_{low} = -55°C for MC1711, 0°C for MC1711C Thigh = +125°C for MC1711, +75°C for MC1711C

MC1711, MC1711C

TYPICAL CHARACTERISTICS

7

TA. AMBIENT TEMPERATURE, (°C)

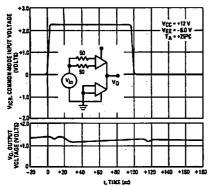


FIGURE 7 - COMMON-MODE PULSE RESPONSE

FIGURE 9 - RECOMMENDED SERIES RESISTANCE

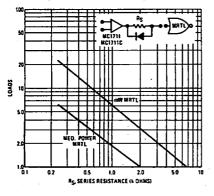


FIGURE 8 – OUTPUT PULSE STRETCHING WITH CAPACITIVE LOADING

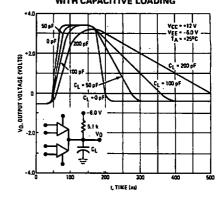
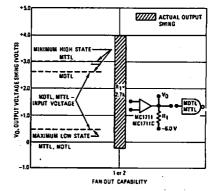



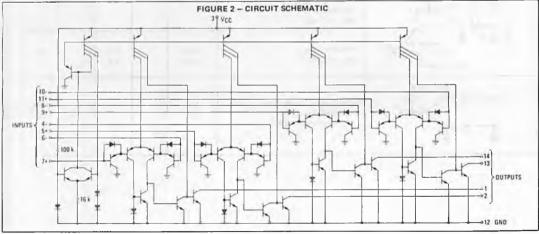
FIGURE 10 - FAN-OUT CAPABILITY WITH MDTL OR MTTL OUTPUT SWING

. . . .

MC3302

QUAD SINGLE-SUPPLY COMPARATOR

These comparators are designed specifically for single positivepower-supply Consumer Automotive and Industrial electronic applications. Each MC3302 contains four independent comparators – suiting it ideally for usages requiring high density and low-cost.


- Wide Operating Temperature Range -40 to +85°C
- Single-Supply Operation +2.0 to +28 Vdc
- Differential Input Voltage = ±VCC
- Compare Voltages at Ground Potential
- MTTL Compatible
- Low Current Drain 700 μA typical @ VCC +5.0 to +28 Vdc
- Outputs can be Connected to Give the Implied AND Function

MAXIMUM RATINGS (TA = +25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Range	Vcc	+2.0 to +28	Vdc
Output Sink Current (See Note 1)	10	20	mA
Differential Input Voltage	VIDR	±Vcc	Vdc
Common-Mode Input Voltage Range (See Note 2)	VICR	-0.3 to +VCC	Vdc
Power Dissipation @ T _A = 25°C Plastic Package – P Suffix Derate above 25°C Ceramic Package – L Suffix Derate above 25°C	PD	1.2 10 1.2 10	Watts mW/ ^O C Watts mW/ ^O C
Operating Ambient Temperature Range Plastic Package Ceramic Package	TA	-40 to +85 -55 to +125	°C
Storage Temperature Range	Tstg	-65 to +150	°C

Note 1. Requires an external resistor, R_L, to limit current below maximum rating. Note 2. If either (+) or (-) inputs of any comparator go more than several tenths of a volt below ground, a parasitic transistor turns "on" causing high input current and

below ground, a parasitic transistor turns "on" causing high input current and possible faulty outputs.

QUAD COMPARATOR

SILICON MONOLITHIC

INTEGRATED CIRCUIT

PLASTIC PACKAGE CASE 646

P SUFFIX

10 0

110

80

90

02

COMPTR

COMPTR

4

GROUND - PIN 12

013

014

60

40

50

COMPTI

COMPTE

VCC - PIN 3

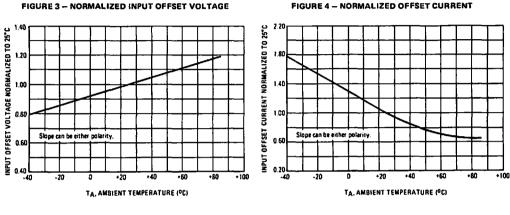
الله المراجع المراجع . الله المراجع ال

ELECTRICAL CHARACTERISTICS (VCC = +15 Vdc, TA = +25°C (each comperator) unless otherwise noted.)

.

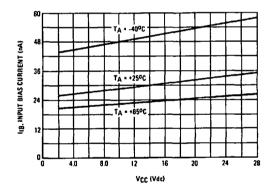
Cherecteristic Definitions (1/4 Circuit Shown)	Characteristic	Symbol	: Min -	Тур	Max	Unit
	Input Ölfset Voltage (V_{ref} = 1.2 Vdc) (T_A = +25°C) (T_A = -40 to +85°C)	Vio		3.0 -	20 40	mVdc
	Input Offset Current	10	-	3.0	-	nAdc
$\begin{array}{c} V_{121} & & & V_{121} \\ \hline \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\$	Input Bias Current $(T_A = +25^{\circ}C)$ $(T_A \simeq -40 \text{ to } +85^{\circ}C)$	lıs.	-	30 -	500 1000	nAdc
	Vottage Gain (T _A = +25 ⁰ C, R _L = 15 kΩ)	Aval	2,000	.30,000		v/v
	Transconductance	ព្វកា	-	2.0	 	mhos
	Input Differential Voltage Range	VIDR.	±∨cc	-		Vdc
	Output Lezkage Current (Output Voltage, High)	loi.		1	1.0	μAdic
	Output Voltage - Low Logic State (Is = 2.0 mA, VCC = +5.0 to +28 Vdcl	VOL	· _···	150	400	mVdc
	Output Sink Current (V _{CC} = +5.0 Vdc)	lsink .				mAdc
	(T _A = +25°C, V _{OL} = 400 mV) (T _A = -40 to +85°C, V _{OL} = 800 mV)		_ 2.0	6.0 -	-	
	Input Common-Mode Voltage Range (V _{CC} = +28 Vdc)	VICR	0-26	-	_	Volts
	Common-Mode Rejection Ratio	CMRR	_	60	1	dB
	Propagation Delay Time For Positive and Negative-Going Input Pulse (R _L = 15 kΩ)	¹ PHL/LH	-	2.0	-	μ s
	Transition Time (R _L = 15 kΩ)	^t THL ^t TLH	-	0.15 0.8	-	μs
	Power Supply Current (Total of four comparators) (RL = -, VCC = +5.0 to +28 Vdc)	¹ CC IEE		0.7	1.8	mAdc

7


7-28

.

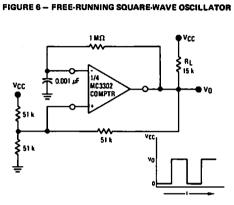
•


<....

•

TYPICAL CHARACTERISTICS (V_{CC} = +15 Vdc, T_A +25^oC (each comparator) unless otherwise noted.)

FIGURE 5 - INPUT BIAS CURRENT


TYPICAL APPLICATIONS

The MC3302 is a quad comparator having high gain, wide bandwidth characteristics. This gives the device oscillator tendencies if the outputs capacitively couple to the inputs via stray capacitance. This oscillation manifests itself during output transitions (VOL to VOH). To alleviate this situation input resistors < 10 k Ω should

be used. The addition of positive feedback (1 to 10 mV) is also recommended.

It is good design practice to ground all unused pins. Differential input voltages may be larger than supply voltage without damaging the comparator's input voltages. More negative than - 300 mV should not be used.

TYPICAL APPLICATIONS (continued)

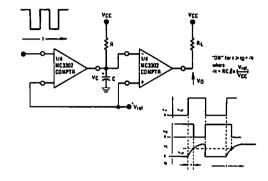
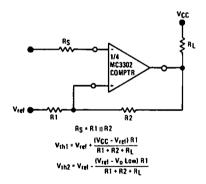
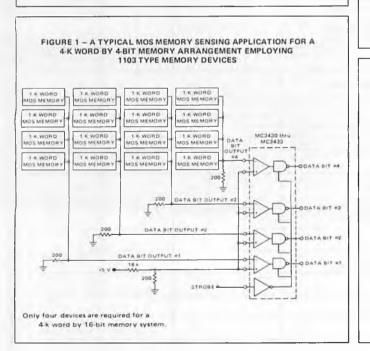
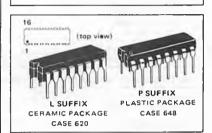



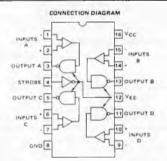
FIGURE 7 - TIME DELAY GENERATOR

FIGURE 8 - COMPARATOR WITH HYSTERESIS


MC3430 thru MC3433

QUAD DIFFERENTIAL VOLTAGE COMPARATOR/SENSE AMPLIFIERS


The MC3430 thru MC3433 high-speed comparators are ideal for application as sense amplifiers in MOS memory systems. They are specified in a unique way which combines the effects of input offset voltage, input offset current, voltage gain, temperature variations and input common-mode range into a single functional parameter. This parameter, called Input Sensitivity, specifies a minimum differential input voltage which will guarantee a given logic state. Four variations are offered in the comparator series.


The MC3430 and MC3431 versions feature a three-state strobe input common to all four channels which can be used to place the four outputs in a high-impedance state. These two devices use active-pull-up MTTL compatible outputs. The MC3432 and MC3433 are open-collector types which permit the implied AND connection. The MC3430 and MC3432 versions are specified for a ± 7.0 mV input sensitivity over the 0 to 70°C temperature range, while the MC3431 and MC3433 are specified for ± 12 mV.

- Propagation Delay Time 40 ns
- Outputs Specified for a Fanout of 10 (MC7400 type loads)
- Specified for all conditions of ±5% Power Supply Variations, Operating Temperature Range, Input Common-Mode Voltage Swing from -3.0 V to 3.0 V, and R_S ≤ 200 phms.

QUAD HIGH-SPEED VOLTAGE COMPARATORS SILICON MONOLITHIC INTEGRATED CIRCUITS

MC3430, MC3431, MC3432, MC3433

MAXIMUM RATINGS (T_A = 0 to $+70^{\circ}$ C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC} , V _{EE}	±7.0	Vdc
Differential Mode Input Signal Voltage Range	VIDR	±6.0	Vdc
Common-Mode Input Voltage Range	VICR 4	±5.0	Vdc
Strobe Input Voltage	VI(S)	5.5	Vdc
Output Voltage (MC3432 - 33 versions)	Vo	+7.0	Vdc
Junction Temperature Ceramic Package Plastic Package	, TJ	175 150	°c
Operating Temperature Range	Τ_Α	0 to +70	°C
Storage Temperature Range	Tstg	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS (TA = 0 to +70°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltages		+4.75 -4.75	+5.0 -5.0	+5.25 -5.25	Vdc
Output Load Current	10L	-	-	16	mA
Differential-Mode Input Voltage Range	VIDR	-6.0	_	+5.0	Vdc
Common-Mode Input Voltage Range	VICR	-3.0	-	+3.0	Vdc
Input Voltage Range (any input to Ground)	VIR	-5.0	_	+3.0	Vdc

ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0 Vdc, V_{EE} = -6.0 Vdc, T_A = 0°C to +70°C unless otherwise noted.) Typical Values are Measured at T_A = 25°C

		MC3	430, MC34	131	MC3432, MC3433			T
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Sensitivity (See Discussion on Page 3) (R _S ≤ 200 Ohms)	VIS							mV
		-	2	±6.0 ±10		-	±6.0 ±10	ļ
		-	-	±7.0 ±12	-		±7.0 ±12	
Input Offset Voltage (Rs < 200 Ohms)	VID	-	2.0	-	-	2.0	-	m۷
Input Bies Current (VCC = 5.25 V, VEE = -5.25 V) MC3430, MC3432 MC3431, MC3433	1 _{1B}	-	20 20	40 40		20 20	40 40	μĀ
Input Offset Current	10	_	1.0		<u> </u>	1.0		μA
Voltage Gain	Avol	-	1200	-	-	1200		V/V
Strobe Input Voltage (Low State)	VIL(S)	-	-	0.8	-	-	0.8	
Strobe Input Voltage (High State)	VIH(S)	2.0	-	-	2.0	- 1	-	V
Strobe Current (Low State) {V _{CC} = 5.25 V, V _{EE} = -5.25 V, V _{in} = 0.4 V}	[↓] IL(S)	-	-	-1.6	- 1	-	-1.6	mΑ
Strobe Current (High State) (V _{CC} = 5.25 V, V _{EE} = -5.25 V, V _{in} = 2.4 V) (V _{CC} = 5.25 V, V _{EE} = -5.25 V, V _{in} = 5.25 V)	lih(S)	1 1	-	40 1.0	-	-	40 1.0	μA ΠΑ
Output Voltage (High State) (IO = -400 µA, VCC = 4.75 V, VEE = -4.75 V)	VOH	2.4	-	-	-	-	-	v
Output Voltage (Low State) (1 _O = 16 mA, V _{CC} = 4.75 V, V _{EE} = 4.75 V)	VOL	-	-	0.4	-	-	0.4	v
Output Leakage Current (V _{CC} = 4.75 V, V _{EE} = -4.75 V, V _O = 5.25 V)	CEX	_	-	_	-	-	250	μA
Output Current Short Circuit (V _{CC} = 5.26 V, V _{EE} = -5.26 V)	los	-18	-	-70	-	_	-	mA
Output Disable Leakage Current (V _{CC} = 5.25 V, V _{EE} = -5.25 V)	loff	_	-	40	-	-	-	μA
High Logic Level Supply Currents (VCC = 5.25 V, VEE = -5.25 V)	icc IEE	-	45 ~17	60 -30	-	45 -17	60 -30	mA mA

MC3430, MC3431, MC3432, MC3433

A UNIQUE FUNCTIONAL PARAMETER FOR COMPARATORS

A unique approach is used in specifying the MC3430-33 quad comparators. Previously, comparators have been specified as linear devices with common operational amplifier type parameters such as voltage gain (Avoi), input offset voltage (VIO), input offset current (I10) and common-mode rejection ratio (CMRR). This is true despite the fact that most comparators are seldom operated in their linear region because it is difficult to hold a high gain comparator in this narrow region. Comparators are normally used to "detect" when an unknown voltage level exceeds a given reference voltage.

The most desirable comparator parameter is what minimum differential input voltage is required at the comparator's input terminals to guarantee a given putput logic state. This new and important parameter has been called input sensitivity (VIS) and is analagous to the input threshold voltage specification on a core memory sense amplifier. The input sensitivity specification includes the effects of voltage gain, input offset voltage and input offset current and eliminates the need for specifying these three parameters.

In order to make this parameter as inclusive as possible on the MC3430-33 series quad comparators, the input sensitivity is specified within the following conditions:

Commercial Temperature Range – 0 to 70° C Power Supply Variations – $\pm 5\%$ (atl conditions) Input Source Resistance – ≤ 200 Ohms

Common-Mode Voltage Range - -3.0 V to +3.0 V

Note: Typical values have been included on the omitted parameters for applications where the offset voltages are externally nulled.

Voltage gain is defined as the ratio of the resulting AVO to a change in the VIDB using conditions at which the VID and IID are nulled. Thus, for worst case MTTL logic levels, the required output voltage change is 2.0 V (VOHmin - VOLmax = 2.4 V -

0.4 V). If 2.0 mV ere required at the input terminals to induce whis change in logic state, the voltage gain would be 1000 V/V. Gain however is not the only factor affecting the logic transition. Normally input offset voltages, that are not externally nulled, can add an appreciable error that drastically overshadows the comparator gain. Therefore, the 2.0 mV for example, required to cause the logic transition is often masked. An input offset voltage of up to 7.5 mV might be required to reach the linear region. A further consideration is the input offset current of up to $\pm 10 \ \mu A$ flowing through the matched 200-Ohm source resistors at the input terminals which can create an additional error of ±2.0 mV. In order to determine a worst case input sensitivity, it must be assumed that minimum specified gain and maximum specified offset voltage and current conditions exist. Also it must be assumed that these three factors are cumulative, requiring a worst case input of:

.:::-

Logic Transition = 2.0 mV

V₁₀ = 7.5 mV

IiO of ±10°µA thru 200-Ohm resistor = 2.0 mV

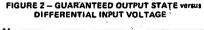
Therefore, 2 + 7.5 + 2 = 11.5 mV.

The effects of power supply voltage variations, temperature changes and common-mode input voltage conditions have not been considered, as they are not present in the gain and offset specifications on most comparators.

1111

Thus, the input sensitivity specification greatly reduces the effort required in determining the worst case differential voltage required by a given comparator type.

Teble I compares the worst case input sensitivity of three popular comparator types at both room temperature and over the specified commercial temperature range (0 to 70°C). This sensitivity was computed from the specified voltage gain, offset voltage and offset current limits.

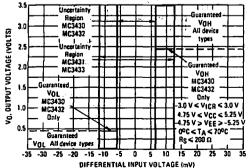
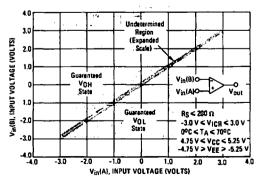

TABLE I - WORST CASE COMPARISONS

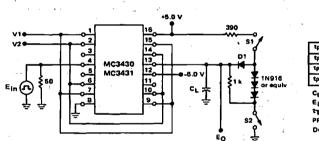
11000.00

				TA = 25°C	ABLE I - WO	ORST CASE	∶ćo∾ I	PARI		= 0 to 70°C		•
Type Number	VIO mV Max	Avol* V/V Typ	Differential-Input	¹ tO	Error Voltage Generated Into 200 Ω Source Resistors	Total Sensitivity mV	ViO mV Max	A _{vol} • V/V Typ	Differential Input Voltage Required for 3.0 V Output Change	110	Error Voltage Generated Into 200 Ω Source Resistors	Total Sensitivity mV
MC3430, MC3432	<u></u>	-	1 - 2 - 10 MA	2424-1	- 44	6.0	-	'	-	-	-	7.0
MC3431, MC3433	-	-	-	- "		10	-	· -	-	-	-	12
MC1711C MLM311		1500 200 k		15 6.0**	3.0 mV 0.0012 mV	10 7.516	5.0 10	1000 100 k	3.0 mV 0.030 mV	25 70**	5.0 mV 0.014 mV	13 10.04

*Typical values given, as minimum gain not always specified.

**In measured in nA

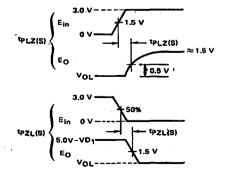

FIGURE 3 - GUARANTEED OUTPUT STATE versus INPUT VOLTAGE

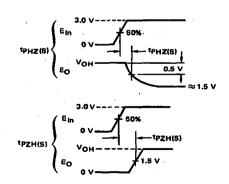
			MC	3430, MC3	1431	MC3432, MC3433			
Characteristic	Symbol	Fig.	Min	Тур	Max .	Min	Тур	Max	Unit
High to Low Logic Level Propagation Delay Time (Differential Inputs) 6.0 mV + VIS	tPHL(D)	6,8-11	-	20	45		27	50	ns
Low to High Logic Level Propagation Delay Time (Differential Inputs) 5.0 mV + VIS	ሞLH(D)	6,8-11	-	33	55	-	40	65	ns
Open State to High Logic Level Propagation Delay Time (Strobe)	\$₽ZH(S)	.4		-	35	-	-	-	ns
High Logic Level to Open State Propagation Delay Time (Strobe)	tPHZ(S)	4	-	7	35	-	-	-	ns
Open State to Low Logic Level Propagation Delay Time (Strobe)	tPZL(S)	4		-	40	-	-	-	កន
Low Logic Level to Open State Propagation Delay Time (Strobe)	tPLZ(S)	4	-	-	35	-	-	-	ns
High Logic to Low Logic Level Propagation Delay Time (Strobe)	IPHL(S)	5	-	-	_	-	-	40	ns
Low Logic to High Logic Level Propagation Delay Time (Strope)	^t PLH(S)	5	-	-	-	-	- ·	35	ns

SWITCHING CHARACTERISTICS (VCC = +5.0 Vdc, VEE = -5.0 Vdc, TA = +25°C unless otherwise noted.)

TEST CIRCUITS

FIGURE 4 - STROBE PROPAGATION DELAY TIMES &LZ(S). &ZL(S). #HZ(S). and PZH(S)


Output of Channel B shown under test, other channels are tested similarly.


	V1	V2	· 51	52	CL
*PLZ(S)	100 mV	GND	Closed	Closed	15 pF
华ZL(8)	100 mV	GND	Closed	Open	50 pF
1PHZ(8)	GND	100 mV	Ciosed	Closed	15 pF
tPZH(S)	GND	100 mV	nOpen	Closed	50 pF

CL includes jig and probe capacitance.

 E_{in} waveform characteristics: T_{LH} and $T_{HL} \le 10$ ns measured 10% to 90%. PRR = 1.0 MHz

Duty Cycle - 50%

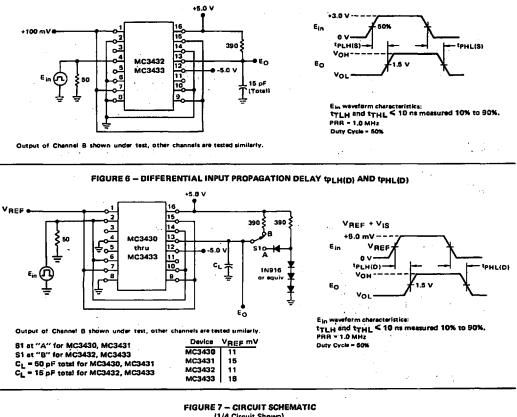
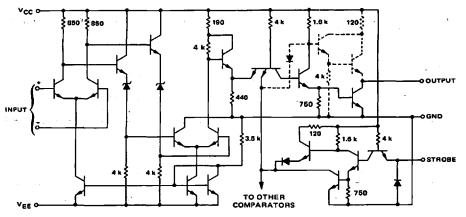




FIGURE 5 - STROBE PROPAGATION DELAY THLH(S) AND THLL(S)

(1/4 Circuit Shown)

Dashed components apply to the MC3430 and MC3431 circuits only.

CHERROR PERFORMANCE CURVES

5.0 V

DUTPUT VOLTAGE

VOL

200 mV

100 mV

-20 , -10

VCC = 5.0 V VEE = -5.0 V TA = 25°C

RESPONSE TIME versus OVERDRIVE - MC3430, MC3431

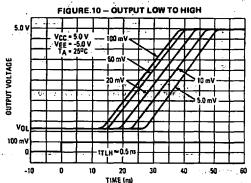
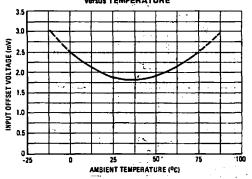



FIGURE 12 - AVERAGE INPUT OFFSET VOLTAGE VERSUS TEMPERATURE

TIME (ns)

0.5 m (TH

20

•,

30

20 mV

10 m V

٣V

40

50

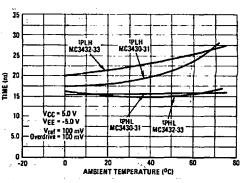
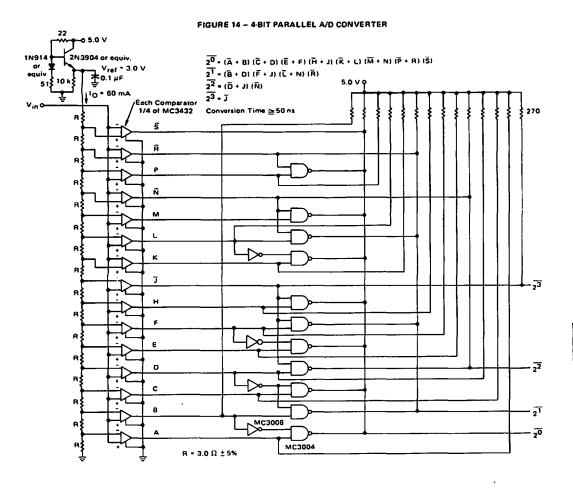


FIGURE 13 - RESPONSE TIME versus TEMPERATURE

10


50 m

100 m¹V

0

.

APPLICATIONS INFORMATION

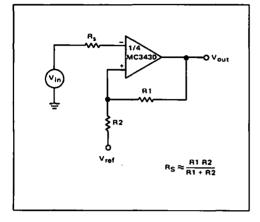
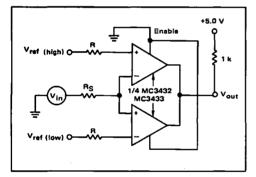
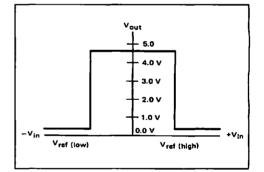
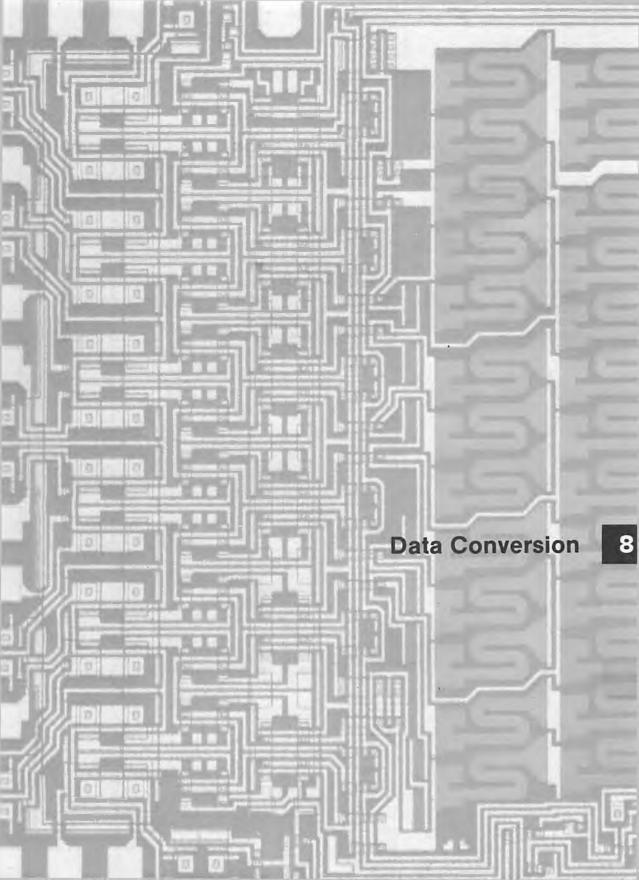



FIGURE 15 - LEVEL DETECTOR WITH HYSTERESIS


Vref 3 Viov VO (VOLTS) 2 ∨. high -v_H 1 0 1 2 3 A Vin (VOLTS) V_{high} = V_{ref} + <u>R2 (V_{O(max)} - V_{REF})</u> R1 + R2 R2 (VO(min) - VREF) Viow = Vref . R1 + R2 Hysteresis Loop (V_h) R2 $V_{h} = V_{high} - V_{low} = \frac{m4}{R1 + R2} \left[V_{O(max)} - V_{O(min)} \right]$


FIGURE 16 - TRANSFER CHARACTERISTICS AND

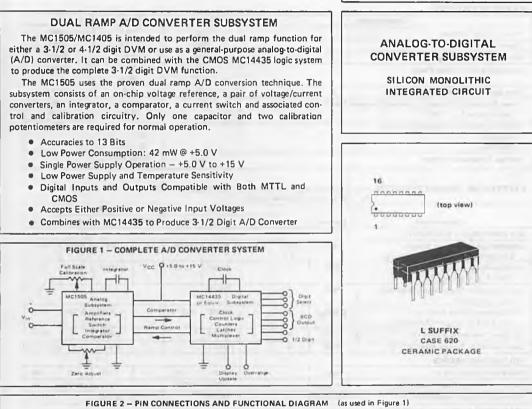
EQUATIONS FOR FIGURE 15

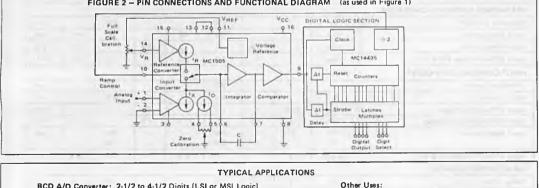
FIGURE 18 - VOLTAGE TRANSFER FUNCTION

DATA CONVERSION

Temperatur	e Range		
Commercial	Military		Page
MC1405	MC1505	Dual Ramp A/D Converter Subsystem	8-3
MC1406	MC1506	6-Bit Multiplying D/A Converter	8-17
MC1408	MC1508	8-Bit Multiplying D/A Converter	8-29
MC3408	-	8-Bit Multiplying D/A Converter	8-43
MC3410, C	MC3510	10-Bit Multiplying D/A Converter	8-49
MC3412		High-Speed 12-Bit D/A Converter	8-60
MC6890	MC6890A	8-Bit Bus-Compatible MPU D/A Converter	
MC10317L		7-Bit High-Speed A/D Flash Converter	8-65
MC10318L/L9	- .	High-Speed 8-Bit D/A Converter	8-66

.




MC1405 MC1505

Data Acquisition Systems with Remote MC1505

Voltage to Frequency Conversion

Dalta Modulation and Signal Generation

BCD A/D Converter: 2-1/2 to 4-1/2 Digits (LSI or MSI Logic) Panel Meters Digital Voltmeters Portable Instruments

Industrial Measurement and Control

Binary A/D Converter: 8-to-13 Bits (LSI or MSI Logic)

Industrial Measurement and Control High Notes Environments (Internation Control With MITL, MHTL, and Object Control of Co

High Noise Environments (Integrating Converter with MTTL, MHTL, and CMOS Compatibility)

MAXIMUM RATINGS

Chatacteristic	Şymbol	Vatue	Unit
Power Supply Voltage	Vcc	+16.5	Vdc
Digital Input Voltage	V ₁₀	+16.5	Volts
Reference Input Voltage	VR	2.0	Volts
Unknown Input Voltage Range	V1	±5.0	Volts
	V2	±5.0	
Zero Celibration Control Pin Voltage	V4	5.0	Volts
Power Dissipation (Package Limitation) Caramic Dual In-Line Package Derate above T _A = +25 ⁰ C	PD	1000 6.0	mW mW/ ⁰ C
Operating Ambient Temperature Range MC1505L MC1405L	TA	-55 to +125 0 to +70	C
Storage Temperature Range	T _{stg}	-65 to +150	°c

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 Vdc, V_R = 1.000 Vdc, V1 = 2.000 Vdc, V2 = 0.000 Vdc, V10 \ge 2.0 Vdc, T_A = 25^oC unless otherwise noted.)

	1	MC1505				MC1405			
Characteristic	Symbol	Figure	Min	Тур	Max	Min	Тур	Max	Unit
A/D CONVERSION SYSTEM (1)				•			· · · · · ·		
Linearity: Deviation from Straight Line through Zero and Full Scale (2)	Er	9, 11	-	±0.01	±0.05	-	±0.01	±0.05	%F.S.
Mid-Scale Power Supply Sensitivity (PSS of I _R -(I _X + I _Q), V1 = 1.0 V)	PSSF	3	-	0.002	±0.02	-	0.002	±0.02	%/%
Zero Calibration Power Supply Sensitivity (V1 = V2 = 0 V)	PSSZ	9	-	0.001	-	-	0.001	-	%F.S./%
Input Common Mode Sensitivity (V _X = 2.0 V, V _{CM} = V2 is varied)	[CMSIX]	3	-	0.0006	0.0012	-	0.0006	0.0018	%/mV
Full Scale Temperature Drift (3)	TCFI	9	-	0.004	_	-	0.004	-	%/°C
Zero Calibration Temperature Drift (3)	ITCZI	9	-	0.001	-	-	0.001		%F.S./ºC
VOLTAGE REFERENCE									
Reference Voltage, Pin 11	VREF	3	1.15	1.25	1.35	1.1	1.25	1.4	Vdc
Reference Voltage Power Supply Sensitivity	PSSVREF	3	-	0.003	±0.01	-	0.003	±0.02	%/%
Reference Voltage Temperature Drift	TCVBEF	3	-	0.015	-	-	0.015	-	%/ºC
REFERENCE CURRENT CONVERTER			•	•		•			
Reference Current	18	3	-	250	_	-	250	-	μA
Input Bias Current	114	3	-	10	40	-	10	40	nA
Input Range of VR	V14	3	0.8		1.2	· 0.8	_	1.2	Vdc
Input Offset Voltage (V14-V15)	IVeel	3	-	1.0	2.5	-	2.0	5.5	m۷
INPUT CURRENT CONVERTER									
Unknown Current	l ¹ x	3	- 1	500	-	-	500	-	μA
Input Resistance	R	3	-	4.0	-	-	4.0	-	kΩ
Input Differential Range	V _X	3,10	0	2.0	_	0	2.0	-	Volts
Input Common Mode Range	CMR	3,10,12	-1.5	-	+1.5	-1.5		+1.5	Volts
Input Bias Currents	11 12	3,9	-	200 -300	-		200 -300		μA
Input Offset Voltage (V13-V3)	lVxx1	3		1.0	2.5	-	2.0	5.5	m۷
RAMP OFFSET SOURCE	•								
Ramp Offset Current	10	4		25	_	_	25	_	μA

(1) System parameters measured using external voltage reference, independent of V11 = VREF.

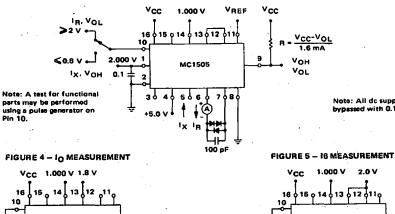
Integrator Capacitor = 2.0 µF

Clock Frequency = 30 kHz

(2) Does not include quantitizing error. See Figure 10 for calibration.

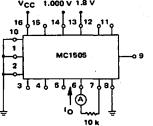
٠,

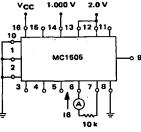
V_{CC} = 15 V


			1 1 4	MC1506			MC1405		1
Churacteristic	Symbol	Figure	Min	Тур	Max	Min	Тур	Max	Unit
CURRENT SWITCH	· ·				<i>e</i> .	•			
Digital Input Logic Levels, Pin 10									
High Level, Logic "1"	V _{IH}	3,18	2.0	-	-	2.0	-	1 -	Vdc
Low Level, Logic ""	VIL	3,18	-		0,8		l –	0,8	Vdc
Digital Input Current		· [T				
High Level, Logic "1"	I III	3	-	0	1.0	-	0	1.0	μA
Low Level, Logic "0"	1. 11.	3	_	-5.0	-60	-	-5.0	-50	μA
INTEGRATOR							•		
Input Bias Current	16	5	-	10	30	- 1	10	50	nA
Output Voltage Swing	V7.	-							Volts
High			12.8	13.0	. —	12.8	13.0	-	
Low	• e		-	0.2	0.35	– .	0.2	0.35	1
COMPARATOR					-				
Output Logic Levels, Pin 9				1		T			Volts
High Level, Logic "1"	VOH	3	13.5	14.0	-	13.5	14.0	-	
Low Level, Logic "" TA = Tlow to Thigh	VOL	3	-	0.35	0.5	- 1	0.35	. 0.5	
(Sink Current = 1.6 mA)		,						· ·	
Input Threshold	VTH(7)	- 1	0.9	1.0	1.1	··0.9	1.0	1.1	Volts
POWER SUPPLY									
Power Supply Current	I ICC			T	Ţ,				mA
(V _{CC} = +5.0 Vdc)		3	-	8.4	12.0	-	8.4	12.0	1
(V _{CC} = +15.0 Vdc)		3	-	9.0	13.0	-	9.0	13.0	
Power Supply Voltage Range	Vcc	-	4.75	- 1	16.5	4.75	-	16.5	Vdc
Power Consumption	PC			T	1				mW
(V _{CC} = +5.0 Vdc)	1 -	-		42	60	- 1	42	60	
(V _{CC} = +15.0 Vdc)		-	- 1	135	195	-	135	195	1

ELECTRICAL CHARACTERISTICS (VCC - +15 Vdc, VR - 1.000 Vdc, V1 - 2.000 Vdc, V2 - 0.000 Vdc, V10>2.0 Vdc,

T_{tow} = -55°C for MC1505L, 0°C for MC1405L


Thigh = +125°C for MC1505L, +70°C for MC1405L


FIGURE 3 - STANDARD TEST CONFIGURATION

Note: All dc supplies bypassed with 0.1 μ F.

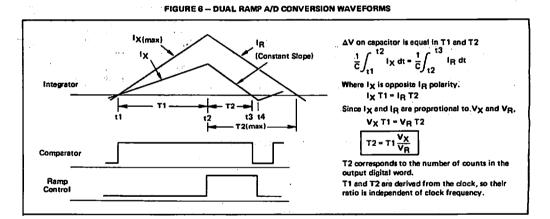
.

200

GENERAL INFORMATION

Dual Ramp Analog-to-Digital Conversion

The dual ramp method of A/D conversion is a proven system which is capable of very high accuracy. The conversion is an integrating process which offers high noise rejection and immunity to changes in the clock rate and integrator capacitor value. The particular method used in the MC1505 is a noniterating dual slope technique which produces an accurate result after one conversion period.


Dual ramp conversion is accomplished with the system of Figure 2. The conversion begins at time t1, when current IX causes the integrator output, or ramp, to cross the comparator threshold, as shown in Figure 6. The clock is activated and the counters begin counting from zero. The system counts for a fixed period T, with a ramp slope which depends on the input voltage, i.e., a steep slope is caused by a high input voltage. When the counters have reached full scale, the overflow count triggers a \pm 2 flipflop which changes the ramp control polarity current. Ig

A/D Subsystem Circuit Description

The MC1505 incorporates special circuit features which allow all the analog functions of the dual ramp system to be performed on a single monolithic chip using standard bipolar processing.

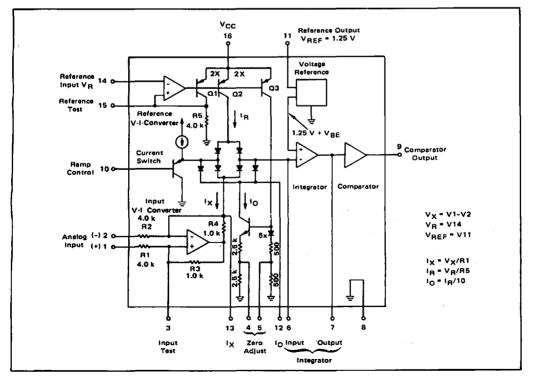
Voltage-to-current conversion for both the input and reference voltages allows the use of a high-speed current switch and single supply operation. The unbuffered differential inputs have sufficiently high input impedance for power supply monitoring applications, and provide flexibility for other input formats since they will accept either positive or negative voltages.

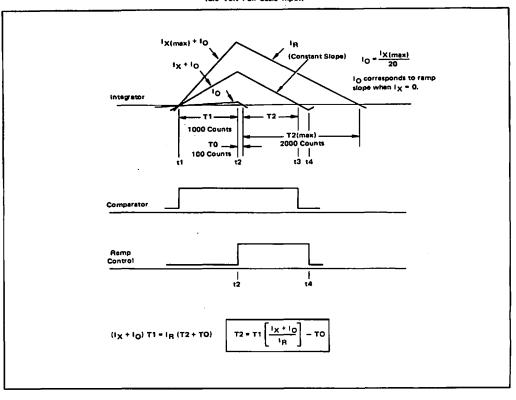
The voltage reference, shown in Figure 7, is one of the six basic circuits in the subsystem. It provides a low impedance output which has excellent temperature stability, and high power supply rejection. Biasing for the other circuits in the MC1505 is derived from the voltage reference circuity.

now controls the integrator and the down ramp begins at t2. This ramp continues at a fixed slope for a time period which depends on the amplitude achieved by the up ramp. Thus T2 is determined by the input voltage. When the ramp crosses the comparator threshold at t3, the clock stops and the counter holds a digital value which is proportional to the unknown input voltage.

After the down ramp crosses the comparator threshold, a timing sequence in the digital section strobes the latches to store the data, resets the counters, and reverses the ramp at t4 to begin a new conversion.

Since the voltage change across the capacitor is equal on the up and down ramps, an equal amount of charge is exchanged. The equations of Figure 6 show that the system output is the ratio of the unknown and reference currents, and long term changes in the clock rate and integrator capacitor do not effect the reading. The same basic amplifier circuit is used in both the reference and input voltage-to-current converters. It is an extremely well balanced amplifier with low input offset voltage temperature drift. The reference converter uses a pair of PNP transistors to derive current IR, in conjunction with a reference resistor which has the same temperature coefficient as those used in the input converter. The value of the reference current is VR/R5. The collectors of transistors Q1, Q2 and Q3 in Figure 7 all track with a two diode temperature coefficient, which assures constant current ratios.


The reference resistor value can vary by 30% of 4.0 k Ω due to process variations. Moreover, these variations will also affect the input bridge resistors. Thus, the ratio of reference to unknown current has a close tolerance for a wide range of resistor values.


The input voltage-to-current converter is a bridge or bilateral current source whose output current is $V_X/R1$. If the bridge is perfectly balanced, its output impedance and common mode rejection are infinite. However, the design has the ability to tolerate bridge mismatches of approximately 0.5%. In order to tolerate this mismatch, the output of the bridge current source is connected to the current switch which is a low temperature coefficient, low impedance source of 1.25 volts. This technique effectively eliminates output current changes due to finite output impedance which is caused by resistor mismatch. This input current converter makes possible the use of a single supply voltage and differential inputs which can be used at or below ground potential.

An important feature of the MC1505 is the ramp offset current source which is added to the unknown current and does not allow the ramp to reach zero slope when the input voltage is zero. The ramp range is shown in Figure 8. The ramp offset current has a value of $I_R/10$, so that the minimum ramp slope is 5% of the full scale slope. This allows reliable conversion at low input voltages by assuring a nearly constant comparator propagation delay and a good ramp signal-to-noise ratio. It also prevents turn-off of the diode in the current switch at low levels, restricting the voltage change at the output of the resistor bridge. Still another feature is that it provides a convenient temperature compensated zero adjust which can correct errors in the resistor bridge and input buffer amplifiers when they are used. The ramp offset current is compensated by 100 extra counts in the digital logic during ramp down, so it does not appear in the digital output (see Figure 8).

The current switch uses current steering for very high speed operation. A smooth transition occurs as one current is turned on while the other is turned off. This minimizes error during the ramp reversal at its peak, especially since the reference current source has a very high output impedance and does not change value when switched. The settling time of the input current converter is not a factor in system accuracy. At the ramp peak, $|\chi|$ is turned off, so the amplifier settles after the unknown current is below the comparator threshold, the unknown current is switched on and thus the current can settle before the ramp enters the active conversion range. The switch operates into a voltage of 1.95 volts and is translated by a follower so its input

FIGURE 8 - MC1505 SYSTEM TIMING DIAGRAM (2.0 Volt Full Scale input)

threshold is 1.25 volts.

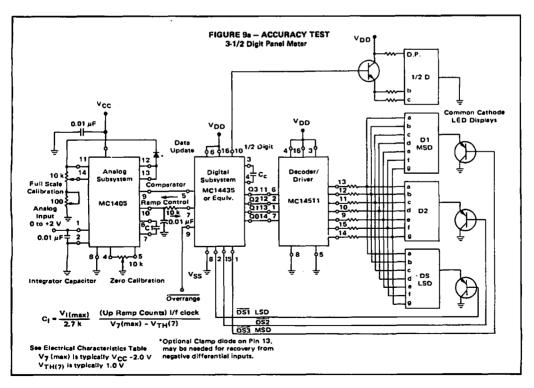
The integrator is a single stage, wide bandwidth amplifier. Its low propagation delay and low output impedance minimize ramp spikes due to output current reversal during ramp turn-around. The input bias current is typically one part in 50,000 of the full scale current, so that its temperature change contributes negligible error. Gain and input offset voltage are not critical since the integrator is driven from current sources.

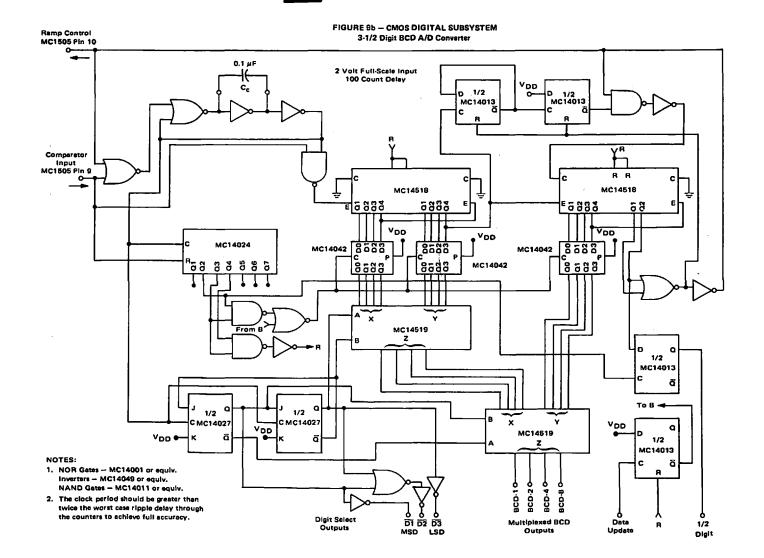
The comparator is designed for tow hysteresis by maintaining a constant power dissipation regardless of output state. This hysteresis is typically 0.1 mV and remains constant with temperature variations, so that no measurable system error is contributed. Temperature variations in the value of the comparator threshold are not an error factor, since the only requirement is that the threshold remain constant during a given conversion cycle. Voltage gain of the comparator is 2,000,000 when driving CMOS, and 40,000 with one TTL load. The comparator output is slew rate controlled to provide output rise and fall times of approximately 80 ns. This minimizes noise generation which could affect system stability.

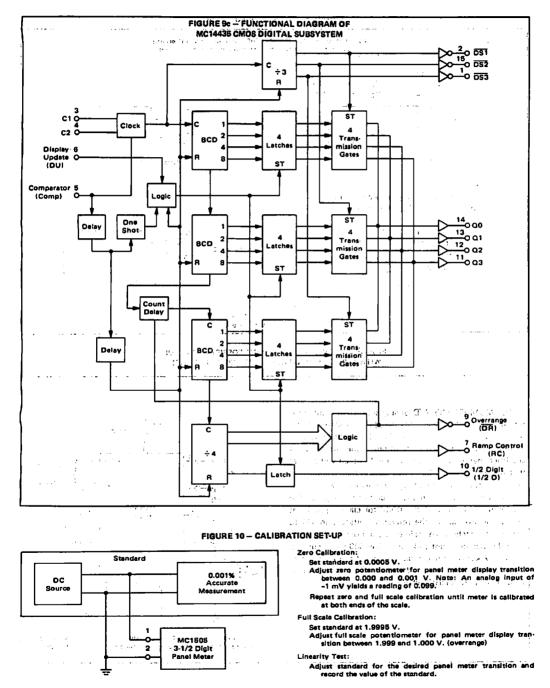
The system is zeroed and full scale calibrated by potentiometers which provide temperature compensation. All the other resistors are diffused in close proximity, yielding reference and unknown currents which have a closely tracking resistive temperature coefficient.

APPLICATIONS INFORMATION

The input configurations for the MC1505 are shown in Figure 11. Note that the differential input voltage must always remain the same polarity with Pin 1 positive with respect to Pin 2. Figures 11 and 13 will aid in the understanding of the input circuitry.


The input common mode rejection of the MC1505 is high enough to maintain rated accuracy with small changes in common mode voltage, such as would be seen with ground errors and noise. The system must be recalibrated, however, for larger changes in common mode input voltage.


The MC1505 is arranged so that $I_X = I_R$ when $V_X = V_R$, or so that the ramp slopes are equal for input and reference voltages of 1 volt. As shown in Figure 8, a system with a 2 volt full-scale input requires twice as many digital counts during T2 as for T1. A system with a 1 volt full scale would require an equal number of counts in T1 and T2. Figure 9 illustrates a 3-1/2 digit system, but typical accuracies of the MC1505 allow its use in 4 digit applications. It can also be used in systems which require 4-1/2 digit resolution.


The ramp offset current and 100 count delay are shown in Figure 8. In certain applications, a different number of counts may be used. The system will not always operate properly, however, with a 10 count delay since the ramp offset current is used to zero the system and compensate for error in the input resistor bridge. This error, known as I_{XO} , is current which flows to or from the input converter with zero volts applied to the input. It is typically between $\pm 5.0 \ \mu$ A, which is 1% of full scale in a 2 volt system. A 10 count delay would need a 0.5% ramp offset current, which would not always be able to cancel this error. Also, a 10 count delay does not provide enough signal-to-noise margin for consistently accurate low-level conversion.

The integrating capacitor is chosen with the equations shown in Figure 9. The maximum ramp voltage should be used for best signal-to-noise ratio, but temperature changes in I_X , I_R and the capacitor should be anticipated to prevent integrator saturation. Variations in clock frequency should also be considered. A polar capacitor with Pin 7 at the + terminal may be used. However, settling time will be increased when electrolytics are used, Tantalum electrolytics are preferred.

The lower half of the diode current switch is split with separate diodes for I_X and I_O . In most applications Pins 12 and 13 will be connected so that the two device emitters are effectively one, since the main purpose of these pins is for testing. Connecting these pins allows proper system zero adjustment and prevents turn-off of the switch diode with low unknown current levels. This yields better conversion accuracy.

At initial turn-on, set Pin 14 to ≈1.0 Volt with full scale potentiometer.

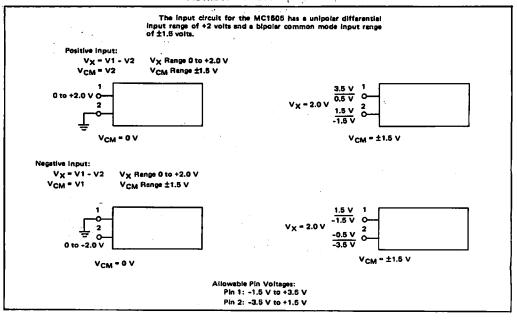
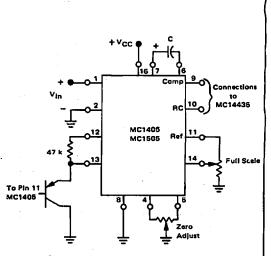
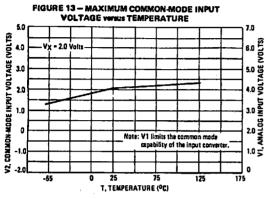



FIGURE 12 - CIRCUIT TO PREVENT POSSIBLE LATCHUP WITH APPLICATION OF NEGATIVE INPUT VOLTAGES


The MC1405/1505 A/D analog subsystem is intended for positive input voltages only (i.e., pin 1 positive with respect to pin 2). However, should pin 2 become more than 100 mV positive with respect to pin 1, the internal input amplifier may go into a latchup mode which will require that the system power be turned off and then reapplied to reset the system. To prevent this problem a PNP transistor can be used as shown in the accompanying figure. The base-emitter junction of the transistor clamps pin 13 at one diode drop above the reference voltage (pin 11) to prevent the latchup. The gain of the transistor insures that the reference need not sink more than 500 μ A of current.

The 47 k Ω resistor is required only if the A/D system is to continue to convert under reverse polarity conditions such as for autopolarity schemes.

and a start

•47 kΩ resistor required if conversions are to continue during input polarity reversal, otherwise tie plns 12 and 13 together.

TYPICAL PERFORMANCE CURVES

1.4

1.2

1.0

3

= 25°C

11 - VI - 1.25 V

4 k

TA

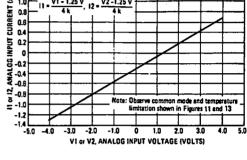


FIGURE 14 - INPUT CURRENT VIEWS INPUT VOLTAGE

12 - V2 -1.25 V

4 k

FIGURE 18 - UNKNOWN CURRENT VERSUS ANALOG INPUT VOLTAGE

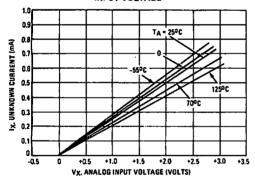


FIGURE 17 - TYPICAL POWER SUPPLY CURRENT VORSUS POWER SUPPLY VOLTAGE

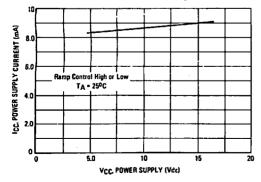


FIGURE 16 - REFERENCE CURRENT WIRSUS REFERENCE INPUT VOLTAGE

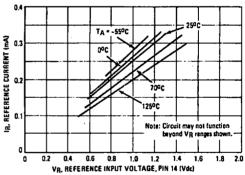
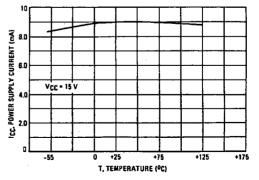



FIGURE 18 - TYPICAL POWER SUPPLY CURRENT versus TEMPERATURE

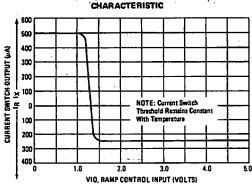


FIGURE 19 - CURRENT SWITCH TRANSFER

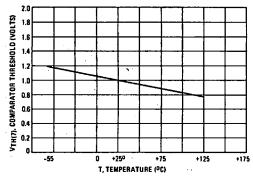
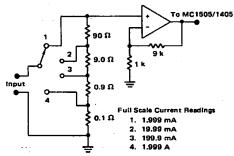



FIGURE 23 - CURRENT MEASUREMENT CIRCUITRY

If a voltage drop of 2.0 V full scale can be tolerated the resistors may be increased by a factor of ten and a unity gain buffer may be employed.

FIGURE 20 -- INTEGRATOR OUTPUT SWING

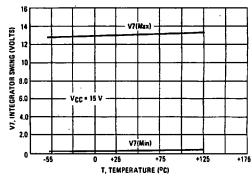


FIGURE 22 - RAMP CURRENT RATIO

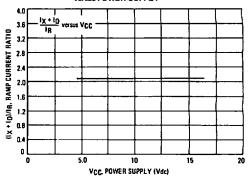
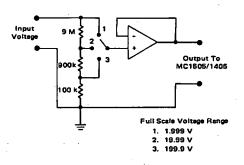
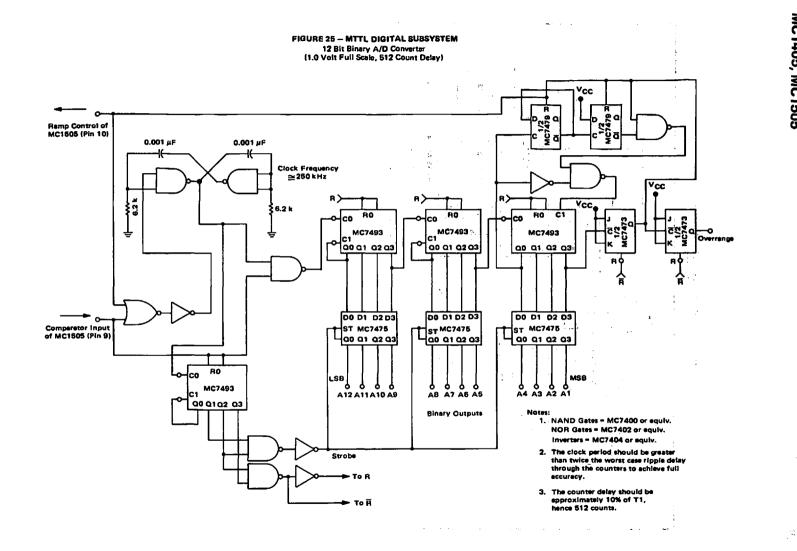
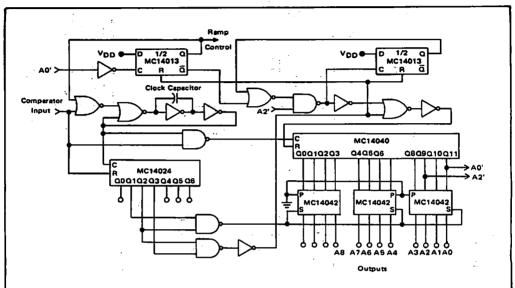
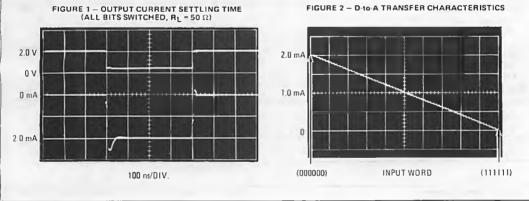





FIGURE 24 - DVM VOLTAGE RANGING

• •


.

-

FIGURE 26 - 12-BIT BINARY A/D LOGIC SUBSYSTEM USING CMOS

TYPICAL APPLICATIONS

- Tracking A-to-D Converters
- Successive Approximation A-to-D Converters
- Digital-to-Analog Meter Readout
- Sample and Hold
- Peak Detector
- Programmable Gain and Attenuation
- Digital Varicap Tuning
- Video Systems

- Stepping Motor Drive
- CRT Character Generation

- Digital Addition and Subtraction
- Analog-Digital Multiplication
- Digital-Digital Multiplication
- Analog-Digital Division
- Programmable Power Supplies
- Speech Encoding

MAXIMUM RATINGS (TA = +25°C unless otherwise noted.)

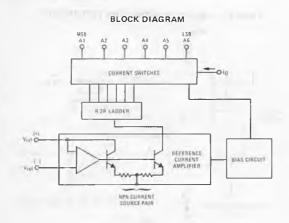
Rating	Symbol	Value "	Unit
Power Supply Voltage	V _{CC} V _{EE}	+5.5 -16.5	Vdc
Digital Input Voltage	V5 thru V10	+8.0, VEE	Vdc
Applied Output Voltage	Vo	±5.0	Vdc
Reference Current	¹ 12	5.0	mA
Reference Amplifier Inputs	V ₁₂ , V ₁₃	VCC, VEE	Vdc
Power Dissipation (Package Limitation) Ceramic Package Derate above T _A = +25 ^o C	PD	1000 6.7	mW mW/ ⁰ C
Operating Temperature Range MC 1506L MC 1406L	TA -	-55 to +125 0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
	· V-of		

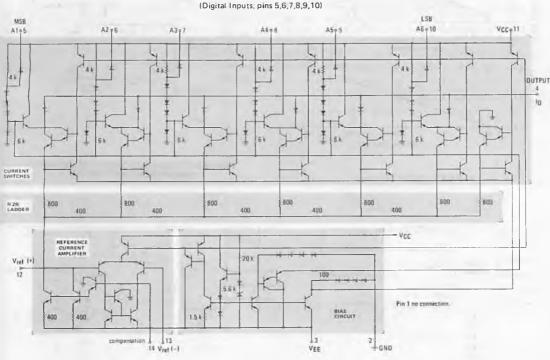
ELECTRICAL CHARACTERISTICS (V_{CC} = +5.0 Vdc, V_{EE} = -15 Vdc, $\frac{V_{ref}}{H12}$ = 2.0 mA, all logic inputs in low logic state, TA = Thigh to Tiow, unless otherwise noted.)

Characteristic	Figure	Symbol	Min	Түр	Max	Unit
Relative Accuracy (Error relative to full scale IO)	10	Er	-	-	<u>±0.78</u>	%
Settling Time (within 1/2 LSB [includes td] TA = +25°C)	9	۲s	-	150	300	ns
Propagation Delay Time T _A = +25 ⁹ C	9	^{ւթ} нւ. Խլн	-	10	50	ns
Output Full Scale Current Drift		TCIO	-	80	-	PPM/ ⁰ C
Digital Input Logic Levels High Level, Logic "1" Low Level, Logic "0"	3,14	ViH VIL	2.4	1 T	- 0.8	Vdc
Digital Input Current High Level, VIII.≂ S.O V Low Level, VIII.≂ O.B V	3,13	1) 1) 11	-	0 0.7	+0.01 -1.5	. mA
Reference Input Bias Current (Pin 13)	3	113		-0.002	-0.01	mA
Output Current Range VEE = -5.0 V VEE = -6.0 to -15 V	3	IOR	0	2.0 2.0	2:1 4.2	mA
Output Current V _{ref} = 2.000 V, R ₁₂ = 1.000 kΩ	3	10	1.9	1.97	2.1	mA
Output Current (ell bits high)	3	IO(min)		0	10	μA
Output Voltage Compliance ($E_r \le \pm 0.78\%$ at $T_{A_i} = +25^{\circ}$ C)	3,4,5	V0+ V0-	-	+0.25 -0.45	+0.1 -0.3	Vdc
Reference Current Slew Rate (T _A = +25 ^O C)	8,15	SR Iref	_	2.0	-	mA/µs
Output Current Power Supply Sensitivity	10	PSRR ()	-	0.002	0.010	mA/V
Power Supply Current A1 thru A6; V _{IL} = 0.8 V A1 thru A6; V _{IL} = 2.4 V	3,11,12	ICC IEE	-	+7.2 -9.0	+11 -11	mA
Power Dissipation (all bits high) VEE = -5.0 Vdc VEE = -15 Vdc		PD	. - . -	85 175	120 240	mW

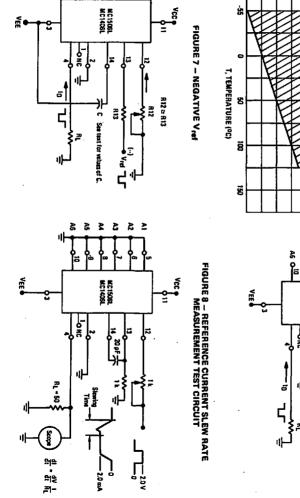
*Thigh = +70°C for MC1406L = +125°C for MC1508L = -55°C for MC1506L

8

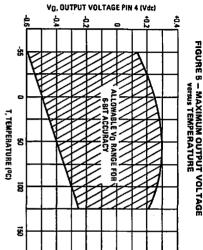

8-18


MC1406L, MC1506L

The MC1506L consists of a reference current amplifier, and R-2R ladder, and six high-speed current switches. For many applications, only a reference resistor and a reference supply voltage need be added.


The switches are inverting in operation, therefore a low state at the input turns on the specified output current component. The switches use a current steering technique for high speed and a termination amplifier that consists of an active load gain stage with unity gain feedback. The termination amplifier holds the parasitic capacitance of the ladder at a constant voltage during switching and provides a low impedance termination of equal voltage for all legs of the ladder.

The R-2R ladder divides the reference amplifier current into binarily-related components which are fed to the switches. Note that there is always a remainder current that is equal to the least significant bit. This current is shunted to ground, and the maximum current is 63/64 of the reference amplifier current, or 1.969 mA for a 2.0 mA reference current if the NPN current source pair is perfectly matched.



COMPLETE CIRCUIT SCHEMATIC

& 010 <u>چ</u> 09 À <u>አ</u> የ <u>ک</u> ۳ <u>ک</u> ۳

ę

202

L'ONC

바

3

∧ ∩ 202

MC1506L

74

4(%8

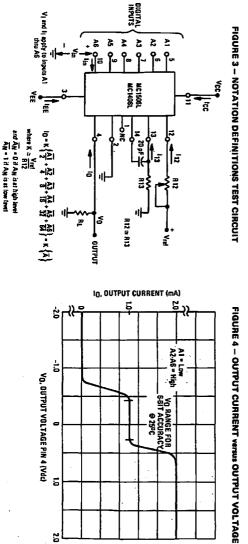
R13

배

A2 05 <u>}1 0 5</u>

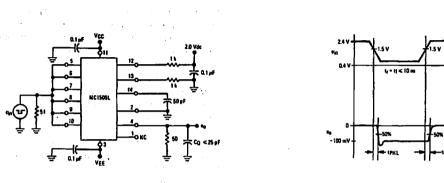
പ്പ

Į≂


A12 Ş ş

V00 •

ŝ


R12 a R13

MC1406L, MC1506L

4

TEST CIRCUITS and TYPICAL CHARACTERISTICS (continued)

FIGURE 9 - TRANSIENT RESPONSE

FIGURE 10 - RELATIVE ACCURACY TEST CIRCUIT

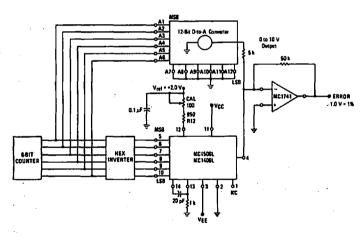


FIGURE 11 – TYPICAL POWER SUPPLY CURRENT versus TEMPERATURE

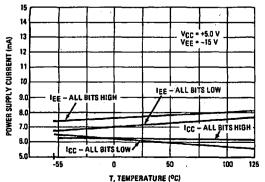
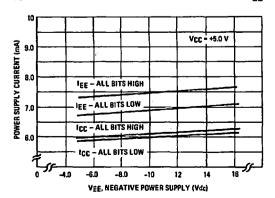
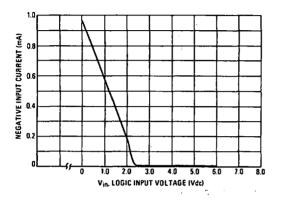
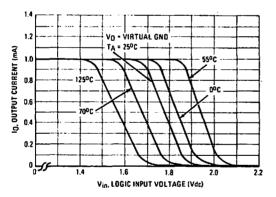
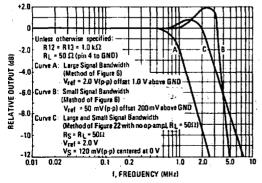




FIGURE 12 - TYPICAL POWER SUPPLY CURRENT versus VEE



TYPICAL CHARACTERISTICS (continued)


FIGURE 13 - LOGIC INPUT CURRENT versus INPUT VOLTAGE

GENERAL INFORMATION

Output Current Range

The output current maximum rating of 4.2 mA may be used only for negative supply voltages below -6.0 volts, due to the increased voltage drop across the 400-ohm resistors in the reference current amplifier.

Output Voltage Compliance

The MC1506L current switches have been designed for high-speed operation and as a result have a restricted output voltage range, as shown in Figures 4 and 5. When a current switch is turned "off", the follower emitter is near ground and a positive voltage on the output terminal can turn "on" the output diade and increase the output current level. When a current switch is turned "on", the negative output voltage range is restricted. The base of the termination circuit Darlington amplifier is one diade voltage below ground; thus a negative voltage below the specified safe level will drive the low current device of the Darlington into saturation, decreasing the output current level.

For example, at $+25^{\circ}$ C the allowable voltage compliance on Pin 4 to maintain six-bit accuracy is +0.1 to -0.3Volts. With a full scale output current of 2.0 mA, the maximum resistor value that can be connected from Pin 4 to ground is 150 ohms.

Accuracy

Absolute accuracy is the measure of each output current level with respect to its intended value, and is dependent upon relative accuracy and full scale current drift. Relative accuracy is the measure of each output current level as a fraction of the full scale current. The relative accuracy of the MC1506L is essentially constant with temperature due to the excellent temperature tracking of the monolithic resistor ladder. The reference current may drift with temperature, causing a change in the absolute accuracy of output current.

The best temperature performance is achieved with a -6.0 V supply and a reference voltage of -3.0 volts. These conditions match the voltage across the NPN current source pair in the reference amplifier at the lowest possible voltage, matching and optimizing the output impedance of the pair.

The MC1506L/MC1406L is guaranteed accurate to within $\pm 1/2$ LSB at $\pm 25^{\circ}$ C at a full scale output current of 1.969 mA. This corresponds to a reference amplifier output current drive to the ladder of 2.0 mA, with the loss of one LSB = 31 μ A that is the ladder remainder shunted to ground. The input current to Pin 12 has a guaranteed current range value of between 1.9 to 2.1 mA, allowing

GENERAL INFORMATION (continued)

11

some mismatch in the NPN current source pair. The accuracy test circuit is shown in Figure 10. The 12-bit converter is calibrated for a full scale output current of 1.969 mA. This is an optional step since the MC1506L accuracy is essentially the same between 1.5 to 2.5 mA. Then the MC1506L full scale current is trimmed to the same value with R12 so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored in a peak detector.

Two 6-bit D-to-A converters may not be used to construct a 12-bit accurate D-to-A converter. 12-bit accuracy implies a total error of $\pm 1/2$ of one part in 4096, or $\pm 0.012\%$, which is more accurate than the $\pm 0.78\%$ specification provided by the MC1506L.

Multiplying Accuracy

The MC1506L may be used in the multiplying mode with six-bit accuracy when the reference current is varied over a range of 64:1. The major source of error is the bias current of the termination amplifier. Under "worst case" conditions these six amplifiers can contribute a total of 6.0 μ A extra current at the output terminal. If the reference current in the multiplying mode ranges from 60 μ A to 4.0 mA, the 6.0 μ A contributes an error of 0.1 LSB. This is well within six-bit accuracy.

A monotonic converter is one which supplies an increase in current for each increment in the binary word. Typically, the MC1506L is monotonic for all values of reference current above 0.5 mA. The recommended range for operation with a dc reference current is 0.5 to 4.0 mA.

...

Settling Time

The "worst case" switching condition occurs when all bits are switched "on", which corresponds to a high-to-low transition for all bits. This time is typically 150 ns to within $\pm 1/2$ LSB, while the turn "off" is typically under 50 ns.

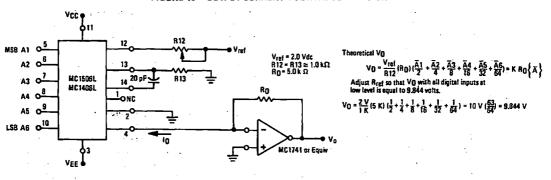
The slowest single switch is the least significant bit, which turns "on" and settles in 50 ns and turns "off" in 30 ns. In applications where the D-to-A converter functions in a positive going ramp mode, the "worst case" switching condition does not occur, and a settling time of less than 150 ns may be realized.

Reference Amplifier Drive and Compensation

The reference amplifier provides a voltage at Pin 12 for converting the reference voltage to a current, and a turn-

(1) An order of the second se Second seco around circuit or current mirror for feeding the ladder. The reference amplifier input current, 112, must always flow into Pin 12 regardless of the setup method or reference voltage polarity.

Connections for a positive reference voltage are shown in Figure 6. The reference voltage source supplies the full current 112. Compensation is accomplished by Miller feedback from Pin 14 to Pin 13. This compensation method yields the best slew rate, typically better than 2.0 mA/us, and is independent of the value of R12. R13 must be used to establish the proper impedance for compensation at Pin 13. For bipolar reference signals, as in the multiplying mode, R13 can be tied to a negative voltage corresponding to the minimum input level. Another method is shown in Figure 22.

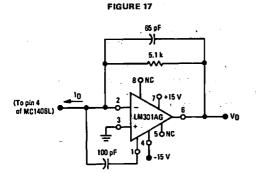

It is possible to eliminate R13 with only a small sacrifice in accuracy and temperature drift. For instance when high-speed operation is not needed, a capacitor is connected from pin 14 to VEE. The capacitor value must be increased when R12 is made larger to maintain a proper phase margin. For R12 values of 1.0, 2.5, and 5.0 kilohms, minimum capacitor values are 50, 125, and 250 pF.

Connections for a negative reference voltage are shown in Figure 7. A high input impedance is the advantage of this method, but Miller feedback cannot be used because it feeds the input signal around the PNP directly into the high impedance node, causing slewing problems and high frequency peaking. Compensation involves a capacitor to VEE on Pin 14, using the values of the previous paragraph. The negative reference voltage must be at least 3.0 V above VEE. Bipolar input signals may be handled by connecting R12 to a positive reference voltage equal to the peak positive input level at Pin 13.

When a dc reference voltage is used, capacitive bypass to ground is recommended. The 5.0 V logic supply is not recommended as a reference voltage. If a well regulated 5.0 V supply which drives logic is to be used as the reference, R12 should be decoupled by connecting it to +5.0 V through another resistor and bypassing the junction of the two resistors with 0.1 μ F to ground. For reference voltages greater than 5.0 V, a clamp diode is recommended between Pin 12 and ground.

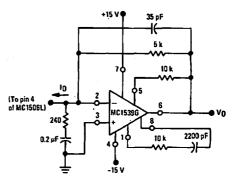
If Pin 12 is driven by a high impedance such as a transistor current source, none of the above compensation methods apply and the amplifier must be heavily compensated, thus decreasing the overall bandwidth.

· . · . . · ·

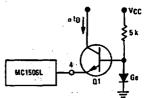


APPLICATIONS INFORMATION FIGURE 18 - OUTPUT CURRENT VOLTAGE CONVERSION

Voltage outputs of a larger magnitude are obtainable with this circuit which uses an external operational amplifier as a current to voltage converter. This configuration automatically keeps the output of the MC1506L at ground potential and the operational amplifier can generate, a positive voltage limited only by its positive supply voltage. Frequency response and settling time are primarily determined by the characteristics of the operational amplifier. In addition, the operational amplifier must be compensated for unity gain, and in some cases overcompensation may be desirable.


Note that this configuration results in a positive output voltage only, the magnitude of which is dependent on the digital input.

The following circuit shows how the LM301AG can be used in a feedforward mode resulting in a full scale settling time on the order of 2.0 μ s.



An alternative method is to use the MC1539G and input compensation. Response of this circuit is also on the order of 2.0 μ s.

The positive voltage range may be extended by cascoding the output with a high beta common base transistor, Q1, as shown.

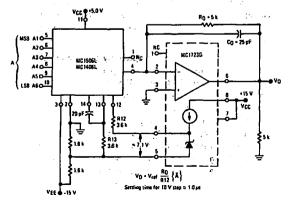
The output voltage range for this circuit is 0 volts to BVCBO of the transistor. Variations in beta must be considered for wide temperature range applications. An inverted output waveform may be obtained by using a load resistor from a positive reference voltage to the collector of the transistor. Also, high-speed operation is possible with a large output voltage swing.

MC1406L, MC1506L

APPLICATIONS INFORMATION (continued)

Combined Output Amplifier and Voltage Reference

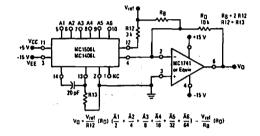
For many of its applications the MC1506L requires a reference voltage and an operational amplifier. Normally the operational amplifier is used as a current to voltage converter and its output need only go positive. With the popular MC1723G voltage regulator both of these functions are provided in a single package with the added bonus of up to 150 mA of output current, see Figure 19. Instead of powering the MC1723G from a single positive voltage supply, it uses a negative bias as well. Although the reference voltage of the MC1723G is then developed with respect to that negative voltage it appears as a common mode signal to the reference amplifier in the D-to-A converter. This allows use of its output amplifier as a classic current-to-voltage converter with the non-inverting input grounded.


Since ± 15 V and ± 5.0 V are normally available in a combination digital-to-analog system, only the ± 5.0 V need be developed. A resistor divider is sufficiently accurate since the allowable range on pin 5 is from ± 2.0 to ± 8.0 volts. The 5.0 kilohm pulldown resistor on the amplifier output is necessary for fast negative transitions.

Full scale output may be increased to as much as 32 volts by increasing R_0 and raising the +15 V supply voltage to 35 V maximum. The resistor divider should be altered to comply with the maximum limit of 40 volts across the MC1723G. C₀ may be decreased to maintain the same R_0C_0 product if maximum speed is desired.

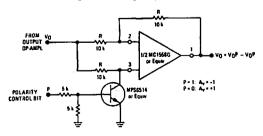
Programmable Power Supply

The circuit of Figure 19 can be used as a digitally programmed power supply by the addition of thumbwheel switches and a BCD-to-binary converter. The output voltage can be scaled in several ways, including 0 to +6.3 volts in 0.1-volt increments, ± 0.05 volt; or 0 to 31.5 volts in 0.5-volt increments, ± 0.25 volt.


FIGURE 19 - COMBINED OUTPUT AMPLIFIER and VOLTAGE REFERENCE CIRCUIT

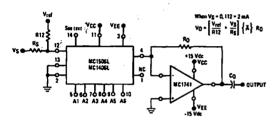
Bipolar or Negative Output Voltage

The circuit of Figure 20 is a variation from the standard voltage output circuit and will produce bipolar output signals. A positive current may be sourced into the summing node to offset the output voltage in the negative direction. For example, if approximately 1.0 mA is used a bipolar output signal results which may be described as a 6-bit "1's" complement offset binary. V_{ref} may be used as this auxiliary reference. Note that R_O has been doubled to 10 kilohms because of the anticipated 20 V (p-p) output range.


FIGURE 20 - BIPOLAR OR NEGATIVE OUTPUT VOLTAGE CIRCUIT

Polarity Switching Circuit, 6-Bit Magnitude Plus Sign D-to-A Converter

Bipolar outputs may also be obtained by using a polarity switching circuit. The circuit of Figure 21, gives 6-bits magnitude plus a sign bit. In this configuration the operational amplifier is switched between a gain of +1.0 and -1.0. Although another operational amplifier is required, no more space is taken when a dual operational amplifier such as the MC1558G is used. The transistor should be selected for a very low saturation voltage and resistance.

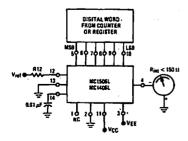

MC1406L, MC1506L

APPLICATIONS INFORMATION (continued)

Programmable Gain Amplifier or Digital Attenuator

~When used in the multiplying mode the MC1506L can be applied as a digital attenuator. See Figure 22. One advantage of this technique is that if $R_S = 50$ ohms, no compensation capacitor is needed and a wide large signal bandwidth is achieved. The small and large signal bandwidths are now identical and are shown in Figure 15.

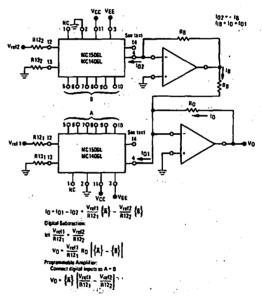
FIGURE 22 – PROGRAMMABLE GAIN AMPLIFIER OR DIGITAL ATTENUATOR CIRCUIT


Panel Meter Readout

. 1. 1.

The MC1506L can be used to read out the status of BCD or binary registers or counters in a digital control system. The current output can be used to drive directly an analog panel meter. External meter shunts may be necessary if a meter of less than 2.0 mA full scale is used. Full scale calibration can be done by adjusting R12 or V_{ref}.

16.5


FIGURE 23 - PANEL METER READOUT CIRCUIT

The best frequency response is obtained by not allowing I_{12} to reach zero. RS can be set for a ± 1.0 mA variation in relation to I_{12} . I_{12} can never be negative.

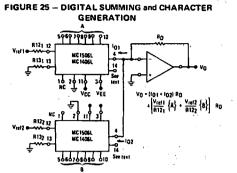
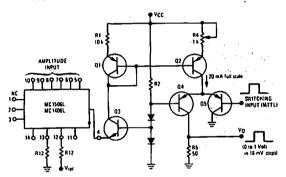

The output current is always unipolar. The quiescent dc output current level changes with the digital word that makes ac coupling necessary.

FIGURE 24 - DC COUPLED DIGITAL ATTENUATOR and DIGITAL SUBTRACTION


This digital subtraction application is useful for indicating when one digital word is approaching another in value. More information is available than with a digital comparator.

Bipolar inputs can be accepted by using any of the previously described methods, or applied differentially to R121 and R122 or R131 and R132. V_O will be a bipolar signal defined by the above equation. Note that the circuit shown accepts bipolar differential signals but does not have a negative common-mode range. A very useful method is to connect R121 and R122 to a positive reference higher than the most positive input, and drive R131 and R132. This yields high input impedance, bipolar differential and common-mode range. The compensation depends on the input method used, as shown in previous sections.

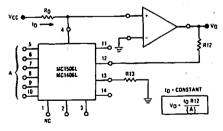
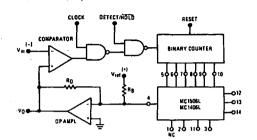

In a character generation system one MC1506L circuit uses a fixed reference voltage and its digital input defines the starting point for a stroke. The second converter circuit has a ramp input for the reference and its digital input defines the slope of the stroke. Note that this approach does not result in a 12-bit D-to-A converter (see Accuracy Section).

FIGURE 27 - PROGRAMMABLE PULSE GENERATOR

Fast rise and fall times require the use of high speed switching transistors for the differential pair, Q4 and Q5. Linear ramps and sine waves may be generated by the appropriate reference input.

FIGURE 29 - ANALOG DIVISION BY DIGITAL WORD



This circuit yields the inverse of a digital word scaled by a constant. For minimum error over the range of operation, I_0 can be set at 62 μ A so that I_{12} will have a maximum value of 3.938 mA for a digital bit input configuration of 11.110.

Compensation is necessary for loop stability and depends on the type of operational amplifier used. If a standard 1.0 MHz operational amplifier is employed, it should be overcompensated when possible. If this cannot be done, the reference amplifier can furnish the dominant pole with extra Miller feedback from pin 14 to 13. If the MC1723 or another wideband amplifier is used, the reference amplifier should slways be overcompensated.

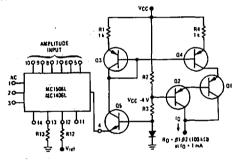

APPLICATIONS INFORMATION (continued)

FIGURE 26 – PEAK DETECTING SAMPLE and HOLD (Features infinite hold time and optional digital output.)

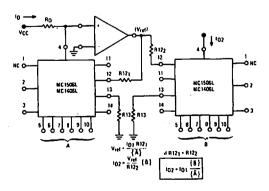
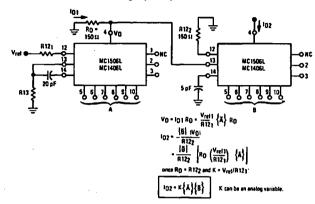

Positive peaks may be detected by inserting a hex inverter between the counter and MC1506L, reversing the comparator inputs, and connecting the output amplifier for unipolar operation.

FIGURE 28 - PROGRAMMABLE CONSTANT CURRENT SOURCE



Current pulses, ramps, staircases, and sine waves may be generated by the appropriate digital and reference inputs. This circuit is especially useful in curve tracer applications.

> FIGURE 30 - ANALOG QUOTIENT OF TWO DIGITAL WORDS

APPLICATIONS INFORMATION (continued)

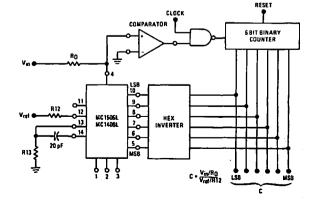


FIGURE 31 - ANALOG PRODUCT OF TWO DIGITAL WORDS (High-Speed Operation)

Two Digit BCD Conversion

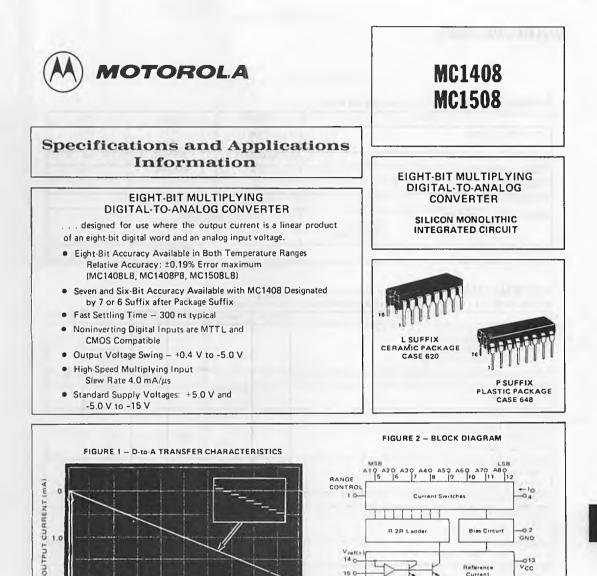

MC1506L parts which meet the specification for 7-bit accuracy can be used for the most significant word when building a two digit BCD D-to-A or A-to-D converter. If both outputs feed the virtual ground of an operational amplifier, 10:1 current scaling can be achieved with a resistive current divider. If current output is desired, the units may be operated at full scale current levels of 4.0 mA and 0.4 mA with the outputs connected to sum the currents. The error of the D-to-A converter handling the least significant bits will be scaled down by a factor of ten.

FIGURE 32 - DIGITAL QUOTIENT of TWO ANALOG VARIABLES or ANALOG-TO-DIGITAL CONVERSION

The circuit shown is a simple counterramp converter. An UP/DOWN counter and dual threshold comparator can be used to provide faster operation and continuous conversion.

1.1.4

GND

013

-016 COMPEN

VCC

Reference

Current

Amplifie

TYPICAL APPLICATIONS

(11111111)

Tracking A-to-D Converters

INPUT DIGITAL WORD

- Successive Approximation A-to-D Converters
- 2 1/2 Digit Panel Meters and DVM's
- Waveform Synthesis
- Sample and Hold
- Peak Detector

1

(00000000)

02 0

- Programmable Gain and Attenuation
- CRT Character Generation

Audio Digitizing and Decoding

VEEDJ

NPN Current Source Pair

- Programmable Power Supplies •
- Analog-Digital Multiplication
- Digital-Digital Multiplication
- Analog-Digital Division

Vref(+) 14 C-

15 G

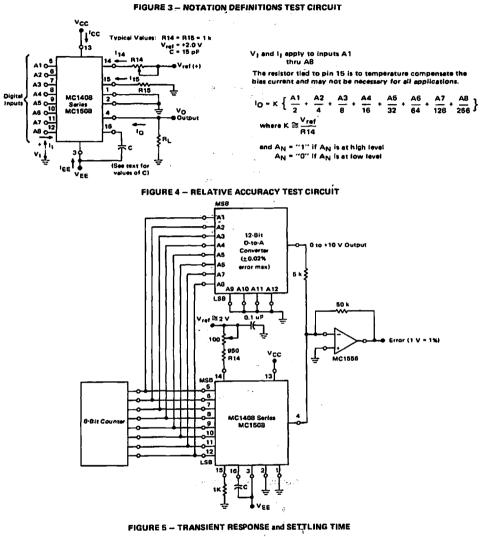
Vrett-

- Digital Addition and Subtraction
- Speech Compression and Expansion
- Stepping Motor Drive

ķ

\$

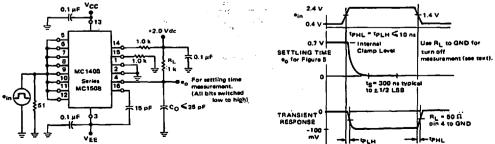
MAXIMUM RATINGS (TA = +25°C unless otherwise noted.)


Rating		Symbol	Vatue	Unit
Power Supply Voltage	· .	V _{CC} V _{EE}	+5.5 -16.5	Vdc
Digital Input Voltage		V5 thru V12	0 to +5.5	Vde
Applied Output Voltage		Võ	+0.5,-5.2	Vdc
Reference Current		114	5.0	mA
Reference Amplifier Inputs	· · · · · · · · · · · · · · · · · · ·	V14.V15	VCC,VEE	Vdc
Operating Temperature Range	MC1508 MC1408 Series	TA	-55 to +125 0 to +75	°C
Storage Temperature Range		T _{stg}	-65 to +150	<u>°C</u>

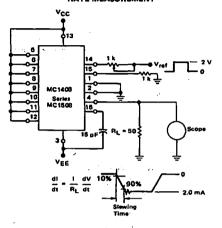
.

ELECTRICAL CHARACTERISTICS (V_{CC} = +5.0 Vdc, V_{EE} = -15 Vdc, $\frac{V_{ref}}{R14}$ = 2.0 mA, MC1508L8: T_A = -55°C to +125°C. MC1408L Series: T_A = 0 to +75°C unless otherwise noted. All digital inputs at high logic level.)

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Relative Accuracy (Error relative to full scale 1 ₀) MC1508L8, MC1408L8, MC1408P8 MC1408P7, MC1408L7, See Note 1	4	Er	 	-	±0.19 ±0.39	*
MC1408P6, MC1408L6, See Note 1			-	-	±0.78	
Settling Time to within $\pm 1/2$ LSB{includes tpLH}(TA=+25°C)See Note 2	5	۲s	-	300		ns
Propagation Delay Time T _A = +25 ⁰ C	5	PLHIPHL	-	30	100	. ns
Output Full Scale Current Drift		TCIO	-	- 20		PPM/0
Digital Input Logic Levels (MSB) High Level, Logic "1" Law Level, Logic "0"	3	VIH VIL	2.0		- 0.8	Vdc
Digital Input Current (MSB) High Level, VIH = 5.0 V Low Level, VIL = 0.8 V	3	Чн - Чн	-	0 0.4	0.04 -0.8	mA
Reference Input Bias Current (Pin 15)	3	115		-1.0	-5.0	μA
Output Current Range V _{EE} = -5.0 V V _{EE} = -15 V, T _A = 25 ⁰ C	3	lor	0	2.0 2.0	2.1 4.2	mA
Output Current V _{rof} = 2.000 V, R14 = 1000 Ω	3	. ¹ 0	1.9	1.99	2.1	mA
Output Current (All bits low)	3	lO(min)		0	4:0	μA
Ourput Voltage Compliance (E _r ≤ 0.19% at T _A = +25 ^o C) Pin 1 grounded Pin 1 open, V _{EE} below -10 V	3-	vo		 -	-0.55, +0.4 -5.0, +0.4	Vdc
Reference Current Slew Rate	6	SR I _{ref}	-	4.0		mA/µs
Output Current Power Supply Sensitivity		PSRR(-)	-	0.5	2.7	μA/V
Power Supply Current	3	ICC IEE	-	+13.5	+22 - -13	mA
Power Supply Voltage Range (T _A = +25 ^o C)	3		+4.5 -4.5	+5.0 -15	+5.5 -16.5	Vdc
Power Dissipation All bits low VEE = -5.0 Vdc VEE = -15 Vdc	3	PD	_ `	105 190	170 305	mW
All bits high VEE ≖ -5.0 Voc VEE = -15 Voc	• •		11	S0 160		


Note 1. All current switches are tested to guarantee at least 50% of rated output current. Note 2. All bits switched.

TEST CIRCUITS


A El Les de la Companya de la Compan

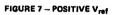
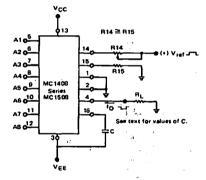
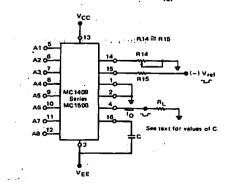
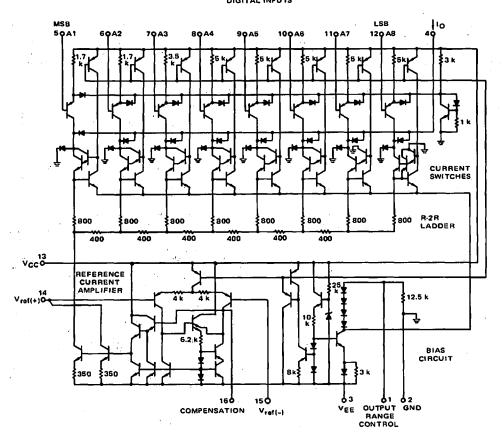

8

FIGURE 6 - REFERENCE CURRENT SLEW


FIGURE 8 - NEGATIVE Vref

١

. ان

FIGURE 9 - MC1409, MC1508 SERIES EQUIVALENT CIRCUIT SCHEMATIC DIGITAL INPUTS

CIRCUIT DESCRIPTION

The MC1408 consists of a reference current amplifier, an R-2R ladder, and eight high-speed current switches. For many applications, only a reference resistor and reference voltage need be added.

The switches are noninverting in operation, therefore a high state on the input turns on the specified output current component. The switch uses current steering for high speed, and a termination amplifier consisting of an active load gain stage with unity gain feedback. The termination amplifierholds the perssitic capacitance of the ladder at a constant voltage during switching, and provides a low impedance termination of equal voltage for all legs of the ladder.

The R-2R ladder divides the reference amplifier current into binarily-related components, which are fed to the switches. Note that there is always a remainder current which is equal to the least significant bit. This current is shunted to ground, and the maximum output current is 255/256 of the reference amplifier current, or 1.992 mA for a 2.0 mA reference amplifier current if the NPN current source pair is perfectly matched.

GENERAL INFORMATION

Reference Amplifier Drive and Compensation

The reference amplifier provides a voltage at pin 14 for converting the reference voltage to a current, and a turn around circuit or current mirror for feeding the ladder. The reference amplifier input current, 114, must always flow into pin 14 regardless of the setup method or reference voltage polarity.

Connections for a positive reference voltage are shown in Figure 7. The reference voltage source supplies the full current 114. For bipolar reference signals, as in the multiplying mode, R15 can be tied to a negative voltage corresponding to the minimum input level. It is possible to eliminate R15 with only a small sacrifice in accuracy and temperature drift. Another method for bipolar inputs is shown in Figure 25.

The compensation capacitor value must be increased with increases in R14 to maintain proper phase margin; for R14 values of 1.0, 2.5 and 5.0 kilohms, minimum capacitor values are 15, 37, and 75 pF. The capacitor should be tied to V_{EE} as this increases negative supply rejection.

A negative reference voltage may be used if R14 is grounded and the reference voltage is applied to R15 as shown in Figure 8. A high input impedance is the main advantage of this method. Compensation involves a capacitor to V_{EE} on pin 16, using the values of the previous paragraph. The negative reference voltage must be at least 3.0-volts above the V_{EE} supply. Bipolar input signals may be handled by connecting R14 to a positive reference voltage equal to the peek positive input level at pin 15.

When a dc reference voltage is used, capacitive bypess to ground is recommended. The 5.0-V logic supply is not recommended as a reference voltage. If a well regulated 5.0-V supply which drives logic is to be used as the reference, R14 should be decoupled by connecting it to +5.0 V through another resistor and bypassing the junction of the two resistors with 0.1 μ F to ground. For reference voltages greater than 5.0 V, a clamp diode is recommended between pin 14 and ground.

If pin 14 is driven by a high impedance such as a transistor current source, none of the above compensation methods apply and the amplifier must be heavily compensated, decreasing the overall bandwidth.

Output Voltage Range

The voltage on pin 4 is restricted to a range of -0.55 to +0.4 volts at $+25^{10}$ C, due to the current switching methods employed in the MC1408. When a current switch is turned "off", the positive voltage on the output terminal can turn 'on' the output diode and increase the output current level. When a current switch is turned "on", the negative output voltage range is restricted. The base of the termination circuit Darlington transistor is one diode voltage below ground when pin 1 is grounded, so a negative voltage below the specified safe level will drive the low current device of the Darlington into saturation, decreasing the output current level.

The negative output voltage compliance of the MC1408 may be extended to -5.0 V volts by opening the circuit at pin 1. The negative supply voltage must be more negative then -10 volts. Using a full scale current of 1.992 mA and load resistor of 2.5 kilohms between pin 4 and ground will yield a voltage output of 256 levels between 0 and -4.980 volts. Floating pin 1 does not affact the converter speed or power dissipation. However, the value of the load resistor determines the switching time due to increased voltage swing. Values of R_L up to 500 ohms do not significantly affect performance, but a 2.5-kilohm load increases

Refer to the subsequent text section on Settling Time for more details on output loading.

If a power supply value between -5.0 V and -10 V is desired, a voltage of between 0 and -5.0 V may be applied to pin 1. The value of this voltage will be the maximum allowable negative output swing.

Output Current Range

- - - -

The output current maximum rating of 4.2 mA may be used only for negative supply voltages typically more negative than -8.0 volts, due to the increased voltage drop across the 350-ohm resistors in the reference current amplifier.

Accuracy

Absolute accuracy is the measure of each output current level with respect to its intended value, and is dependent upon relative accuracy and full scale current drift. Relative accuracy is the measure of each output current level as a fraction of the full scale current. The relative accuracy of the MC1408 is essentially constant with temperature due to the excellent temperature tracking of the monolithic resistor ladder. The reference current may drift with temperature, causing a change in the absolute accuracy af output current. However, the MC1408 has a very luw full scale current drift with temperature.

The MC1408/MC1608 Series is guaranteed accurate to within $\pm 1/2$ LSB at $+25^{\circ}$ C at a full scale output current of 1.992 mA. This corresponds to a reference amplifier output current drive to the ladder network of 2.0 mA, with the loss of one LSB = 8.0 μ A which is the ladder remainder shunted to ground. The input current to pin 14 has a guaranteed value of between 1.9 and 2.1 mA, allowing some mismatch in the NPN current source pair. The accuracy test circuit is shown in Figure 4. The 12-bit converter is calibrated for a full scale output current of 1.992 mA. This is an optional step since the MC1408 accuracy is essentially the same between 1.5 and 2.5 mA. Then the MC1408 circuits' full scale current is trimmed to the same value with R14 so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on an oscilloscope, datected by compartors, or stored in a peak detector.

Two 8-bit D-to-A converters may not be used to construct a 16-bit accurate D-to-A converter. 16-bit accuracy implies a total error of $\pm 1/2$ of one part in 65, 536, or $\pm 0.00076\%$, which is much more accurate than the $\pm 0.19\%$ specification provided by the MC1408x8.

Multiplying Accuracy

The MC1408 may be used in the multiplying mode with eight-bit accuracy when the reference current is varied over a range of 256:1. The major source of error is the bias current of the termination amplifier. Under "worst case" conditions, these eight amplifiers can contribute a total of 1.8 μ A extra current at the output terminal. If the reference current in the multiplying mode ranges from 16 μ A to 4.0 mA, the 1.6 μ A contributes an error of 0.1 LSB. This is well within eight-bit accuracy referenced to 4.0 mA.

A monotonic converter is one which supplies an increase in current for each increment in the binary word. Typically, the MC1408 is monotonic for all values of reference current above 0.5 mA. The recommended range for operation with a dc reference current is 0.5 to 4.0 mÅ.

GENERAL INFORMATION (Continued)

Settling Time

The "worst case" switching condition occurs when all bits are switched "on", which corresponds to a low-to-high transition for all bits. This time is typically 300 ns for softing to within $\pm 1/2$ LS8, for 8-bit accuracy, and 200 ns to 1/2 LS8 for 7 and 6-bit accuracy. The turn off is typically under 100 ns. These times apply when R1 ≤ 500 ohms and C $\propto \leq 25$ pF.

control of the second second

The test circuit of Figure 5 requires a smaller voltage swing for the current switches due to internal voltage clamping in the MC-1408. A 1.0-kilohm load resistor from pin 4 to ground gives a typical settling time of 400 ns. Thus, it is voltage swing and not the output RC time constant that determines settling time for most applications.

Extra care must be taken in board layout since this is usually the dominant factor in satisfactory test results when measuring settling time. Short leads, $100 \ \mu$ F supply bypassing for low frequencies, and minimum scope lead length are all mandatory.

TYPICAL CHARACTERISTICS (V_{CC} = +5.0 V, V_{EE} = -15 V, T_A = +25°C unless otherwise noted.)

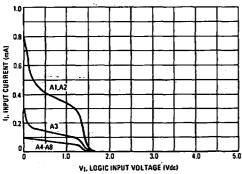


FIGURE 12 - OUTPUT CURRENT versus OUTPUT VOLTAGE (See text for pin 1 restrictions)

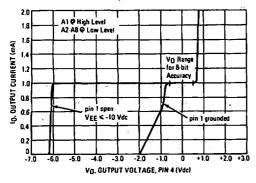
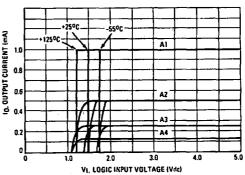
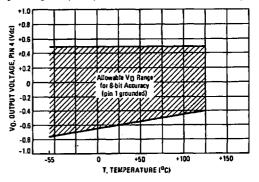
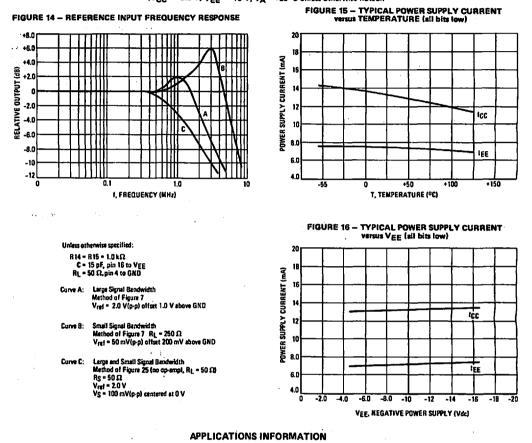
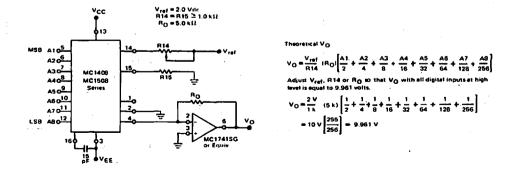
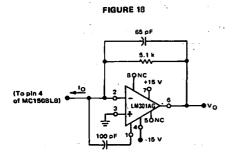


FIGURE 11 – TRANSFER CHARACTERISTIC versus TEMPERATURE (A5 thru A8 thresholds lie within range for A1 thru A4)

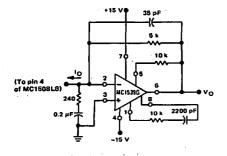





FIGURE 13 - OUTPUT VOLTAGE versus TEMPERATURE (Negative range with pin 1 open is -5.0 Vdc over full temperature range)

TYPICAL CHARACTERISTICS (continued) (VCC $^{\circ}$ +5.0 V, VEE = -15 V, T_A = +25^oC unless otherwise noted.)



Voltage outputs of a larger magnitude are obtainable with this circuit which uses an external operational amplifier as a current to voltage converter. This configuration automstically keeps the output of the MC1408 at ground potential and the operational amplifier can generate a positive voltage limited only by its positive supply voltage. Fraquency response and settling time are primarily determined by the characteristics of the operational amplifier. In addition, the operational amplifier must be compensated for unity gain, and in some cases overcompensation may be desirable.


Note that this configuration results in a positive output voltage only, the magnitude of which is dependent on the digital input.

The following circuit shows how the LM301AG can be used in a feedforward mode resulting in a full scale sattling time on the order of 2.0 us.

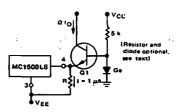

An alternative method is to use the MC1539G and input compensation. Response of this circuit is also on the order of 2.0 µs.

FIGURE 19

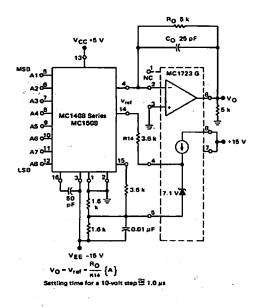
The positive voltage range may be extended by cascading the output with a high beta common base transistor, Q1, as shown.

FIGURE 20 - EXTENDING POSITIVE VOLTAGE RANGE

The output voltage range for this circuit is 0 volts to BV_{CBO} of the transistor. If pin 1 is left open, the transistor base may be grounded, eliminating both the resistor and the diode. Variations in beta must be considered for wide temperature range applications. An inverted output waveform may be obtained by using a load resistor from a positive reference voltage to the collector of the transistor. Also, high-speed operation is possible with a large output voltage swing, because pin 4 is held at a constant voltage. The resistor (R) to V_{EE} maintains the transistor emitter voltage when all bits are "off" and insures fast turn-on of the least significant bit.

Combined Output Amplifier and Voltage Reference

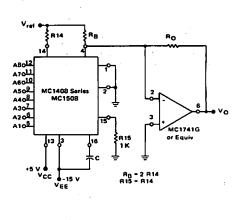
For many of its applications the MC1408 requires a reference voltage and an operational amplifier. Normally the operational amplifier is used as a current to voltage converter and its output need only go positive. With the popular MC1723G voltage regulator both of these functions are provided in a single package with the added bonus of up to 150 mA of output current. See Figure 21. The MC1723G uses both a positive and negative power supply. The reference voltage of the MC1723G is then developed with respect to the negative voltage and appears as a common-mode signal to the reference amplifier in the D-to-A converter. This allows use of its output amplifier as a classic current-to-voltage converter with the non-inverting input grounded.


Since ± 15 V and ± 5.0 V are normally available in a combination digital-to-analog system, only the ± 5.0 V need be developed. A resistor divider is sufficiently accurate since the allowable range on pin 5 is from ± 2.0 to ± 8.0 volts. The 5.0 kilohm pulldown resistor on the amplifier output is necessary for fast negative transitions.

Full scale output may be increased to as much as 32 volts by increasing R_O and raising the +15 V supply voltage to 35 V maximum. The resistor divider should be eltered to comply with the maximum limit of 40 volts across the MC1723G. C_O may be decreased to maintain the same R_OC_O product if maximum speed is desired.

Programmable Power Supply

The circuit of Figure 21 can be used as a digitally programmed power supply by the addition of thumbwheel switches and a BCDto-binary converter. The output voltage can be scaled in several ways, including 0 to +25.5 volts in 0.1-volt increments, ± 0.06 volt; or 0 to 5.1 volts in 20 mV increments, ± 10 mV.


FIGURE 21 - COMBINED OUTPUT AMPLIFIER and VOLTAGE REFERENCE CIRCUIT

Bipelar or Negative Output Voltage

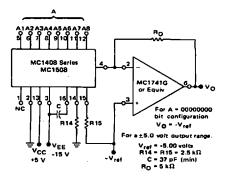

The circuit of Figure 22 is a variation from the standard voltage output circuit and will produce bipolar output signals. A positive current may be sourced into the summing node to offset the output voltage in the negative direction. For example, if approximately 1.0 mA is used a bipolar output signal results which may be described as a 6-bit "15" complement offset binary. Verf may be used as this auxiliary reference. Note that R_O has been doubled to 10 kilohms because of the anticipated 20 V(pp) output range.

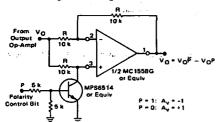
FIGURE 22 - BIPOLAR OR NEGATIVE OUTPUT VOLTAGE CIRCUIT

$$V_0 = \frac{V_{ref}}{R14} \left(R_0 \right) \left[\frac{A_1}{2} + \frac{A_2}{4} + \frac{A_3}{8} + \frac{A_4}{16} + \frac{A_5}{32} + \frac{A_6}{64} + \frac{A_7}{128} + \frac{A_8}{256} \right] - \frac{V_{ref}}{R_8} \left(R_0 \right)$$

FIGURE 23 – BIPOLAR OR INVERTED NEGATIVE OUTPUT VOLTAGE CIRCUIT

Decrease R_{O} to 2.5 k Ω for a 0 to -8.0-volt output range. This application provides somewhat lower speed, as previously discussed in the Output Voltage Range section of the General Information.

MC1408, MC1508

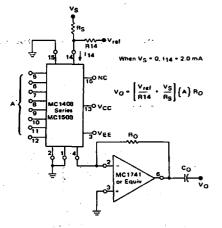

APPLICATIONS INFORMATION (continued)

Polarity Switching Circuit, 8-Bit Magnitude Plus Sign D-to-A Converter

.....

Bipolar outputs may also be obtained by using a polarity switching circuit. The circuit of Figure 24 gives 8-bit magnitude plus a sign bit. In this configuration the operational amplifier is switched between a gain of +1.0 and -1.0. Although another operational amplifier is required, no more space is taken when a dual operational amplifier such as the MC1658G is used. The transistor should be selected for a very low saturation voltage and resistance.

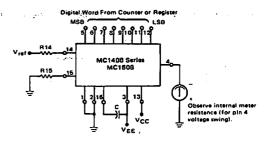
FIGURE 24 – POLARITY SWITCHING CIRCUIT (8-Bit Magnitude Plus Sign D-to-A Converter)

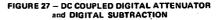

Programmable Gain Amplifier or Digital Attenuator

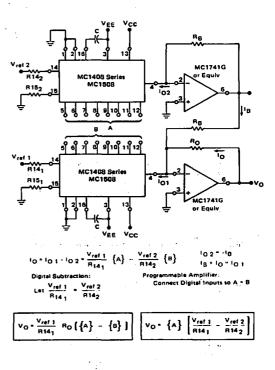
When used in the multiplying mode the MC1408 can be applied as a digital attenuator. See Figure 25. One advantage of this technique is that if $R_S = 50$ ohms, no compensation capacitor is needed. The small and large signal bandwidths are now identical and are shown in Figure 14.

The best frequency response is obtained by not allowing 14 to reach zero. However, the high impedance node, pin 16, is clamped to prevent saturation and insure fast recovery when the current through R14 goes to zero. Rs can be set for a ± 1.0 mA variation in relation to 14. 14 can never be negative. The output current is always unipoler. The quiescent dc output

The output current is slways unipolar. The quiescent dc output current level changes with the digital word which makes ac coupling necessary.


FIGURE 25 - PROGRAMMABLE GAIN AMPLIFIER OR DIGITAL ATTENUATOR CIRCUIT




Panel Meter Readout

The MC1408 can be used to read out the status of BCD or binary registers or counters in a digital control system. The current output can be used to drive directly an analog panel meter. External meter shunts may be necessary if a meter of less than 2.0 mA full scale is used. Full scale calibration can be done by adjusting R14 or V_{ref}.

FIGURE 26 - PANEL METER READOUT CIRCUIT

This digital subtraction application is useful for indicating when one digital word is approaching another in value. More information is available than with a digital comparator.

Bipolar inputs can be accepted by using any of the previously described methods, or applied differentially to R141 and R142 or R151 and R152. V0 will be a bipolar signal defined by the above equation. Note that the circuit shown accepts bipolar differential signals but does not have a negative common-mode range. A very useful method is to connect R141 and R142 to a positive reference higher than the most positive input, and drive R151 and R152. This yields high input impedance, bipolar differential and common-mode range.

FIGURE 28 - DIGITAL SUMMING and CHARACTER GENERATION

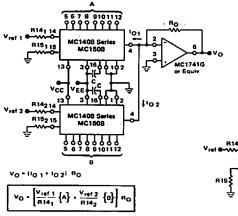
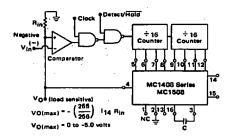
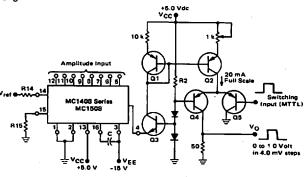




FIGURE 30 - NEGATIVE PEAK DETECTING SAMPLE AND HOLD

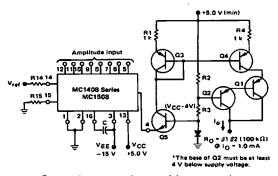
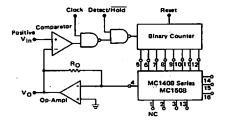


FIGURE 31 - PROGRAMMABLE PULSE GENERATION

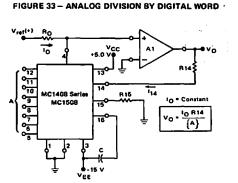
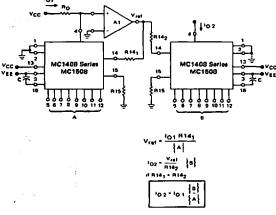
Fast rise and fall times require the use of high-speed switching transistors for the differential pair, Q4 and Q5. Linear ramps and sine waves may be generated by the appropriate reference input.

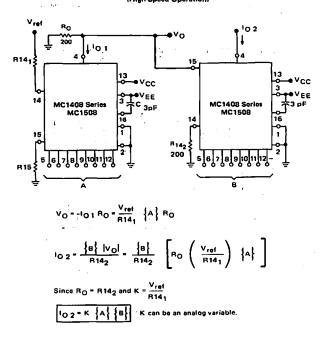

FIGURE 32 - PROGRAMMABLE CONSTANT CURRENT SOURCE

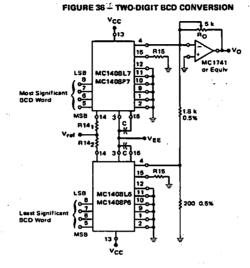
Current pulses, ramps, staircases, and sine waves may be generated by the appropriate digital and reference inputs. This circuit is especially useful in curve tracer applications.

In a character generation system one MC1408 circuit uses a fixed reference voltage and its digital input defines the starting point for a stroke. The second converter circuit has a ramp input for the reference and its digital input defines the slope of the stroke. Note that this approach does not result in a 16-bit D-to-A converter (see Accuracy Section).

FIGURE 29,- POSITIVE PEAK DETECTING SAMPLE and HOLD (Features indefinite hold time and optional digital output.)


FIGURE 34 - ANALOG QUOTIENT OF TWO DIGITAL WORDS



This circuit yields the inverse of a digital word scaled by a constant. For minimum error over the range of operation, I_Q can be set at 16 μ A so that 114 will have a maximum value of 3.584 mA for a digital bit input configuration of 00000001.

Compensation is necessary for loop stability and depends on the type of operational amplifier used. If a standard 1.0 MHz operational amplifier is employed, it should be overcompensated when possible. If the MC1733, MC1520 or any other wideband amplifier are used, the reference amplifier should always be overcompensated.

Two 8-bit, D-to-A converters can be used to build a two digit BCD D-to-A or A-to-D converter. If both outputs feed the virtual ground of an operational amplifier, 10:1 current scaling can be achieved with a resistive current divider. If current output is desired, the units may be operated at full scale current levels of 4.0 mA and 0.4 mA with the outputs connected to sum the currents. The error of the D-to-A converter handling the least significant bits will be scaled down by a factor of ten and thus an MC1408L6 may be used for the least significant word.

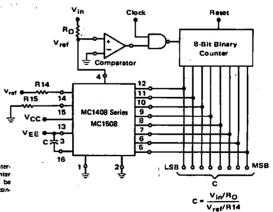
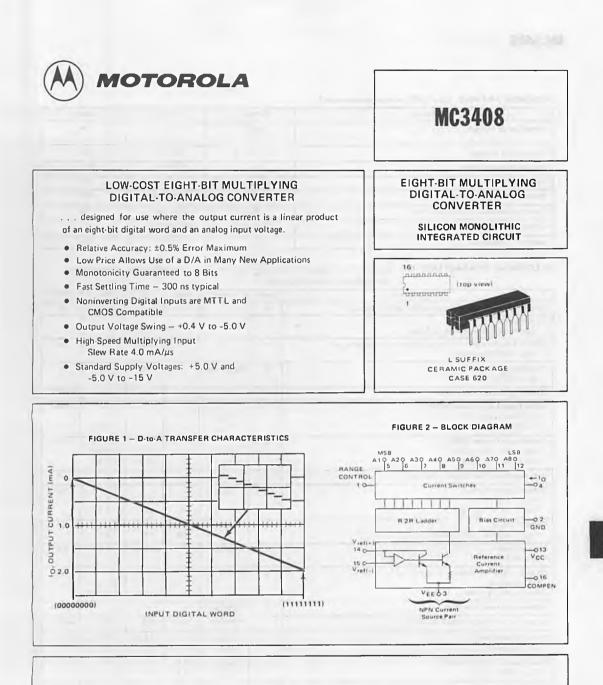



FIGURE 37 - DIGITAL QUOTIENT OF TWO ANALOG VARIABLES or ANALOG-TO-DIGITAL CONVERSION

The circuit shown is a simple counterramp converter. An UP/DOWN counter and dual threshold comparator can be used to provide faster operation and continuous conversion.

TYPICAL APPLICATIONS

8-43

- Tracking A-to-D Converters
- Successive Approximation A-to-D Converters
- 2 1/2 Digit Panel Meters and DVM's
- Waveform Synthesis
- Sample and Hold
- Peak Detector
- Programmable Gain and Attenuation
- CRT Character Generation

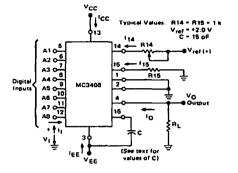
- Audio Digitizing and Decoding
- Programmable Power Supplies
- Analog-Digital Multiplication
- Digital-Digital Multiplication
- Analog-Digital Division
- Digital Addition and Subtraction
- Speech Compression and Expansion
- Stepping Motor Drive

MAXIMUM RATINGS (TA = +25°C unless otherwise noted.)

Rating	Symbol	Value	Unit	
Power Supply Voltage	VCC VEE	+7.0 -16.5	Vdc	
Digital Input Voltage	V5 thru V12	0 to +15	Vdc	
Applied Output Voltage	vo	+0.5,-5.2	Vdc	
Reference Current	- 114	5.0	mА	
Reference Amplifier Inputs	V14.V15	VCC,VEE	Vđc	
Operating Ambient Temperature Range	TA	0 to +70	ŰĈ	
Storage Temperature Range	Tstg	-65 to +150	<u>°C</u>	
Junction Temperature	LT I	+175	°c	

ELECTRICAL CHARACTERISTICS (V_{CC} = +5.0 Vdc, V_{EE} = -15 Vdc, Vref All digital inputs at high logic level.)

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Relative Accuracy (Error relative to full scale IQ) Note 1	4	Ε,	-	-	±0.5	%
Monotonicity See Multiplying Accuracy on Page 6	-	-	Guaranteed to 8 bits			_
Settling Time to within ±0.5% of Pull Scale [includes tpLH] (TA=+25 ⁰ C)See Note 2	5	ts	-	300	-	ns
Propagation Delay Time T _A = +25 ^o C	5	tPLH-tPHL		30	100	ns
Output Full Scale Current Drift	· · ·	. TCIO	· _	-30		PPM/ ^O C
Digital Input Logic Levels (MSB) High Level, Logic "1" Low Level, Logic "0"	3	VIH VIL	2.0		0.8	Vdc
Digital Input Current (MSB) High Level, V _{IH} = 5.0 V Low Level, V _{IL} = 0.8 V	3	liH liL	-	0 -0.4	0.04 -0.8	mA
Reference Input Bias Current (Pin 15)	3	¹ 15	-	-1.0	-5.0	μA
Output Current Range VEE ° -5.0 V VEE ° -15 V (T _A = 25 ⁰ C)	3	IOR	0	2.0 2.0	2.1 4.2	mA .
Οσφμt Current V _{ref} = 2.000 V, R14 = 1000 Ω	3	10	1.9	1.99	2.1	mΑ
Output Current (All bits tow)	3	^I O(min)	-	0	4.0	μA
Output Voltage Compliance ($E_r \le 0.5\%$ at $T_A = +25^{\circ}C$) Pin 1 grounded Pin 1 open, VEE below -10 V	3	V _O	-		-0.5, +0.4 -5.0, +0.4	Vdc
Reference Current Slew Rate	6	SR I _{ref}	-	4.0	-	mA/µs
Output Current Power Supply Sensitivity		PSRR(-)	-	0.5	4.0	μA/V
Power Supply Current (All bits low)	3	ICC EE	-	+13.5 -7.5	+22 -13	mА
Power Supply Voltage Range (T _A = +25 ^o C)	3		+4.5 -4.5	+5.0 -15	+5.5 -16.5	Vdc
Power Consumption All bits low VEE = -5.0 Vdc VEE = -15 Vdc All bits high	3	PC		105 190 90	170 305	mW
V _{EE} = -5.0 Vdc V _{EE} = -15 Vdc			-	160	-	

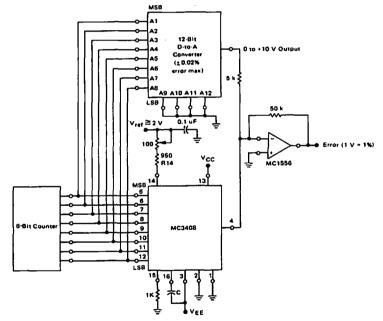

Note 1. For devices with greater accuracy, see MC1508 Series data sheet.

Note 2. All bits switched.

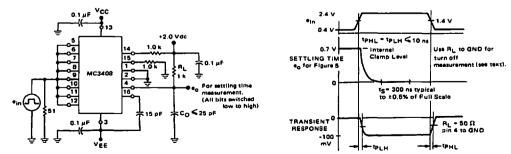
.


TEST CIRCUITS

FIGURE 3 -- NOTATION DEFINITIONS TEST CIRCUIT


V₁ and I₁ apply to inputs A1 thru A8

The resistor tlad to pin 15 is to temperature compensate the bias current and may not be necessary for all applications.



and $A_N = "1"$ if A_N is at high level $A_N = "0"$ if A_N is at low level

TEST CIRCUITS (continued)

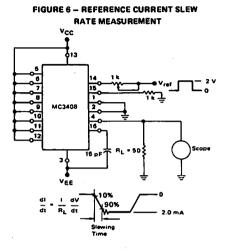
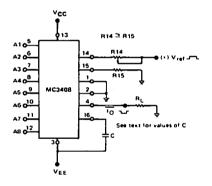
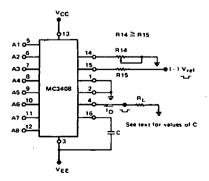
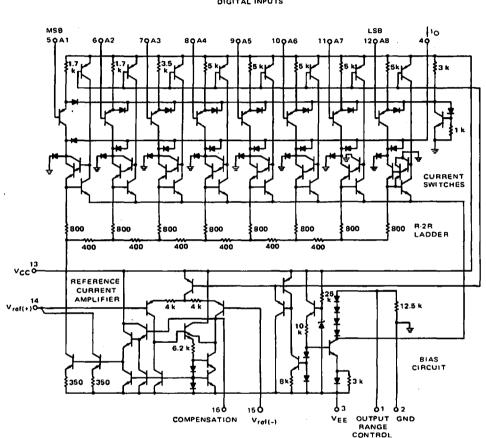





FIGURE 7 - POSITIVE Vref

FIGURE 9 - MC3408 EQUIVALENT CIRCUIT SCHEMATIC DIGITAL INPUTS

CIRCUIT DESCRIPTION

The MC3408 consists of a reference current amplifier, an R-2R ladder, and eight high-speed current switches. For many applications, only a reference resistor and reference voltage need be added.

The switches are noninverting in operation, therefore a high state on the input turns on the specified output current component. The switch uses current steering for high speed, and a termination amplifier consisting of an active load gain stage with unity gain feedback. The termination amplifier holds the parasitic capacitance of the ladder at a constant voltage during switching, and provides a low impedance termination of equal voltage for all legs of the ladder.

The R-2R ladder divides the reference amplifier current into binarily-related components, which are fed to the switches. Note that there is always a remainder current which is equal to the least significant bit. This current is shunted to ground, and the maximum output current is 255/256 of the reference amplifier current, or 1.992 mA for a 2.0 mA reference amplifier current if the NPN current source pair is perfectly matched.

GENERAL INFORMATION

Reference Amplifier Drive and Compensation

The reference amplifier provides a voltage at pin 14 for converting the reference voltage to a current, and a turn-around circuit or current mirror for faeding the ladder. The reference amplifier input current, 114, must always flow into pin 14 regardless of the setup method or reference voltage polarity.

Connections for a positive reference voltage are shown in Figure 7. The reference voltage source supplies the full current 114. For biploar reference signals, as in the multiplying mode, R15 can be tied to a negative voltage corresponding to the minimum input level. It is possible to eliminate R15 with only a small sacrifice in accuracy and temperature drift.

The compensation capacitor value must be increased with increases in R14 to maintain proper phase margin; for R14 values of 1.0, 2.5 and 5.0 kilohms, minimum capacitor values are 15, 37, and 75 pF. The cepacitor should be tied to V_{EE} as this increases negative supply rejection.

A negative reference voltage may be used if R14 is grounded and the reference voltage is applied to R15 as shown in Figure 8. A high input impedance is the main advantage of this method. Compensation involves a capacitor to VEE on pin 16, using the values of the previous paragraph. The negative reference voltage must be at least 3.0-volts above the VEE supply. Bipolar input signals may be handled by connecting R14 to a positive reference voltage equal to the peak positive input level at pin 15.

When a dc reference voltage is used, capacitive bypass to ground is recommended. The 5,0-V logic supply is not recommended as a reference voltage. If a well regulated 5,0-V supply which drives logic is to be used as the reference, R14 should be decoupled by connecting it to +5.0 V through another resistor and bypassing the junction of the two resistors with 0.1 μ F to ground. For reference voltages greater than 5.0 V, a clamp diode is recommended between pin 14 and ground.

If pin 14 is driven by a high impedance such as a transistor current source, none of the above compensation methods apply and the amplifier must be heavily compensated, decreasing the overall bandwidth.

Output Voltage Range

The voltage on pin 4 is restricted to a range of -0.5 to +0.4 volts at +25°C, due to the current switching methods employed in the MC3408. When a current switch is turned "off", the positive voltage on the output terminal can turn "on" the output diode and increase the output current level. When a current switch is turned "on", the negative output voltage range is restricted. The base of the termination circuit Darlington transistor is one diode below ground when pin 1 is grounded, so a negative voltage below the specified safe level will drive the low current device of the Darlington into saturation, decreasing the output current level.

The negative output voltage compliance of the MC3408 may be extended to -5.0 V volts by opening the circuit at pin 1. The negative supply voltage must be more negative than -10 volts. Using a full scale current of 1.952 mA and load resistor of 2.5 kilohms between pin 4 and ground will yield a voltage output of 256 levels between 0 and -4.980 volts. Floating pin 1 does not affect the converter speed or power dissipation. However, the value of the load resistor determines the switching time due to increased voltage swing. Values of R_L up to 500 ohms do not significantly affect performance, but a 2.5-kilohm load increases 'worst case'' settling time to 1.2 us (when all bits are switched on). Refer to the subsequent text section on Settling Time for more details on output loading.

If a power supply value between -5.0 V and -10 V is desired, a voltage of between 0 and -5.0 V may be applied to pin 1. The value of this voltage will be the maximum allowable negative output swing.

Output Current Range

The output current maximum rating of 4.2 mA may be used only for negative supply voltages typically more negative than -8.0 volts, due to the increased voltage drop across the 350-ohm resistors in the reference current amplifier.

Accuracy

Absolute accuracy is the measure of each output current level with respect to its intended value, and is dependent upon relative accuracy and full scale current drift. Relative accuracy is the measure of each output current level as a fraction of the full scale current. The relative accuracy of the MC3408 is essentially constant with temperature due to the excellent temperature tracking of the monolithic resistor ladder. The reference current may drift with temperature, causing a change in the absolute accuracy of output current. However, the MC3408 has a very low full scale current drift with temperature.

The MC3408 is guaranteed accurate to within $\pm 0.5\%$ at $\pm 25^{\circ}C$ at a full scale output current of 1.992 mA. This corresponds to a reference amplifier output current drive to the ladder network of 2.0 mA, with the loss of one LSB = 8.0 μ A which is the ladder remainder shunted to ground. The input current to pin 14 has a guaranteed value of between 1.9 and 2.1 mA, allowing some mismatch in the NPN current source pair. The accuracy test circuit is shown in Figure 4. The 12-bit converter is calibrated for a full scale output current of 1.992 mA. This is an optional step since the MC3408 accuracy is essentially the same between 1.5 and 2.5 mA. Then the MC3408 circuits' full scale current is trimmed to the same value with R14 so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on an oscillocope, detected by comparators, or stored in a pack detector.

Two 8-bit D-to-A converters may not be used to construct a 16-bit accurate D-to-A converter. 16-bit accuracy implies a total error of $\pm 1/2$ of one part in 65, 536, or $\pm 0.00076\%$, which is much more accurate than the $\pm 0.5\%$ specification provided by the MC3408.

Multiplying Accuracy

The MC3408 may be used in the multiplying mode with good accuracy when the reference current is varied over a range of 256:1. The major source of error is the bias current of the termination amplifier. Under "worst case" conditions, these eight amplifiers can contribute a total of 1.6 μ A extra current at the output terminal. If the reference current in the multiplying mode ranges from 16 μ A to 2.0 mA, the 1.6 μ A contributes an error of 0.2 LS8 with respect to the 2.0 mA.

A monotonic converter is one which supplies an increase in current for each increment in the binary word. Typically, the MC3408 is monotonic for all values of reference current above 0.5 mA. The recommended range for operation with a dc reference current is 0.5 to 2.0 mA.

Specifications and Applications Information

TEN BIT D TO A CONVERTER

The MC3410 series devices are low-cost, high-accuracy monolithic D/A converter subsystems. Like their MC1408 series predecessors. they provide the logic controlled current switches, the R-2R resistor ladder network and output termination networks. The output buffer amplifier and reference voltage have been omitted from the circuit to allow greatest system speed, flexibility and lowest cost. This device is useful in industrial control and microprocessor based systems.

- Relative Accuracy ±0.05% Error Maximum (MC3510 and MC3410)
- Fast Settling Time 250 ns Typical
- Noninverting Digital Inputs are MTTL and CMOS Compatible (from 5 to 15 V CMOS)
- Output Voltage Swing +0.2 V to -2.5 V
- High Speed Multiplying Input Slew Rate 20 mA/µs
- Standard Supply Voltages +5 V and 15 V
- All Categories Guaranteed Monotonic Across Temperature
- Reference Amplifier Internally Compensated

TYPICAL APPLICATIONS

Tracking A-to-D Converters

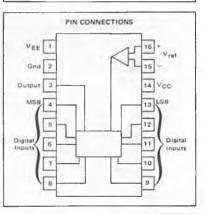
Sample and Hold Peak Detector

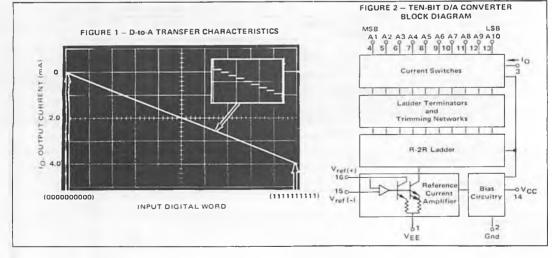
.

.

- Successive Approximation A-to-D Converters . .
 - 3-Digit Panel Meters and DVM's Waveform Synthesis
- Analog-Digital Multiplication .
- Programmable Power Supplies Digital-Digital Multiplication
 - Speech Compression and Expansion

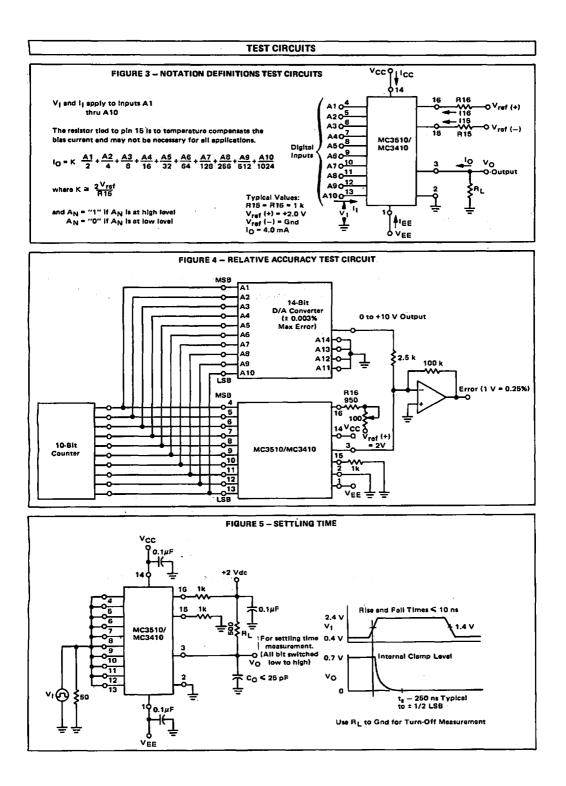
Programmable Gain and Attenuation


Sample Data Systems

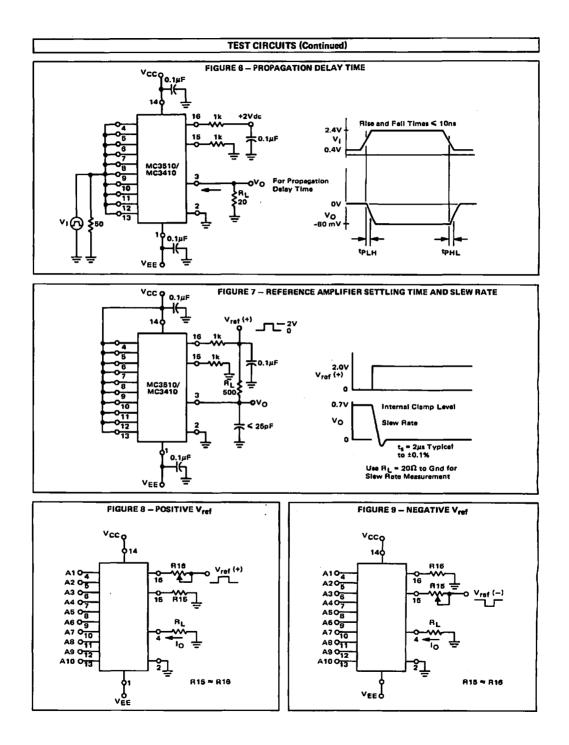


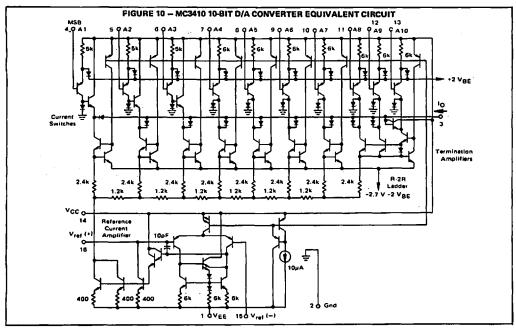
LASER TRIMMED

TEN BIT, MULTIPLYING DIGITAL-TO-ANALOG CONVERTER SILICON MONOLITHIC INTEGRATED CIRCUIT



MAXIMUM RATINGS (TA = +25°C unless otherwise noted.)


Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	+7.0	Vdc
	VEE	-18	
Digital Input Voltage	V _I .	+15	Vdc
Applied Output Voltage	Vo	+0.5, -5.0	Vdc
Reference Current	REF(16)	2.5	mA
Reference Amplifier Inputs	VREF	V _{CC} , V _{EE}	Vdc
Reference Amplifier Differential Inputs	VREF(D)	0.7	Vdc
Operating Temperature Range	TA		°C
MC3510		-55 to +125	
MC3410,C		0 to +70	
Junction Temperature	Tj		°C
Ceramic Package		+175	
Plastic Package		+150	


ELECTRICAL CHARACTERISTICS (V_{CC} = +5.0 Vdc, V_{EE} = -15 Vdc, $\frac{V_{HI}}{R16}$ = 2.0 mA, MC3510 T_A = -55°C to +125°C. MC3410 Series: T_A = 0 to +70°C unless otherwise noted. All digitel inputs et high logic level.)

Max Unit Characteristic Symbol Min Тур Relative Accuracy (Error relative to full scale In) TA = 25°C % E, MC3510, MC3410 10.05 _ _ MC3410C ±0.1 Relative Accuracy Temperature Drift (Relative to Full Scale Io) TCE, _ 2.5 _ PPM/^oC Monotonicity (Full Temperature Range) Monotonic to 10 Bits -Settling Time to within ±1/2 LSB (TA = 25°C) (All Bits Low to High) 250 tş, --ពន **Propagation Delay Time** 36 ns ^tPLH _ TA = +25°C -20 _ **TPHL Output Full Scale Current Drift** MC3410, MC3410C PPM/°C TCIO _ 60 _ MC3510 70 _ _ Digital Input Logic Levels (All Bits) Vdc High Level, Logic "1" 2.0 ViH _ Low Level, Logic "0" 0.8 VIL Digital Input Current (All Bits) mΑ High Level, VIH = 5.5V 0.04 ŧн _ Low Level, VIL = 0.8V 0.05 0.4 hι _ Reference Input Bias Current (Pin 15) -1.0 -5.0 μA REF(15) Output Current Range 0 4.0 5.0 mΑ **IOR Output Current** 10 mΑ Vref = 2.000 V, R16 = 1000 Ω 3,8 3.996 4.2 MC3510, MC3410 **Output Current** lO(min) 0 2.0 μA (All bits low) (TA = 25°C) MC3410C 0 4.0 _ Output Voltage Compliance (TA 25°C) Ýο Vdc Er < 0.05% relative to FS -MC3510, MC3410 -2.5.+0.2 Er < 0.10% relative to FS -MC3410C -2.5,+0.2 SR Iref **Reference Amplifier Slew Rate** 20 mA/µs _ _ Reference Amplifier Settling Time STIRFF _ 2.0 _ жs (0 to 4.0 mA, ±0.1%) Output Current Power Supply Sensitivity MC3510, MC3410 PSRR(-) 0.003 0.01 %/% _ MC3410C 0.02 0.003 _ Output Capacitance (VO = 0) 25 ٥F Co _ Digital Input Capacitance (All Bits, Inputs High) 4.0 p۴ CI _ _ **Power Supply Current** +10 +18 mΑ lcc -(All Bits low) -11.4 -- 20 IEE! _ Power Supply Voltage Range +4.75 +5.0 +5.25 VCCR Vdc (TA = +25°C) VEER -14.25 -15 -15.75 **Power Consumption** тW PC All Bits low 220 380 All Bits high -200 -

.

CIRCUIT DESCRIPTION

face the R-2R ladder through unity gain feedback termination amplifiers, which provide low impedance terminations of equal

switches. The three least-significant bit switches derive their

current through emitter scaling from the lest leg of the ladder.

The remaining current, equal to one LSB, is shunted to VCC at

the LSB switch. Therefore, the maximum output current is

1023/1024 of the reference amplifier current, or nominally

3.996 mA for a 2.000 mA reference input current.

The R-2R ladder divides the reference amplifier current into binarily-related components, which are fed to the current

voltage for all less of the ladder.

The MC3410 consists of a reference current amplifier, a diffused R-2R ladder, a laser trimming network, end ten high-speed current switches. The trimming method employed makes it possible to improve the linearity attainable with modern diffusion technology by as much as a factor of ten so that a highly linear part results. The trim is performed by cutting aluminum links arranged to give incremental variations in voltage at the ladder termination amplifiers (See Figure 10). This yields e highly stable trim with no increase in fabrication complexity.

The switches are non-inverting in operation, so that a high state on an input turns on the specific component of output current. The switches use current steering for speed, and inter-

Reference Voltage

To generate the precision voltage reference input for the MC3410, either the MC1403 or the MC1404 may be used. The MC1403 produces a 2.5 V 1% output voltage while the MC1404 produces a 10 V ±1% output. Both have excellent temperature and long term stability. In order to reduce the offect of reforence amplifier offset voltage an overall accuracy, the highest possible stability reference voltage should be used. Therefore, in systems with a +15 V supply, the MC1404 (10 V) is recommended. Where the most pesitive supply is only +5 V, the MC1403 provides a 2.5 V reference. To set the reference current exactly, a low temperature coefficient potentiometer in series with R1 should be used.

GENERAL INFORMATION

Reference Amplifier

The reference amplifier allows the user to provide a voltage and a resistor to Pin 16 to convert the reference voltage to a current. A current mirror doubles this reference current and feeds it to the R-2R lodder. Thus for a reference voltage of 2.0 Volts and 1 k Ω resistor tied to Pin 16, the full-scale current is approximately 4.0 mA. The reference input current, 116, must flow into Pin 16 regardless of the setup method or reference voltage polarity.

Connections for a positive reference voltage are shown in Figure 8. The reference voltage source supplies the full current 116. For bipolar reference signals, as in the multiplying mode, R15 can be tied to a negative voltage corresponding to the minimum input level.

The reference emplifier is internally compensated with a 10 pF feed-forward capacitor, which gives it its high slow rate and fast settling time. Proper phase margin is maintained with all possible values of R16 and reference voltages which supply 2.0 mA reference current into Pin 16. The reference current can also be supplied by a high impedance current source of 2.0 mA. As R16 increases, the bandwidth of the amplifier decreases slightly and settling time increases. For a current source with a dynamic output impedance of 1.0 MΩ, the bandwidth of the reference amplifier is approximately half what it is in the case of R16 = 1.0 kΩ, and settling time is \approx 10 μ s. The reference value decreases is the current source value decreases in the case of a current source value decreases in the case of a current source source is 0.5 mA for stability.

A negative reference voltage may be used if R16 is grounded and the reference voltage is applied to R15 as shown in Figure 9. A high input impedance is the main advantage of this method. The negative reference voltage must be at least 3 Volts above the VEE supply for proper operation. Bipolar input signals may be handled by connecting R16 to a positive voltage equal to the peak positive input level at Pin 15.

When a dc reference voltage is used, capacitive bypass to ground is recommended. The 6-V logic supply is not recommended as a reference voltage. If a well regulated 5.0-V supply, which drives logic, is to be used as the reference, R16 should be decoupled by connecting it to the ± 5.0 V logic supply through another resistor and bypassing the junction of the two resistors with a 0.1 μF capacitor to ground.

Output Voltage Range

The voltage on Pin 3 is restricted to a range of -2.5 V to +0.2 V due to the current switching methods employed in the MC3410. When a current switch is turned off, the positive voltages at the output terminal can turn on the output diode and increase the output current. When a current switch is on, the negative output voltage renge is restricted to the point at which the low current device of the termination amplifier Darlington begins to saturate, resulting in a decrease in output current.

The output voltage compliance is guaranteed at 25° C. Note from Figure 14 that the output compliance of the MC3410 is nearly constant over temperature.

Accuracy

Absolute accuracy is a messure of each output current level with respect to its intended value. It is dependent upon relative accuracy and full scale current drift. Relative accuracy, or linearity, is the messure of each output current with respect to its intended fraction of the full scale current. The relative accuracy of the MC3410 is fairly constant over temperature due to the excellent temperature tracking, of the diffused resistors. The full scale current from the reference amplifier may drift with temperature causing a change in the absolute accuracy. However, the MC3410 has a low full scale current drift with temperature.

The MC3510 and MC3410 are guaranteed accurate to within $\pm 1/2$ LSB at 25°C and at a full scale current of 3.996 mA. Input reference current to Pin 16 is guaranteed to be between 1.9 and 2.1 mA to produce a full scale output current of 3.996 mA. The relative accuracy test circuit is shown in Figure 4. The 14 bit D/A converter is celibrated for a full scale output of 3.996 mA. This is an optional step as the relative accuracy of the MC3410 is nearly constant between 3mAend 5 mAfull scale current. The MC3410 is calibrated at full scale with the 14-bit reference D/A by adjusting R16 until the error voltage goes to zero. The counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored on a pack detector.

Monotonicity

The MC3510, MC3410 and MC3410C are all guaranteed to be monotonic at temperature. This guarantees that for every increase in the input digital word, the output current either remains the same or increases, but never decreases. The MC3510 and MC3410 are monotonic over their respective temperature ranges. In the multiplying mode (when the reference current is varied), monotonicity is typically maintained for all values of input reference current above 0.5 mA.

Settling Time

The worst case switching condition occurs when all bits are switched "on," which corresponds to a low-to-high transition for all bits. This time is typically 250 ns for the output to sattle to within $\pm 1/2$ LSB for 10-bit accuracy, and 200 ns for 8-bit accuracy. The turn-off time is typically 120 ns. These times apply when the output swing is limited to a small (< 0.7 Vol. swina and the external output capacitance is under 25 pF.

The major carry (MSB off-to-on, all others on-to-off) sattles in approximately the same time as when all bits are switched off-to-on.

The slowest switches are bit A10 (LSB) and bit A9, which turn on and settle in typically 200 ns, and turn off in 100 ns.

In the test circuit of Figuré 5, the output voltage is internally clamped in the MC3410 at about 0.7 Volts above ground. The output is thus limited to a 0.7 Volt swing. If a load resistor of 625 Ohms is connected to ground, allowing the output to swing to -2.5 Volts, the settling time increases to 1.5 μ s.

Extra care must be taken in board layout as this is usually the dominant factor in satisfactory test results when measuring settling time. Short leads, 100µF supply bypassing, and minimum scope lead length are all necessary.

MC3510 TERMINOLOGY

- RELATIVE ACCURACY Maximum output deviation from the straight line connecting zero and full scale, expressed as a percentage of full scale.
- RELATIVE ACCURACY DRIFT The average change in linearity error that will occur with a change in ambient temporature, expressed in parts per million of full scale per degree C.
- MONOTONICITY For every increase in the input digital word, the output current either remains the same or increases.
- SETTLING TIME The elapsed time from the input transition until the output has settled within an error band about its final value.
- OUTPUT FULL SCALE CURRENT DRIFT The average change in full scale current between 25°C and either temperature extreme, expressed in parts per million of full scale per degree C.
- REFERENCE AMPLIFIER SLEW RATE The maximum rate of change of the full scale output current expressed in milliamperes per microsecond.
- OUTPUT VOLTAGE COMPLIANCE The maximum voltage that can be applied to the output pin so that the specified change in output current is not exceeded.
- POWER SUPPLY SENSITIVITY The change in full scale current caused by a change in VEE, expressed as a percent of full scale current per percent change in VEE.

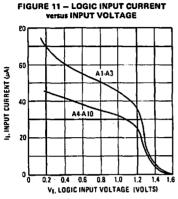


FIGURE 12 - TRANSFER CHARACTERISTIC Versus TEMPERATURE

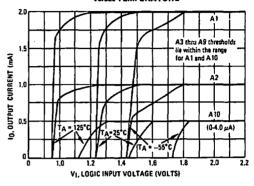
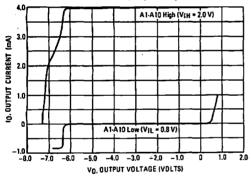



FIGURE 13 - OUTPUT CURRENT versus **OUTPUT VOLTAGE (Output Compliance)**

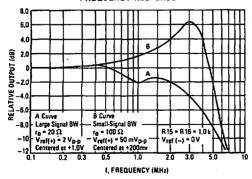


FIGURE 14 - MAXIMUM OUTPUT VOLTAGE versus TEMPERATURE

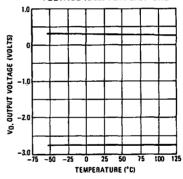
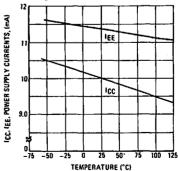
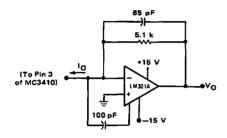



FIGURE 16 - TYPICAL POWER SUPPLY CURRENTS versus TEMPERATURE


APPLICATIONS INFORMATION

Voltage outputs are obtainable with this circuit which uses an external operational amplifier as a current to voltage converter. This configuration automatically keeps the output of the MC3410 at ground potential and the operational amplifier can generate a positive voltage limited only by its positive supply voltage. Frequency response and settling time are primarily determined by the characteristics of the operational amplifier. In addition, the operational amplifier must be compensated for unity gain, and in some cases overcompensation may be desirable.

Note that this configuration results in a positive output voltage only, the magnitude of which is dependent on the digital input.

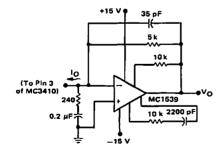

The following circuit shows how the LM301A can be used in a feedforward mode resulting in a full scale settling time on the order of 2.0 μ s.

FIGURE 17

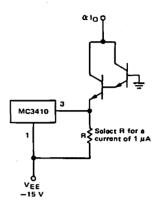
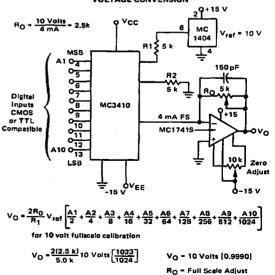
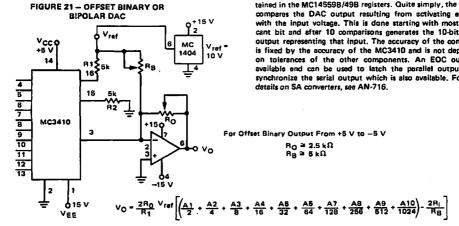

An alternative method is to use the MC1539 and input compensation. Response of this circuit is also on the order of 2.0 $\mu s.$

FIGURE 18

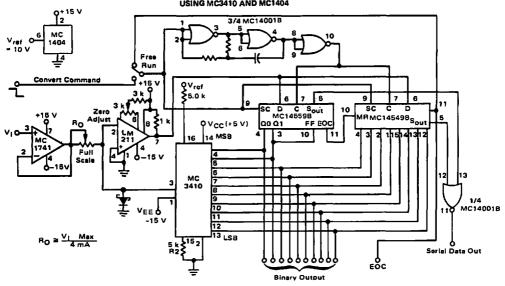

The positive voltage range may be extended by cascading the output with a high beta common base transistor, Q1, as shown.

The output voltage range for this circuit is 0 volts to BV_{CBO} of the transistor. Variations in beta must be considered for wide temperature range applications. An inverted output waveform may be obtained by using a load resistor from a positive reference voltage to the collector of the transistor. Also, high-speed operation is possible with a large output voltage swing, because Pin 3 is held at a constant voltage. The resistor (R) to V_{EE} maintains the transistor emitter voltage when all bits are "off" and insures fast turn-on of the least significant bit.


FIGURE 20 - OUTPUT CURRENT TO VOLTAGE CONVERSION

APPLICATIONS INFORMATION (Continued)

Bipolar or Negative Output Voltage


The circuit in Figure 21 is a variation of the standard output voltage circuit in Figure 20. A negative or offset binary output may be obtained by sourcing current from the reference into the output through R_B. If R_B allows 2 mA (R_B = 5 k Ω from 10 Volts) then 1000000000 input will generate zero output voltage.

Successive Approximation A to D

The fastest and most efficient means of A to D conversion using D to A convertors is successive approximation (SA). Similar in appearance to staircase devices, the SA converter is capable of 100 times faster conversions for a 10-bit result. A complete 10-bit SA coverter using MC3410 and MC14559B/49B successive approximation registers is shown in Figure 22. The complexity which results in higher conversion speeds is contained in the MC14559B/49B registers. Quite simply, the register compares the DAC output resulting from activating each bit with the input voltage. This is done starting with most significant bit and after 10 comparisons generates the 10-bit binary output representing that input. The accuracy of the conversion is fixed by the accuracy of the MC3410 and is not dependent on tolerances of the other components. An EOC outout is available end can be used to latch the parallel output or to synchronize the serial output which is also available. For more

FIGURE 22 - SUCCESSIVE APPROXIMATION CONVERTER USING MC3410 AND MC1404

APPLICATIONS INFORMATION (Continued)

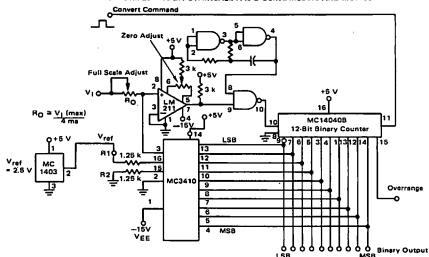
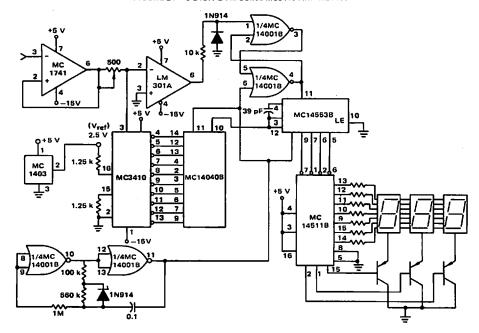
Staircase A to D

If high conversion speed is not required, a staircase A to D convertor can be built for somewhat lower cost. A complete staircase A/D convertor is shown in Figure 23. Here the complicated SA registers are replaced with simple binary counters. With an input voltage applied, the binary counter is reset by the convert command pulse and the begin accumulating counts. The DAC output steps upward until the comparator datects that the input is equal to the DAC output. The counters are disabled and the conversion result is hed at the output until the circuit is reset by the convert command input.

One advantage of staircase convertors is the ease with which BCD outputs may be obtained. Figure 24 shows a 3-digit panel meter using the staircase technique and an MC14553B 3-decadecounter. The circuit function is similar to Figure 23 but Multiplexed BCD output is available from the MC14553B counters. Parallel BCD may be obtained with equal ease using the MC1451BB 2-decade CMOS counters.

In both these staircase designs the system accuracy is determined by the specified accuracy of the MC3410.

FIGURE 23 - 10-BIT STAIRCASE A to D USING MC3410 AND MC1403

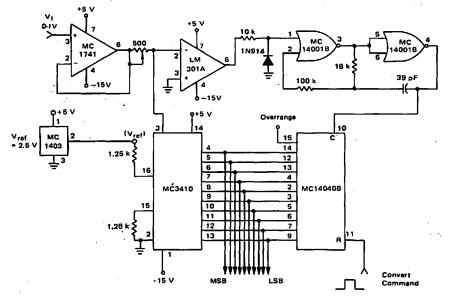
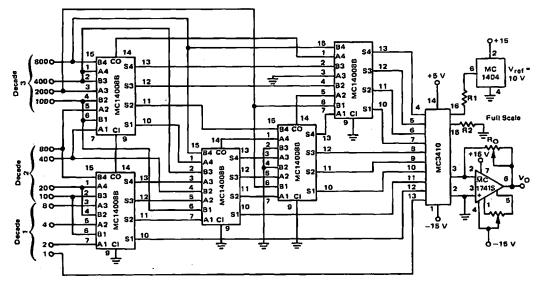
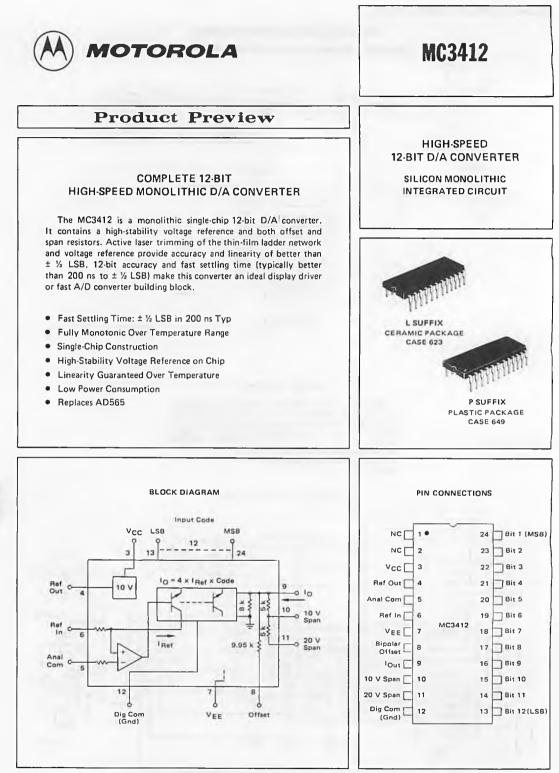

FIGURE 24 - 3-DIGIT DVM USING MC3410 AND MC1403

FIGURE 25 - ALTERNATE APPROACH STAIRCASE A TO D


 \mathbf{r}



BCD D to A Converter

BCD output A to D conversions are most easily accomplished by accumulating the digital results in two different counters, but that concept does not extend to BCD Dto A techniques. Using the circuit in Figure 26 a three-digit BCD number can be converted to a 10-bit accurate voltage. The MC14008B's perform the combinational BCD-to-Binary conversion. The accuracy of this circuit is also solely dependent on the accuracy of the MC3410.

This is advance information and specifications are subject to change without notice.

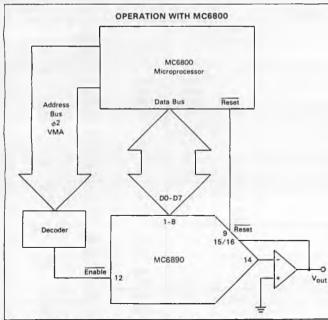
8

MC6890

8-BIT

BUS-COMPATIBLE MPU DAC

Product Preview


BUS-COMPATIBLE 8-BIT MPU D-TO-A CONVERTER

The MC6890 is a self-contained, bus-compatible, 8-bit $(\pm 0.19\%$ accuracy) D-to-A converter system capable of interfacing directly with 8-bit microprocessors.

Available in both commercial and military temperature ranges, this monolithic converter contains master/slave registers to prevent transparency to data transitions during active enable; a laser-trimmed, low-TC, 2.5 V precision bandgap reference; and high-stability, laser-trimmed, thin-film resistors for both reference input and output span and offset control.

A reset pin provides for overriding stored data and forcing lout to zero.

- ±1/2 LSB Nonlinearity
- Available in Military Temperature Range
- Direct Data Bus Link
- Low Power: 130 mW Typ
- Fast Settling Time: 140 ns Typ
- Single Enable: 10 ns Max Data Hold Time
- Self-Contained 2.5-V Precision Laser-Trimmed Voltage Reference (May Also Be Used Externally)
- Reset Pin to Override Data
- Output Voltage Ranges: +5.0, +10, +20, or ±2.5, ±5.0, ±10 Volts

20 VCC (MSB) D7 1 19 Ref Out D6 2 18 Ref In D5 3 17 Analog Gnd D4 4 16 20 V Span D3 5 D2 6 15 10 V Span 14 Jout D1 7 13 Bipolar Offset D0 8 17 Enable Reset 9 11 VEE Digital Gnd 10

PIN CONNECTIONS

L SUFFIX

CASE 732

8

This is advance information and specifications are subject to change without notice.

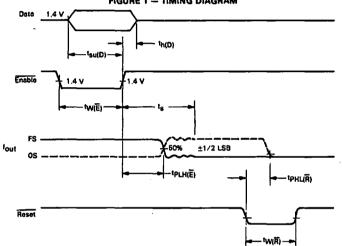
۰.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC} V _{EE}	+7.0 -18	Vdc
Digital Input Voltage, Pins 1-9, 12	Vin	-3.0 to +7.0	² Vdc
Applied Output Voltage	Vout	VEE to +17	Vdc
Reference Current	I _{ref} (19)	3.5	mA
Reference Amplifier Input	V17	±7.5	Vdc
Operating Temperature Range MC6890 MC6890A	TA	0 to +70 -55 to +125	°C
Storage Temperature Range	Tstg	-65 to +150	°C
Junction Temperature	Τj	+150	°C

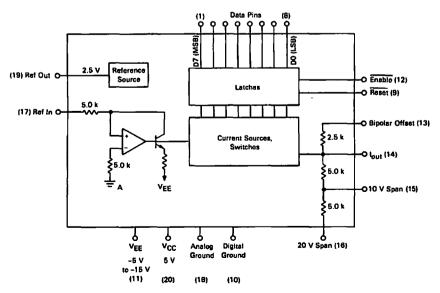
ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0 V, V_{EE} = -12 V, V_{rel} = 2.5 V, T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Digital Input Logic Levels (Each Bit)					Vdc
High Level, Logic 1	VIH		i –	0.8	
Low Level, Logic O	VIL	2.0	<u> </u>		
Digital Input Current			1		
Data (V(H = 3.0 V)	ķн	-	-	100	nA
$(V_{1} = 0.4 V)$	۴IL	-	-	-10	μA
Enable, Reset (VIH = 3.0 V)	ļн	-	- 1	100 -50	nA
(V _{IL} = 0.4 V)	հ				μA
Full Scale Output Current — Unipolar	<u>lo</u>	-1.50	-1.992	-2.50	mA
Output Resistance — Exclusive of Span Resistors		7.0	10		MΩ
Unipolar Zero Output — All Bits Off	-	-	0.10	1.0	μΑ
Full Scale Output (Unipolar Zero) Temperature Coefficient					ppm/°C
(With Internal Reference) Unipolar Zero		-	± 2.0	-	
Bipolar Zero Gain			± 35 ± 35	1 =	
		8.0	8.0	8.0	Bits
Resolution		8.0		Temperature	D115
$(0^{\circ}C \leq T_{A} \leq +70^{\circ}C)$ MC6890			O DIts Over	remperature	
(-55°C ≤ T _A ≤ +125°C) MC6890A					
Relative Accuracy			<u> </u>	±0.19	%
(Error Relative to Full-Scale Output Current)	ŧr	_	_	(±1/2 LSB)	~
Differential Nonlinearity	_			± 0.29	%
				(± 3/4 LSB)	
Output Voltage, Full Scale - Unipolar with Internal Reference	vo				Vdc
(10 V Span)	•0	9.951	9.961	9.971	
(20 V Span)		19.902	19.922	19.941	
(5.0 V Span)		4.976	4.981	4.985	
Output Voltage, Half Scale — Bipolar Offset Tied to Internal	Vo	_			۳N
Reference Direct — Input Code = 10000000	-				
(10 V Span)		-9.8	0	9.8	
(20 V Span)		-19.5	0	19.5	
(5.0 V Span)		4.9	0	4.9	
Power Supply Range	Vcc	4.5 16.5	5.0 -12	5.5 -4.5	Vdc
	VEE	10.5	-12		
Power Supply Current	1		15		mA
(V _{CC} = 5.0 V) (V _{EE} = -5.0 V)	¹ CC		11		
$(V_{EE} = -15 V)$	IEE	I I I	12	_	
Power Supply Sensitivity	PSS			╂────┤	ppm/FS*
To V_{CC} ($V_{CC} = 4.5$ to 5.5 V, $V_{EE} = -5.0$ V)	r33		±5.0	±50	ppm +5-
To VEE (VCC = 5.0, VEE = -5.0 to -15 V)			±10	±100	
Power Dissipation — All Bits Low	PD			1	mW
For $V_{CC} = 5.0 V @ V_{EE} = -5.0 V$	0	_	130		
For VEE = - 15 V @ VCC = 5.0 V		-	255	(_	
Reference Input Resistor	R _{ref}	4.0	5.0	6.25	kΩ
	Vref	_	2.500		Vdc
Reference Output Voltage					
	•rer				
Reference Output Voltage	•rer I _{ref}		_	3.0	mA


*Full Scale

MC6890

AC SPECIFICATIONS (VCC = 5.0 V, VEE = -12 V, TA = 25°C unless otherwise noted)


Characteristic	Symbol	Min	Тур	Max	Unit
Settling Time (Enable Positive Edge to ±1/2 LSB Output)	t _B	-	140	-	ns
Data Setup Time	^t su(D)	-	80	-	ns
Data Hold Time	th(D)	-10		-	ns
Minimum Pulse Widths Enable Reset	™(Ë) ™(Ř)	1 1	50 100	=	ns
Propagation Delays Enable, Low to High Reset, High to Low ($IO < 1.0 \mu A$)	^t PLH(Ē) tPHL(R)		60 140		ns

.

FIGURE 1 - TIMING DIAGRAM

FIGURE 2 - BLOCK DIAGRAM

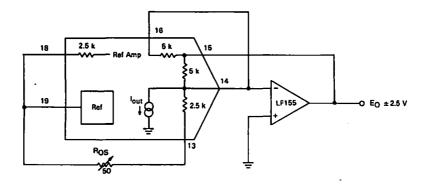
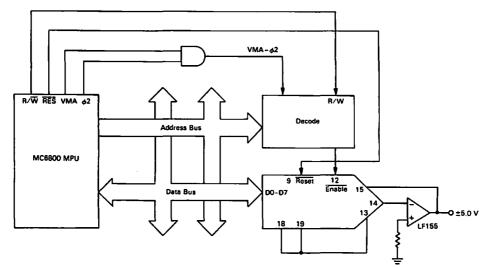
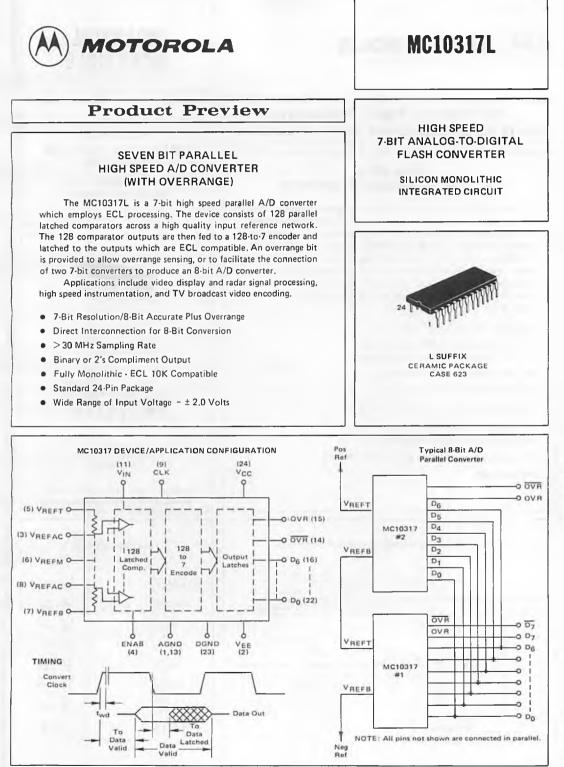




FIGURE 3 - MC6890 IN TYPICAL BIPOLAR ±2.5 V OPERATION

07	D6	D5	D4	D3	D2	D1	D0	E _O (V	olts)
		00	5	00				R _{OS} ≈ 25Ω	Ros=0
1	1	1	1	1	1	1	1	+2.490	+ 2.480
1	1	1	1	1	1	1	0	+ 2.470	+ 2.460
1	0	0	0	0	0	0	0	+ 0.010	+ 0.000
0	1	1	1	1	1	1	1	- 0.010	- 0.020
0	0	0	0	0	0	0	1	- 2.470	- 2.480
0	0	0	0	0	0	0	0	- 2.490	- 2.500

FIGURE 4 - TYPICAL APPLICATION FOR OFFSET BINARY ±5.0 V OUTPUT OPERATION

This is advance information and specifications are subject to change without notice.

8

Advance Specifications and Applications Information

HIGH SPEED 8-BIT DIGITAL-TO-ANALOG CONVERTER

The MC10318 is a high speed 8-bit D/A converter capable of data conversion rates in excess of 25 MHz. It is intended for applications in high speed instrumentation and communication equipment. display processing, storage oscilloscopes, radar processing, and TV broadcast systems. The inputs are compatible with MECL 10,000 series logic, while the complementary current outputs have 51 mA full scale capability. 8-bit accurate (±1/2 LSB) and monotonic over the full temperature range, the outputs typically settle in less than 10 ns.

- FAST! Settling Time 10 ns Typ
- 8-Bit Accuracy (±0.19%) MC10318L 9-Bit Accuracy (±0.1%) - MC10318L9
- Inputs MECL 10,000 Compatible
- Complementary Current Outputs
- Output Compliance: -1.3 V to +2.5 V
- Standard: -5.2 V Supply
- Standard 16 Pin Ceramic Package
- Low Dissipation Typically Less Than 500 mW
- Low Cost

HIGH SPEED 8-BIT DIGITAL-TO-ANALOG CONVERTER

> SILICON MONOLITHIC INTEGRATED CIRCUIT

LSUFFIX CERAMIC PACKAGE CASE 620

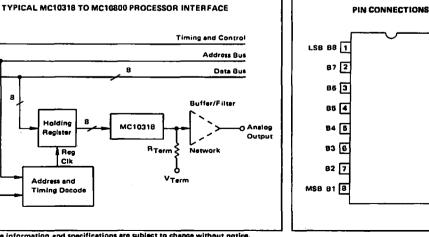
L SUFFIX CERAMIC PACKAGE **CASE 690**

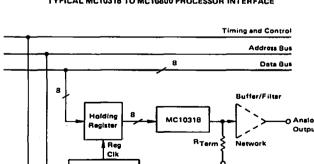
Motorola reserves the right to supply this device in either of the above packages.

15 Gnd

15 Tout

4 lout


13 NC


12 Vref+

11 Comp

10 Vref-

9 VEE

This is advance information and specifications are subject to change without notice.

Address and

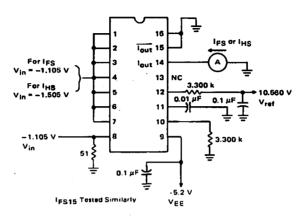
iming Decode

MAXIMUM RATINGS (TA = +25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	VEE	-6.0 to +0.5	Vdc
Digital Input Voltage	VI	0 to VEE	Vdc
Applied Output Voltage	Vo	+5.0	Vdc
Reference Current	I _{ref} (12)	5.0	mA
Output Current	IFS	75	mA
Reference Amplifier Input Range	Vref	+0.5 to VEE	Vdc
Reference Amplifier Differential Inputs	Vref(D)	±5,0	Vdc
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	Tstg	-65 to +150	°C
Junction Temperature Ceramic Package	TJ	+175	°C

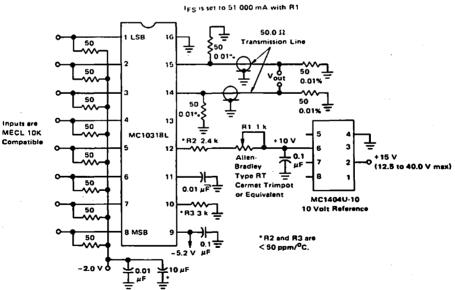
CHARACTERISTICS			TEST VOL	TAGE VALU	ES (Note 1)				
These specifications apply for $V_{FF} = -5.2 V_{c}$	@ Test	Volts							
$I_{FS} = 51 \text{ mA}, T_{\Delta} = 0^{\circ} \text{C to} + 70^{\circ} \text{Cafter thermal}$	Temperature	VIHwax	VILmin	VIHAmin	VILAmax	VEE			
equilibrium is reached.	0°C	-0.845	-1.868	-1.151	-1.516	-5,2			
equilibrium is reached.	25 ⁰ C	-0.810	-1,850	-1.105	-1.505	-5.2			
	70 ⁰ C	0.727	-1.830	-1.052	-1,480	-5.2			

.

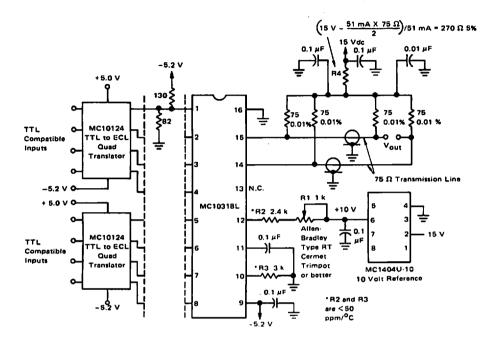

.

÷1

Characterist	a	Symbol	Min	Тур	Мах	Unit
Power Supply Voltage Range		VEE	-5.46	-5.2	-4.94	v
Power Supply Current		IEE	-	90	130	mA
(Pins 1 thru 8 Open, IFS = 51 mA)				1		
Monotonicity		-	8.0	8.0	-	Bits
Nonlinearity	MC10318L	-	-	-	±0.19	% FS
	MC10318L9	-	-	-	±0.10	
Settling Time to 1/2 LSB		t _s	-	10	-	ns
(All Bits Switched On or Off, TA = 25	^o C, Note 3)					
Full Scale Output Temperature Drift		TCIFS	-	±50	± 150	ppm/ ^o C
Full Scale Current - Figure 1		IFS	46.000	51	56.000	mΑ
(R3, R4 = 3.300 kΩ, V _{ref} = 10.560 V	, Note 2)					
Zero Scale Current (Note 2)		· IZS	-	5.0	50	μA
Full Scale Symmetry (IFS15 - IFS14, No	te 2)	FSS	-	15	100	μA
Half Scale Accuracy	MC10318L	HSA	- 1	- 1	±50	μA
(I _{HS} = 25.5 mA)	MC10318L9		-	-	± 25	
Output Voltage Compliance (Note 2)		Voc	-1.3	-	2.5	V
Full Scale Current Change < 99 µA	MC10318L,			· · ·		
50 µA	MC10318L9				1	
Power Supply Sensitivity (of Full Scale C	urrent)	PSSIFS	-	±0.002	±0.02	%/%
(VEE = -4.94 V to -5.46 V)				<u></u>		
Reference Bias Current, Pin 10		110	-	6.0	15	μA
(I _{ref} = 3.2 mA)						
Propagation Delay 50% to 50%		tp		3.0	-	ns
(All Bits Switched Low to High, High	to Low)					


NOTES: 1. Logic input levels are compatible with MECL 10,000 logic series.

Output characteristics apply to both pins 14 and 15, lout and lout.
 See comments on construction and evaluation techniques in Figure 2 and text.


FIGURE 1 - FULL SCALE AND HALF SCALE CURRENT TEST CIRCUIT

Inputs are MECL 10K

NOTE: Line impedances and termination impedance must be homogeneous 50.00 Ω. Any deviation will cause reflections which will seriously affect settling time. Optimum performance cannot be realized with sockets. Good 1.0 GHz microstripline techniques must be used.

FIGURE 3 – TYPICAL CONNECTIONS FOR 75 Ω TRANSMISSION LINE AND TTL-COMPATIBLE INPUTS

NOTE: See caution on line and termination impedance in Figure 2 and text.

APPLICATION INFORMATION

Functional Test Circuit Construction

Test circuits used to evaluate this device or circuit designs used in actual practical situations must employ good 1.0 GHz RF microstripline practices if optimum performance is to be achieved from this device. Both line and termination impedances must be matched to within $\pm 0.19\%$ to minimize reflections which will appear as increased settling time. The use of sockets for initial evaluation is not recommended if specified settling time is to be bataned.

Applications information can be obtained by contacting:

> Application Engineering (602) 244-3021

If desired, test circuit artwork and board specifications will be supplied by contacting: Linear Interface Marketing (602) 962-2294 Successive Approximation A/D Converter

The circuit shown in Figure 4 uses the MC10318 in a successive approximation analog-to-digital converter. The circuit as shown will operate at a clock frequency above 30 MHz if proper attention is given to layout.

The full-scale voltage (VFS) for the circuit as shown is 10.20 V. This full-scale voltage may be changed by changing the 200 Ω resistor to a value given by:

$$R = \frac{VFS}{IFS} = \frac{VFS}{51 mA}$$

However, at low values of VFS the resolution of the comparator must be considered to maintain a $\pm 1/2$ LSB accuracy.

8

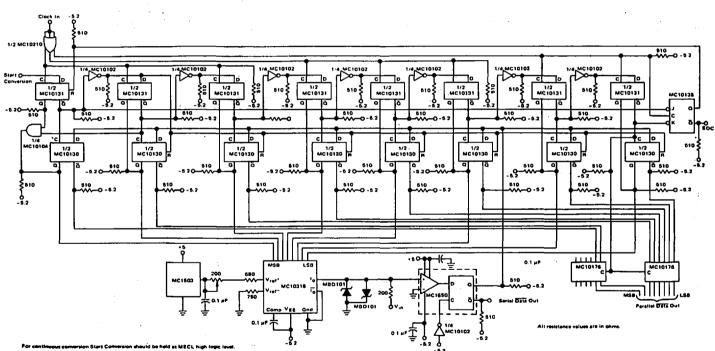
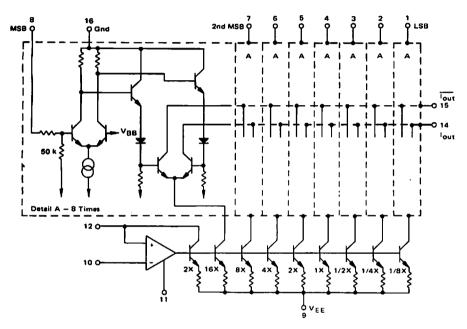



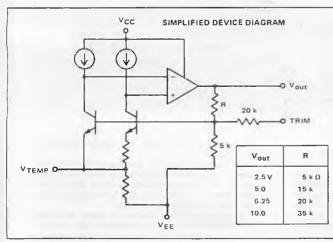
FIGURE 4 - SUCCESSIVE APPROXIMATION A/D CONVERTER USING MC10318

FIGURE 5 - MC10318 EQUIVALENT CIRCUIT

Voltage References

VOLTAGE REFERENCES

Temperatu	ire Range		
Commercial	Military		Page
MC1400, A	MC1500, A	Precision Voltage References	9-3
MC1403, A	MC1503, A	Precision Low-Voltage References	9-4
MC1404, A	MC1504, A	Precision Low-Drift Voltage References	9-8

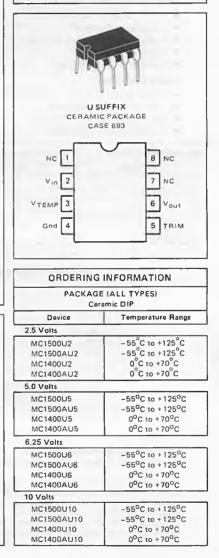

Product Preview

TIGHT-TOLERANCE, LOW-DRIFT VOLTAGE REFERENCE FAMILY

The MC1400 series of ICs is a family of temperature-compensated voltage references for precision data conversion and instrumentation applications. Advances in thin-film resistors, laser-trimming techniques, ion-implanted devices, and monolithic fabrication techniques make this reference both temperature and time stable in applications demanding accuracy to the 16-bit level.

These devices offer simple, no-external-component operation as three-terminal, positive-voltage references, and also simple, oneexternal-resistor operation as either positive or negative references. Unique circuitry permits these devices to either source or sink greater than 10 mA of load current with excellent regulation. This feature means that the buffer amplifiers and current sources normally required for precision zener references can be eliminated.

- Four Different Output Voltages: 2.5, 5.0, 6.25, 10 V
- Tight Absolute Accuracy: ±0.2% Maximum Initial Tolerance
- Single-Component Output Trimming Without Degrading Temperature Coefficient
- Wide Input Voltage Range: VREF +1.0 V to +40 V
- Three-Terminal Operation: Positive References That Can Source and Sink Current
- Two-Terminal Operation: Positive or Negative References Floating References
- Low Current Consumption: 0.75 mA Typical
- Very Low Temperature Coefficient: 5 ppm / °C Typical
- Low Output Noise Voltage
- Excellent Ripple Rejection: 100 dB Typical at 120 Hz
- Excellent Long Term Stability: 25 ppm / 1000 Hrs Typical


This is advance information and specifications are subject to change without notice.

MC1400 MC1400A MC1500 MC1500A

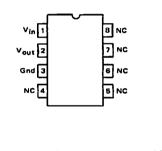
PRECISION VOLTAGE REFERENCES

2.5, 5.0, 6.25, and 10-VOLT OUTPUT VOLTAGES

LASER-TRIMMED SILICON MONOLITHIC INTEGRATED CIRCUIT

MC1403.A MC1503,A

LOW-VOLTAGE REFERENCE A precision band-gap voltage reference designed for critical instrumentation and D/A converter applications. This unit is designed to work with Motorola MC1506, MC1508, and MC3510 D/A converters, and MC14433 A/D systems. Low temperature drift is a prime design consideration. Output Voltage = 2.5 V ±25 mV Input Voltage Range = 4.5 V to 40 V Quiescent Current = 1.2 mA typ Output Current = 10 mA Temperature Coefficient = 10 ppm/^OC typ USUFFIX Guaranteed Temperature Drift Specification Equivalent to AD580 CASE 693 Standard 8-Pin DIP Package **Typical Applications** Voltage Reference for 8–12 Bit D/A Converters Low TC Zener Replacement High Stability Current Reference Vin 1 Voltmeter System Reference Vout


MAXIMUM RATINGS (TA = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Input Voltage	VI.	40	v
Storage Temperature	T _{stg}	-65 to 150	°C
Junction Temperature	Τj	+175	°C
Operating Ambient Temeprature Range MC1503,A MC1403,A	TA	-55 to +125 0 to +70	°C °C

PRECISION LOW-VOLTAGE REFERENCE

LASER TRIMMED SILICON MONOLITHIC INTEGRATED CIRCUIT

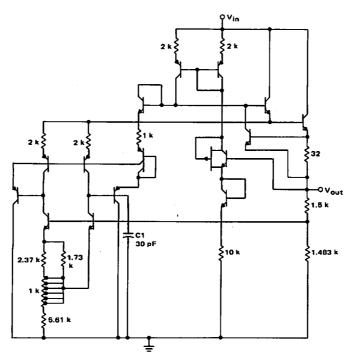
CERAMIC PACKAGE

FIGURE 1 - A REFERENCE FOR MOTOROLA MONOLITHIC D/A CONVERTERS Full-Scale Adjust 1.0 k 26 V 500 Ω 1 MC1403, A 2 Pins Numbers for +5.0 V O Series MC1508/1408/3408 A2 14 81 Bof. Amplifier Series: device 16 could also be MC1506/1406 or MC3510/3410 o 1.2 K 0.1 #F C1 R3

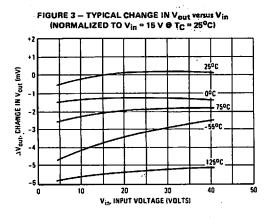
PROVIDING THE REFERENCE CURRENT FOR MOTOROLA MONOLITHIC D/A CONVERTERS

The MC1403/1503 makes an ideal reference for the Motorola monolithic D/A converters. The MC1406/1506, MC1408/1508, MC3410/3510 and MC3408 D/A converters all require a stable current reference of nominally 2.0 mA. This can be easily obtained from the MC1403/1503 with the addition of a series resistor, R1. A variable resistor, R2, is recommended to provide means for full-scale adjust on the D/A converter.

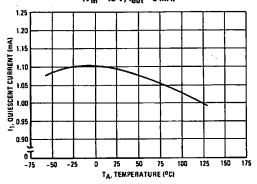
The resistor R3 improves temperature performance by matching the impedance on both inputs of the D/A reference amplifier. The capacitor decouples any noise present on the reference line. It is essential if the D/A converter is located any appreciable distance from the reference.


A single MC1403/1503 reference can provide the required current input for up to five of the monolithic D/A converters.

MC1403, A, MC1503, A


Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (IO = 0 mA)	vo	2.475	2,50	2.525	v
Temperature Coefficient of Output Voltage MC1503 MC1503A	∆∨ ₀ /∆T	-	-	55 25	ppm/ ^o C
MC1403 MC1403A		-	10 10	40 25	
Output Voltege Change (over specified temperature range) MC1503 -55°C to +125°C MC1603A 0°C to +70°C MC1403A 0°C to +70°C	۵۷۵			25 11 7.0 4.4	mV
Line Regulation (15 V < V < 40 V), (4.5 V < V < 15 V)	Reg _{in}	-	1.2 0.6	4.5 3.0	m∀
Load Regulation (0 mA < $10 < 10$ mA)	Regioad	-	-	10	mV
Quiescent Current (i _O = 0 mA)	· 1j	_ :	1.2	1.5	mA

ELECTRICAL CHARACTERISTICS (VI = 15 V, TA = 25°C unless otherwise noted.)


FIGURE 2 - MC1403/1503 SCHEMATIC

9

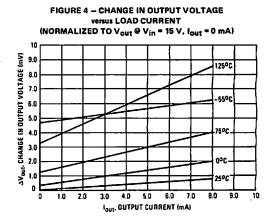
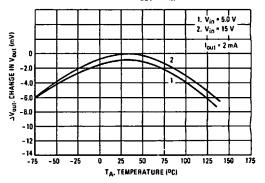
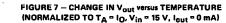
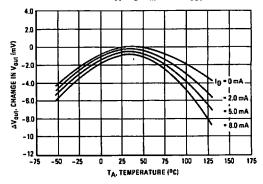





FIGURE 6 - CHANGE IN Vout versus TEMPERATURE (NORMALIZED TO Vout @ Vin = 15 V)

3-1/2-DIGIT VOLTMETER – COMMON ANODE DISPLAYS, FLASHING OVERRANGE

An example of a 3-1/2-digit voltmeter using the MC14433 is shown in the circuit diagram of Figure 8. The reference voltage for the system uses an MC1403 2.5 V reference IC. The full scale potentiometer can calibrate for a full scale of 199.9 mV or 1.999 V. When switching from 2 V to 200 mV operation, R_{\parallel} is also changed, as shown on the diagram.

When using R_C equal to $300 \text{ k}\Omega$, the clock frequency for the system is about 66 kHz. The resulting conversion time is approximately 250 ms.

When the input is overrange, the display flashes on and off. The flashing rate is one-half the conversion rate.

This is done by dividing the EOC pulse rate by 2 with 1/2 MC14013B flip flop and blanking the display using the blanking input of the MC14543B.

The display uses an LED display with common anode digit lines driven with an MC14543B decoder and an MC1413 LED driver. The MC1413 contains 7 Darlington transistor drivers and resistors to drive the segments of the display. The digit drive is provided by four MPS-A12 Darlington transistors operating in an emitter-follower configuration. The MC14543B, MC14013B and LED displays are referenced to VEE via pin 13 of the MC14433. This places the full power supply voltage across the display. The current for the display may be adjusted by the value of the segment resistors shown as 150 ohms in Figure 8.

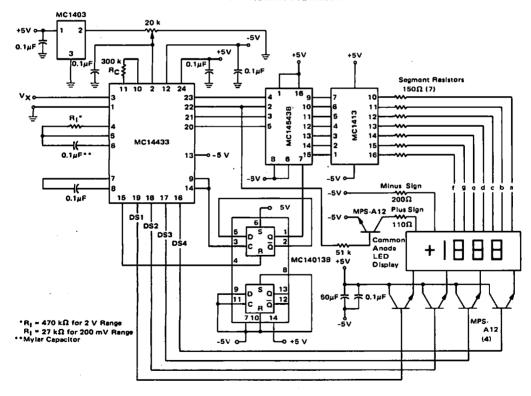
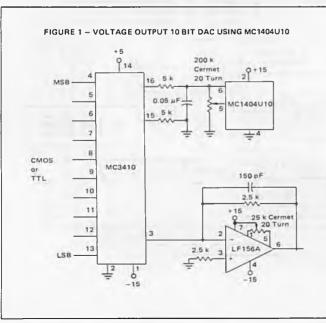


FIGURE 8 - 3-1/2-DIGIT VOLTMETER

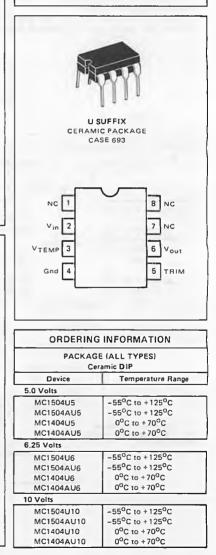
MC1404 MC1404A MC1504 MC1504A


VOLTAGE REFERENCE FAMILY

The MC1404 series of ICs is a family of temperature-compensated voltage references for precision data conversion applications, such as A/D, D/A, V/F, and F/V. Advances in laser-trimming and ionimplanted devices, as well as monolithic fabrication techniques, make these devices stable and accurate to 12 bits over both military and commercial temperature ranges. In addition to excellent temperature stability, these parts offer excellent long-term stability and low noise.

- Output Voltages: Standard, 5.0 V, 6.25 V, 10 V
- Trimmable Output: > ± 6%
- Wide Input Voltage Range: VREF + 2.5 V to 40 V
- Low Quiescent Current: 1.25 mA Typical
- Temperature Coefficient: 10 ppm/^oC Typical
- Low Output Noise: 12 µV p-p Typical
- Excellent Ripple Rejection: > 80 dB Typical

TYPICAL APPLICATIONS


- Voltage Reference for 8 12 Bit D/A Converters
- Low T_C Zener Replacement
- High Stability Current Reference
- MPU D/A and A/D Applications

PRECISION LOW-DRIFT VOLTAGE REFERENCES

5.0, 6.25, and 10-VOLT OUTPUT VOLTAGES

LASER TRIMMED SILICON MONOLITHIC INTEGRATED CIRCUIT

MC1404, MC1404A, MC1504, MC1504A

		N	IC1404,	Α	N	IC1504,	A	
Characteristic	Symbol	Min	Түр	Max	Min	Тур	Max	Unit
Output Voltage	Vo Vo			1.				Volt
{Io = 0 mA}	_		·	-				
U5, AU5		4.95	5.00.	5.05	4.95	5,00	5.05	
U6, AU6		6.19	6.25	6.31	6.19	6.25	6.31	
U10, AU10		9.90	10	10.10	9.90	10	10.10	
Output Voltage Tolerance	-	-	±0.1	±1.0	_	±0.1	±1.0	%
Output Trim Range (Figure 10)	AVTRIM	±6.0	-	-	±6.0	- 1	-	%
(Rp = 100 kΩ)								
Output Voltage Temperature Coefficient,	Δνο/Δτ	1						ppm/ ^o C
Over Full Temperature Range		1	í	1				1
MC1404, MC1504		-	10	40	-	-	55	
MC1404A, MC1504A	_		10	25	-	-	25	
Maximum Output Voltage Change	ΔVo							mV
Over Temperature Range	-			1]		
MC1404U5, MC1504U5		-	-	14	-	-	50	
MC1404AU5, MC1504AU5		-	-	9.0	-	-	23	
MC1404U6, MC1504U6		-	-	17.5	-	- 1	62	
MC1404AU6, MC1504AU6		-	-	11	-	-	28	
MC1404U10, MC1504U10	1	-	-	28	-	- 1	99	
MC1404AU10, MC1504AU10		-	-	18	-	-	45	
Line Regulation (1)	RegLINE	-	2.0	6.0	-	2.0	6.0	mV
(Vin = Vout + 2.5 V to 40 V, lout = 0 mA)								
Load Regulation (1)	RegLOAD	- 1	- 1	10	_		10	mV
$(0 \le I_0 \le 10 \text{ mA})$		L	[l	L
Quiescent Current	4	-	1.2	1.5	-	1.2	1.5	mA
$(I_0 = 0 \text{ mA})$								L
Short Circuit Current	I _{sc}	15	20	30		_	30	mA
Long Term Stability	-	- 1	25	-	_	25	-	ppm/1000 h

ELECTRICAL CHARACTERISTICS (Vin = 15 Volts, TA = 25°C and Trim Terminal not connected unless otherwise noted)

Note 1: Includes thermal effects.

DYNAMIC CHARACTERISTICS (Vin = 15 V, TA = 25°C all voltage ranges unless otherwise noted)

			AC1404, /	A	N	IC1504,	A	
Characteristic	Symbol	Min	Түр	Max	Min	Тур	Max	Unit
Turn-On Settling Time (to ± 0.01%)	ts	-	50	-	-	50	-	μs
Output Noise Voltage - P to P (Bandwidth 0.1 to 10 Hz)	en	-	12	-	-	12	-	μV
Small-Signal Output Impedance 120 Hz 500 Hz	ro	-	0.15 0.2	-	-	0.15		Ω
Power Supply Rejection Ratio	PSRR	70	80	-	70	80	-	d8

i.

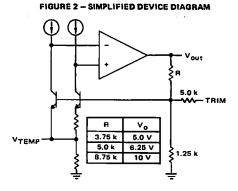


FIGURE 4 - OUTPUT VOLTAGE versus TEMPERATURE MC1404U10

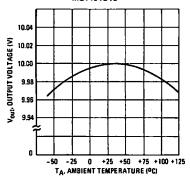
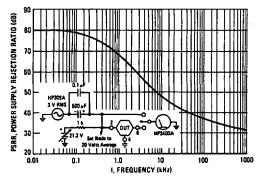



FIGURE 6 - POWER SUPPLY REJECTION RATIO

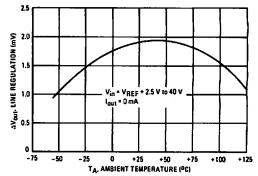


FIGURE 5 - LOAD REGULATION VOTEUS TEMPERATURE

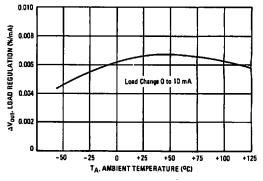
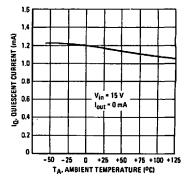
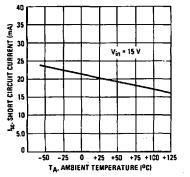
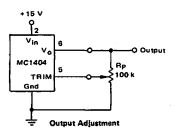



FIGURE 7 - QUIESCENT CURRENT versus TEMPERATURE

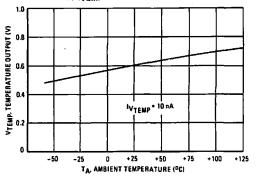
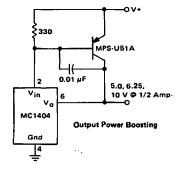
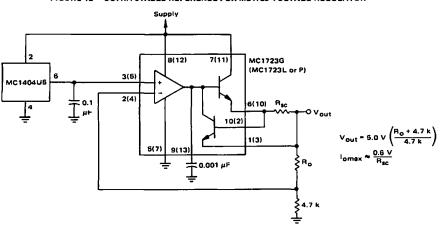
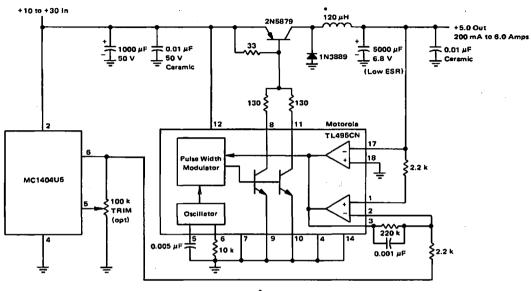

FIGURE 8 - SHORT CIRCUIT CURRENT versus TEMPERATURE

FIGURE 10 - OUTPUT TRIM CONFIGURATION

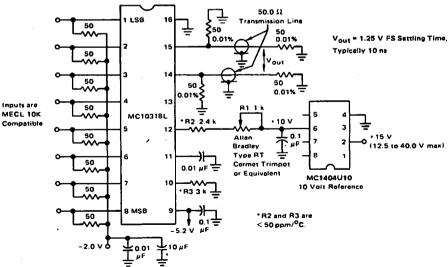


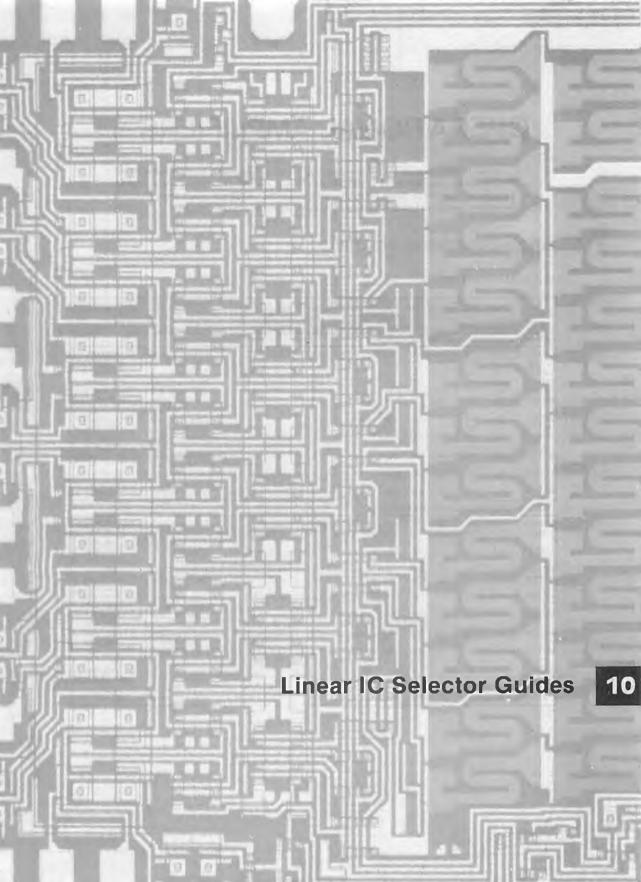
The MC1404 trim terminal can be used to adjust the output voltage over a ±6% range. For example, the output can be set to 10.000 V or to 10.240 V for binary applications. For trimming, Bourns type 3059, 100 kΩ or 200 kΩ trimpot is recommended.





The addition of a power transistor, a resistor, and a capacitor converts the MC1404 into a precision supply with one ampere current capability. At $V^+ = 15 V$, the MC1404 can carry in excess of 14 mA of load current with good regulation. If the power transistor current gain exceeds 75, a one ampere supply can be realized.




FIGURE 13 - 5.0 V. 6.0 AMP, 25 kHz SWITCHING REGULATOR WITH SEPARATE ULTRA-STABLE REFERENCE

*40 Turns #16 Wire, Arnold A-894075-2 Ferrite Core

FIGURE 14 - HIGH SPEED 8-BIT D/A CONVERTER USING MC1404U10 IFS is set to 51.000 mA with R1

Inputs are MECL 10K

OPERATIONAL AMPLIFIERS

Motorola offers a broad line of operational amplifiers to meet a wide range of usages. From low-cost industry-standard types to high precision circuits, the span encompasses a large range of performance capabilities. These linear integrated circuits are available as single, dual, and quad monolithic devices in a variety of package styles as well as standard chips.

Single Operational Amplifiers

NONCOMPENSATED

.

Device	l _{iB} µA	V _{IO} mV max	TČVIO µV/°C typ	I _{IO} nA max	A _{vol} V/V min	BW(Ay=1) MHz typ	SR(Av=1) V/µa typ	Supply	Voltage / max	Description	Packages
Military T	emperat	ure Rar	ige (-65'	°C to +	125°C						-
LM101A	0.075	2.0	10	10	50K	1.0	0.5	±3.0	±22	General Purpose	601, 693
LM108	0.002	2.0	3.0	0.2	50K	1.0	0.3	±3.0	±20	Precision	601, 606, 693
LM108A	0.002	0.5	1.0	0.2	80K	1.0	0.3	±3.0	±20	Precision	601, 606, 693
MC1520	2.0	10	15	100	1K	10	5.0	±4.0	±8.0	Differential Output	603, 606
MC1530	10	5.0	15	2.0µA	4.5K	3.0	1.0	±4.0	±9.0	General Purpose	603B, 606, 632
MC1531	15	10	15	25	2.5K	2.0	1.0	±4.0	±9.0	General Purpose (Darlington Input)	603B, 606, 632
MC1533	1.0	5.0	15	150	40K	0.8	2.0	±4.0	±20	General Purpose	603B, 606, 632
MC1539	0.5	3.0	15	60	50K	2.0	4.2	±4.0	±18	High Slow Rate	601,632
MC1709	0.5	5.0	15	200	25K	1.0	0.3	±3.0	±18	General Purpose	601, 606, 632, 693
MC1709A	0.6	3.0	5.0	100	25K	1.0	0.5	±3.0	±18	High Performance MC1709	601, 606, 632
MC1712	5.0	2.0	15	500	2.5K	7.0	1.5	+6.0	+14	Wideband DC	601, 606, 632
				1				-3.0	-7.0	Amplifier	
MC1748	0.5	5.0	15	200	50K	1.0	0.5	±3.0	±22	General Purpose	601, 693
Industrial	Temper	sture R	anga (0°	C to +7	/0°C}						
LM301A	0.25	7.5	10	50	25K	1.0	0.5	±3.0	±18	General Purpose	601, 626, 693
LM308	7.0	7.5	15	1.0	25K	1.0	0.3	±3.0	±18	Precision	601, 606, 626, 693
LM308A	7.0	0.5	5.0	1.0	80K	1.0	0.3	±3.0	±18	Precision	601, 606, 626, 693
MC1420	4.0	15	15	200	750	10	5.0	±4.0	±8.0	Differential Output	603, 606
MC1430	15	10	15	4.0µA	3К	3.0	1.0	±4.0	±8.0	General Purpose	603B, 606, 632, 646
MC1431	0.3	15	15	100	1.5K	2.0	1.0	±4.0	±8.0	General Purpose	603B, 606,
										(Darlington Input)	632, 646
MC1433	2.0	7.5	15	50	30K	0.8	2.0	±4.0	±18	General Purpose	6038, 606, 632, 646
MC1439	1.0	7.5	15	100	15K	2.0	4.2	±6.0	±18	High Slew Rate	601, 626, 632, 646
MC1709C	1.5	7.5	15	500	15K	1.0	0.3	±3.0	±18	General Purpose	601, 606, 626, 632, 646, 693
MC1712C	7,5	5.0	15	2.0µA	2K	7.0	1.5	+6.0 -3.0	+14 -7.0	Wideband DC Amplifier	601, 606, 632
MC1748C	0.5	6.0	15	200	20K	1.0	0.5	±3.0	±18	General Purpose	601, 626, 693

Single Operational Amplifiers

INTERNALLY COMPENSATED

Device ripst Peckages Millerry Temperature Range (-56° Ct or 125°C) 601 601 603 632 603 632 603 632 603 632 603 632 603 632		118	VIO	TCVIO	lío	Avol	BW(Av=1)	SR(Av=1)		Voltage		
Military Temperature Range (-55° C to +125°C) 10	Device	μA max	mV	μV/°C	nA	V/V min	.MHz tvp	V/µ≇ tvp			Description	Packages
LF155 100pA 5.0 20pA 50K 1.0 5.0 ±5.0 ±22 FET Input 601 LF155 50pA 2.0 3.0 10pA 50K 1.0 5.0 ±5.0 ±22 FET Input 601 LF155 50pA 2.0 3.0 10pA 50K 2.0 15 ±5.0 ±22 FET Input 601 LF157 10pA 50K 2.0 15 ±5.0 ±22 Wideband FET Input 601 LF157 10pA 5.0 10pA 50K 3.0 75 ±5.0 ±22 Wideband FET Input 601 MC1536 0.02 5.0 10 3.0 100K 1.0 2.5 ±3.0 ±22 High Performance 601 603, 632 MC1741 0.5 5.0 15 200 50K 1.0 0.5 ±3.0 ±22 Low Noise 601, 632, 632, 632 MC1741N 0.5 5.0 15 200 </th <th></th> <th></th> <th></th> <th></th> <th>1</th> <th></th> <th>110</th> <th></th> <th></th> <th></th> <th></th> <th></th>					1		110					
LF ISSA 50pA 2.0 3.0 10pA 50k 1.0 5.0 ±5.0 ±2.2 FET input 601 LF ISSA 5.0pA 2.0 10 5.0 2.22 FET input 601 LF ISTA 5.0pA 2.0 10 5.0 2.22 FET input 601 LF ISTA 5.0pA 2.0 10.0 10.0pA 50K 2.0 15 ±5.0 ±22 Wideband FET input 601 LM107 0.075 2.0 10 1.0 50K 1.0 0.5 ±3.0 ±22 General Purpose 601, 693 MC1536 0.015 4.0 10 2.0 100K 1.0 2.5 ±3.0 ±22 High Performance 601, 632 693, 632 MC1741 0.5 5.0 15 200 50K 1.0 0.5 ±3.0 ±22 Low Noise 601, 632 693, 632 MC1741 0.5 5.0 15 200 50K							10	5.0		. 22	EET lagut	601
LP156 100pA 5.0 2.0 15 ±5.0 ±2.2 FET input 601 LF157 100pA 5.0 10pA 50K 2.0 15 ±5.0 ±22 FET input 601 LF157 10pA 5.0 10pA 50K 3.0 75 ±5.0 ±22 Wideband FET input 601 LF157 60pA 2.0 10 10 50K 3.0 75 ±5.0 ±22 Wideband FET input 601 602 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
LF185A 50pA 2.0 10pA 50K 2.0 15 ±5.0 ±22 FET input 601 LF157 100pA 5.0 2.0 15 ±5.0 ±22 Wideband FET input 601 LM107 0.075 2.0 10 10 50K 3.0 10pA 50K 1.0 0.5 ±3.0 ±22 General Purpose 601 693 MC1536 0.015 4.0 10 2.0 100K 1.0 2.5 ±3.0 ±22 High Performance 601 632, 693 MC1741 0.5 5.0 15 200 50K 1.0 0.5 ±3.0 ±22 Low Noise 601, 603, 632 601, 632, 693 MC1741 0.5 5.0 15 3.0 20K 1.0 0.5 ±3.0 ±22 Low Noise 601, 632, 693												
L F 157 100pA 5.0 20pA 50x 3.0 75 ±5.0 ±22 Wideband FET Input 601 L F 157 50pA 2.0 3.0 10pA 50k 3.0 75 ±5.0 ±22 Wideband FET Input 601 MC 1558 0.02 5.0 10 10 50k 1.0 2.0 ±15 ±40 High Voltage 601 632 MC 1538 0.015 4.0 10 2.0 100K 1.0 2.5 ±3.0 ±22 High Voltage 601 632 693 MC 1733 0.20 - - 3.0µA 90 90 - ±4.0 ±8.0 Differential Wideband 603 632 693 632 693 632 693 632 693 632 693 632 693 632 693 632 693 632 693 632 693 601 632 693 601 632 693 601											- •	
LF157A 60pA 2.0 3.0 10pA 50k 3.0 75 ±5.0 ±22 Wideband FET input General Purpose 601 LM107 0.075 2.0 10 10 50k 1.0 2.0 ±13.0 ±22 Wideband FET input General Purpose 601, 693 MC1556 0.015 4.0 10 2.0 100K 1.0 2.5 ±3.0 ±22 Wideband FET input General Purpose 601, 693 MC1733 0.20 - - 3.0µA 90 90 - ±4.0 ±8.0 Differential Wideband 603, 632 MC1741 0.5 5.0 15 200 50K 1.0 0.5 ±3.0 ±22 Low Noise 601, 606, 632, 693 MC1741 0.5 5.0 15 200 50K 1.0 0.2 ±1.5 ±18 PET input 601, 632, 693 MC1741 0.5 5.0 15 3.0 20K 1.0 100pA 50K 1.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
Lintor 0.075 2.0 10 10 50x 1.0 0.5 ±3.0 ±22 General Purpose 601, 693 MC1536 0.02 5.0 10 3.0 100K 1.0 2.0 ±15 ±4.0 High Portomance 601, 693 MC1536 0.015 4.0 10 2.0 100K 1.0 2.5 ±3.0 ±22 High Portomance 601, 693 MC1733 0.20 - - 3.0µA 90 90 - ±4.0 ±8.0 Differential Wideband 603, 632 Video Amp 601, 606, 632, 693 MC1741 0.5 5.0 15 200 50K 1.0 0.5 ±3.0 ±22 Low Noise 601, 606, 632, 693 MC1741S 0.5 5.0 15 3.0 200K 1.0 0.2 ±1.5 ±18 PEV FeT Input 601, 693 MC35001 100pA 5.0 10 50pA 50K 1.0 13												
MC 1536 0.02 5.0 10 3.0 100k 1.0 2.0 ±15 ±40 High Vortage High Performance OU 601 632 601, 632 MC 1556 0.015 4.0 10 2.0 100k 1.0 2.5 ±3.0 ±22 High Performance High Performance 601, 632 MC 1741 0.5 5.0 15 200 50k 1.0 0.5 ±3.0 ±22 General Purpose 601, 606, 632, 693 MC 1741 0.5 5.0 15 200 50k 1.0 0.5 ±3.0 ±22 Low Noise 601, 606, 632, 693 MC 1741 0.5 5.0 15 200 50k 1.0 0.5 ±3.0 ±22 High Siew Rate 601, 693 MC 1741 0.5 5.0 15 200 50k 4.0 13 ±5.0 ±22 TRIMFET Input 601, 693 MC 15001 100pA 50k 4.0 13 ±5.0 ±18 FET Input <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
MC1556 0.015 4.0 10 2.0 100K 1.0 2.5 ±3.0 ±22 High Performance Utferential Wideband 601, 632 MC1733 0.20 - - 3.0µA 90 90 - ±4.0 ±8.0 Differential Wideband 601, 632 603, 632 MC1741 0.5 5.0 15 200 50K 1.0 0.5 ±3.0 ±22 Low Noise 601, 606, 632, 693 MC1741S 0.5 5.0 15 200 50K 1.0 10 ±3.0 ±22 Low Noise 601, 606, 632, 693 MC1776 0.0075 5.0 15 3.0 200K 1.0 0.2 ±1.5 ±18 µPower Programmable 601, 693 MC35001A 75pA 2.0 10 25pA 50K 4.0 13 ±5.0 ±18 FET Input 601 601, 693 Industrial Temperature Range (0°C to +70°C) - 15 ±5.0 ±18 FET Input 601												
MC1733 0.20 - - 3.0μA 90 90 - ±4.0 ±8.0 Differential Wideband Video Amp 603, 632 MC1741 0.5 5.0 15 200 50K 1.0 0.5 ±3.0 ±22 General Purpose 601, 606, 632, 693 MC1741 0.5 5.0 15 200 50K 1.0 0.5 ±3.0 ±22 Low Noise 601, 606, 632, 693 MC1741 0.5 5.0 15 200 50K 1.0 10 ±3.0 ±22 Low Noise 601, 632, 693 MC1760 0.0075 5.0 15 3.0 200K 1.0 0.2 ±1.5 ±18 #Perr Input 601, 633 MC350011 100pA 10 25pA 50K 4.0 13 ±5.0 ±22 TRIMFET Input 601 LF355 200pA 10 5.0 50A 50K 1.0 5.0 ±18 FET Input 601 LF355A												
MC1741 0.5 5.0 15 200 50K 1.0 0.5 ±3.0 ±22 General Purpoxe 601, 606, 632, 693 MC1741N 0.5 5.0 15 200 50K 1.0 0.5 ±3.0 ±22 Low Noise 601, 606, 632, 693 MC1741S 0.5 5.0 15 200 50K 1.0 0.2 ±1.5 ±8 µPower Programmable 601, 632, 693 MC1761D 0.0075 5.0 15 3.0 200K 1.0 0.2 ±1.5 ±8 µPower Programmable 601, 632, 693 MC35001B 100pA 50K 4.0 13 ±5.0 ±22 TRIMFET Input 601, 693 MC35001B 100pA 5.0 50pA 50K 4.0 13 ±5.0 ±18 FET Input 601 693 Industrial Temperature Range (0°C to +70°C) LF355 50pA 50K 1.0 5.0 ±5.0 ±18 FET Input 601 LF355A 50p			4.0	10				2.5				
MC1741N 0.5 5.0 15 200 50K 1.0 0.5 ±3.0 ±22 Low Noise 632, 693 MC1741S 0.5 5.0 15 200 50K 1.0 10 ±3.0 ±22 Low Noise 632, 693 MC1741S 0.5 5.0 15 3.0 200K 1.0 0.2 ±1.5 ±18 µPower Programmable 601, 632, 693 MC35001A 100pA 25pA 50K 4.0 13 ±5.0 ±22 TRIMFET Input 601, 693 MC35001B 100pA 5.0 50pA 50K 4.0 13 ±5.0 ±22 TRIMFET Input 601 LF355 200pA 10 5.0 50pA 50K 4.0 13 ±5.0 ±22 TRIMFET Input 601 LF355 200pA 10 5.0 50pA 50K 1.0 5.0 ±5.0 ±18 FET Input 601 LF355 200pA 10	MC1733		-	-			•••	-			Video Amp	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MC1741	0.5	5.0	15	200	50K	1.0	0.5	±3.0	±22		
MC1776 0.0075 5.0 15 3.0 200K 1.0 0.2 ± 1.5 ± 18 μPower Programmable 601, 632 MC35001 100pA 75A 10 100pA 25K 4.0 13 ±5.0 ±22 TRIMFET Input 601, 693 MC35001B 100pA 5.0 10 50pA 50K 4.0 13 ±5.0 ±22 TRIMFET Input 601, 693 Industrial Temparature Range (0°C to +70°C) 50pA 50K 4.0 13 ±5.0 ±22 TRIMFET Input 601 LF355 200pA 10 5.0 50pA 50K 1.0 5.0 ±5.0 ±18 FET Input 601 LF356A 50pA 2.0 1.0 10pA 50K 2.0 15 ±5.0 ±18 FET Input 601 LF355A 50pA 2.0 1.0 10pA 50K 3.0 75 ±5.0 ±18 Wideband FET Input 601 601 601, 632, 6633	MC1741N	0.5	5.0	15	200	50K	1.0	0.5	±3.0	±22	Low Noise	
MC35001 100pA 10 100pA 25K 4.0 13 ±5.0 ±22 TRIMFET Input 601, 693 MC35001A 75pA 2.0 10 25pA 50K 4.0 13 ±5.0 ±22 TRIMFET Input 601, 693 MC35001B 100pA 5.0 10 50pA 50K 4.0 13 ±5.0 ±22 TRIMFET Input 601, 693 Industrial Temperature Range (0°C to +70°C) 10 5.0 50pA 50K 1.0 5.0 ±18 FET Input 601 LF355 200pA 10 5.0 50pA 50K 1.0 5.0 ±18 FET Input 601 LF356 200pA 10 5.0 50pA 50K 2.0 15 ±5.0 ±18 FET Input 601 LF357 200pA 10 5.0 50pA 50K 3.0 75 ±5.0 ±18 Wideband FET Input 601 601, 632 601, 632, 646 601, 632, 646	MC1741S	0.5	5.0	15	200	SOK	1.0	10	±3.0	±22	High Slew Rate	601, 632, 693
MC38001A 75pA 2.0 10 25pA 50k 4.0 13 ±5.0 ±22 TRIMFET Input 601, 693 Industrial Temperature Range (0°C to +70°C) 50pA 50k 4.0 13 ±5.0 ±22 TRIMFET Input 601, 693 Industrial Temperature Range (0°C to +70°C) 10 50pA 50k 1.0 50 ±5.0 ±18 FET Input 601 LF355 200pA 10 5.0 50pA 50k 1.0 50 ±5.0 ±18 FET Input 601 LF356 200pA 10 5.0 50pA 50k 2.0 15 ±5.0 ±18 FET Input 601 LF356A 50pA 2.0 1.0 10pA 50k 3.0 75 ±5.0 ±18 FET Input 601 LF357 200pA 10 12 10 70k 1.0 2.5 ±3.0 ±18 General Purpose 601, 632, 626, 693 MC1436 0.03 1			5.0	15	3.0	200K	1.0	0.2	±1.5	±18	Power Programmable	601, 632
MC35001A 75pA 2.0 10 25pA 50K 4.0 13 ±5.0 ±22 TRIMFET Input 601, 693 Industrial Temperature Rame 0°C to +70°C 50K 4.0 13 ±5.0 ±22 TRIMFET Input 601, 693 Industrial Temperature Rame 0°C to +70°C 50K 4.0 13 ±5.0 ±22 TRIMFET Input 601, 693 LF355 200pA 10 5.0 50pA S0K 1.0 50.0 ±5.0 ±18 FET Input 601 LF356 200pA 10 5.0 50pA 50K 2.0 15 ±5.0 ±18 FET Input 601 LF356A 50pA 2.0 1.0 10pA 50K 2.0 15 ±5.0 ±18 Wideband FET Input 601 LF357A 50pA 2.0 1.0 50 25K 1.0 0.5 ±3.0 ±18 High Performance 601, 632, 626, 693 MC1436		100pA	10	10	100pA	25K	4.0	13	±5.0	±22	TRIMFET Input	601, 693
MC35001B 100pA 5.0 10 50pA 50K 4.0 13 ±5.0 ±22 TRIMFET Input 601, 693 Industrial Temperature Range (0°C to +70°C) 5.0 ±18 FET Input 601, 693 LF355 200pA 10 5.0 50pA 50K 1.0 5.0 ±5.0 ±18 FET Input 601 LF356 200pA 10 5.0 50pA 50K 2.0 15 ±5.0 ±18 FET Input 601 LF356 200pA 10 5.0 50pA 50K 2.0 15 ±5.0 ±18 FET Input 601 LF357 200pA 10 5.0 50pA 50K 3.0 75 ±5.0 ±18 Wideband FET Input 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601			2.0	10	25pA	50K	4.0	13	±5.0	±22	TRIMFET Input	601, 693
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	MC35001B		5.0	10	50pA	50K	4.0	13	±5.0	±22	TRIMFET Input	601, 693
LF355A S0pA 2.0 1.0 10pA 50k 1.0 5.0 ±5.0 ±18 FET Input 601 LF355A 200pA 10 5.0 50pA 50k 2.0 15 ±5.0 ±18 FET Input 601 LF356 200pA 10 5.0 50pA 50k 2.0 15 ±5.0 ±18 FET Input 601 LF357 200pA 10 5.0 50pA 50K 3.0 75 ±5.0 ±18 Wideband FET Input 601 LF357A 50pA 2.0 1.0 10pA 50K 3.0 75 ±5.0 ±18 General Purpose 601	Industrial 1	[emperat	ure Ra	nge (0°C	to +70°	C)						
LF356 200pA 10 5.0 50pA 50k 2.0 15 ±5.0 ±18 FET Input 601 LF356 50pA 2.0 1.0 10pA 50k 2.0 15 ±5.0 ±18 FET Input 601 LF357 200pA 10 5.0 50pA 50K 3.0 75 ±5.0 ±18 Wideband FET Input 601 LF357A 50pA 2.0 1.0 10pA 50K 3.0 75 ±5.0 ±18 Wideband FET Input 601 LM307 0.25 7.5 10 50 25K 1.0 2.0 ±15 ±34 High Voltage 601, 632, 663 MC1436 0.04 10 12 10 70K 1.0 2.5 ±3.0 ±18 High Voltage 601, 632, 626, 633 MC1741C 0.5 6.0 15 200 20K 1.0 0.5 ±3.0 ±18 Low Noise 601, 632, 626, 646, 693	LF355	200pA	10	5.0	50pA	50K	1.0	5.0	±5.0	±18	FET Input	
LF356A 50pA 2.0 1.0 10pA 50K 2.0 15 ±5.0 ±18 FET Input 601 LF357 200pA 10 5.0 50pA 50K 3.0 75 ±5.0 ±18 Wideband FET Input 601 LF357A 50pA 2.0 1.0 10pA 50K 3.0 75 ±5.0 ±18 Wideband FET Input 601 LM307 0.25 7.5 10 50 25K 1.0 0.5 ±3.0 ±18 General Purpose 601, 626, 693 MC1436 0.04 10 12 10 70K 1.0 2.5 ±3.0 ±18 High Priormance 601, 632 601, 632 601, 632, 646 601, 632, 646 601, 632, 646 601, 632, 646 646, 693 601, 632, 646 646, 693 601, 632, 626, 646, 693 601, 632, 626, 646, 693 601, 632, 626, 646, 693 601, 632, 626, 646, 693 601, 632, 626, 646, 693 601, 632, 626, 646, 693 601, 632, 626, 646, 693 601, 632, 626, 646, 693 601, 632, 626, 646, 693	LF355A	50pA	2.0	1.0	10pA	50K	1.0	5.0	±5.0	±18	FET Input	
Libbox Log Log Log SopA SopA <th< td=""><td>LF356</td><td>200pA</td><td>10</td><td>5.0</td><td>50pA</td><td>50K</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	LF356	200pA	10	5.0	50pA	50K						
Li Sopa Loo	LF356A	50pA	2.0	1.0	10pA	50K	2.0	15	±5.0	±18	FET Input	
LM307 0.25 7.5 10 50 25K 1.0 0.5 ±3.0 ±18 General Purpose 601, 626, 693 MC1436 0.04 10 12 10 70K 1.0 2.5 ±3.0 ±18 High Voltage 601, 626, 693 601 MC1436 0.03 10 12 10 70K 1.0 2.5 ±3.0 ±18 High Voltage 601, 632 601, 632 601, 632, 646 601, 632, 646 601, 632, 646 646, 693 601, 632, 626, 646, 693 646, 693 601, 632, 626, 646, 693	LF357	200pA	10	5.0	50pA	50K	3.0		±5.0	±18	Wideband FET Input	
MC1436 0.04 10 12 10 70K 1.0 2.0 ±15 ±34 High Voltage 601 MC1436 0.03 10 12 10 70K 1.0 2.5 ±3.0 ±18 High Performance 601, 632 MC1436 0.03 10 12 10 70K 1.0 2.5 ±3.0 ±18 High Performance 601, 632 601, 632, 646 MC1741C 0.5 6.0 15 200 20K 1.0 0.5 ±3.0 ±18 General Purpose 601, 632, 646 601, 632, 626, 646, 693	LF357A	50pA	2.0	1.0	10pA	50K	3.0				Wideband FET Input	
MC1456 0.03 10 12 10 70K 1.0 2.5 ±3.0 ±18 High Performance 601, 632 MC1733C 30 - - 5.0µA 80 90 - ±4.0 ±8.0 Differential Wideband 601, 632, 646 601, 632, 646 601, 632, 646 601, 632, 626, 646, 693 <	LM307	0.25	7.5	10	50	25K	1.0	0.5	±3.0	±18	General Purpose	601, 626, 693
MC1733C 30 - - 5.0μA 80 90 - ±4.0 ±8.0 Differential Wideband Video Amp 601, 632, 646 MC1741C 0.5 6.0 15 200 20K 1.0 0.5 ±3.0 ±18 Differential Wideband Video Amp 601, 632, 626, 646, 693 MC1741NC 0.5 6.0 15 200 20K 1.0 0.5 ±3.0 ±18 Low Noise 601, 632, 626, 646, 693 MC1741SC 0.5 6.0 15 200 20K 1.0 0.5 ±3.0 ±18 Low Noise 601, 632, 626, 646, 693 MC1776C 0.5 6.0 15 200 20K 1.0 10 ±3.0 ±18 High Siew Rate 601, 632, 626, 646, 693 MC1776C 0.003 6.0 15 3.0 100K 1.0 0.2 ±15 ±18 High Siew Rate 601, 632, 626, 646, 693 MC3476C 0.05 6.0 15 25 50K 1.0 0.2 ±15	MC1436	0.04		12	10	70K	1.0	2.0	±15	±34	High Voltage	601
MC1741C 0.5 6.0 15 200 20K 1.0 0.5 ±3.0 ±18 Video Amp General Purpose 601, 632, 626, 646, 693 MC1741NC 0.5 6.0 15 200 20K 1.0 0.5 ±3.0 ±18 Low Noise 601, 632, 626, 646, 693 MC1741NC 0.5 6.0 15 200 20K 1.0 0.5 ±3.0 ±18 Low Noise 601, 632, 626, 646, 693 MC1741SC 0.5 6.0 15 200 20K 1.0 10 ±3.0 ±18 High Slew Rate 601, 632, 626, 646, 693 MC1776C 0.003 6.0 15 3.0 100K 1.0 0.2 ±1.5 ±18 µPower, Programmable 601, 626, 693 MC3476 0.05 6.0 15 25 50K 1.0 0.2 ±1.5 ±18 Low Cost 601, 626 MC34001 200pA 10 100pA 25K 4.0 13 ±5.0 ±18 TRIMFET Inp	MC1456	0.03	10	12	10	70K		2.5			High Performance	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MC1733C	30	-	-	5.0µA	80	90	-	±4.0	±8.0		601, 632, 646
MC 174 INC 0.5 6.0 15 200 20K 1.0 0.5 ±3.0 ±18 Low Noise 601, 632, 626, 646, 693 MC 174 ISC 0.5 6.0 15 200 20K 1.0 10 ±3.0 ±18 Low Noise 601, 632, 626, 646, 693 MC 1774 ISC 0.5 6.0 15 200 20K 1.0 10 ±3.0 ±18 High Siew Rate 601, 632, 626, 646, 693 MC 1776C 0.003 6.0 15 3.0 100K 1.0 0.2 ±1.5 ±18 µPower, Programmable 601, 626, 693 MC 3476 0.05 6.0 15 25 S0K 1.0 0.2 ±1.5 ±18 Low Cost 601, 626 MC 34001 200pA 10 100pA 25K 4.0 13 ±5.0 ±18 TRIMFET Input 601, 626, 693 MC 34001A 100pA 2.0 10 50pA 50K 4.0 13 ±5.0 ±18 TRIMFET Input	MC1741C	0.5	6.0	15	200	20K	1.0	0.5	±3.0	±18	General Purpose	
MC1774SC 0.5 6.0 15 200 20K 1.0 10 ±3.0 ±18 High Siew Rate 601, 632, 626, 646, 693 MC1776C 0.003 6.0 15 3.0 100K 1.0 0.2 ±15 ±18 High Siew Rate 601, 632, 626, 646, 693 MC1776C 0.003 6.0 15 3.0 100K 1.0 0.2 ±15 ±18 µPower, Programmable 601 MC3406 0.05 6.0 15 25 50K 1.0 0.2 ±1.5 ±18 µPower, Programmable 601, 626 MC34001 200pA 10 100pA 25K 4.0 13 ±5.0 ±18 TRIMFET Input 601, 626, 693 MC34001A 100pA 2.0 50K 4.0 13 ±5.0 ±18 TRIMFET Input 601, 626, 693	MC1741NC	0.5	6.0	15	200	20K	1.0	0.5	±3.0	±18	Low Noise	601, 632, 626,
MC1776C 0.003 6.0 15 3.0 100K 1.0 0.2 ±1.5 ±18 μPower, Programmable 601 MC3476 0.05 6.0 15 25 S0K 1.0 0.2 ±1.5 ±18 Low Cost μPower, Programmable 601, 626 MC34001 200pA 10 100pA 25K 4.0 13 ±5.0 ±18 TRIMFET Input 601, 626, 693 MC34001A 100pA 2.0 10 50pA 50K 4.0 13 ±5.0 ±18 TRIMFET Input 601, 626, 693	MC1741SC	0.5	6.0	15	200	20K	1.0	10	±3.0	±18	High Slew Rate	601, 632, 626,
MC34001 200pA 10 100pA 25K 4.0 13 ±5.0 ±18 TRIMFET Input 601, 626, 693 MC34001A 100pA 2.0 10 50pA 50K 4.0 13 ±5.0 ±18 TRIMFET Input 601, 626, 693 MC34001A 100pA 2.0 10 50pA 50K 4.0 13 ±5.0 ±18 TRIMFET Input 601, 626, 693	MC1776C	0.003	6.0	15	3.0	100K	1.0	0.2	±1.5	±18	µPower, Programmable	
MC34001 200pA 10 10 100pA 25K 4.0 13 ±5.0 ±18 TRIMFET Input 601, 626, 693 MC34001A 100pA 2.0 10 50pA 50K 4.0 13 ±5.0 ±18 TRIMFET Input 601, 626, 693	MC3476	0.05	6.0	15	25	50K	1.0	0.2	±1.5	±18		601, 626
MC34001A 100pA 2.0 10 50pA 50K 4.0 13 ±5.0 ±18 TRIMFET Input 601, 626, 693	MC34001	200pA	10	10	100pA	25K	4.0	13	±5.0	±18		601, 626, 693
				10	•	50K			±5.0	±18	•	
mentioners and the line has been and the line is the line of the l		200pA	5.0	10	100pA	50K	4.0	13	±5.0	±18	TRIMFET Input	601, 626, 693

Dual Operational Amplifiers

INTERNALLY COMPENSATED

	I _{IB} μA	V _{IO} mV	^{ΤC} VIO μV/°C	liO nA	A _{val} V/V	BW(Av=1) MHz	SR(Av=1) V/μs	Supply	Voltage /		
Davice	max	max	typ	max	min	typ	typ	min	max	Description	Packages
Military Te	emperatu	re Ran	ge (-55°C	to +125	°)						
LM158	0.15	5.0	10	30	50K	1.0	0.6	: 1.5 +3.0	±18 +36	Split Supplies Single Supply (Low Power Consumption)	601, 632, 693
MC1558	05	5.0	10	200	50K	1.1	0.8	± 3.0	:22	Dual MC1741	601, 632, 693
MC1558N	0.5	5.0	10	200	50K	1.1	0.8	±3.0	±22	Low Noise	601, 632, 693
MC1558S	0.5	5.0	10	200	50K	1.0	10	±3.0	:22	High Slew Rate	601, 632, 693
MC1747	0.5	5.0	10	200	50K	1.0	0.5	±3.0	±22	Dual MC1741	601,632
MC3558	0.5	5.0	10	50	50K	1.0	0.6	±1.5	:18	Split Supplies	601, 632, 693
								+3.0	+36	Single Supply	
MC4558	0.5	5.0	10	200	50K	4.0	1.5	:3.0	:22	High Frequency	601, 632, 693
MC35002	100pA	10	10	100pA	25K	4.0	13	:5.0	:22	TRIMFET Input	601, 693
MC35002A	75pA	20	10	250A	50K	4.0	13	±5.0	:22	TRIMFET Input	601,693
MC35002B	100pA	5.0	10	50pA	50K	4.0	13	±5.0	:22	TRIMFET Input	601,693
MC35022	150pA	2.0	5.0	70pA	25K	4.0	13	±5.0	±22	Precision	601,693
	1.00p.		0.0		2011	1.0	10	-0.0		TRIMFET Input	001,033
MC35022A	60pA	0.5	5.0	25pA	50K	4.0	13	±5.0	:22	Precision TRIMFET Input	601, 693
MC35022B	75pA	1.0	5.0	50pA	50K	4.0	13	±5.0	:22	Precision TRIMFET Input	601,693
Industrial '	Temperat	ure Ra	inge (0°C	to +70 C	;)						
LM358	0.25	6.0	7.0	50	25K	1.0	0.6	±1.5	±18	Split Supplies	601, 626, 693
								+3.0	+36	Single Supply	
						1.000				(Low Power Consumption)	
MC1458	0.5	6.0	10	200	20K	1.1	0.8	±3.0	±18	Dual MC1741	601, 626, 632 646, 693
MC1458N	0.5	6.0	10	200	20K	1.1	0.8	±3.0	[,] 18	Low Noise	601, 626, 632 646, 693
MC1458S	0.5	6.0	10	200	20K	1.0	10	±3.0	• 18	High Slew Rate	601, 626, 632 646, 693
MC1747C	0.5	60	10	200	25K	1.0	0.5	±3.0	±18	Dual MC1741	603, 632, 646
MC3458	0.5	10	7.0	50	20K	1.0	0.6	±1.5	:18	Split Supplies	601, 626, 693
								+3.0	+36	Single Supply	
										(Low Crossover Distortion)	
MC4558C	0.5	6.0	10	200	20K	3.0	1.5	±3.0	+18	High Frequency	601,626,693
MC34002	100pA	10	10	100pA	25K	4.0	13	±5.0	±18	TRIMFET Input	601, 626, 693
MC34002A	75pA	2.0	10	50pA	50K	4.0	13	±5.0	:18	TRIMFET Input	601, 626, 693
MC34002B	100pA	5.0	10	70pA	25K	4.0	13	±5.0	±18	TRIMFET Input	601, 626, 693
MC34022	150pA	2.0	5.0	70pA	25K	4.0	13	±5.0	±18	Precision TRIMFET Input	601, 626, 693
MC34022A	75pA	0.5	5.0	30pA	50K	4.0	13	±5.0	± 18	Precision TRIMFET Input	601, 626, 693
MC340228	150pA	1.0	5.0	70pA	50K	4.0	13	±5.0	:18	Precision TRIMFET Input	601, 626, 693
Automotiv	e Tempe	rature	Range (-4	0°C to +	85°C)		1				
MC3358	5.0	8.0	10	75	20K	1.0	0.6	±1.5	+18	Split Supplies	626
								+3.0	+36	Single Supply	

NONCOMPENSATED

Military Temperature Range (-55°C to +125°C)

MC1535	3.0	3.0	10	300	4K	1.0	0.01	± 2.0	±10	General Purpose	603B, 606, 632
MC1537	0.5	5.0	10	200	25K	1.0	0.25	±3.0	118	Dual MC1709	632
Industrial	Tempera	ture Ra	nge (0°C	to +70° (C)						
MC1435	5.0	5.0	10	500	3.5K	1.0	0.01	±2.0	±9.0	General Purpose	603B, 607, 632
MC1437	1.5	7.5	10	500	15K	1.0	0.25	±3.0	±18	Dual MC1709	632, 646

Quad Operational Amplifiers

INTERNALLY COMPENSATED

Device	l _{IB} μA max		TC <mark>VIO</mark> μV/°C typ	l _{IO} nA max	A _{vol} V/V min	BW(Av=1) MHz typ	SR(Av=1) V/µs typ	Supply min	Voltage / max	Description	Packages
Military Te	mperatu	re Rang	e (-55°C	to +125	°C)	-					
LM124	0.15	5.0	7.0	30	50K	1.0	0.6	±1.5 +3.0	±16 +32	Low Power Consumption	632, 646
MC3503	0.5	5.0	7.0	50	50K	1.0	0.6	±1.5 +3.0	±18 +36	General Purpose Low Power	632, 646
MC4741	0.5	5.0	15	200	50K	1.0	0.5	±3.0	±22	Quad MC1741	632, 646
MC35004	100pA	10	10	100pA	25K	4.0	13	±5.0	:22	Trimmed FET Input	632
MC35004A	75pA	2.0	10	25pA	50K	4.0	13	±5.0	±22	Trimmed FET Input	632
MC35004B	100pA	5.0	10	50pA	50K	4.0	13	±5.0	±22	Trimmed FET Input	632
Industrial	Temperat	ure Ra	nge (0°C	to 70°C)							
LM324	0.25	6.0	7.0	50	25K	1.0	0.6	: 1.5	±16	Low Power	632, 646
								+3.0	+32	Consumption	630 646
MC3401	0.3	-		-	1K	5.0	0.6	:1.5	±18 +36	Norton Input	632, 646
MC3403	0.5	10	3.0	50	20K	1.0	0.6	+3.0	+36 ±18	No Crossover	632,646
MC3403	0.5	10	7.0	50	ZUK	1.0	0.6	+3.0	+36	Distortion	032,040
MC4741C	0.5	6.0	15	200	20K	1.0	0.5	+3.0	±18	Quad MC1741	632,646
MC34004	200pA	10	10	100pA	25K	4.0	13	:5.0	:18	Trimmed FET Input	632,646
MC34004A		2.0	10	50pA	50K	4.0	13	:5.0	: 18	Trimmed FET Input	632,646
MC3400B	200pA	5.0	10	100pA		4.0	13	:5.0	18	Trimmed FET Input	632,646
Automotiv	e Tempe	rature l	ange (-4	0 C to +	85 C)		1		1		
LM2902	0.5	10	-	50	-	1.0	0.6	±1.5	±13	Differential	646
						-		+3.0	+26	Low Power	
MC3301	0.3	-	-	-	1K	4.0	0.6	*2.0	115	Norton Input	646
								+4.0	+28		
MC3303	0.5	8.0	10	75	20K	1.0	0.6	±1.5	±18	Differential	646
								+3.0	+36	General Purpose	

Package Styles

LEAD CONFIGURATION	-			10 ¹⁰ ,	Baag bood
CASE	601	603	6038	606	626
MATERIAL	Metal	Metal	Metal	Ceramic	Plastic
SUFFIX after type number	G, H	G, H	G, H	F	P, P1, N

	14	14. 	
CASE	632	646	693
MATERIAL	Ceramic	Plastic	Ceramic
SUFFIX after type number	J, L	P, P2	J, U

10

VOLTAGE REGULATORS

Fixed Output Voltage Regulators

- Low-cost monolithic circuits for positive and/or negative regulation at currents from 100 mA to 1.5A
- Ideal for on-card regulation of subsystems
- Internal current limiting thermal shutdown and safe-area compensation

V _{out} Volts	Tel.† Volta	IO mĂ Max	Device Type Positive Output	Device Type Negative Output	V _{in} Min/Max	Reg _{line} mV.	Regiond mV	ΔV _O /ΔŤ mÝ/°C Typ	Citte
2	±0.1	1500	_	MC7902C	5.5/35	40	120	1.0	1, 221A
3	±0.15 ±0.3	100	-	MC79L03AC MC79L03C	4.7/30	60 80	72	-	29, 79
5	±0.5	100	MC78L05C MC78L05AC	MC79L05C MC79L05AC	6.7/30	200	60		29, 79
	-0.20	500	MC78M05C	-	7/35	100	100	1.0	79, 221A
	±0.4	1500	LM109 LM209		1			1.1	1, 79
	±0.25	1	LM309	-	<u> </u>	50	Į	1.0	1
	±0.35		**MC7805*		8.0/35			0.6	1
	±0.25	1	MC7805C	MC7905C	7/35	100		1.0	1, 221A
	±0.2		**MC7805A*		7.5/35	10	50 100	0.6	1 1, 221A
	±0.25		**LM140.5* **LM340.5	-	7/35	50	50		1
5.2	±0.26	1500	-	MC7905.2C	7.2/35	105	105	1.0	1, 221A
6	±0.3	500	MC78M06C	-	8/35	100	120	1.0	79, 221A
	±0.35	1500	**MC7806*		9/35	60	100	0.7	1
	±0.3	1	MC7806C	MC7906C	8/35	120	120]	1, 221A
	±0.24	3	**MC7806A*	-	8.6/35	11	50]	1
			**MC7806AC				100]	1, 221A
•	±0.3		**LM140-6*	<u> </u>	8/35	60	60		1
_			**LM340-6	-					ļ
8	±0.8	100	MC78L08C MC78L08AC		9.7/30	200 175	80	-	29, 79
	±0.4	500	MC78M08C	-	10/35	100	160	1.0	79, 221A
		1500	**MC7808*	-	11.5/35	80	100]	1
			MC7808C	MC7908C	10/35	160	160	1	1, 221A
	±0.3		**MC7808A*	-	10.6/35	13	50	1	1
			**MC7808AC	· · · · · · · · · · · · · · · · · · ·	<u> </u>		100		1, 221A
	±0.4		**LM140-8*		10.5/35	. 80	80	1	1
			**LM340.8						
12	±1.2 ±0.6	100	MC78L12C	MC79L12C MC79L12AC	13.7/35	250	100] -	29, 79
	10.0	500	MC78L12AC MC78M12C	MC/9L12AC	14/35	100	240		79, 221A
		1500	**MC7812*	1	14/35	120	120	1.0	1.13, 221A
		1500	MC7812C	 MC7912C	14.5/35	240	240	1 '''	1,221A
	±0.5	1	**MC7812A*	-	14.8/35	18	50	1	1
	10.5	1.	**MC7812AC	<u></u>	1	1	100	1	1, 221A
	±0.6		**LM140-12*		14.5/35	120	120	1.5	1
		1	**LM340-12	1 -	1	1	l	1	1

FIXED-VOLTAGE, 3-TERMINAL REGULATORS FOR POSITIVE OR NEGATIVE POLARITY POWER SUPPLIES.

** 1979 New Product Introductions

Tj = -55 to +150°C

toutput Voltage Tolerance for Worst Case

10

(continued)

Fixed Output Voltage Regulators (continued)

V _{out} Volts	Tol,† Volts	10 mA Max	Device Type Positive Output	Device Type Negative Output	V _{in} Mjn/Mex	Reg _{tine} mV	Reg _{load}	ΔV _O /ΔT mV/°C Typ	Case
16	±1.5	100	MC78L18C	MC79L18C	16.7/35	300	150	- 1	29, 79
	±0.75	l	MC78L15AC	MC79L15A	1				· ·
	1	500	MC78M15C	-	17/35	100	300	1.0	79, 221A
	1	1500	**MC7815*	-	18.5/35	150	160	1.8	1
	·		MC7816C	MC7915C	17.5/35	300	300		1, 221A
	±0.6	1	**MC7815A*	-	17.9/35	22	50_		1
		[**MC7815AC	-			100		1, 221A
	±0.75		**LM140-15*	-	17.5/35	160	150		1
			**LM340-15	-	1				
18	±1.8	100	MC78L 18C	MC79L18C	19.7/35	325	170		29, 79
	±0.9	1	MC78L18AC	MC79L18AC	l				
	1	500	MC78M18C	-	20/35	100	360	1.0	79, 221A
		1500	**MC7818*	-	22/35	180	180	2.3	1
			MC7818C	MC7918C	21/35	360	360]	1, 221A
	±0.7		**MC7818A*	-]	31	50		1
			**MC7818AC	-]		100]	1, 221A
	±0.9		**LM140-18*			180	180]	1
			**LM340-18						
20	±1.0	500	MC78M20C	-	22/40	10	400	1.1	79, 221A
24	±2.4	100	MC78L24C	MC79L24C	25.7/40	350	200	-	29, 79
	±1.2	1	MC78L24AC	MC79L24AC	1	300	1		
		500	MC78M24C	-	26/40	100	480	1.2	79, 221A
		1500	**MC7824*		28/40	240	240	3.0	1
		ļ	MC7824C	MC7924C	27/40	480	480]	1, 221A
	±1.0	1	**MC7824A*	-	27.3/40	36	50]	1
		1	**MC7824AC		27/40	_	100]	1, 221A
	±1.2]	**LM140-24*]	240	240	1	1
		1	**LM340-24	-	1		1		

**1979 New Product Introductions *Tj = -55 to +150°C 1Output Voltage Tolerance for Worst Case

Variable Output Voltage Regulators

POSITIVE OUTPUT REGULATORS

lo mA	Dévice	S UE F -	V. Va	uit: lits	V Va	in itu	V _{in} - Votit Differ- ential Volts	P 	tis .		iation ut C 25°C /P	TC.V _{but} Typ %/°C	Tj= °C	
Max	Туре	X (Min	Max	Min	Max	Min	25°C	25°C	Line	Load	%/°C	Max	Casa
20	LM305 LM205 LM105	н	4.5	40	8.5	50	3.0	0.4 0.68	1.3 1.6 2.7	0.06	0.1	0.007	85 100 150	601
100	**LM317L **LM217L **LM117L*	H,Z	1.2	37	5.0	40	3.0	Interr Limi	•	0.04 0.02	0.5	0.006 0.004 0.003	125 160	29,79
150	MC1723	CP CG G	2.0	37	9.5	40	3.0	0.65	2.1	0.1 0.1 0.2	0.3	0.003	150	646 603C
		CL L			_			1.0	-	0.1		0.003	175	632
250	MC1469 MC1569	G	2.5	32 37	9 8.5	35 40	3.0 2.7	0.68	1.8	0.03	0.13	0.002	150	603
600	MC1469 MC1569	R	2.5	32 37	9.0 8.5	35 40	3.0 2.7	3.0	14.0	0.03	0.05	0.002	150	614
1500	LM317 LM317 LM217	т н, к	1.2	37	5.0	40	3.0	lntern Limit		0.07	1.5	0.006	125	221A 79, 1
	LM117*									0.05	1.0	0.003	150	

*Tj = -65 to +180°C **1979 New Product Introductions

Variable Output Voltage Regulators (continued)

NEGATIVE OUTPUT REGULATORS

I _O mA	Device	S U F I	Vout Vin Volts Volts					PD Watts Max TC = TC =		ation out 25 C	TC V _{out}	T,J = °C		
Max	Туре	X	Min	Max	Min	Мах	Min	25°C	25°C	Line	Load	%/°C		Case
20	LM304	н	0.035	30	8.0	40	2.0	0.4	1.3	0.1	0.05	0.007	80	603
	LM204		0.015	40	1.00	50		0.68	1.6				100	
	LM104					-			2.7				150	1
250	MC1463	G	3.8	32	9.0	35	3.0 *	0 68	1.8	0.03	0.05	0.002	150	603
	MC1563		3.6	33	8.5	40	2.7			0.015	0.13	1		
600	MC1463	8	3.8	34	9.0	35	3.0	2.4	9.0	0.03	0.05	0.002	175	614
	MC1563		3.6	37	8.5	40	2.7			0.015				

Switching Regulators

Used as the control circuit in PWM, push-pull, bridge and series type switchmode supplies. The devices include the reference, oscillator, pulse-width modulator, phase splitter and output sections. Frequency and duty cycle are independently adjustable.

IO ±mA		CC pits	f	o Hz	– Davice T _A Number Suffix °C		TA	
Max	Min	Max	Min	Мах		°C	Case	
40	10	30	2.0	100	MC3420	P	0 to +70	648 620
			_		MC3520	L	-55 to +125	620

Special Regulators

FLOATING VOLTAGE AND CURRENT REGULATORS

Designed for laboratory type power supplies. Voltage is limited only by the breakdown voltage of associated, external, series-pass transistors.

V _o Vo	out olts	I _O mA	Device	SUFF1		ux dts	PD Watts	د. ۶	⊧/V _{ref} 6	۵۱ _L /۱ _L	TC V _{out} %/°C	
Min	Max	Мах			Min	Мах	Max	Line	Load	Мах	Тур	Case
0	•		MC1466	L	21	30	0.75	0.015	0.015	0.2	0.01	632
			MC1566	L	20	35		0.004	0.004	0.1	0.006	

*Dependent on characteristics of external series-pass elements.

DUAL ±15 V TRACKING REGULATORS.

Internally, the device is set for ± 15 V, but an external adjustment can change both outputs simultaneously, from 8.0 V to 20 V.

V _c Va	out			in olts	Device	S U F F t	PD Watts	Regline	Reg _{load}	TC %/°C (T _{low to} T _{high})	TA	
Min	Max	Мах	Min	Max	Туре	×	Max	mV	mV	Тур	°C	Case
14.8	15.2	1100	17	30	MC1468	G	0.8	10	10	3.0	0 to +75	603C
						L	1.0]				632
						R	2.4]				614
					MC1568	G	0.8]			-55 to +125	6030
						L	1.0					632
						R	2.4					614

Special Regulators (continued)

LOW TEMPERATURE DRIFT, LOW VOLTAGE REFERENCE

V _{out} Volts Typ	lo mA Max	ΔV _{out} /ΔT ppm/°C Max	Device Type	Suffix	Reg _{line} mV Max	Reg _{load} mV Max	T _A °C	Case
2.5 ± 25 m V	10	40	MC1403	U	3/4.5	10	0 to +70	693
		25	MC1403A]	(Note 1)	(Note 3)		
		55	MC1503]			-55 to +125	
		25	MC1503A					
5.0 ± 50 m V	1	40	MC1404U5	1	6.0	1	0 to +70	-
		25	MC1404AU5	1	(Note 2)			
		55	MC1504U5]			-55 to +125	11.00
		25	MC1504AU5	}				
5.25 ± 60 mV		40	MC1404U6		1		0 to +70	
	1	25	MC1404AU6	1			_	
		55	MC1504U6	1			-55 to +125	
		25	MC1504AU6					
10 ± 100 mV		40	MC1404U10	1	1	1	0 to +70	
		25	MC1404AU10]				_
		55	MC1504U10		-		-55 to +125	
		25	MC1504AU10					

Notes: 1. 4.5 \leq V₁ \leq 15 V/15 V \leq V₁ \leq 40 V 2. V_{in} = V_{out} + 2.5 V to 40 V 3. OmA \leq 1₀ \leq 10 mA

Package Styles	(e) (e) (e)) (???)	1 0 0 3	1	· ·			
CASE	1 (TO-3)	29 (TO-92)	79 (TO-39)	221A (TO-220)	601	603 (TO-5 Type)	603C	614 (TO-66)
MATERIAL	Metal	Plastic	Metal	Plastic	Metal	Metal	Metal	Metal
SUFFIX	SK, K, KC	P, Z	G, H	т	G, H	G, H	G	R

	16	ana	14	14	16	8	18	18
	(+++++++++++++++++++++++++++++++++++++	9000	4	· [4	4000	1	1
CASE	620	626	632 (TO-116)	646	648	693	701	726
MATERIAL	Ceramic	Plastic	Ceramic	Plastic	Plastic	Ceramic	Ceramic	Plastic
SUFFIX	J, L	P or P1	L	P or P2	N, P	U	J	N

CIRCUITS FOR CONSUMER APPLICATIONS

... reflecting Motorola's continuing commitment to semiconductor products necessary for consumer system designs. This tabulation is arranged to simplify first-order selection of consumer

integrated circuit devices that satisfy the primary functions for Television, Audio, Radio, Citizens Band, Automotive and Organ applications.

Television Circuits

SOUND

Function	Features	Case	Туре	
Sound IF, Detector, Limiter, Audio Preamplifier	80 μ V, 3 dB Limiting Sensitivity, 3.5 V (RMS) Output, Sufficient for Single Transistor Output Stage	646	MC1351	
Sound IF Detector	Interchangeable with ULN2111A	646	MC1357	
Sound IF Detector, dc Volume Control, Preamplifier	Excellent AMR, Interchangeable with CA3065	646	MC1358	
Sound IF. Low Pass Filter, Detector, dc Volume Control, Preamplifier,	Complete TV Sound System; 100 μ V, 3 dB Limiting Sensitivity; 4 Watts Output; V _{CC} = 24 V; R _L = 16 Ω	722A	TDA1190Z	
Power Amplifier	750 mW Output	648	TDA1190P	
VIDEO				
1st and 2nd Video IF	IF Gain @ 45 MHz = 60 dB typ, AGC Range = 70 dB min	626	MC1349	
Amplifier	IF Gain @ 45 MHz =50 dB typ, AGC Range = 60 dB min	626	MC1350	
1st and 2nd Video IF, AGC Keyer and Amplifier	IF Gain @ 45 MHz = 53 dB typ, AGC Range = 75 dB min, "Forward AGC" Provided for Tuner	646	MC1352	
3rd IF, Video Detector, Video Buffer, and	Low-Level Detection, Low Harmonic Generation, Zero Signal dc Output Voltage of 7.0 to 8.2 V	626	MC1330A1	
AFC Buffer	Same as MC1330A1 except zero signal dc output voltage of 7.8 to 9.0 V	626	MC1330A2	
Automatic Fine Tuning	High Gain AFT System, Interchangeable with CA3064	646	MC1364	
Automatic Fine Tuning with Intercarrier Mixer/Amplifier	AFT Circuit that Provides an AFT Voltage and an Amplified 4.5 MHz Intercarrier Sound Signal	646	CA3139	
CHROMA				
Chroma IF Amplifier and Subcarrier System	Includes Complete Chroma IF, AGC, dc Gain and Tint Controls Injection Locked Oscillator, Low Peripheral Parts Count	646	MC1398	
Chroma IF Amplifier and Subcarrier System (PLL)	Includes Complete Chroma IF, AGC, dc Chroma and Hue Controls, Phase-Locked Loop (PLL) Oscillator, Color Killer Threshold Adjustment	648	MC1399	
Dual Chroma Demodulators	Dual Doubly-Balanced Demodulator with RGB Matrix and Chroma Driver Stages	646	MC1324	
	Dual Doubly-Balanced Demodulator with RGB Matrix and PAL Switch	646	MC1327	
Triple Chroma Demodulator	Triple Doubly-Balanced Demodulator with Adjustable Output Matrix, Contains Three Independent Demodulators	648	MC1323	
DEFLECTION				
Horizontal Processor	Includes Linear Balanced Phase Detector, Oscillator and Predriver, Adjustable dc Loop Gain	626	MC1391	
	Same as MC1391 except designed to accept negative sawtooth sync pulse	626	MC1394	
Vertical Processor	Includes Oscillator and Complementary Driver, Low Thermal Drift, Retrace Pulse for Effective Blanking	648	MC1393A	
TV GAMES/DISPLAY				
Color TV Video Modulator	Includes Chroma Oscillator and Clock Driver, Lead and Lag Network, Chroma Modulator, RF Oscillator, and Modulator.	646	MC1372	
	Includes RF Oscillator and Modulator	626	MC1373	

CIRCUITS FOR CONSUMER APPLICATIONS

Audio Circuits

POWER AMPLIFIERS

Feetures	P _O Watta	V _{CC} Vdc Max	V _{in} @ rated PO mV Typ	ID mA Typ	R _L Ohms	Case	Туре
Audio Power Amplifiers	0.5	15	3.0	4.0	8.0	626	MC1306
	0.25	12	3.0	3.0	16	626	MC3360
	8.0	28	50	55	2.0	314A, 314B	TDA2002

Radio Circuits

IF AMPLIFIERS

Function	Gain @ 10.7 MHz dB Typ	3 dB Limiting @ 10.7 MHz mV (RMS) typ	AMR	Recovered Audio Output f = ±75 kHz mV (RMS)	Power Supply Volta Max	Case	Туре
IF Amplifier	58	0.175	60	690	18	626	MC1350
Limiting FM-IF Amplifier	-	0.600	45	480	18	646	MC1355
Limiting IF Ampl/Quad Detector	53	0.4	45	480	16	646	MC1357
IF Amplifier	42	60	50	500	18	626	MC3310
Low-Power FM-IF for Dual Conversion Scanning Receivers	1	0.005	50	350 (f = ±3.0 kHz)	8.0	648	MC3357

DECODERS

Function	Channel Separation dB Typ	THD % Typ	Stereoindicator Lamp Driver mA Max	Features	Case	Туре
FM Multiplex Stereo Decoder	47	0.06	50	Coilless Operation; 4.5 V Operation	646	MC1309
1	40	0.3	75	Coilless Operation	646	MC1310
	45	0.2	100	Variable Separation	648	TCA4500A

AM RECEIVER

Features	Function	Case	Туре
AM Radio Subsystem	RF Amplifier, AGC, Mixer, Oscillator, 1st IF Amplifier, 2nd IF Amplifier and Detector	648	HA1199

CIRCUITS FOR CONSUMER APPLICATIONS

Organ Circuits

FREQUENCY DIVIDER

Function	V _{CC} Range Vdc	f Tog MHz Typ	VOH Vdc Min	Case	Туре
7-Stage Divider	6-16	1.0	12.0/15.0	646	MC1302

ATTENUATOR

Function	V _{CC} Range Vdc	THD % Typ	Ay dB Typ	Attenuation Range dB Typ	Case	Туре
Electronic Attenuator	9.0-18	0.6	13	90	626	MC3340

Automotive Circuits

OPERATIONAL AMPLIFIER

Function	V _{CC} Range Vdc	Avoi V/V Min	I _{IB} μΑ Max	Unity Gain Bandwidth MHz Typ	Case	Туре
Quad Operational Amplifier	4.0-28	1000	0.3	4.0	646	MC3301
	3.0-26	-	0.25	1.0	646	LM2902
Dual Operational Amplifier	3.0-26	-	0.25	1.0	626	LM2904

COMPARATORS

Function	V _{CC} Range Vdc	V _{IO} mV Max	IO nA Max	l _{iB} nA Max	Sink Current mA Typ	Case	Туре
Quad Comparators	2.0-28	±20	_	500	6.0	646, 632	MC3302
		±7.0				646	LM2901
	2.0-36	±5.0	±50	250	16.0	646, 632	LM239
		±2.0				646, 632	LM239A

VOLTAGE REGULATOR

Function	Case	Туре	
Automotive Voltage Regulator	Designed for use with NPN Darlington; Overvoltage Protection; "Open Sense" Shut Down; Selectable Temperature Coefficient for Use in a Floating Field Alternator Charging System	646	MC3325
Flip-Chip Automotive Voltage Regulator	Same as MC3325	-	MCCF3326

ELECTRONIC IGNITION

Electronic Ignition Circuit	Designed for use in High Energy Variable Dwell Electronic Ignition Systems with Variable Reluctance Sensors. Dwell and Spark Energy are Externally Adjustable	646	MC3333
Flip-Chip Electronic Ignition Circuit	Same as MC3333	-	MCCF3333

SPECIAL FUNCTION

Programmable Frequency Switch	Wide Input Frequency Range (10 Hz to 100 kHz) Adjustable Hysteresis	646, 632	MC3344
(Engine RPM Switch)	Wide Supply Operating Range (7 to 24 V)		

CIRCUITS FOR CONSUMER APPLICATIONS

Transistor Arrays

GENERAL-PURPOSE

Function	^I C (max) mA	V _{CEO} Volta Max	VCBO Volts Max	V _{EBO} Volta Max	Case	Туре
One Differentially Connected pair and Three Isolated Transistors	50	15	20	5.0	646	MC3346 MC3386
Dual Independent Differential Amplifiers with Associated Constant Current Transistors	50	15	20	5.0	646	CA3054

Special Functions

Function	Features	Case	Туре	
Emitter-Coupled Astable Multivibrator	Useful as DC-DC Converter, Power Regulator or Multivibrator. Toggle Freq = 100 kHz (typ)	626	MC3380	
Phase-Locked Loop	Contains Voltage Controlled Oscillator and Double Balanced Phase Detector	646	NE565	

Package Styles

Suffix

after Type Number

Lead Configuration		14 	14 000000000 1	16 	18 000000000000000000000000000000000000
Case	626	632	646	648	701
Material	Plastic	Ceramic	Plastic	Plastic	Plastic
Suffix after Type Number	P or PL	L	Р	Р	Р

Case	722A	724	314A	314B Plastic
Lead Configuration	Land Inno			

Ρ Р н ٧ 10

SPECIAL PURPO **CIRCUITS**

The linear-integrated-circuits listed in this section were developed by Motorola for the system design engineer to fill special-purpose requirements. Temperature ranges and package availability are tailored to provide price/performance versatility.

Linear Four-Quadrant **Multipliers**

MC1594/1494

This device is designed for use where the output voltage is a linear product of two input voltages. Typical applications include: multiply, divide, square root, mean square, phase detector, frequency doubler, balanced modulator/demodulator, electronic gain control.

The MC1594/MC1494 is a variable transconductance multiplier with internal level-shift circuitry and voltage regulator. Scale factor, input offsets and output offset are completely adjustable with the use of four external potentiometers. Two complementary regulated voltages are provided to simplify offset adjustment and improve powersupply rejection.

MC1595/MC1495

Similar to the MC1594/1494, but without internal level shift and voltage regulator circuits.

Balanced Modulator-Demodulator

MC1596/MC1496

Designed for use where the output voltage is a product of an input voltage (signal) and a switching function (carrier). Typical applications include suppressed carrier and amplitude modulation, synchronous detection, FM detection, phase detection and chopper applications.

MC3370

Electronic switch for triac triggering applications. Features zero-crossing detector to eliminate RFI, differential input with dual sensor inputs, input open and short protection, and built-in regulator permitting AC line operation.

Timing Circuits

MC1555/MC1455/MC1422

These devices are highly stable timing circuits capable of producing accurate time delays or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For a stable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output structure

can source or sink up to 200 mA or drive MTTL circuits. Timing from Microseconds through Hours. The MC1422 has variable threshold level, adjustable externally.

	Timing Error (typ)
MC1555	0.5%
MC1455	1.0%
MC1422	1.0%

MC3556/MC3456

Dual Version of the MC1555/MC1455

Low Frequency **Power Amplifier**

MC1554/MC1454

One-watt power amplifier for single or split supply operation. Typical voltage gain of 10, 18, or 38 V/V with 0.4% THD.

1417

Power Control Circults

CA3059/3079

Zero voltage switches designed for thyristor control in a variety of ac power switching applications for ac input voltages of 24 V, 120 V, 208/230 V, and 277 V at 50/60 and 400 Hz.

Monolithic Dual OP Amp and Dual Comparator

MC3505/MC3405

This device contains two differential input operational amplifiers and two comparators each set capable of single supply operation. This operational amplifier-comparator circuit will find its applications as a general purpose product for automotive circuits and as an industrial "building block".

- Op Amp Equivalent in Performance to MC3403
- Comparator Similar in Performance to LM339
- Op Amps are Internally Frequency Compensated
- Supply Operation 3.0 Volts to 36.0 Volts
- Dual Supply Operation also Available

Package Styles

Operatu Temperatu		
55 to +125°C	0 to +70°C	Case
MC1554	MC1454	603B
MC1555		601, 693
	MC1455	601, 626, 693
MC1594	MC1494	620
MC1595	MC1495	632
MC1596		603, 632
	MC1496	603, 632, 646
	MC1422	601, 626
MC3505		632
	MC3405	632, 646
MC3523		693
	MC3423	626, 693
MC3556		632
	MC3456	632, 646
	MC3370	626
	CA3059* CA3079*	646

Overvoltage Protection Circuit

MC3523/MC3423

OVPs protect sensitive circuitry from transients or regulator failures when used with an external "crowbar" SCR. They sense the overvoltage and quickly "crowbar" or short circuit the supply, forcing it into current limiting or opening fuse or CB.

Voltage threshold is adjustable and OVPs can be programmed for minimum duration before tripping, supplying noise immunity.

Io =mA	Vcc	VCC Volts		Volts				
Max	Min	Max	Min	Max	Device Number	Suffix	TAOC	Case
300	4.5	40	2.45	2.75	MC3423	Р	0 to +70	626
						U	0 to +70	693
					MC3523	U	-55 to +125	693

				8000	14 (14 0 000000000	
CASE	601	603	603B	626	632	646	693
MATERIAL	Metal	Metal	Metal	Plastic	Ceramic	Plastic	Ceramic
SUFFIX after type number	G	G	G	P or P1	L	P	U

10

HIGH FREQUENCY AMPLIFIERS

A variety of high-frequency circuits with features ranging from low-cost simplicity to multi-function versatility marks Motorola's line of integrated RF/IF amplifiers. Devices described here are intended for industrial and communications applications. For devices especially dedicated to consumer products, i.e., TV and entertainment radio, see "Circuits for Consumer Applications".

NON-AGC Amplifiers

SE/NE592 - Differential Two Stage Video Amplifier

A monolithic, two state differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without external components and adjustable gains from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high pass, low pass, or band pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display and video recorder systems.

MC1733/MC1733C - Video Amplifier

Differential input and output amplifier provides three fixed gain options with bandwidth to 120 MHz. External resistor permits any gain setting from 10 to 400 v/v. Extremely fast rise time (2.5 ns typ) and propagation delay time (3.6 ns typ) makes this unit particularly useful as pulse amplifier in tape, drum, or disc memory read applications.

MC1552/MC1553 - Low Distortion Amplifier

A high performance amplifier with internal series feedback for stable voltage gain and low distortion. Temperature compensation stabilizes operating point. Has selectable gain option and well characterized data that permits accurate response shaping. Useful for critical applications such as wideband linear amplifiers or fast-rise pulse amplifiers.

AGC Amplifiers

MC1550 - Low Cost Building Block

Single-stage cascade connected amplifier with delayed AGC characteristics, for operation at frequencies to 100 MHz. Has typical power gain of 25 dB @ 60 MHz.

MC1545/MC1445 -- Gated 2-Channel Input

Differential input and output amplifier with gated 2-channel input for a wide variety of switching purposes. Typical 75 MHz bandwidth makes it suitable for high-frequency applications such as video switching, FSK circuits, multiplexers, etc. Gating circuit is useful for AGC control.

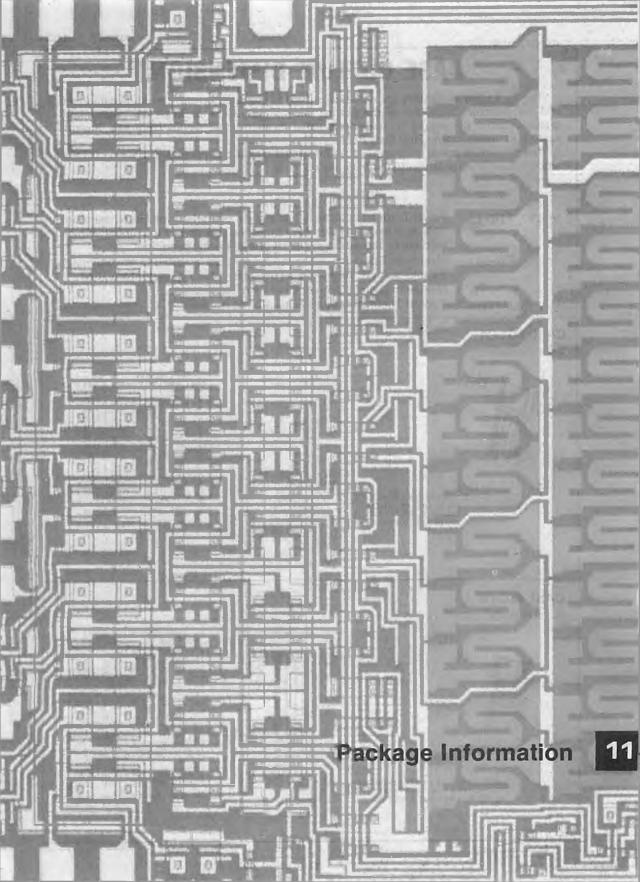
MC1590 - Wide-Band General Purpose

Has differential inputs and outputs with unneutralized power gain as high as 35 dB typical at 100 MHz in tuned amplifier service. Effective AGC voltage range from 5 to 7 volts for a 30 dB gain reduction.

Electrical Specifications

AGC AMPLIFIERS

Operating Temperature Range			Band	Vcc/	-
-55 to +125°C	0 to +75°C	Av dB	width MHz	V _{EE} Vdc	Case
MC1550		22 Min	22	+6/-	6038,606
MC1590	-	44 Тур 4 Тур		+12/-	601
MC1545	MC1445	19 Тур	@ 75	+5/-5	603,607 632


NON AGC AMPLIFIERS

MC1733	MC1733C	52 40 20	0	40 90 120	+6/-6	603,632
MC1653	-	46	9	35 15	+6/-6	603B
MC1552	-	34 40		40 35	+6/-6	603B
SE592	NE592	55 45	9	40 90	+6/-6	603,632

0

Package Styles

	st	dr.	As.	10	" <u>B</u> _E,	4
CASE	601	603	603B	606	607	632
MATERIAL	Metal	Metal	Metel	Ceramic	Ceramic	Ceramic
SUFFIX after type number	G	G	G	F	F	L

CASE OUTLINE DIMENSIONS

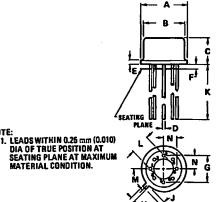
The packaging availability for each device type is indicated on the individual data sheets and the Selector Guide. All of the outline dimensions for the packages are given in this section. Outline dimensions for non-encapsulated standard linear device chips and flip-chip devices are found in the Chips Data Book.

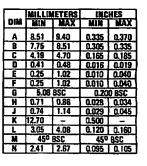
The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature can be found from the equation:

$$P_{D}(T_{A}) = \frac{T_{J}(\max) - T_{A}}{R_{\theta}J_{A}(Typ)}$$

 $P_D(T_A) =$ Power Dissipation allowable at a given operating ambient temperature. where: This must be greater than the sum of the products of the supply voltages and supply currents at the worst case operating condition.

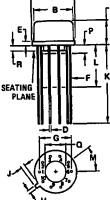
 $T_J(max) =$ Maximum Operating Junction Temperature as listed in the Maximum Ratings Section. See individual data sheets for TJ(max) information.

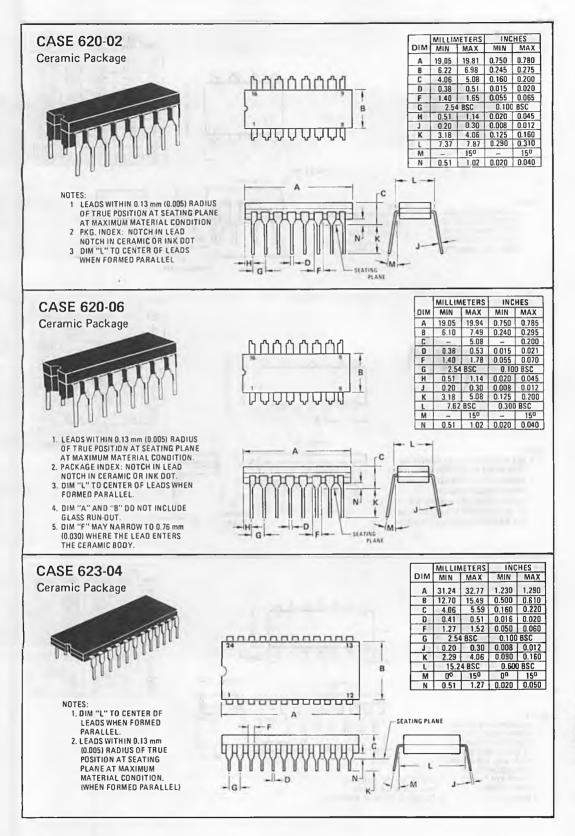

- T_A = Maximum Desired Operating Ambient Temperature
- $R_{\theta JA(Typ)} = Typical Thermal Resistance Junction to Ambient$

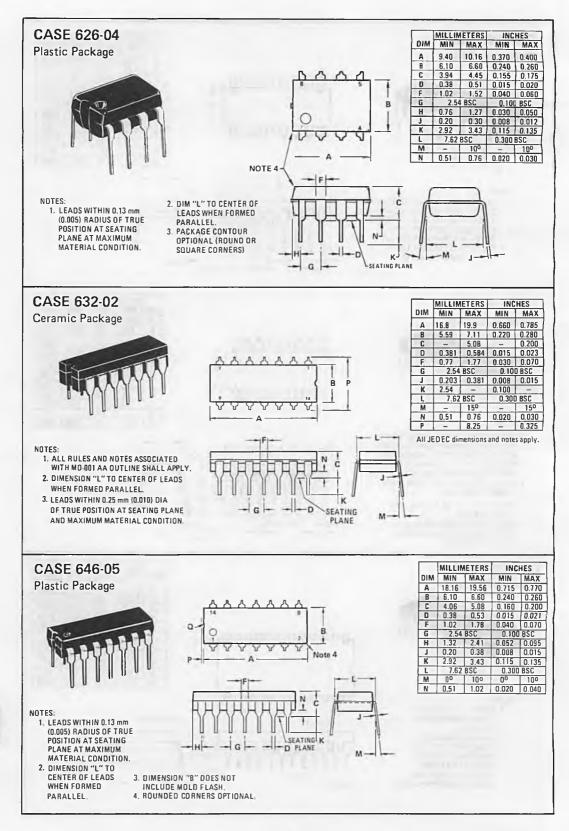

CASE 601-04

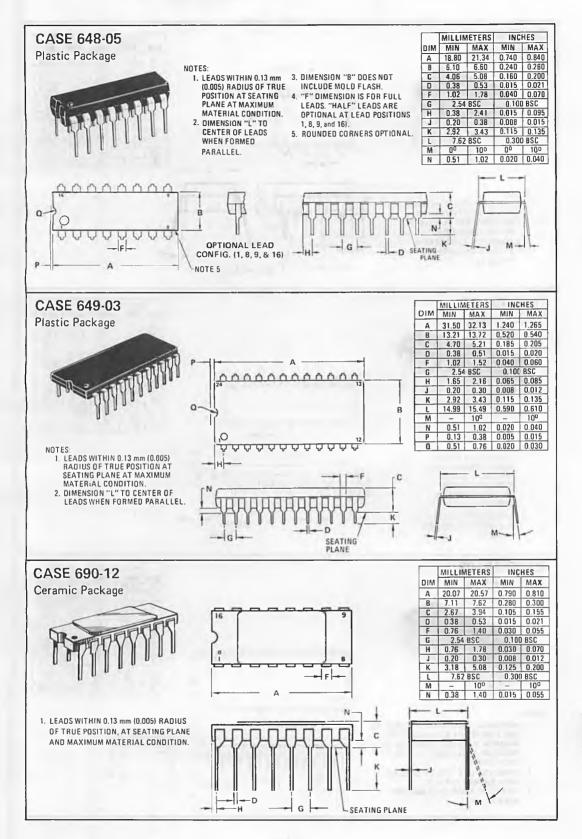
Metal Package

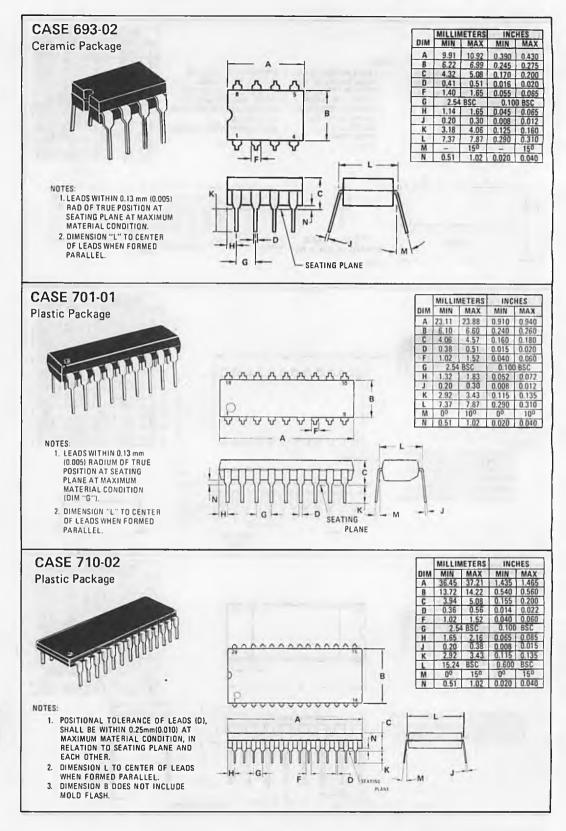
NOTE:

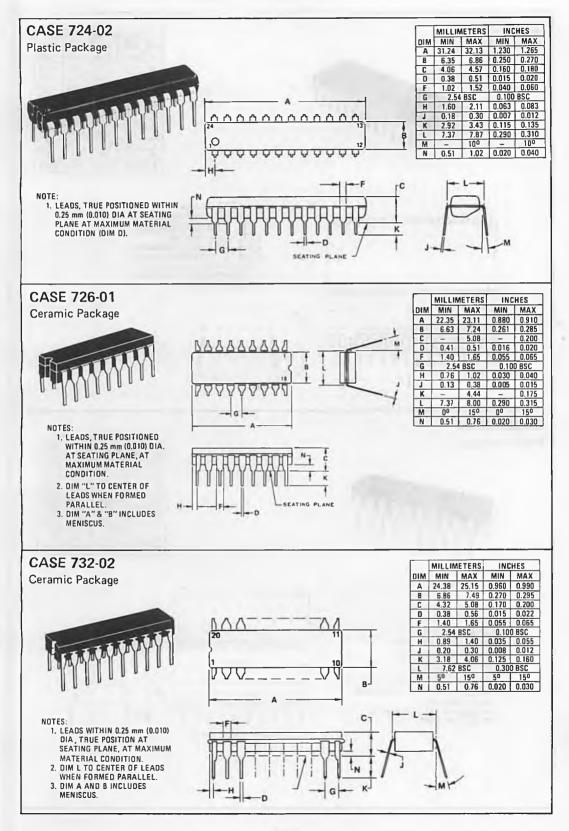


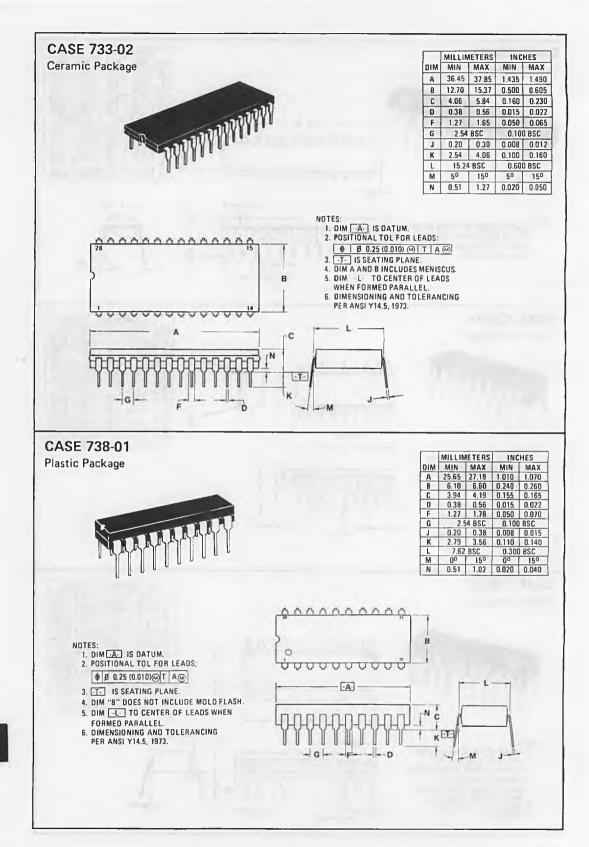


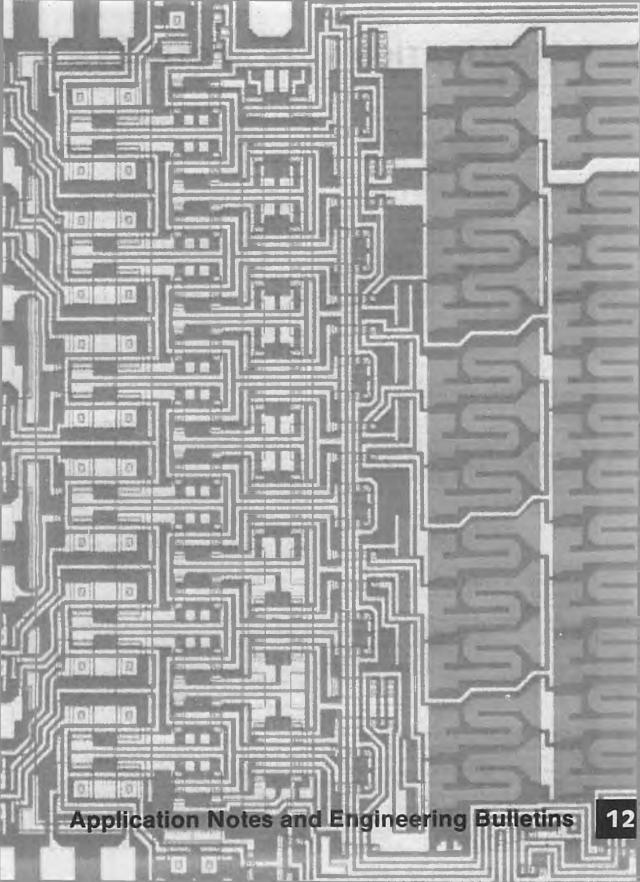



	MILLIA	AETERS	INCHES				
DIM	MIN	MAX	MIN	MAX			
A	8.51	9.39	0.335	0.370			
B	7.75	8.51	0.305	0.335			
C	4.19	4.70	0.165	0.185			
D	0.407	0.533	0.016	0.021			
Ε	-	1.02	-	0.040			
F	0.406	0.483	0.016	0.019			
G	5.84 BSC		0.230 BSC				
H	0.712	0.884	0.028	0.034			
1	0.737	1.14	0.029	0.045			
K	12.70	-	0.500	-			
L.	6.35	12.70	0.250	0.500			
M	360	8SC	36 ⁰ BSC				
5	_	1.27	-	0.050			
۵	3.56	4.06	0.140	0.160			
R	0.254	1.02	0.010	0.040			


All JEDEC dimensions and notes apply




11-3



APPLICATION NOTE ABSTRACTS

The application notes listed in this section have been prepared to acquaint the circuits and systems engineer with Motorola Linear integrated circuits and their applications. To obtain copies of the notes, simply list the AN number or numbers and send your request on your company letterhead to: Technical Information Center, Motorola Semiconductor Products Inc., P.O. Box 20912, Phoenix, Arizona 85036.

AN-245A An Integrated Core Memory Sense Amplifier

This application note discusses core memories and related design considerations for a sense amplifier. Performance and environmental specifications for the amplifier design are carefully established so that the circuit will work with any computer using core memories. The final circuit design is then analyzed and measured performance is discussed. The amplifier features a small uncertainty region (6 mV max), adjustable voltage gain, and fast cycle time $(0.5 \,\mu$ s).

AN-273A More Value out of Integrated Operational Amplifier Data Sheets

The operational amplifier is rapidly becoming a basic building block in present day solid state electronic systems. The purpose of this application note is to provide a better understanding of the open loop characteristics of the amplifier and their significance to overall circuit operation. Also, each parameter is defined and reviewed with respect to closed loop considerations. The importance of loop gain stability and bandwidth is discussed at length. Input offset circuits are also reviewed with respect to closed loop operation.

AN-290B Mounting Procedure for, and Thermal Aspects of, Thermopad Plastic Power Devices

Many Motorola power devices are now available in the Plastic Thermopad packages. Three package types are presently available. This application note provides information concerning the handling and mounting of these packages, as well as information on some thermal aspects.

AN-401 The MC1554 One-Watt Monolithic Integrated Circuit Power Amplifier

This application note discusses four different applications for the MC1554, along with a circuit description including DC characteristics, frequency response, and distortion. A section of the note is also devoted to package power dissipation calculations including the use of the curves on the power amplifier data sheet.

AN-404 A Wideband Monolithic Video Amplifier

This note describes the basic principles of AC and DC operation of the MC1552G and MC1553G, characteristics obtained as a function of the device operating modes, and typical circuit applications.

AN-411 The MC1535 Monolithic Dual Op Amp

This note discusses two dual operational amplifier applications and an input compensation scheme for fast slew rate for the MC1535. A complete AC and DC circuit analysis is presented in addition to many of the pertinent electrical characteristics and how they might affect the system performance.

AN-421 Semiconductor Noise Figure Considerations

A summary of many of the important noise figure considerations related with the design of low noise amplifiers is presented. The basic fundamentals involving noise, noise figure, and noise figurefrequency characteristics are then discussed with the emphasis on characteristics common to all semiconductors. A brief introduction is made to various methods of data sheet presentation of noise figure and a summary is given for the various methods of measurement. A discussion of low noise circuit design, utilizing many of the previously discussed considerations, is included.

AN-471 Analog-to-Digital Conversion Techniques

The subject of analog-to-digital conversion and many of the techniques that can be used to accomplish it are discussed. The paper is written in general terms from a system point of view and is intended to assist the reader in determining which conversion technique is best suited for a given application.

AN-489 Analysis and Basic Operation of the MC1595

The MC1595 monolithic linear four-quadrant multiplier is discussed. The equations for the analysis are given along with performance that is characteristic of the device. A few basic applications are given to assist the designer in system design.

AN-491 Gated Video Amplifier Applications Using The MC1545

This application note reviews the basic operation of the MC1545 and discusses some of the more popular applications for the MC1545. Included are several modulator types, temperature compensation of the active gate, AGC, gated oscillators, FSK systems, and single supply operation.

AN-513 A High Gain Integrated Circuit RF-IF Amplifier with Wide Range AGC

This note describes the operation and application of the MC1590G, a monolithic RF-IF amplifier. Included are several applications for IF amplifiers, a mixer, video amplifiers, single and two-stage RF amplifiers.

AN-522 The MC1556 Operational Amplifier and its Applications

2.11.1.1.1

This application note discusses the MC1556, a second generation, internally compensated monolithic operational amplifier. Particular emphasis is placed on its distinct advantages over the early 709type amplifier and the more recent 741-type amplifier.

Along with a description of its operation this note presents a discussion on various applications of the MC1556, highlighting its capabilities, and points out its characteristics so the reader may make effective use of the device.

AN-531 MC1596 Balanced Modulator

The MC1596 monolithic circuit is a highly versatile communications building block. In this note, both theoretical and practical information are given to aid the designer in the use of this part. Applications include modulators for AM, SSB, and suppressed carrier AM; demodulators for the previously mentioned modulation forms; frequency doublers and HF/VHF double balanced mixers.

AN-533 Semiconductors for Plated-Wire Memories

An introduction to the operation and electrical characteristics of plated wire memories is provided in conjunction with the applications of semiconductors that interface with the plated-wire memories.

Devices discussed include drivers, sense amplifiers, and decoders. Memory organization and memory-related semiconductor applications are also mentioned.

AN-543A Integrated Circuit IF Amplifiers for AM/FM and FM Radios

This application note discusses the design and performance of four IF amplifiers using integrated circuits. The IF amplifiers discussed include a high performance circuit, a circuit utilizing a quadrature detector, a composite AM/FM circuit, and an economy model for use with an external discriminator.

AN-545 Television Video IF Amplifier Using Integrated Circuits

This applications note considers the requirements of the video IF amplifier section of a television receiver, and gives working circuit schematics using integrated circuits which have been specifically designed for consumer oriented products. The integrated circuits used are the MC1350; MC1352, MC1353 and the MC1330.

AN-547 A High-Speed Dual Differential Comparator, The MC1514

This application note discusses a few of the many uses for the MC1514 dual comparator. Many applications such as sense amplifiers, multibuibrators, and peak level detectors are presented.

AN-553 A New Generation of Integrated Avionic Synthesizers

The need to generate signals of a multitude of different frequencies for avionic systems has resulted in complex solutions in the past. With the introduction of certain standard product integrated circuits, frequency synthesis using digital phase locked loop techniques presents a more practical solution. Several different types of servo phase locked loop systems are discussed and a practical design example is given. Results of design examples are presented along with possible applications.

AN-557 Analog-to-Digital Cyclic Converter

The A/D cyclic converter discussed in this note provides medium speed $(1-5\mu s/bit)$ and medium accuracy (7 or 8 bits) operation. A Cyclic converter uses the successive approximation technique in which an unknown analog input voltage is successively compared to a reference voltage to determine each bit of the digital output.

The cyclic converter offers continuous operation, automatic generation of the digital output in Graycode form, and a building block structure. This structure uses a separate but identical circuit for each resolution bit. The cyclic converter finds use primarily in control and process applications.

AN-559 Simple Ramp A/D Converter

A simple single ramp A/D converter which incorporates a calibration cycle to insure an accuracy of 12 bits is discussed. The circuit uses standard ICs and requires only one precision part—the reference voltage used in the calibration. This converter is useful in a number of instrumentation and measurement applications.

AN-564 An ADF Frequency Synthesizer Utilizing Phase-Locked Loop Integrated Circuits

This application note describes an IC phase locked-loop frequency synthesizer suitable for the local osciallator function in aircraft Automatic Direction Finder (ADF) equipment.

AN-587 Analysis and Design of the Op Amp **Current Source**

A voltage controlled current source utilizing an operational amplifier is discussed. Expressions for the transfer function and output impedances are developed using both the ideal and non-ideal op amp models. A section on analysis of the effects of op amp parameters and temperature variations on circuit performance is presented.

AN-590 Servo Motor Drive Amplifiers

The design of transformerless, AC servo amplifiers using power darlington transistors and IC op amps are discussed. Two types of power amplifiers are illustrated, one using single +28 Volt power supply, the second using high voltage transistors in complementary configuration for operating directly off the line.

Four different op amp preamplifiers and 90° phase shifters are also described.

AN-599 Mounting Techniques for Metal **Packaged Power Semiconductors**

For cooler, more reliable operation, proper mounting procedures must be followed if the interface thermal resistance between the semiconductor package and heat sink is to be minimized. Discussed are aspects of preparing the mounting surface, using thermal compounds, and fastening techniques. Typical interface thermal resistance is given for a number of packages.

AN-702 High Speed Digital-To-Analog and Analog-To-Digital Techniques

A brief overview of some of the more popular techniques for accomplishing D/A and A/D techniques. In particular those techniques which lead themselves to high speed conversion.

AN-703 Designing Digitally-Controlled **Power Supplies**

This application note shows two design approaches; a basic low voltage supply using an inexpensive MC1723 voltage regulator and a high current, high voltage, supply using the MC1466 floating regulator with optoelectronic isolation. Various circuit options are shown to allow the designer maximum flexibility in an application.

AN-708A Line Driver and Receiver Considerations

This report discusses many line driver and receiver design considerations such as system description, definition of terms, important parameter measurements, design procedures and application examples. An extensive line of devices is available from Motorola to provide the designer with the tools to implement the data transmission requirements necessary for almost every type of transmission system.

AN-710 Communication System Transmission Losses

This report shows the derivation of the equations used to calculate the insertion loss associated with various component parts of a communications channel. The combinations of components form a system whose overall loss may not be equal to the sum of the losses of the various parts.

AN-711 The Recovery of Recorded Digital Information in Drum, Disk and Tape Systems

The use of magnetic recording techniques has long been an important means of sorting digital information, as evidenced by the wide variety of equipment currently in use. Representative systems utilize drums, disks and tape as the recording medium.

All three techniques share the common problem of recovering the recorded digital information. The analog signal obtained by passing the recording medium by a magnetic sensor (Read Head) must be converted to a suitable digital format.

This application note reviews the general problem and discusses a number of specific circuit approaches.

AN-713 Binary D/A Converters can **Provide BCD-Coded Conversion**

This note describes the application and use of integrated circuit D/A converters for use in providing a BCD-coded conversion. The technique is illustrated using a 2-1/2 digit digital voltmeter.

AN-714 A Personalized Heart-Rate **Monitor with Ditigal Readout**

Using the micropower operational amplifier MC1776 and CMOS digital integrated circuits, entirely self-contained portable electro-medical monitoring equipment can be built. This note details the construction of a heart-rate monitor giving a digital indication, beat-by-beat.

AN-716 Successive Approximation A/D Conversion

Recent advances in integrated circuit design and technology have resulted in reduced cost of high performance successive approximation analog to digital converters. This note describes and illustrates two examples of how modern IC components have changed this well known technique.

A She and the state of the stat an shi she AN-717 Battery Powered 5-MHz Frequency Counter

. 11

This application note describes a batterypowered 5-MHz frequency counter using the McMOS logic family for low-power operation. The basic counter is optimized, at a 12-volt supply for maximum performance with a linear input-signal conditioner. Several options are discussed which optimize the basic counter for minimum power dissipation. These options include a CMOS input signal-conditioner and multiplexed LED displays.

AN-719 A New Approach to Switching : Regulators

This article describes a :24-Volt, 3-Ampere switching mode supply. It operates at 20 kHz from a 120 Vac line with an overall efficiency of 70%. New techniques are used to shape the load line. The control portion uses a quad comparator and an opto coupler and features short circuit protection.

AN-720 Interfacing with MECL 10,000

This article describes some of the MECL circuits used to interface with signals not meeting MECL input or output requirements. The characteristics of these circuits such as; input impedance, output drive, gain and bandwidth allow the system designer to use these parts to optimize his system. MECL interface circuits overcome a problem area of many system designs, which is the efficient coupling of non-compatible signals.

AN-732A A Non-Volatile Microprocessor Memory Using 4K N-Channel MOS RAMs

. . . .

NMOS semiconductor technology has made inroads into high density/high performance circuit design. The one-chip microprocessor, Random Aćcess Memories, and Read Only Memories, are changing system implementation from random logic designs to software and firmware programmable microcomputing systems. Such systems frequently require relatively large amounts of memory.

This paper describes the design of an 8192-byte non-volatile Random Access Memory system using the MCM6605A 4Kx1 RAM. The syste is designed to work with the Motorola MC6800, an 8-bit micro-processor.

AN-737A Switched Mode Power Supplies—Highlighting A 5-V, 40-A Inverter Design

This application note identifies the features of various regulator circuits that are in use today in AC to DC power supplies. The note also illustrates how these circuits may be used as complementary building blocks in a system design. Primary emphasis is on switched mode regulators because they fill the present need for energy and space savings.

A complete 5-V, 40-A line operated inverter supply is described in detail including design procedures for the magnetic components. The inverter itself is a "state-of-the-art" design which features CMOS logic, high voltage power transistors, Schottky rectifiers and an optoelectronic coupler. It operates with a full load efficiency of 80% at a frequency of 20 kHz.

AN-739 A Synthetic Spectrum Tuning System for TV

A tuning system is described which uses a complete spectrum of TV channel markers to achieve precise tuning to any channel.

AN-741 Interface Considerations for Numeric Display Systems

This application note describes several methods of multiplexing multi-digit, seven-segment displays. The logic devices illustrated are primarily CMOS with two examples describing TTL. The displays discussed are liquid crystal, LED, gas discharge, incandescent and fluorescent. How to interface between the logic and these displays, and what the interface considerations are, are described in detail.

AN-744 A Phase-Locked Loop Tuning System for Television

This note describes a frequency domain tuning system which utilizes direct digital countdown of the varactor tuner's local oscillator to obtain the proper local oscillator frequency for the channel number selected. The system features direct-channel access with equal ease of tuning and an exact channel readout for all VHF and UHF channels.

AN-746 A 3½ Digit DVM Using an Integrated Circuit Dual Ramp System

This application note describes the design of a $3\frac{1}{2}$ -digit DVM (digital voltmeter) using the MC1405 and the MC14435 dual ramp A/D system. The performance criteria is that of a lab quality DVM with both $3\frac{1}{2}$ -digit resolution and accuracy while still retaining a low cost and low parts count instrument. Features of the DVM include circuitry for a high impedance input, autopolarity and overrange indication.

AN-751 A Disassociated Intercarrier Television Video IF Amplifier

This application note discusses a unique video IF system, incorporating the MC1331, low-level multiplier detector. Problem areas in IF design are discussed and the specific solutions are shown.

AN-752 An 80-Watt Switching Regulator for CATV and Industrial Applications

This application note describes a 24-Volt, 3-Ampere switching, regulated power supply that operates above 18 kHz from a 40-to 60-Volt, 60-Hz square wave source (CATV power line from a ferroresonant transformer) or a dc standby source with input output isolation. The control circuit consists of a dual operational amplifier and a linear integrated circuit timer which are used to vary the on time of a new high-speed power transistor. The circuit provides good efficiency, good regulation, low output ripple and incorporates input and output voltage over shutdown protection.

AN-757 Analog-to-Digital Conversion Techniques with the MC6800 Microprocessor System

This application note describes several analog-todigital conversion systems implemented with the M6800 microprocessor and external linear and digital IC's. Systems consisting of an 8- and 10-bit successive approximation approach, as well as dual ramp techniques of 3½-and 4½ digit BCD and 12bit binary, are shown with flow diagrams, source programs and hardware schematics. System tradeoffs of the various schemes and programs for binary-to-BCD and BCD-to-7 segment code are discussed.

AN-760 Application of The MC3416 Crosspoint Switch

The operation and application of the MC3416 4 x 4 balanced crosspoint switch is described in detail. Special emphasis is given to balanced switching systems like those in space division PABX. Discussion of the total system design using the MC3416 is also included.

1. 266

11

AN-763 The MC1323—A Fully Programmable Demodulator

oba:

The MC1323 is a monolithic integrated circuit demodulator specifically designed for decoding the NTSC color television signal, even when nonstandard receiver display tube phosphor primaries are used. The unique design allows independent adjustment of demodulator conversion gains and demodulation axes. This note describes the circuit operation of the MC1323 and several applications including low cost driving of unitized gun picture tubes and obtaining R-G-B demodulated outputs.

11

۰.

1 . . .

The test of the Control ACC Control of Mark

AN-765 An Approach To A Low-Noise TV IF System

This note describes a technique of measurement of the IF contribution and ways of minimization of the IF noise. An IF design, following these procedures, is described to meet the desired noise performance.

AN-767 A Line Operated, Regulated 5V/50A Switching Power Supply

This application note describes a regulated 220 V ac to 5 Vdc converter using high voltage switching transistors and Schottky barrier rectifiers. The control functions are all performed by integrated circuits.

AN-775 M6800 Systems Utilizing the MC6875 Clock Generator/Driver

This application note describes the use of the MC6875 clock generator/driver in M6800 based systems. Design examples will demonstrate the capabilities of the driver in systems using slow and/or dynamic memories. Multiprocessing and DMA methods are also covered.

AN-781 Revised Data-Interface Standards

Revised data-interface standards permit faster data rates and longer cables. New chips, and RS232 adapters, simplify their use.

AN-787 An M6800 Clock System That Handles DMA and Memory Refresh Cycle Stealing

Dynamic memory and three-state cycle stealing for Direct Memory Access transfers require a clock generator and priority logic to maintain proper refresh times of the dynamic MPU and dynamic memory. The design presented here demonstrates use of the MC6875 clock generator with an MC6800 MPU.

> 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

> > inter i de Trada de la

> > > e alte Aletta

and the second

12

65 61 C

ENGINEERING BULLETIN ABSTRACTS

EB-20 Multiplier/Op Amp Circuit Detects True RMS

Two op amps and two multipliers are used in the circuit described by EB-20 to obtain the true rms of an input voltage ranging from 2 to 10 Vpk.

EB-21 DAC Key To Inexpensive 2³/₂ Digit Voltmeter.

EB-21 presents an idea for the core of an economical 2³/₂ digit voltmeter. Built around Motorola's MC1408 8-bit D/A converter, the meter can measure to 2.55 V in 10 mV steps.

EB-24A Input Buffer Circuits For The MC1505 Dual Ramp A-To-D Converter Subsystem

Several bipolar op amp buffers of medium-high impedance are described in this bulletin. It also discusses FET input op amp buffers providing high impedance and temperature drift under 1 mV over the 0°C to 50°C range.

EB-50 Build This Simple, Battery-Powered 3¹/₂ Digit DVM From Standard Parts

EB-50 describes a simple, battery-powered $3\frac{1}{2}$ digit DVM capable of measuring up to 20 volts that can be built from readily obtained standard parts. Sufficient information is provided to construct the circuit including schematic, PC board layout, parts list and calibration instructions.

EB-51 Successive Approximation BCD A/D Converter

A successive approximation A/D converter in which a digital-to-analog converter in a feedback loop produces a BCD digital output from an analog input is described in EB-51.

EB-52 Control Your Switching Regulator With The MC3380 Astable Multivibrator

Engineering Bulletin EB-52 describes the operation and characteristics of the MC3380 astable multivibrator and details the design of a 200 volt switching regulator circuit for gas discharge displays using this device as the control element.

EB-57 An Economical FM Transmitter Voice Processor from a Single IC

An MC3401 Quad OP-Amp is used as a Microphone/Modulation interface in an FM transmitter.

EB-58 Analog Data Acquisition Network for Digital Processing Using the MC1405-MC14435 A/D System

An MC1405-MC14435 combination is used to form a dual-slope A/D converter for analog data acquisition.

EB-66 A Symmetry Correcting Circuit for Use with the MC3420

EB-66 shows a method of implementing an external symmetry-correction circuit with the MC3420 Switchmode Regulator Control IC to insure balanced operation of the power transformer in pushpull inverter configurations.

EB-78 NEW ICs In Switching Supplies

This bulletin describes a regulated 220 Vac to 5 Vdc converter design incorporating the MC3420 and MC3423 for the control and ancillary functions.

EB-85 Full-Bridge Switching Power Supplies

This bulletin provides selection information on devices for a full-bridge configuration supply in the 500-1000 watt power range.

EB-86 Half-Bridge Switching Power Supplies

This bulletin provides selection information on devices for a half-bridge configuration supply in the 100-500 watt power range.

EB-87 Flyback Switching Power Supplies

This bulletin provides selection information on devices for a flyback configuration supply in the 100-250 watt power range.

EB-88 Push-Pull Switching Power Supplies

This bulletin provides selection information on devices for a push-pull configuration supply in the 100-500 watt power range.

1	Master Index and Cross-Reference Guide
2	Reliability Enhancement Programs
3	Selector Guide
4	Memory/Microprocessor Support
5	Drivers/Receivers
6	Communication Interface (Telephony)
7	Voltage Comparators
8	Data Conversion
9	Voltage References
10	Linear IC Selector Guides
11	Package Information
12	Application Notes and Engineering Bulletins

MOTOROLA Semiconductor Products Inc. BOX 20912 • PHOENIX, ARIZONA 85036 • A SUBSIDIARY OF MOTOROLA INC.