Precision full-wave signal rectifier needs no diodes

José M Blanes and José A Carrasco, University Miguel Hernández, Elche, Spain

Rectifier circuits based on semiconductor diodes typically handle voltage levels that greatly exceed the diodes' forward-voltage drops, which generally don't affect the accuracy of the rectification process. However, the rectified signal's accuracy suffers when the diode's voltage drop ex-

Figure 1 This precision full-wave-rectifier circuit uses two op amps and no diodes. When altering the basic design, note that resistors R₃ and R₄ are both twice the value of R, and that R, and R, are equal.

Figure 2 From bottom to top, the waveforms show V_{IN} (CH1), V_{HAIF} (CH2), and V_{OUT} (CH3).

DIs Inside

82 1-Hz to 100-MHz VFC features 160-dB dynamic range

86 Cascode MOSFET increases boost regulator's input- and output-voltage ranges

ceeds the applied voltage. Precision rectifier circuits combine diodes and operational amplifiers to eliminate the effects of diode voltage drops and enable high-accuracy, small-signal rectification. By taking advantage of modern operational amplifiers that can handle rail-to-rail inputs and outputs, the circuit in Figure 1 dispenses with diodes altogether, provides full-wave rectification, and operates from a single power supply.

The circuit operates as follows: If V_{IN} >0V, then IC_{IA} 's output, V_{HALF} 'equals V_{IN} /2, and IC_{IB} operates as a subtracter, delivering an output voltage, $V_{\rm OUT}$, equals $V_{\rm IN}$. In effect, the circuit operates as a unity-gain follower. If V_{IN} <0V, then V_{HALF} =0V, and the circuit behaves as a unity-gain inverter and delivers an output of $V_{OUT} = -V_{IN}$. Figure 2 shows the circuit's input signal at $V_{\rm IN}$; its intermediate voltage, $V_{\rm HALF}$; and its output voltage, $V_{\rm OUT}$.

The circuit uses a single National Semiconductor LMC6482 chip and operates in the linear regions of both operational amplifiers. Suggested applications include low-cost rectification for automatic gain control, signal demodulation, and process instrumentation. The circuit relies on only one device-dependent property: The amplifiers must not introduce phase inversion when the input voltage exceeds the negative power supply; the LMC-6482 meets this requirement. **EDN**