EDITED BY CHARLES H SMALL
 designideas

Comparator detects position of peaks and valleys in a waveform

Marián Štofka, Slovak University of Technology, Bratislava, Slovakia

The recent advent of Analog Devices' (www.analog.com) ADCMP60x family of comparators has filled a gap between the less-than-1-nsec-response comparators consuming 100 to 200 mW and those exhibiting approximately $1-\mu$ sec response, requiring about one-thousandth that power. The ADCMP60x comparators exhibit a low value of the product of propa-gation-delay-by-supply-current drain; possess rail-to-rail input and output operation; and offer a variety of options for hysteresis, latch-mode operation, and shutdown mode. Some of them
also have inherent level-translating capability. Moreover, the ratio of propagation delays for the positive and negative transitions at the output is close to the ideal value of 1 within 8% tolerance for the ADCMP600, ADCMP601, ADCMP602, and ADCMP603 and with in a 6.7% tolerance for the ADCMP608 and ADCMP609 members of the family (Reference 1).
This ratio is important in applications in which both positive- and negative-output-level transitions are equally significant. Figure 1 shows one such circuit. Voltage-level transitions

NOTE: D_{1} AND D_{2} ARE HSMS-282Ls OR HSMS-282Cs.
Figure 1 Comparator $I C_{2}$ produces an output that switches state at the positive and the negative peaks of the input-voltage waveform.

DIs Inside

104 Precision integrator sparks current-ratio-to-frequency converter

108 Accurate USB 2.0 temperature sensor needs only a handful of parts

110 Integrator enables simple ohmmeter with gigohm range

What are your design problems and solutions? Publish them here and receive $\$ 150$! Send your Design Ideas to edndesignideas@ reedbusiness.com.
at the output of the detector indicate changing of the sign of the first derivative of the input signal; in other words, the circuit detects time positions of peaks and valleys in the input-voltage waveform. The detector circuit uses an ADCMP601 for IC_{2}, and IC_{1} is an Analog Devices AD8007 current-feedback amplifier. IC_{1} connects as a voltage follower with an antiparallel combination of Schottky-barrier switching diodes, D_{1} and D_{2}, between the output and the inverting input of the amplifier. Comparator IC_{2} 's inputs connect to the source of the input voltage and to the output of the current-feedback amplifier. This configuration enhances the voltage difference of $\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{A}}$ between inputs of the comparator. It performs this enhancement in a steplike manner at the instant, or region, at which the sign of slope of the input signal changes. This voltage difference is a measure of the double-forward voltage of diodes D_{1} and D_{2} at their forward current, which you derive from $V_{I N} / R_{F}$

You use a current-feedback amplifier as IC_{1} because a dynamic current flows into its inverting input even when you

designideas

connect it as a voltage follower. The values of the R_{S} and R_{F} resistors are those that Reference 2 recommends for a gain of 1 . You needn't worry about instability due to the presence of antiparallel diodes in the feedback path of the current-feedback amplifier. These diodes increase the value of feedback resistance to more than 499Ω. Whenever the input voltage is only approximately 0 V , the frequency-gain response of IC_{1} for an R_{F} value greater than 499Ω remains flat.
An analysis of the response of the voltage follower in Figure 1 to a harmonic input voltage uses $\omega / \omega_{\mathrm{T}}$ and $\omega=2 \pi f$, where f is the input-voltage frequency and ω_{T} is the radial transition frequency of the amplifier. At the radial-transition frequency, the ratio of Z_{M} (the magnitude of the amplifier's transimpedance) to R_{F} drops to one. This simplification leads to an equation for the delay, t_{D}, in Figure 2:

$$
\Delta \varphi=2 \sqrt{\frac{\mathrm{~V}_{\mathrm{F}}}{\mathrm{~V}_{\mathrm{m}}} \times \frac{\mathrm{R}_{\mathrm{F}}}{\mathrm{r}_{\mathrm{m} 0}}},
$$

Figure 2 The output of comparator IC_{2} switches a slight time delay, t_{D}, after the positive and the negative peaks of the input voltage.
where V_{F} is the forward voltage of diode $\mathrm{D}_{1}, \mathrm{~V}_{\mathrm{m}}$ is the amplitude of input voltage, $R_{m 0}$ is the dc transresistance of the current-feedback amplifier, and
$\Delta \phi$ is the electrical-error angle in radians. The period of input harmonic voltage, T in Figure 2, represents 2π radians. The final error of the detector is $\Delta \phi$, which decreases by a factor of $\sqrt{2}$. This reduction occurs because the necessary operating overdrive over the midpoint of the steplike transition in the $V_{A}(t)$ voltage that the comparator requires is more than an order of magnitude less than the value of V_{F} EDN

REFERENCES

iu "Rail-to-Rail, Very Fast, 2.5 V to 5.5V, Single-Supply TTL/CMOS Comparators," ADCMP600/
ADCMP601/ADCMP602 Preliminary Data Sheet, Analog Devices, March 2006, www.analog. com/UploadedFiles/Data_Sheets/ 378991928ADCMP600_1_2_prra. pdf.
2. "Ultralow Distortion High Speed Amplifiers," AD8007/8008 Data Sheet, Analog Devices, 2003, www. analog.com/UploadedFiles/Data_ Sheets/AD8007_8008.pdf.

