CESSO CERTIFICATION CONTRACT OF CONTRACT O

Comparator detects position of peaks and valleys in a waveform

Marián Štofka, Slovak University of Technology, Bratislava, Slovakia

The recent advent of Analog Devices' (www.analog.com) ADCMP60x family of comparators has filled a gap between the less-than-1nsec-response comparators consuming 100 to 200 mW and those exhibiting approximately 1-µsec response, requiring about one-thousandth that power. The ADCMP60x comparators exhibit a low value of the product of propagation-delay-by-supply-current drain; possess rail-to-rail input and output operation; and offer a variety of options for hysteresis, latch-mode operation, and shutdown mode. Some of them

also have inherent level-translating capability. Moreover, the ratio of propagation delays for the positive and negative transitions at the output is close to the ideal value of 1 within 8% tolerance for the ADCMP600, ADCMP601, ADCMP602, and ADCMP603 and with in a 6.7% tolerance for the ADCMP608 and ADCMP609 members of the family (**Reference 1**).

This ratio is important in applications in which both positive- and negative-output-level transitions are equally significant. **Figure 1** shows one such circuit. Voltage-level transitions

tive and the negative peaks of the input-voltage waveform.

DIs Inside

104 Precision integrator sparks current-ratio-to-frequency converter

108 Accurate USB 2.0 temperature sensor needs only a handful of parts

110 Integrator enables simple ohmmeter with gigohm range

What are your design problems and solutions? Publish them here and receive \$150! Send your Design Ideas to edndesignideas@ reedbusiness.com.

at the output of the detector indicate changing of the sign of the first derivative of the input signal; in other words, the circuit detects time positions of peaks and valleys in the input-voltage waveform. The detector circuit uses an ADCMP601 for IC₂, and IC₁ is an Analog Devices AD8007 current-feedback amplifier. IC₁ connects as a voltage follower with an antiparallel combination of Schottky-barrier switching diodes, D_1 and D_2 , between the output and the inverting input of the amplifier. Comparator IC,'s inputs connect to the source of the input voltage and to the output of the current-feedback amplifier. This configuration enhances the voltage difference of $V_{IN} - V_A$ between inputs of the comparator. It performs this enhancement in a steplike manner at the instant, or region, at which the sign of slope of the input signal changes. This voltage difference is a measure of the double-forward voltage of diodes D_1 and D_2 at their forward current, which you derive from V_{IN}/R_{F}

You use a current-feedback amplifier as IC_1 because a dynamic current flows into its inverting input even when you

designideas

connect it as a voltage follower. The values of the R_s and R_F resistors are those that **Reference 2** recommends for a gain of 1. You needn't worry about instability due to the presence of antiparallel diodes in the feedback path of the current-feedback amplifier. These diodes increase the value of feedback resistance to more than 499 Ω . Whenever the input voltage is only approximately 0V, the frequency-gain response of IC₁ for an R_F value greater than 499 Ω remains flat.

An analysis of the response of the voltage follower in **Figure 1** to a harmonic input voltage uses ω/ω_T and $\omega = 2\pi f$, where f is the input-voltage frequency and ω_T is the radial transition frequency of the amplifier. At the radial-transition frequency, the ratio of Z_M (the magnitude of the amplifier's transimpedance) to R_F drops to one. This simplification leads to an **equation** for the delay, t_D , in **Figure 2**:

Figure 2 The output of comparator IC_2 switches a slight time delay, t_p , after the positive and the negative peaks of the input voltage.

where V_F is the forward voltage of diode D_1 , V_m is the amplitude of input voltage, R_{m0} is the dc transresistance of the current-feedback amplifier, and $\Delta \varphi$ is the electrical-error angle in radians. The period of input harmonic voltage, T in **Figure 2**, represents 2π radians. The final error of the detector is $\Delta \varphi$, which decreases by a factor of $\sqrt{2}$. This reduction occurs because the necessary operating overdrive over the midpoint of the steplike transition in the V_A(t) voltage that the comparator requires is more than an order of magnitude less than the value of V_F.EDN

REFERENCES

"Rail-to-Rail, Very Fast, 2.5V to 5.5V, Single-Supply TTL/CMOS Comparators," ADCMP600/ ADCMP601/ADCMP602 Preliminary Data Sheet, Analog Devices, March 2006, www.analog. com/UploadedFiles/Data_Sheets/ 378991928ADCMP600_1_2_prra. pdf.

"Ultralow Distortion High Speed Amplifiers," AD8007/8008 Data Sheet, Analog Devices, 2003, www. analog.com/UploadedFiles/Data_ Sheets/AD8007_8008.pdf.