


FIG. 1—A PROGRAMMABLE GAIN AMPLIFIER. When the switch is closed, the gain is -1. When the switch is opened, the gain is +1. One important circuit use is for synchronous demodulation.

FET programs op amp for invertible gain

by Ken A. Dill and Mark Troll Revelle College, University of California, La Jolla, Calif.

With only a few inexpensive components, an amplifier can be built with a gain of either +N or -N, depending on whether a field-effect transistor is turned off or on. Such a circuit is useful for programable inversion of analog signals or for programable phase-shifting of 180°

FET inverts op amp. Amplifier gain can be programmed either positive or negative, depending on whether the field-effect transistor is conducting or not conducting. Gain is the ratio of R_f to R_f ; for gains of ± 1 , R_f , R_2 , and R_3 are all equal value, and R_1 is half the value.

for signals that are symmetrical with respect to ground. When a comparator is added to program the inverter, the circuit becomes a precision rectifier, the output of which is:

$$V_{\text{out}} = |V_{\text{in}} - V_{\text{ref}}|$$

When the FET is off, the input signal goes only to the inverting input terminal of the operational amplifier; the gain is:

$$V_{\rm out}/V_{\rm in} = -R_{\rm f}/R$$

But when the FET is on, the gain is:

$$V_{\text{out}}/V_{\text{in}} = \eta A/[1 + (ARR_1)/(R_1R_f + RR_f + RR_1)]\theta \times [f -)R_1R_f)/(R_1R_f + RR_f + RR_1)]$$

where A is the open-loop gain of the op amp, and

$$f = R_3/(R_2 + R_3)$$

Since A is large, this reduces to:

$$V_{\text{out}}/V_{\text{in}} = (f-1)(R_f/R) + f[(R_f/R_1) + I]$$

To make +N and -N numerically equal, choose the resistance values so that $R_f/R = N$. From that, it follows algebraically that:

$$N = (f - 1)(N) + f[(NR/R_1) + 1]$$

$$2N = fN + (fNR/R_1) + f$$

$$2NR_1 = fNR_1 + fNR + fR_1$$

$$2NR_1 - fNR_1 - fR_1 = fNR$$

$$R_1 = NRf/[2N - (N+1)f]$$

For the simplest case—a gain of ± 1 —all amplifier input and feedback resistors have the same value, except R_1 , which is half that value.

The gate of the FET is controlled by a standard analog switch configuration, which allows the inputs to be 0 or +5 volts, compatible with TTL.