Gain-progra—able circuit offers performance and flexibility

Luo Bencheng, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences

OU CAN USE a standard precision instrumentation amplifier, such as the INA118 or AD623, as a gain-programmable amplifier with high accuracy and wide gain range. However, the gain range of such parts is fixed at certain values, limiting their flexibility. To solve the problem, a usual way is to use a gain-adjustable circuit controlled by a microcomputer (Figure 1).

IC₂ is a programmable 1-of-8 analogy multiplexer that connects to eight weighting resistors, R₁ to R₈, to improve the gain range of the circuit based on IC₂, a general-purpose precision amplifier. The overall gain of the circuit depends on the value of the selected weighting resistor, as follows:

$$V_{\text{OUT}} = -V_{\text{IN}} \left(\frac{R_{\text{X}} + R_{\text{ON}}}{R_0} \right),$$

where R_{ON} is the on-resistance of IC_2 , and R_{χ} is one of the selected weighting resistors, R_1 to R_2 . You control the port-select

pins Z, to Z, of IC, with a microcontroller to provide self-adjustable gain according to the selected weighting resistor. Unfortunately, the performance and quality of the circuit cannot provide good performance and high quality due to the on-resistance of IC, which you also cannot control, especially as the tempera-Figure 1 ture changes.

The modified gainadjustable amplifier circuit in **Figure 2** uses the same IC₁ but changes IC₂ to a programmable 2-of-8 dif-

ference-input analog multiplexer, which connects to four balancing resistors, R_{01} to R_{04} , and eight weighting resistors, R_{G1}

A basic gain-programmable amplifier circuit uses digital outputs from a microcontroller to set gain.

to R_{G8} , to improve the gain range of the circuit. By controlling the port-select pins Z_0 to Z_1 of IC_2 with a microcontroller, the

designideas

circuit provides self-adjustable gain with high quality. The overall gain of the circuit is:

$$V_{OUT} = V_{IN} \left(1 + \frac{R_{GB}}{R_{GA}} \right),$$

where R_{GA} is one of the selected weighting resistors, R_{G1} to R_{G4} , and R_{GB} is one of the selected weighting resistors, R_{G6} to R_{G8} .

Analog multiplexer IC_2 is on the input side of amplifier IC_1 . Resistors R_{01} to R_{04} balance the signal-input channel to decrease the level-shifting because of the on-resistance of multiplexer IC_2 and minimize the effect of that resistance. Additionally, two operational amplifiers, IC_{01} and IC_{02} , act as followers to improve the overall driver performance and common-mode-rejection capacity of the circuit.

The modified circuit provides more flexibility, along with high performance.