D.C. level clamp

The need sometimes arises, e.g. after a stage of a.c. amplification, to clamp the minimum level of a signal voltage to a d.c. reference voltage. The circuit illustrated was developed to clamp, to the zerovolt level, signals having an amplitude of between 10mV and 10V. The familiar diode-and-capacitor clamp circuit is unsuitable here because of the diode's forward conduction characteristic.

In each cycle, the capacitor, C, charges to the peak negative value ($V_b = -V_p$) of the input voltage, V_i . The voltage V_a then follows the input voltage ($V_a = 2V_i + V_p$) while V_b remains at the level to which the capacitor was charged, decreasing only with a time constant

$$T \approx \frac{(R_4 + R_6) R_2 C}{R_4 + R_6 + 2R_5}$$

Lower trace is the input signal; upper trace is the output from the restorer. Oscillogram was obtained with the circuit operating on a 150Hz signal with an amplitude of 40mV peak-to-peak.

The required voltage waveform, with its minimum d.c. level restored to zero, appears as $V_a - V_b$. A low-impedance single-ended output is provided by IC, and, in this case, unity gain overall. Using a 250-µF electrolytic capacitor,

the circuit clamps sinusoidal waveforms between 3Hz and 10kHz with little distortion. For use at higher frequencies, IC, should have a faster slew rate. Lower distortion can be achieved if IC, has a higher input impedance—allowing larger values

of R_s and R_s to be used. C. B. Mussell.

United Liverpool Hospitals.