Analog divider uses few components

David Cripe, Chatham, IL

Although microprocessors may offer more-precise calculations. there's still room for analog-computation techniques in a designer's circuit collection. As a case in point, the analog-divider circuit in Figure 1 offers reasonably good accuracy for the price of a few inexpensive components. Given two voltages, V_A and V_B , as its inputs, the circuit delivers an output of 5V multiplied by the ratio of V₄ divided by V_B. In operation, a TLC555, the CMOS version of the ubiquitous 555 timer, serves as a free-running Schmitttrigger RC oscillator, IC,. Its output signal at Pin 3 drives resistor R, and capacitor C₁. The voltage at C₁ drives IC₂'s trigger (Pin 2) and threshold (Pin 6) inputs, closing the timing loop and establishing oscillation. A low-impedance open-drain MOSFET at IC₂'s discharge pin switches low whenever IC₂'s output goes low.

Representing the calculation's denominator, an input voltage, V_B, drives IC,'s discharge pin through a resistive-voltage divider comprising R₃ and R₄. Regardless of IC₂'s frequency of oscillation, a pulsed voltage appears at IC₂'s Pin 7 with the same duty cycle as IC₂'s output signal at Pin 3 and an amplitude of OV to V_B/2. A voltage follower, IC_{1B}, buffers IC₂'s discharge output and drives a lowpass filter comprising R₈ and C₃,

yielding a voltage that equals $V_{\rm p}/2$ multiplied by IC_2 's duty cycle. A second resistive voltage divider, R_6 and R_7 , halves the numerator-input voltage, V_A , and applies the signal to integrator IC_{1A} , along with the output from the lowpass filter, R_8 and C_3 . The integrator's output voltage drives current through R_2 into C_1 , creating a bias voltage that in turn controls IC_2 's output pulse width and forming a feedback loop.

In operation, the feedback loop forces IC,'s duty cycle to equalize the voltages at IC_{1,A}'s Pin 2 and Pin 3, such that V_B multiplied by the duty cycle equals V_A , or the duty cycle equals the ratio of V_A to V_B . IC,'s output at Pin 3 comprises a 0 to 5V pulse waveform. The feedback circuit controls this waveform and in turn drives a lowpass filter, R_s and C_4 , to generate a dc-output

designideas

voltage equal to 5V multiplied by the pulse width, or $V_A \times 5V/V_B$.

Aside from the tolerances of the resistors in divider networks R₃ and R₄ and R₆ and R₇, the primary source for inaccuracy in the circuit arises from

the nonzero on-resistance of IC₂'s discharge switch and the inability of discharge-switch-voltage follower IC₁A's output to reach 0V. Keeping the circuit's resistance values high tends to reduce this effect. A Spice simula-

tion of this circuit indicates that, aside from the effects of resistor tolerances, the circuit achieves a worst-case accuracy of 0.5%. (Editor's note: For greatest accuracy, use a regulated, 5V power supply.)

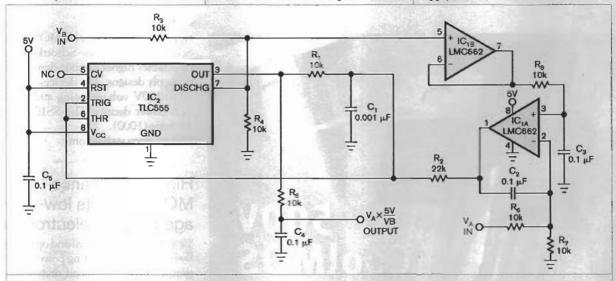
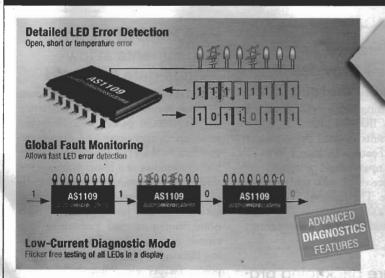



Figure 1 This low-cost pulse-width modulator performs analog division. Inputs V_A and V_B control this low-cost pulse-width modulator, and a lowpass filter follows it.

AS1109 - High Performance LED Driver High Current - Leading Accuracy - Easy to Use Diagnostics

- ▶ 100mA Output Current per Channel
- ▶ Open, Short and Temperature Error Detection
- ► Low-Current LED Diagnostic Mode

Simplicity meets Reliability

Fast error detection time and powerful LED diagnostic modes, easy-to-use

Performance and Accuracy

8 channels with $\pm 2\%$ output current accuracy plus high output current ability

Ideal for critical LED applications like emergency light indicators, traffic signs and traffic lights, fixed or slow moving displays in elevators, public transports or large stadium displays.

austriamicrosystems

West Coast (408) 345-1790 East Coast (919) 676-5292 Order samples at https://shop.austriamicrosystems.com

Get more technical info on austriamicrosystems' complete portfolio

of High Performance Analog solutions at www.austriamicrosystems.com