Pulse height modulator This circuit reduces the spike feedthrough in series f.e.t. gates by always limiting the gate voltage swing to between the source ferring to Fig. 1, if the input voltage (V_i) is voltage and the pinch-off voltage. Re- varied between 0 and 13V, say from an op-amp, then the f.ext. gate would have to be swung from +13V to $-V_p$ volts (V_p is pinch-off voltage). Fig. 2 shows one version of a circuit used to limit the voltage swing on the f.e.t. gate to approximately $V_i - V_p$. Input voltage is monitored by the emitter followers Tr. and Tr_2 and Tr_3 emitter is maintained at $V_i - V_{he} \approx V_i - 0.7$ V. Zener diode D_2 is matched as nearly as possible to the measured V_p of the particular f.e.t. in use. If $V_n < 1$ V a forward-biased diode (e.g. 1N916) may be used. The emitter of Tr_{d} is therefore established at $V_i - V_p - 1.4V$. Tr_2 , Tr_3 and D_1 establish the upper limit of the voltage swing to $\approx V_i$. The switch- ing waveform, a $\pm 15V$ squarewave with +15V Fig. 2 \$R₆ ≥10 k output to gate of f.e.t. Tr₃ BC107 1N916 D₃, Tr₄ Tr_2 BC 107 BCY71 ſr₅, input O-VV R₇ Tr 100k BC107 BC107 C₄ R₅ 27k יוונוי \$R₂ \$10k \$R₁ \$10k C11 C2. 100n 10 µ R₃ \$ 3k3 \$ 40V fast rise and fall times, drives the base of Tr_5 . Clearly from Fig. 2 the output waveform cannot go below $V_i - V_n - 1.4V$ or above V_{i} . Capacitors C_1 and C_2 are optional. Capacitor C_4 increases the rise time of the output signal and C_1 increases the fall time. Very slow turn off times can be obtained by suitable adjustment of C_{i} thereby giving further spike reduction. Resistor R_7 should be kept high because for low values of V_n and high values of V_i the emitter-base junction of Tr_i , will become reverse biased. Alternatively a diode can be placed between the emitter and R_{ς} . of different types of f.e.ts and always reduced the spike amplitude when compared to the spike produced by a full + 15V swing on the gate. By using a slow fall time the spike amplitude for this edge could easily be reduced by an order of magnitude. The circuit may need slight modification to suit individual requirements but works well with a slowly changing analogue signal and with switching rise/fall time of the order of 1us. M. D. G. Dabbs. Home Office Central Research Establishment. Aldermaston, Berks. The modulator was tried with a number