Two comparator ICs

 yield a fast, linear VFC

Fig 18 -Producing $5-\mathrm{kHz}$ to $10-\mathrm{MHz}$ output, this V/Fconverter circuit uses two comparator ICs and features $\pm 1 \%$ linearity. The LM160 is the heart of the converter; the LM311 prevents lockup.

TRACE	VERTICAL	HORIZONTAL
A	5 VIDIV	100μ SECIDIV
B	0.5 VIDIV	100μ SECIDIV
C	10 mAIDIV	100μ SECIDIV
D	5 V/DIV	100μ SECIDIV

Fig 19-A clean $10-\mathrm{MHz}$ output (trace D) results from an LM160's action in Fig 18's V/F converter. Trace C shows the charge-dispensing current from Fig 18's 50-pF capacitor.
the $0.01-\mu \mathrm{F}$ capacitor, resulting in a lower voltage.
The LM160's negative-going output also produces a short negative pulse-via the $5-\mathrm{pF} / 510 \Omega$ feedback-at its positive input. When this negative pulse decays to a point where the positive input is just higher than the negative input, the $50-\mathrm{pF}$ capacitor again receives a charge, and the entire cycle repeats. Diodes D_{1} and D_{2} compensate for diodes D_{3} and D_{4}, minimizing temperature drift.

The LM160's inverted output (Fig 19, trace D) serves as circuit output and also drives the LM311 comparator circuit to prevent LM160 lockup. Without it, any condition (such as startup and input overdrive) that allows the $0.01-\mu \mathrm{F}$ capacitor to charge beyond its normal operating point could cause the LM160's output to go to the -5 V rail and stay there.

The LM311 prevents lockup by pulling the LM160's negative input toward -5 V . The $10-\mu \mathrm{F} / 10-\mathrm{k} \Omega$ network determines when the LM311 switches on. When the VFC runs normally, the $10-\mu \mathrm{F}$ capacitor charges to a negligibly small voltage, holding the LM311 off. The LM160's inverted output stays HIGH if the VFC stops running (if lockup occurs), forcing the LM311 to turn on and restarting the circuit.

To calibrate the circuit, apply a 5 V input and adjust the $20-\mathrm{k} \Omega$ potentiometer for a $10-\mathrm{MHz}$ output. Then apply 2.5 mV and adjust the $50-\mathrm{k} \Omega$ potentiometer for a $5-\mathrm{kHz}$ output. When building this circuit, use a ground plane and good grounding techniques and locate the components associated with the LM160 inputs as close as possible to the inputs.

EDN

Author's biography

Jim Williams, now a consultant, was applications manager in National Semiconductor's Linear Applications Group (Santa Clara, CA), specializing in analog-circuit and instrumentation development, when this article was written. Before joining the firm, he served as a consultant at Arthur D Little Inc and directed the Instrumentation Develop-
 ment Lab at the Massachusetts Institute of Technology. A former student of psychology at Wayne State University, Jim enjoys tennis, art and collecting antique scientific instruments in his spare time.

