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ANALOG FILTER CIRCUITS                                                                                                     Application Note 1795: Dec 03, 2002 

  

Analog Filter Design Demystified 

This article shows the reader how to design analog filters. It starts by covering the 
fundamentals of filters, it then goes on to introduce the basic types like Butterworth, 
Chebyshev, and Bessel, and then guides the reader through the design process for 
lowpass and highpass filters. Includes the derivation of the equations and the circuit 
implementation. 

 

It's a jungle out there.  

A small tribe, in the dense wilderness, is much sought after by head hunters from the 
surrounding plains. The tribe knows it is threatened, because its numbers—killed off by the 
accelerating advance of modern technology—are dwindling at an alarming rate. This is the 
tribe of the Analog Engineers.  

The guru of Analog Engineers is the Analog Filter Designer, who sits on the throne of his 
kingdom and imparts wisdom while reminiscing of better days. You never get to see him even 
with an appointment, and you call him "Sir."  

The countless pages of equations found in most books on filter design can frighten small dogs 
and children. This article unravels the mystery of filter design, enabling you to design 
continuous-time analog filters quickly and with a minimum of mathematics. The throne will 
soon be vacant. 

The Theory of Analog Electronics 

Analog electronics has two distinct sides: the theory taught by academic institutions (equations 
of stability, phase-shift calculations, etc.), and the practical side familiar to most engineers 
(avoid oscillation by tweaking the gain with a capacitor, etc.). Unfortunately, filter design is 
based firmly on long-established equations and tables of theoretical results. Filter design from 
theoretical equations can prove arduous. Consequently, this discussion employs a minimum of 
math—either in translating the theoretical tables into practical component values, or in deriving 
the response of a general-purpose filter. 

The Fundamentals 

Simple RC lowpass filters have the transfer function  

. 

Cascading such filters complicates the response by giving rise to quadratic equations in the 
denominator of the transfer function. Thus, the denominator of the transfer function for any 
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second-order lowpass filter is as2+ bs + c. Substituting values for a, b and c determines the filter 
response over frequency. Anyone who remembers high school math will note that the above 
expression equals zero for certain values of "s" given by the equation  

 

At the values of "s" for which this quadratic equation equals zero, the transfer function has 
theoretically infinite gain. These values, which establish the performance of each type of filter 
over frequency, are known as the poles of the quadratic equation. Poles usually occur as pairs, 
in the form of a complex number (a + jb) and its complex conjugate (a - jb). The term jb is 
sometimes zero. 

The thought of a transfer function with infinite gain may frighten nervous readers, but in 
practice it isn't a problem. The pole's real part "a" indicates how the filter responds to transients, 
and its imaginary part "jb" indicates the response over frequency. As long as this real part is 
negative, the system is stable. The following text explains how to transfer the tables of poles 
found in many text books into component values suitable for circuit design.  

Filter Types 

The most common filter responses are the Butterworth, Chebyshev, and Bessel types. Many 
other types are available, but 90% of all applications can be solved with one of these three. 
Butterworth ensures a flat response in the pass band and an adequate rate of rolloff. A good "all 
rounder," the Butterworth filter is simple to understand and suitable for applications such as 
audio processing. The Chebyshev gives a much steeper rolloff, but passband ripple makes it 
unsuitable for audio systems. It is superior for applications in which the passband includes only 
one frequency of interest (e.g., the derivation of a sinewave from a square wave, by filtering out 
the harmonics). 

The Bessel filter gives a constant propagation delay across the input frequency spectrum. 
Therefore, applying a square wave (consisting of a fundamental and many harmonics) to the 
input of a Bessel filter yields an output square wave with no overshoot (all the frequencies are 
delayed by the same amount). Other filters delay the harmonics by different amounts, resulting 
in an overshoot on the output waveform. One other popular filter, the elliptical type, is a much 
more complicated beast that will not be discussed in this text. Similar to the Chebyshev 
response, it has ripple in the passband and severe rolloff at the expense of ripple in the stop 
band. 

Standard Filter Blocks 

The generic filter structure (Figure 1a) lets you realize a highpass or lowpass implementation 
by substituting capacitors or resistors in place of components G1-G4. Considering the effect of 
these components on the op-amp feedback network, one can easily derive a lowpass filter by 
making G2/G4 into capacitors and G1/G3 into resistors. (Vice versa yields the highpass 
implementation.)  
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Figure 1. By substituting for G1-G4 in the generic filter block (a), you can implement a 
lowpass filter (b) or a highpass filter (c). 

The transfer function for the lowpass filter (Figure 1b) is 

 

This equation is simpler with conductances. Replace the capacitors with a conductance of sC, 
and the resistors with a conductance of G. If this looks complicated, you can "normalize" the 
equation. Set the resistors equal to 1  or the capacitors equal to 1F, and change the 
surrounding components to fit the response. Thus, with all resistor values equal to 1 , the 
lowpass transfer function is 
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This transfer function describes the response of a generic, second-order lowpass filter. We now 
take the theoretical tables of poles that describe the three main filter responses, and translate 
them into real component values. 

The Design Process 

To determine the filter type required, you should use the above descriptions to select the 
passband performance needed. The simplest way to determine filter order is to design a second-
order filter stage, and then cascade multiple versions of it as required. Check to see if the result 
gives the desired stopband rejection, and then proceed with correct pole locations as shown in 
the tables in the appendix. Once pole locations are established, the component values can soon 
be calculated. 

First, transform each pole location into a quadratic expression similar to that in the denominator 
of our generic second-order filter. If a quadratic equation has poles of (a ± jb), then it has roots 
of (s - a - jb) and (s - a + jb). When these roots are multiplied together, the resulting quadratic 
expression is s2 - 2as + a2 + b2. 

In the pole tables a is always negative, so for convenience we declare s2 + 2as + a2 + b2, and use 
the magnitude of a regardless of its sign. To put this into practice, consider a fourth-order 
Butterworth filter. The poles and the quadratic expression corresponding to each pole location 
are as follows: 

Poles (a ± jb)  Quadratic expression 

-0.9239 ± j0.3827 s2 + 1.8478s + 1 

-0.3827 ± j0.9239 s2 + 0.7654s + 1 

You can design a fourth-order Butterworth lowpass filter with this information. Simply 
substitute values from the above quadratic expressions into the denominator of Equation 1. 
Thus, C2C4 = 1 and 2C4 = 1.8478 in the first filter, implying that C4 = 0.9239F and C2 = 
1.08F. For the second filter, C2C4 = 1 and 2C4 = 0.7654, implying that C4 = 0.3827F and C2 = 
2.61F. All resistors in both filters equal 1 . Cascading these two second-order filters yields a 
fourth-order Butterworth response with rolloff frequency of 1rad/s, but the component values 
are impossible to find. If the frequency or component values above are not suitable, read on.  

It so happens that if you maintain the ratio of the reactances to the resistors, the circuit response 
remains unchanged. You might therefore choose 1k  resistors. To ensure that the reactances 
increase in the same proportion as the resistances, divide the capacitor values by 1000. 

We still have the perfect Butterworth response, but unfortunately the rolloff frequency is 
1rad/s. To change the circuit's frequency response, we must maintain the ratio of reactances to 
resistances but simply at a different frequency. For a rolloff of 1kHz rather than 1rad/s, the 
capacitor value must be further reduced by a factor of 2  x 1000. Thus, the capacitor's 
reactance does not reach the original (normalized) value until the higher frequency. The 
resulting fourth-order Butterworth lowpass filter with 1kHz rolloff takes the form of Figure 2.  
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Figure 2. These two non-identical 2nd-order filter sections form a 4th-order Butterworth 
lowpass filter.  

Using the above technique, you can obtain any even-order filter response by cascading second-
order filters. Note, however, that a fourth-order Butterworth filter is not obtained simply by 
calculating the components for a second order filter and then cascading two such stages. Two 
second-order filters must be designed, each with different pole locations. If the filter has an odd 
order, you can simply cascade second-order filters, and add an RC network to gain the extra 
pole. For example, a fifth-order Chebyshev filter with 1dB ripple has the following poles: 

Poles  Quadratic 

-0.2265 ± j0.5918 s2 + 0.453s + 0.402 2.488s2 + 1.127s + 1 

-0.08652 ± j0.9575 s2 + 0.173s + 0.924 1.08s2 + 0.187s + 1 

-0.2800 see text 

To ensure conformance with the generic filter described by Equation 1, and to ensure that the 
last term equals unity, the first two quadratics have been multiplied by a constant. Thus, in the 
first filter C2C4 = 2.488 and 2C4 = 1.127, implying that C4 = 0.5635F and C2 = 4.41F. For the 
second filter, C2C4 = 1.08 and 2C4 = 0.187, implying that C4 = 0.0935F and C2 = 11.55F. 

Earlier, it was shown that an RC circuit has a pole when 1 + sCR = 0: . If R = 1, then to 
obtain the final pole at s = -0.28 you must set C = 3.57F. Using 1k  resistors, you can 
normalize for a 1kHz rolloff frequency as shown in Figure 3. Thus, designers can boldly go and 
design lowpass filters of any order at any frequency. 
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Figure 3. A 5th-order, 1dB-ripple Chebyshev lowpass filter is constructed from two 
non-identical 2nd-order sections and an output RC network. 

All of this theory applies also to the design of highpass filters. It has been shown that a simple 

RC lowpass filter has the transfer function . 

Similarly, a simple RC highpass filter has the transfer function . 

Normalising these functions to correspond with the normalized pole tables gives for 

lowpass and for highpass.  

Note that the highpass pole positions "s" can be obtained by inverting the lowpass pole 
positions. Inserting those values into the highpass filter block ensures the correct frequency 
response. To obtain the transfer function for the highpass filter block, we need to go back to the 
transfer function of the lowpass filter block. Thus, from  

 

we obtain the transfer function of the equivalent highpass filter block by interchanging 
capacitors and resistors:  

. 

Again, life is much simpler if capacitors are normalized instead of resistors: 

 

Equation 2 is the transfer function of the highpass filter block. This time we calculate resistor 
values instead of capacitor values. Given the general highpass filter response, we can derive the 
highpass pole positions by inverting the lowpass pole positions and continuing as before. 
Inverting a complex-pole location is easier said than done, however. As an example, consider 
the fifth-order, 1dB-ripple Chebyshev filter discussed earlier. It has two pole positions at (-
0.2265 ± j0.5918).  

The easiest way to invert a complex number is to multiply and divide by the complex 
conjugate, thereby obtaining a real number in the numerator. You then find the reciprocal by 
inverting the fraction. 
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Thus,  gives , and inverting gives . The 
newly derived pole positions can then be converted to the corresponding quadratic expression, 
and values calculated as before. The result is: 

Poles Quadratic 

-0.564 ± j1.474 s2 + 1.128s + 2.490 0.401s2 + 0.453s + 1 

From Equation 2 we can calculate the first filter component values as R2R4 = 0.401 and 2R2 = 
0.453, implying that R2 = 0.227  and R4 = 1.77 . This procedure can then be repeated for the 
other pole locations. 

Because it has been shown that , a simpler approach is to design for a lowpass filter 
using suitable lowpass poles, and then treat every pole in the filter as a single RC circuit. To 
invert each lowpass pole to obtain the corresponding highpass pole, simply invert the value of 
CR. Once the highpass pole locations are obtained, we ensure the correct frequency response 
by interposing the capacitors and resistors. 

A normalized capacitor value was calculated for the lowpass implementation, assuming that R 
= 1 . Hence the value of CR equals the value of C, and the reciprocal of the value of C is the 
highpass pole. Treating this pole as the new value of R yields the appropriate highpass 
component value. 

Considering again the fifth-order, 1dB-ripple Chebyshev lowpass filter, the calculated capacitor 
values are C4 = 0.5635F and C2 = 4.41F. To obtain the equivalent highpass resistor values, 
invert the values of C (to obtain highpass pole locations), and treat these poles as the new 
normalized resistor values: R4 = 1.77, and R2 = 0.227. This approach provides the same results 
as does the more formal method mentioned earlier. 

Thus, the Figure 3 circuit can now be converted to a highpass filter with 1kHz rolloff by 
inverting the normalized capacitor values, interposing the resistors and capacitors, and scaling 
the values accordingly. Earlier, we divided by 2 fR to normalize the lowpass values. The 
scaling factor in this case is 2 fC, where C is the capacitor value and f is the frequency in 
Hertz. The resulting circuit is Figure 4, and a SPICE simulation shows expected characteristics 
at the output of each filter (Figure 5).  
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Figure 4. Transposing resistors and capacitors in the Figure 3 circuit yields a 5th-
order, 1dB-ripple Chebyshev highpass filter. 

 

 

Figure 5. These SPICE outputs simulate the response of the highpass and lowpass 
Chebyshev circuits.  

 

Conclusion 

Using the above methods, you can design lowpass and highpass filters with response at any 
frequency. Bandpass and bandstop filters can also be implemented (with single op amps) using 
techniques similar to those shown, but those applications are beyond the scope of this article. 
You can, however, implement bandpass and bandstop filters by cascading lowpass and 
highpass filters. Information on Maxim op amps can be found at the Maxim website 
(www.maxim-ic.com).  
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Table 1 

Butterworth Pole Locations 

Order Real Imaginary 

   -a +/-jb 

2 0.7071 0.7071 

       

3 0.5000 0.8660 

   1.0000   

       

4 0.9239 0.3827 

   0.3827 0.9239 

       

5 0.8090 0.5878 

   0.3090 0.9511 

   1.0000   

       

6 0.9659 0.2588 

   0.7071 0.7071 

   0.2588 0.9659 

       

7 0.9010 0.4339 

   0.6235 0.7818 

   0.2225 0.9749 

   1.0000   

       

8 0.9808 0.1951 

   0.8315 0.5556 

   0.5556 0.8315 

   0.1951 0.9808 

       

9 0.9397 0.3420 

   0.7660 0.6428 

   0.5000 0.8660 

   0.1737 0.9848 
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   1.0000   

       

10 0.9877 0.1564 

   0.8910 0.4540 

   0.7071 0.7071 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MORE INFORMATION 

MAX4212: QuickView  -- Full (PDF) Data Sheet (456k)  -- Free Sample 
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