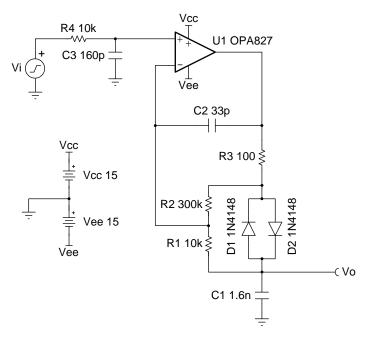


Analog Engineer's Circuit: Amplifiers SBOA244–January 2019

Fast-settling low-pass filter circuit


Design Goals

Input		Output		Supply	
V _{iMin}	V _{iMax}	V _{oMin}	V _{oMax}	V _{cc}	V _{ee}
-12V	12V	-12V	12V	15V	-15V

Cutoff Frequency (f _c)	Diode Threshold Voltage (V _t)	
10kHz	20mV	

Design Description

This low-pass filter topology offers a significant improvement in settling time over the conventional singlepole RC filter. This is achieved through the use of diodes D_1 and D_2 , that allow the filter capacitor to charge and discharge much faster when there is a large enough difference between the input and output voltages.

Design Notes

- 1. Observe the common-mode input limitations of the op amp.
- 2. Keeping C_1 small will ensure the op amp does not struggle to drive the capacitive load.
- 3. For the fastest settling time, use fast switching diodes.
- 4. The selected op amp should have sufficient output drive capability to charge C₁. R₃ limits the maximum charge current.

www.ti.com

Design Steps

1. Select standard values for R_1 and C_1 based on $f_c = 10$ kHz.

2. Set the diode threshold voltage (V_t). This threshold is the minimum difference in voltage between the input and output that will result in diode conduction (fast capacitor charging and discharging).

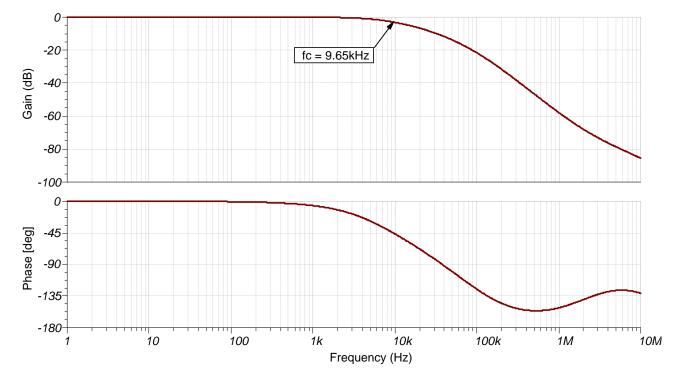
3. Select components for noise pre-filtering.

$$\begin{split} f_{c2} &= 10 \times f_c = 100 \text{kHz} \\ f_{c2} &= \frac{1}{2\pi \times R_4 \times C_3} \\ \text{Select} \quad R_4 &= R_1 = 10 \text{k}\Omega \\ C_3 &= \frac{C_1}{10} = 160 \text{pF} \end{split}$$

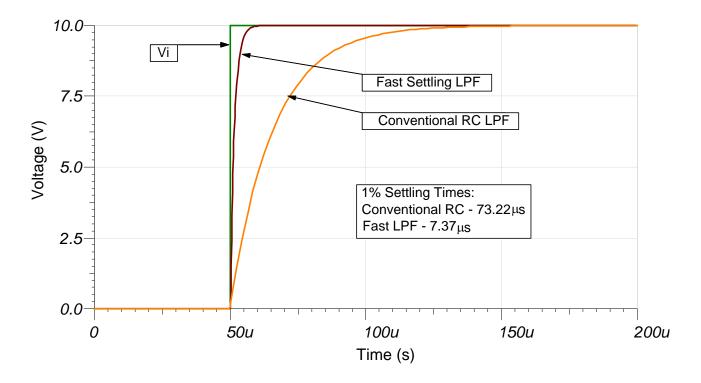
 Add compensation components to stabilize U₁. R₃ limits the charge current into C₁ and also serves to isolate the capacitance from the op amp output when the diodes are conducting. Larger values will improve stability but increase C₁ charge time.

Select
$$R_3 = 100\Omega$$

5. C_2 provides local high frequency feedback to counteract the interaction between the input capacitance with the parallel combination of R_1 and R_2 . To prevent interaction with C_1 , select C_2 as the following shows:


Select $C_2 = \frac{C_1}{50} = 32 pF \approx 33 pF$ (standard value)

TEXAS INSTRUMENTS


www.ti.com

Design Simulations

Transient Simulation Results

www.ti.com

Design References

See Analog Engineer's Circuit Cookbooks for TI's comprehensive circuit library.

See TINA-TI[™] circuit simulation file, SBOMAU1.

For more information on many op amp topics including common-mode range, output swing, bandwidth, and how to drive an ADC, see TI Precision Labs.

Design Featured Op Amp

OPA827			
V _{ss}	8V to 36V		
V _{inCM}	V _{ee} +3V to V _{cc} –3V		
V _{out}	V _{ee} +3V to V _{cc} –3V		
V _{os}	75µV		
l _q	4.8mA		
I _b	ЗрА		
UGBW	22MHz		
SR	28V/µs		
#Channels	1		
http://www.ti.com/product/opa827			

Design Alternate Op Amp

TLC072			
V _{ss}	4.5V to 16V		
V _{inCM}	$V_{\rm ee}\text{+}0.5\text{V}$ to $V_{\rm cc}\text{-}0.8\text{V}$		
V _{out}	V_{ee} +350mV to V_{cc} -1V		
V _{os}	390µV		
l _q	2.1mA/Ch		
I _b	1.5pA		
UGBW	10MHz		
SR	16V/µs		
#Channels	1,2,4		
http://www.ti.com/product/tlc072			