

SBOA219A-January 2018-Revised February 2019

Comparator with and without hysteresis circuit

Design Goals

Input		Output		Supply		
V _{iMin}	V _{iMax}	V _{oMin}	V _{oMax}	V _{cc}	V _{ee}	V _{ref}
0V	5V	0V	5V	5V	0V	5V

V _L (Lower Threshold)	V _н (Upper Threshold)	$V_{H} - V_{L}$
2.3V	2.7V	0.4V

Design Description

Comparators are used to compare two different signal levels and create an output based on the input with the higher input voltage. Noise or signal variation at the comparison threshold will cause the comparator output to have multiple output transitions. Hysteresis sets upper- and lower-threshold voltages to eliminate the multiple transitions caused by noise.

Design Notes

- 1. Use a comparator with low quiescent current to reduce power consumption.
- 2. The accuracy of the hysteresis threshold voltages are related to the tolerance of the resistors used in the circuit.
- 3. The propagation delay is based on the specifications of the selected comparator.

www.ti.com

Design Steps

a.

a.

1. Select components for the comparator with hysteresis.

Select V_L, V_H, and R₁.
V_L = 2 . 3V
V_H = 2 . 7V
R₁ = 100k
$$\Omega$$
 (Standard Value)

- b. Calculate R₂. $R_2 = \frac{V_L}{V_{cc} - V_H} \times R_1 = \frac{2.3V}{5V - 2.7V} \times 100 k\Omega = 100 k\Omega \text{ (Standard Value)}$
- c. Calculate R_3 .

$$R_3 = \frac{V_L}{V_H - V_L} \times R_1 = \frac{2.3V}{2.7V - 2.3V} \times 100 k\Omega = 575 k\Omega \approx 576 k\Omega \text{ (Standard Value)}$$

d. Verify hysteresis width.

$$\begin{split} V_{H} - V_{L} &= \frac{R_{1} \times R_{2}}{(R_{3} \times R_{1}) + (R_{3} \times R_{2}) + (R_{1} \times R_{2})} \times V_{cc} \\ &= \frac{100 k_{\Omega} \times 100 k_{\Omega}}{(576 k_{\Omega} \times 100 k_{\Omega}) + (576 k_{\Omega} \times 100 k_{\Omega}) + (100 k_{\Omega} \times 100 k_{\Omega})} \times 5V = 0.399V \end{split}$$

2. Select components for comparator without hysteresis.

Select
$$V_{th}$$
 and R_{4} .
$$V_{th}=2~.~5V$$

$$R_{4}=100k\Omega~(Standard~Value)$$

- b. Calculate R_5 .
- $R_5 = \frac{V_{th}}{V_{cc} V_{th}} \times R_4 = \frac{2.5V}{5V 2.5V} \times 100 k\Omega = 100 k\Omega \text{ (Standard Value)}$

www.ti.com

Design Simulations

Transient Simulation Results

Zoomed in From 40µs to 110µs

www.ti.com

Design References

See Analog Engineer's Circuit Cookbooks for TI's comprehensive circuit library.

See the circuit SPICE simulation file SBOC515.

See TIPD144, www.ti.com/tool/tipd144.

Design Featured Comparator

TLV3201		
V _{cc}	2.7V to 5.5V	
V _{inCM}	Extends 200mV beyond either rail	
V _{out}	(V _{ee} +230mV) to (V _{cc} -210mV) @ 4mA	
V _{os}	1mV	
l _q	40µA	
I _b	1pA	
UGBW	-	
SR	-	
#Channels	1, 2	
www.ti.com/product/tlv3201		

Revision History

Revision	Date	Change
A	February 2019	Downscale the title and changed title role to 'Amplifiers'. Added links to circuit cookbook landing page and SPICE simulation file.